c1_LIRAssembler_s390.cpp revision 12256:2844bdfd7a99
1/*
2 * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2016 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "c1/c1_Compilation.hpp"
28#include "c1/c1_LIRAssembler.hpp"
29#include "c1/c1_MacroAssembler.hpp"
30#include "c1/c1_Runtime1.hpp"
31#include "c1/c1_ValueStack.hpp"
32#include "ci/ciArrayKlass.hpp"
33#include "ci/ciInstance.hpp"
34#include "gc/shared/collectedHeap.hpp"
35#include "gc/shared/barrierSet.hpp"
36#include "gc/shared/cardTableModRefBS.hpp"
37#include "nativeInst_s390.hpp"
38#include "oops/objArrayKlass.hpp"
39#include "runtime/sharedRuntime.hpp"
40#include "vmreg_s390.inline.hpp"
41
42#define __ _masm->
43
44#ifndef PRODUCT
45#undef __
46#define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
47#endif
48
49//------------------------------------------------------------
50
51bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
52  // Not used on ZARCH_64
53  ShouldNotCallThis();
54  return false;
55}
56
57LIR_Opr LIR_Assembler::receiverOpr() {
58  return FrameMap::Z_R2_oop_opr;
59}
60
61LIR_Opr LIR_Assembler::osrBufferPointer() {
62  return FrameMap::Z_R2_opr;
63}
64
65int LIR_Assembler::initial_frame_size_in_bytes() const {
66  return in_bytes(frame_map()->framesize_in_bytes());
67}
68
69// Inline cache check: done before the frame is built.
70// The inline cached class is in Z_inline_cache(Z_R9).
71// We fetch the class of the receiver and compare it with the cached class.
72// If they do not match we jump to the slow case.
73int LIR_Assembler::check_icache() {
74  Register receiver = receiverOpr()->as_register();
75  int offset = __ offset();
76  __ inline_cache_check(receiver, Z_inline_cache);
77  return offset;
78}
79
80void LIR_Assembler::osr_entry() {
81  // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
82  //
83  //   1. Create a new compiled activation.
84  //   2. Initialize local variables in the compiled activation. The expression stack must be empty
85  //      at the osr_bci; it is not initialized.
86  //   3. Jump to the continuation address in compiled code to resume execution.
87
88  // OSR entry point
89  offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
90  BlockBegin* osr_entry = compilation()->hir()->osr_entry();
91  ValueStack* entry_state = osr_entry->end()->state();
92  int number_of_locks = entry_state->locks_size();
93
94  // Create a frame for the compiled activation.
95  __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
96
97  // OSR buffer is
98  //
99  // locals[nlocals-1..0]
100  // monitors[number_of_locks-1..0]
101  //
102  // Locals is a direct copy of the interpreter frame so in the osr buffer
103  // the first slot in the local array is the last local from the interpreter
104  // and the last slot is local[0] (receiver) from the interpreter
105  //
106  // Similarly with locks. The first lock slot in the osr buffer is the nth lock
107  // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
108  // in the interpreter frame (the method lock if a sync method)
109
110  // Initialize monitors in the compiled activation.
111  //   I0: pointer to osr buffer
112  //
113  // All other registers are dead at this point and the locals will be
114  // copied into place by code emitted in the IR.
115
116  Register OSR_buf = osrBufferPointer()->as_register();
117  { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
118    int monitor_offset = BytesPerWord * method()->max_locals() +
119      (2 * BytesPerWord) * (number_of_locks - 1);
120    // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
121    // the OSR buffer using 2 word entries: first the lock and then
122    // the oop.
123    for (int i = 0; i < number_of_locks; i++) {
124      int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
125      // Verify the interpreter's monitor has a non-null object.
126      __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is NULL", __LINE__);
127      // Copy the lock field into the compiled activation.
128      __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
129      __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
130      __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
131      __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
132    }
133  }
134}
135
136// --------------------------------------------------------------------------------------------
137
138address LIR_Assembler::emit_call_c(address a) {
139  __ align_call_far_patchable(__ pc());
140  address call_addr = __ call_c_opt(a);
141  if (call_addr == NULL) {
142    bailout("const section overflow");
143  }
144  return call_addr;
145}
146
147int LIR_Assembler::emit_exception_handler() {
148  // If the last instruction is a call (typically to do a throw which
149  // is coming at the end after block reordering) the return address
150  // must still point into the code area in order to avoid assertion
151  // failures when searching for the corresponding bci. => Add a nop.
152  // (was bug 5/14/1999 - gri)
153  __ nop();
154
155  // Generate code for exception handler.
156  address handler_base = __ start_a_stub(exception_handler_size);
157  if (handler_base == NULL) {
158    // Not enough space left for the handler.
159    bailout("exception handler overflow");
160    return -1;
161  }
162
163  int offset = code_offset();
164
165  address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id);
166  address call_addr = emit_call_c(a);
167  CHECK_BAILOUT_(-1);
168  __ should_not_reach_here();
169  guarantee(code_offset() - offset <= exception_handler_size, "overflow");
170  __ end_a_stub();
171
172  return offset;
173}
174
175// Emit the code to remove the frame from the stack in the exception
176// unwind path.
177int LIR_Assembler::emit_unwind_handler() {
178#ifndef PRODUCT
179  if (CommentedAssembly) {
180    _masm->block_comment("Unwind handler");
181  }
182#endif
183
184  int offset = code_offset();
185  Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
186  Register Rtmp1                      = Z_R11;
187  Register Rtmp2                      = Z_R12;
188
189  // Fetch the exception from TLS and clear out exception related thread state.
190  Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
191  Address exc_pc_addr  = Address(Z_thread, JavaThread::exception_pc_offset());
192  __ z_lg(Z_EXC_OOP, exc_oop_addr);
193  __ clear_mem(exc_oop_addr, sizeof(oop));
194  __ clear_mem(exc_pc_addr, sizeof(intptr_t));
195
196  __ bind(_unwind_handler_entry);
197  __ verify_not_null_oop(Z_EXC_OOP);
198  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
199    __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
200  }
201
202  // Preform needed unlocking.
203  MonitorExitStub* stub = NULL;
204  if (method()->is_synchronized()) {
205    // Runtime1::monitorexit_id expects lock address in Z_R1_scratch.
206    LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
207    monitor_address(0, lock);
208    stub = new MonitorExitStub(lock, true, 0);
209    __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
210    __ bind(*stub->continuation());
211  }
212
213  if (compilation()->env()->dtrace_method_probes()) {
214    ShouldNotReachHere(); // Not supported.
215#if 0
216    __ mov(rdi, r15_thread);
217    __ mov_metadata(rsi, method()->constant_encoding());
218    __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
219#endif
220  }
221
222  if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
223    __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved);  // Restore the exception.
224  }
225
226  // Remove the activation and dispatch to the unwind handler.
227  __ pop_frame();
228  __ z_lg(Z_EXC_PC, _z_abi16(return_pc), Z_SP);
229
230  // Z_EXC_OOP: exception oop
231  // Z_EXC_PC: exception pc
232
233  // Dispatch to the unwind logic.
234  __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id));
235  __ z_br(Z_R5);
236
237  // Emit the slow path assembly.
238  if (stub != NULL) {
239    stub->emit_code(this);
240  }
241
242  return offset;
243}
244
245int LIR_Assembler::emit_deopt_handler() {
246  // If the last instruction is a call (typically to do a throw which
247  // is coming at the end after block reordering) the return address
248  // must still point into the code area in order to avoid assertion
249  // failures when searching for the corresponding bci. => Add a nop.
250  // (was bug 5/14/1999 - gri)
251  __ nop();
252
253  // Generate code for exception handler.
254  address handler_base = __ start_a_stub(deopt_handler_size);
255  if (handler_base == NULL) {
256    // Not enough space left for the handler.
257    bailout("deopt handler overflow");
258    return -1;
259  }  int offset = code_offset();
260  // Size must be constant (see HandlerImpl::emit_deopt_handler).
261  __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
262  __ call(Z_R1_scratch);
263  guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
264  __ end_a_stub();
265
266  return offset;
267}
268
269void LIR_Assembler::jobject2reg(jobject o, Register reg) {
270  if (o == NULL) {
271    __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
272  } else {
273    AddressLiteral a = __ allocate_oop_address(o);
274    bool success = __ load_oop_from_toc(reg, a, reg);
275    if (!success) {
276      bailout("const section overflow");
277    }
278  }
279}
280
281void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
282  // Allocate a new index in table to hold the object once it's been patched.
283  int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
284  PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
285
286  AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
287  assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
288  // The NULL will be dynamically patched later so the sequence to
289  // load the address literal must not be optimized.
290  __ load_const(reg, addrlit);
291
292  patching_epilog(patch, lir_patch_normal, reg, info);
293}
294
295void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
296  bool success = __ set_metadata_constant(md, reg);
297  if (!success) {
298    bailout("const section overflow");
299    return;
300  }
301}
302
303void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
304  // Allocate a new index in table to hold the klass once it's been patched.
305  int index = __ oop_recorder()->allocate_metadata_index(NULL);
306  PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
307  AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
308  assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
309  // The NULL will be dynamically patched later so the sequence to
310  // load the address literal must not be optimized.
311  __ load_const(reg, addrlit);
312
313  patching_epilog(patch, lir_patch_normal, reg, info);
314}
315
316void LIR_Assembler::emit_op3(LIR_Op3* op) {
317  switch (op->code()) {
318    case lir_idiv:
319    case lir_irem:
320      arithmetic_idiv(op->code(),
321                      op->in_opr1(),
322                      op->in_opr2(),
323                      op->in_opr3(),
324                      op->result_opr(),
325                      op->info());
326      break;
327    default: ShouldNotReachHere(); break;
328  }
329}
330
331
332void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
333#ifdef ASSERT
334  assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
335  if (op->block() != NULL)  { _branch_target_blocks.append(op->block()); }
336  if (op->ublock() != NULL) { _branch_target_blocks.append(op->ublock()); }
337#endif
338
339  if (op->cond() == lir_cond_always) {
340    if (op->info() != NULL) { add_debug_info_for_branch(op->info()); }
341    __ branch_optimized(Assembler::bcondAlways, *(op->label()));
342  } else {
343    Assembler::branch_condition acond = Assembler::bcondZero;
344    if (op->code() == lir_cond_float_branch) {
345      assert(op->ublock() != NULL, "must have unordered successor");
346      __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
347    }
348    switch (op->cond()) {
349      case lir_cond_equal:        acond = Assembler::bcondEqual;     break;
350      case lir_cond_notEqual:     acond = Assembler::bcondNotEqual;  break;
351      case lir_cond_less:         acond = Assembler::bcondLow;       break;
352      case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;   break;
353      case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;    break;
354      case lir_cond_greater:      acond = Assembler::bcondHigh;      break;
355      case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;   break;
356      case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;    break;
357      default:                         ShouldNotReachHere();
358    }
359    __ branch_optimized(acond,*(op->label()));
360  }
361}
362
363
364void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
365  LIR_Opr src  = op->in_opr();
366  LIR_Opr dest = op->result_opr();
367
368  switch (op->bytecode()) {
369    case Bytecodes::_i2l:
370      __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
371      break;
372
373    case Bytecodes::_l2i:
374      __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
375      break;
376
377    case Bytecodes::_i2b:
378      __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
379      break;
380
381    case Bytecodes::_i2c:
382      __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
383      break;
384
385    case Bytecodes::_i2s:
386      __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
387      break;
388
389    case Bytecodes::_f2d:
390      assert(dest->is_double_fpu(), "check");
391      __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
392      break;
393
394    case Bytecodes::_d2f:
395      assert(dest->is_single_fpu(), "check");
396      __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
397      break;
398
399    case Bytecodes::_i2f:
400      __ z_cefbr(dest->as_float_reg(), src->as_register());
401      break;
402
403    case Bytecodes::_i2d:
404      __ z_cdfbr(dest->as_double_reg(), src->as_register());
405      break;
406
407    case Bytecodes::_l2f:
408      __ z_cegbr(dest->as_float_reg(), src->as_register_lo());
409      break;
410    case Bytecodes::_l2d:
411      __ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
412      break;
413
414    case Bytecodes::_f2i:
415    case Bytecodes::_f2l: {
416      Label done;
417      FloatRegister Rsrc = src->as_float_reg();
418      Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
419      __ clear_reg(Rdst, true, false);
420      __ z_cebr(Rsrc, Rsrc);
421      __ z_brno(done); // NaN -> 0
422      if (op->bytecode() == Bytecodes::_f2i) {
423        __ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
424      } else { // op->bytecode() == Bytecodes::_f2l
425        __ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
426      }
427      __ bind(done);
428    }
429    break;
430
431    case Bytecodes::_d2i:
432    case Bytecodes::_d2l: {
433      Label done;
434      FloatRegister Rsrc = src->as_double_reg();
435      Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
436      __ clear_reg(Rdst, true, false);  // Don't set CC.
437      __ z_cdbr(Rsrc, Rsrc);
438      __ z_brno(done); // NaN -> 0
439      if (op->bytecode() == Bytecodes::_d2i) {
440        __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
441      } else { // Bytecodes::_d2l
442        __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
443      }
444      __ bind(done);
445    }
446    break;
447
448    default: ShouldNotReachHere();
449  }
450}
451
452void LIR_Assembler::align_call(LIR_Code code) {
453  // End of call instruction must be 4 byte aligned.
454  int offset = __ offset();
455  switch (code) {
456    case lir_icvirtual_call:
457      offset += MacroAssembler::load_const_from_toc_size();
458      // no break
459    case lir_static_call:
460    case lir_optvirtual_call:
461    case lir_dynamic_call:
462      offset += NativeCall::call_far_pcrelative_displacement_offset;
463      break;
464    case lir_virtual_call:   // currently, sparc-specific for niagara
465    default: ShouldNotReachHere();
466  }
467  if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
468    __ nop();
469  }
470}
471
472void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
473  assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
474         "must be aligned (offset=%d)", __ offset());
475  assert(rtype == relocInfo::none ||
476         rtype == relocInfo::opt_virtual_call_type ||
477         rtype == relocInfo::static_call_type, "unexpected rtype");
478  // Prepend each BRASL with a nop.
479  __ relocate(rtype);
480  __ z_nop();
481  __ z_brasl(Z_R14, op->addr());
482  add_call_info(code_offset(), op->info());
483}
484
485void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
486  address virtual_call_oop_addr = NULL;
487  AddressLiteral empty_ic((address) Universe::non_oop_word());
488  virtual_call_oop_addr = __ pc();
489  bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
490  if (!success) {
491    bailout("const section overflow");
492    return;
493  }
494
495  // CALL to fixup routine. Fixup routine uses ScopeDesc info
496  // to determine who we intended to call.
497  __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
498  call(op, relocInfo::none);
499}
500
501// not supported
502void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
503  ShouldNotReachHere();
504}
505
506void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
507  if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
508}
509
510void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
511  assert(src->is_constant(), "should not call otherwise");
512  assert(dest->is_stack(), "should not call otherwise");
513  LIR_Const* c = src->as_constant_ptr();
514
515  unsigned int lmem = 0;
516  unsigned int lcon = 0;
517  int64_t cbits = 0;
518  Address dest_addr;
519  switch (c->type()) {
520    case T_INT:  // fall through
521    case T_FLOAT:
522      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
523      lmem = 4; lcon = 4; cbits = c->as_jint_bits();
524      break;
525
526    case T_ADDRESS:
527      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
528      lmem = 8; lcon = 4; cbits = c->as_jint_bits();
529      break;
530
531    case T_OBJECT:
532      dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
533      if (c->as_jobject() == NULL) {
534        __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
535      } else {
536        jobject2reg(c->as_jobject(), Z_R1_scratch);
537        __ reg2mem_opt(Z_R1_scratch, dest_addr, true);
538      }
539      return;
540
541    case T_LONG:  // fall through
542    case T_DOUBLE:
543      dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
544      lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
545      break;
546
547    default:
548      ShouldNotReachHere();
549  }
550
551  __ store_const(dest_addr, cbits, lmem, lcon);
552}
553
554void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
555  assert(src->is_constant(), "should not call otherwise");
556  assert(dest->is_address(), "should not call otherwise");
557  // See special case in LIRGenerator::do_StoreIndexed.
558  // T_BYTE: Special case for card mark store.
559  assert(type == T_BYTE || !dest->as_address_ptr()->index()->is_valid(), "not supported");
560  LIR_Const* c = src->as_constant_ptr();
561  Address addr = as_Address(dest->as_address_ptr());
562
563  int store_offset = -1;
564  unsigned int lmem = 0;
565  unsigned int lcon = 0;
566  int64_t cbits = 0;
567  switch (type) {
568    case T_INT:    // fall through
569    case T_FLOAT:
570      lmem = 4; lcon = 4; cbits = c->as_jint_bits();
571      break;
572
573    case T_ADDRESS:
574      lmem = 8; lcon = 4; cbits = c->as_jint_bits();
575      break;
576
577    case T_OBJECT:  // fall through
578    case T_ARRAY:
579      if (c->as_jobject() == NULL) {
580        if (UseCompressedOops && !wide) {
581          store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
582        } else {
583          store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
584        }
585      } else {
586        jobject2reg(c->as_jobject(), Z_R1_scratch);
587        if (UseCompressedOops && !wide) {
588          __ encode_heap_oop(Z_R1_scratch);
589          store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
590        } else {
591          store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
592        }
593      }
594      assert(store_offset >= 0, "check");
595      break;
596
597    case T_LONG:    // fall through
598    case T_DOUBLE:
599      lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
600      break;
601
602    case T_BOOLEAN: // fall through
603    case T_BYTE:
604      lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
605      break;
606
607    case T_CHAR:    // fall through
608    case T_SHORT:
609      lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
610      break;
611
612    default:
613      ShouldNotReachHere();
614  };
615
616  // Index register is normally not supported, but for
617  // LIRGenerator::CardTableModRef_post_barrier we make an exception.
618  if (type == T_BYTE && dest->as_address_ptr()->index()->is_valid()) {
619    __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
620    store_offset = __ offset();
621    if (Immediate::is_uimm12(addr.disp())) {
622      __ z_stc(Z_R0_scratch, addr);
623    } else {
624      __ z_stcy(Z_R0_scratch, addr);
625    }
626  }
627
628  if (store_offset == -1) {
629    store_offset = __ store_const(addr, cbits, lmem, lcon);
630    assert(store_offset >= 0, "check");
631  }
632
633  if (info != NULL) {
634    add_debug_info_for_null_check(store_offset, info);
635  }
636}
637
638void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
639  assert(src->is_constant(), "should not call otherwise");
640  assert(dest->is_register(), "should not call otherwise");
641  LIR_Const* c = src->as_constant_ptr();
642
643  switch (c->type()) {
644    case T_INT: {
645      assert(patch_code == lir_patch_none, "no patching handled here");
646      __ load_const_optimized(dest->as_register(), c->as_jint());
647      break;
648    }
649
650    case T_ADDRESS: {
651      assert(patch_code == lir_patch_none, "no patching handled here");
652      __ load_const_optimized(dest->as_register(), c->as_jint());
653      break;
654    }
655
656    case T_LONG: {
657      assert(patch_code == lir_patch_none, "no patching handled here");
658      __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
659      break;
660    }
661
662    case T_OBJECT: {
663      if (patch_code != lir_patch_none) {
664        jobject2reg_with_patching(dest->as_register(), info);
665      } else {
666        jobject2reg(c->as_jobject(), dest->as_register());
667      }
668      break;
669    }
670
671    case T_METADATA: {
672      if (patch_code != lir_patch_none) {
673        klass2reg_with_patching(dest->as_register(), info);
674      } else {
675        metadata2reg(c->as_metadata(), dest->as_register());
676      }
677      break;
678    }
679
680    case T_FLOAT: {
681      Register toc_reg = Z_R1_scratch;
682      __ load_toc(toc_reg);
683      address const_addr = __ float_constant(c->as_jfloat());
684      if (const_addr == NULL) {
685        bailout("const section overflow");
686        break;
687      }
688      int displ = const_addr - _masm->code()->consts()->start();
689      if (dest->is_single_fpu()) {
690        __ z_ley(dest->as_float_reg(), displ, toc_reg);
691      } else {
692        assert(dest->is_single_cpu(), "Must be a cpu register.");
693        __ z_ly(dest->as_register(), displ, toc_reg);
694      }
695    }
696    break;
697
698    case T_DOUBLE: {
699      Register toc_reg = Z_R1_scratch;
700      __ load_toc(toc_reg);
701      address const_addr = __ double_constant(c->as_jdouble());
702      if (const_addr == NULL) {
703        bailout("const section overflow");
704        break;
705      }
706      int displ = const_addr - _masm->code()->consts()->start();
707      if (dest->is_double_fpu()) {
708        __ z_ldy(dest->as_double_reg(), displ, toc_reg);
709      } else {
710        assert(dest->is_double_cpu(), "Must be a long register.");
711        __ z_lg(dest->as_register_lo(), displ, toc_reg);
712      }
713    }
714    break;
715
716    default:
717      ShouldNotReachHere();
718  }
719}
720
721Address LIR_Assembler::as_Address(LIR_Address* addr) {
722  if (addr->base()->is_illegal()) {
723    Unimplemented();
724  }
725
726  Register base = addr->base()->as_pointer_register();
727
728  if (addr->index()->is_illegal()) {
729    return Address(base, addr->disp());
730  } else if (addr->index()->is_cpu_register()) {
731    Register index = addr->index()->as_pointer_register();
732    return Address(base, index, addr->disp());
733  } else if (addr->index()->is_constant()) {
734    intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
735    return Address(base, addr_offset);
736  } else {
737    ShouldNotReachHere();
738    return Address();
739  }
740}
741
742void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
743  switch (type) {
744    case T_INT:
745    case T_FLOAT: {
746      Register tmp = Z_R1_scratch;
747      Address from = frame_map()->address_for_slot(src->single_stack_ix());
748      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
749      __ mem2reg_opt(tmp, from, false);
750      __ reg2mem_opt(tmp, to, false);
751      break;
752    }
753    case T_ADDRESS:
754    case T_OBJECT: {
755      Register tmp = Z_R1_scratch;
756      Address from = frame_map()->address_for_slot(src->single_stack_ix());
757      Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
758      __ mem2reg_opt(tmp, from, true);
759      __ reg2mem_opt(tmp, to, true);
760      break;
761    }
762    case T_LONG:
763    case T_DOUBLE: {
764      Register tmp = Z_R1_scratch;
765      Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
766      Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
767      __ mem2reg_opt(tmp, from, true);
768      __ reg2mem_opt(tmp, to, true);
769      break;
770    }
771
772    default:
773      ShouldNotReachHere();
774  }
775}
776
777// 4-byte accesses only! Don't use it to access 8 bytes!
778Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
779  ShouldNotCallThis();
780  return 0; // unused
781}
782
783// 4-byte accesses only! Don't use it to access 8 bytes!
784Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
785  ShouldNotCallThis();
786  return 0; // unused
787}
788
789void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
790                            CodeEmitInfo* info, bool wide, bool unaligned) {
791
792  assert(type != T_METADATA, "load of metadata ptr not supported");
793  LIR_Address* addr = src_opr->as_address_ptr();
794  LIR_Opr to_reg = dest;
795
796  Register src = addr->base()->as_pointer_register();
797  Register disp_reg = Z_R0;
798  int disp_value = addr->disp();
799  bool needs_patching = (patch_code != lir_patch_none);
800
801  if (addr->base()->type() == T_OBJECT) {
802    __ verify_oop(src);
803  }
804
805  PatchingStub* patch = NULL;
806  if (needs_patching) {
807    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
808    assert(!to_reg->is_double_cpu() ||
809           patch_code == lir_patch_none ||
810           patch_code == lir_patch_normal, "patching doesn't match register");
811  }
812
813  if (addr->index()->is_illegal()) {
814    if (!Immediate::is_simm20(disp_value)) {
815      if (needs_patching) {
816        __ load_const(Z_R1_scratch, (intptr_t)0);
817      } else {
818        __ load_const_optimized(Z_R1_scratch, disp_value);
819      }
820      disp_reg = Z_R1_scratch;
821      disp_value = 0;
822    }
823  } else {
824    if (!Immediate::is_simm20(disp_value)) {
825      __ load_const_optimized(Z_R1_scratch, disp_value);
826      __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
827      disp_reg = Z_R1_scratch;
828      disp_value = 0;
829    }
830    disp_reg = addr->index()->as_pointer_register();
831  }
832
833  // Remember the offset of the load. The patching_epilog must be done
834  // before the call to add_debug_info, otherwise the PcDescs don't get
835  // entered in increasing order.
836  int offset = code_offset();
837
838  assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
839
840  bool short_disp = Immediate::is_uimm12(disp_value);
841
842  switch (type) {
843    case T_BOOLEAN: // fall through
844    case T_BYTE  :  __ z_lb(dest->as_register(),   disp_value, disp_reg, src); break;
845    case T_CHAR  :  __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
846    case T_SHORT :
847      if (short_disp) {
848                    __ z_lh(dest->as_register(),   disp_value, disp_reg, src);
849      } else {
850                    __ z_lhy(dest->as_register(),  disp_value, disp_reg, src);
851      }
852      break;
853    case T_INT   :
854      if (short_disp) {
855                    __ z_l(dest->as_register(),    disp_value, disp_reg, src);
856      } else {
857                    __ z_ly(dest->as_register(),   disp_value, disp_reg, src);
858      }
859      break;
860    case T_ADDRESS:
861      if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
862        __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
863        __ decode_klass_not_null(dest->as_register());
864      } else {
865        __ z_lg(dest->as_register(), disp_value, disp_reg, src);
866      }
867      break;
868    case T_ARRAY : // fall through
869    case T_OBJECT:
870    {
871      if (UseCompressedOops && !wide) {
872        __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
873        __ oop_decoder(dest->as_register(), dest->as_register(), true);
874      } else {
875        __ z_lg(dest->as_register(), disp_value, disp_reg, src);
876      }
877      break;
878    }
879    case T_FLOAT:
880      if (short_disp) {
881                    __ z_le(dest->as_float_reg(),  disp_value, disp_reg, src);
882      } else {
883                    __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
884      }
885      break;
886    case T_DOUBLE:
887      if (short_disp) {
888                    __ z_ld(dest->as_double_reg(),  disp_value, disp_reg, src);
889      } else {
890                    __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
891      }
892      break;
893    case T_LONG  :  __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
894    default      : ShouldNotReachHere();
895  }
896  if (type == T_ARRAY || type == T_OBJECT) {
897    __ verify_oop(dest->as_register());
898  }
899
900  if (patch != NULL) {
901    patching_epilog(patch, patch_code, src, info);
902  }
903  if (info != NULL) add_debug_info_for_null_check(offset, info);
904}
905
906void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
907  assert(src->is_stack(), "should not call otherwise");
908  assert(dest->is_register(), "should not call otherwise");
909
910  if (dest->is_single_cpu()) {
911    if (type == T_ARRAY || type == T_OBJECT) {
912      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
913      __ verify_oop(dest->as_register());
914    } else if (type == T_METADATA) {
915      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
916    } else {
917      __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
918    }
919  } else if (dest->is_double_cpu()) {
920    Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
921    __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
922  } else if (dest->is_single_fpu()) {
923    Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
924    __ mem2freg_opt(dest->as_float_reg(), src_addr, false);
925  } else if (dest->is_double_fpu()) {
926    Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
927    __ mem2freg_opt(dest->as_double_reg(), src_addr, true);
928  } else {
929    ShouldNotReachHere();
930  }
931}
932
933void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
934  assert(src->is_register(), "should not call otherwise");
935  assert(dest->is_stack(), "should not call otherwise");
936
937  if (src->is_single_cpu()) {
938    const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
939    if (type == T_OBJECT || type == T_ARRAY) {
940      __ verify_oop(src->as_register());
941      __ reg2mem_opt(src->as_register(), dst, true);
942    } else if (type == T_METADATA) {
943      __ reg2mem_opt(src->as_register(), dst, true);
944    } else {
945      __ reg2mem_opt(src->as_register(), dst, false);
946    }
947  } else if (src->is_double_cpu()) {
948    Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
949    __ reg2mem_opt(src->as_register_lo(), dstLO, true);
950  } else if (src->is_single_fpu()) {
951    Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
952    __ freg2mem_opt(src->as_float_reg(), dst_addr, false);
953  } else if (src->is_double_fpu()) {
954    Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
955    __ freg2mem_opt(src->as_double_reg(), dst_addr, true);
956  } else {
957    ShouldNotReachHere();
958  }
959}
960
961void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
962  if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
963    if (from_reg->is_double_fpu()) {
964      // double to double moves
965      assert(to_reg->is_double_fpu(), "should match");
966      __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
967    } else {
968      // float to float moves
969      assert(to_reg->is_single_fpu(), "should match");
970      __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
971    }
972  } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
973    if (from_reg->is_double_cpu()) {
974      __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
975    } else if (to_reg->is_double_cpu()) {
976      // int to int moves
977      __ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
978    } else {
979      // int to int moves
980      __ z_lgr(to_reg->as_register(), from_reg->as_register());
981    }
982  } else {
983    ShouldNotReachHere();
984  }
985  if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
986    __ verify_oop(to_reg->as_register());
987  }
988}
989
990void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
991                            LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
992                            bool wide, bool unaligned) {
993  assert(type != T_METADATA, "store of metadata ptr not supported");
994  LIR_Address* addr = dest_opr->as_address_ptr();
995
996  Register dest = addr->base()->as_pointer_register();
997  Register disp_reg = Z_R0;
998  int disp_value = addr->disp();
999  bool needs_patching = (patch_code != lir_patch_none);
1000
1001  if (addr->base()->is_oop_register()) {
1002    __ verify_oop(dest);
1003  }
1004
1005  PatchingStub* patch = NULL;
1006  if (needs_patching) {
1007    patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1008    assert(!from->is_double_cpu() ||
1009           patch_code == lir_patch_none ||
1010           patch_code == lir_patch_normal, "patching doesn't match register");
1011  }
1012
1013  assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
1014  if (addr->index()->is_illegal()) {
1015    if (!Immediate::is_simm20(disp_value)) {
1016      if (needs_patching) {
1017        __ load_const(Z_R1_scratch, (intptr_t)0);
1018      } else {
1019        __ load_const_optimized(Z_R1_scratch, disp_value);
1020      }
1021      disp_reg = Z_R1_scratch;
1022      disp_value = 0;
1023    }
1024  } else {
1025    if (!Immediate::is_simm20(disp_value)) {
1026      __ load_const_optimized(Z_R1_scratch, disp_value);
1027      __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
1028      disp_reg = Z_R1_scratch;
1029      disp_value = 0;
1030    }
1031    disp_reg = addr->index()->as_pointer_register();
1032  }
1033
1034  assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
1035
1036  if (type == T_ARRAY || type == T_OBJECT) {
1037    __ verify_oop(from->as_register());
1038  }
1039
1040  bool short_disp = Immediate::is_uimm12(disp_value);
1041
1042  // Remember the offset of the store. The patching_epilog must be done
1043  // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1044  // entered in increasing order.
1045  int offset = code_offset();
1046  switch (type) {
1047    case T_BOOLEAN: // fall through
1048    case T_BYTE  :
1049      if (short_disp) {
1050                    __ z_stc(from->as_register(),  disp_value, disp_reg, dest);
1051      } else {
1052                    __ z_stcy(from->as_register(), disp_value, disp_reg, dest);
1053      }
1054      break;
1055    case T_CHAR  : // fall through
1056    case T_SHORT :
1057      if (short_disp) {
1058                    __ z_sth(from->as_register(),  disp_value, disp_reg, dest);
1059      } else {
1060                    __ z_sthy(from->as_register(), disp_value, disp_reg, dest);
1061      }
1062      break;
1063    case T_INT   :
1064      if (short_disp) {
1065                    __ z_st(from->as_register(),  disp_value, disp_reg, dest);
1066      } else {
1067                    __ z_sty(from->as_register(), disp_value, disp_reg, dest);
1068      }
1069      break;
1070    case T_LONG  :  __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
1071    case T_ADDRESS: __ z_stg(from->as_register(),    disp_value, disp_reg, dest); break;
1072      break;
1073    case T_ARRAY : // fall through
1074    case T_OBJECT:
1075      {
1076        if (UseCompressedOops && !wide) {
1077          Register compressed_src = Z_R14;
1078          __ z_lgr(compressed_src, from->as_register());
1079          __ encode_heap_oop(compressed_src);
1080          offset = code_offset();
1081          if (short_disp) {
1082            __ z_st(compressed_src,  disp_value, disp_reg, dest);
1083          } else {
1084            __ z_sty(compressed_src, disp_value, disp_reg, dest);
1085          }
1086        } else {
1087          __ z_stg(from->as_register(), disp_value, disp_reg, dest);
1088        }
1089        break;
1090      }
1091    case T_FLOAT :
1092      if (short_disp) {
1093                    __ z_ste(from->as_float_reg(),  disp_value, disp_reg, dest);
1094      } else {
1095                    __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
1096      }
1097      break;
1098    case T_DOUBLE:
1099      if (short_disp) {
1100                    __ z_std(from->as_double_reg(),  disp_value, disp_reg, dest);
1101      } else {
1102                    __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
1103      }
1104      break;
1105    default: ShouldNotReachHere();
1106  }
1107
1108  if (patch != NULL) {
1109    patching_epilog(patch, patch_code, dest, info);
1110  }
1111
1112  if (info != NULL) add_debug_info_for_null_check(offset, info);
1113}
1114
1115
1116void LIR_Assembler::return_op(LIR_Opr result) {
1117  assert(result->is_illegal() ||
1118         (result->is_single_cpu() && result->as_register() == Z_R2) ||
1119         (result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
1120         (result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
1121         (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
1122
1123  AddressLiteral pp(os::get_polling_page());
1124  __ load_const_optimized(Z_R1_scratch, pp);
1125
1126  // Pop the frame before the safepoint code.
1127  int retPC_offset = initial_frame_size_in_bytes() + _z_abi16(return_pc);
1128  if (Displacement::is_validDisp(retPC_offset)) {
1129    __ z_lg(Z_R14, retPC_offset, Z_SP);
1130    __ add2reg(Z_SP, initial_frame_size_in_bytes());
1131  } else {
1132    __ add2reg(Z_SP, initial_frame_size_in_bytes());
1133    __ restore_return_pc();
1134  }
1135
1136  // We need to mark the code position where the load from the safepoint
1137  // polling page was emitted as relocInfo::poll_return_type here.
1138  __ relocate(relocInfo::poll_return_type);
1139  __ load_from_polling_page(Z_R1_scratch);
1140
1141  __ z_br(Z_R14); // Return to caller.
1142}
1143
1144int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1145  AddressLiteral pp(os::get_polling_page());
1146  __ load_const_optimized(tmp->as_register_lo(), pp);
1147  guarantee(info != NULL, "Shouldn't be NULL");
1148  add_debug_info_for_branch(info);
1149  int offset = __ offset();
1150  __ relocate(relocInfo::poll_type);
1151  __ load_from_polling_page(tmp->as_register_lo());
1152  return offset;
1153}
1154
1155void LIR_Assembler::emit_static_call_stub() {
1156
1157  // Stub is fixed up when the corresponding call is converted from calling
1158  // compiled code to calling interpreted code.
1159
1160  address call_pc = __ pc();
1161  address stub = __ start_a_stub(call_stub_size);
1162  if (stub == NULL) {
1163    bailout("static call stub overflow");
1164    return;
1165  }
1166
1167  int start = __ offset();
1168
1169  __ relocate(static_stub_Relocation::spec(call_pc));
1170
1171  // See also Matcher::interpreter_method_oop_reg().
1172  AddressLiteral meta = __ allocate_metadata_address(NULL);
1173  bool success = __ load_const_from_toc(Z_method, meta);
1174
1175  __ set_inst_mark();
1176  AddressLiteral a((address)-1);
1177  success = success && __ load_const_from_toc(Z_R1, a);
1178  if (!success) {
1179    bailout("const section overflow");
1180    return;
1181  }
1182
1183  __ z_br(Z_R1);
1184  assert(__ offset() - start <= call_stub_size, "stub too big");
1185  __ end_a_stub(); // Update current stubs pointer and restore insts_end.
1186}
1187
1188void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1189  bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
1190  if (opr1->is_single_cpu()) {
1191    Register reg1 = opr1->as_register();
1192    if (opr2->is_single_cpu()) {
1193      // cpu register - cpu register
1194      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1195        __ z_clgr(reg1, opr2->as_register());
1196      } else {
1197        assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
1198        if (unsigned_comp) {
1199          __ z_clr(reg1, opr2->as_register());
1200        } else {
1201          __ z_cr(reg1, opr2->as_register());
1202        }
1203      }
1204    } else if (opr2->is_stack()) {
1205      // cpu register - stack
1206      if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1207        __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1208      } else {
1209        if (unsigned_comp) {
1210          __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1211        } else {
1212          __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1213        }
1214      }
1215    } else if (opr2->is_constant()) {
1216      // cpu register - constant
1217      LIR_Const* c = opr2->as_constant_ptr();
1218      if (c->type() == T_INT) {
1219        if (unsigned_comp) {
1220          __ z_clfi(reg1, c->as_jint());
1221        } else {
1222          __ z_cfi(reg1, c->as_jint());
1223        }
1224      } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
1225        // In 64bit oops are single register.
1226        jobject o = c->as_jobject();
1227        if (o == NULL) {
1228          __ z_ltgr(reg1, reg1);
1229        } else {
1230          jobject2reg(o, Z_R1_scratch);
1231          __ z_cgr(reg1, Z_R1_scratch);
1232        }
1233      } else {
1234        fatal("unexpected type: %s", basictype_to_str(c->type()));
1235      }
1236      // cpu register - address
1237    } else if (opr2->is_address()) {
1238      if (op->info() != NULL) {
1239        add_debug_info_for_null_check_here(op->info());
1240      }
1241      if (unsigned_comp) {
1242        __ z_cly(reg1, as_Address(opr2->as_address_ptr()));
1243      } else {
1244        __ z_cy(reg1, as_Address(opr2->as_address_ptr()));
1245      }
1246    } else {
1247      ShouldNotReachHere();
1248    }
1249
1250  } else if (opr1->is_double_cpu()) {
1251    assert(!unsigned_comp, "unexpected");
1252    Register xlo = opr1->as_register_lo();
1253    Register xhi = opr1->as_register_hi();
1254    if (opr2->is_double_cpu()) {
1255      __ z_cgr(xlo, opr2->as_register_lo());
1256    } else if (opr2->is_constant()) {
1257      // cpu register - constant 0
1258      assert(opr2->as_jlong() == (jlong)0, "only handles zero");
1259      __ z_ltgr(xlo, xlo);
1260    } else {
1261      ShouldNotReachHere();
1262    }
1263
1264  } else if (opr1->is_single_fpu()) {
1265    if (opr2->is_single_fpu()) {
1266      __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
1267    } else {
1268      // stack slot
1269      Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
1270      if (Immediate::is_uimm12(addr.disp())) {
1271        __ z_ceb(opr1->as_float_reg(), addr);
1272      } else {
1273        __ z_ley(Z_fscratch_1, addr);
1274        __ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
1275      }
1276    }
1277  } else if (opr1->is_double_fpu()) {
1278    if (opr2->is_double_fpu()) {
1279    __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
1280    } else {
1281      // stack slot
1282      Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
1283      if (Immediate::is_uimm12(addr.disp())) {
1284        __ z_cdb(opr1->as_double_reg(), addr);
1285      } else {
1286        __ z_ldy(Z_fscratch_1, addr);
1287        __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
1288      }
1289    }
1290  } else {
1291    ShouldNotReachHere();
1292  }
1293}
1294
1295void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1296  Label    done;
1297  Register dreg = dst->as_register();
1298
1299  if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1300    assert((left->is_single_fpu() && right->is_single_fpu()) ||
1301           (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
1302    bool is_single = left->is_single_fpu();
1303    bool is_unordered_less = (code == lir_ucmp_fd2i);
1304    FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
1305    FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
1306    if (is_single) {
1307      __ z_cebr(lreg, rreg);
1308    } else {
1309      __ z_cdbr(lreg, rreg);
1310    }
1311    if (VM_Version::has_LoadStoreConditional()) {
1312      Register one       = Z_R0_scratch;
1313      Register minus_one = Z_R1_scratch;
1314      __ z_lghi(minus_one, -1);
1315      __ z_lghi(one,  1);
1316      __ z_lghi(dreg, 0);
1317      __ z_locgr(dreg, one,       is_unordered_less ? Assembler::bcondHigh            : Assembler::bcondHighOrNotOrdered);
1318      __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
1319    } else {
1320      __ clear_reg(dreg, true, false);
1321      __ z_bre(done); // if (left == right) dst = 0
1322
1323      // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
1324      __ z_lhi(dreg, 1);
1325      __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
1326
1327      // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
1328      __ z_lhi(dreg, -1);
1329    }
1330  } else {
1331    assert(code == lir_cmp_l2i, "check");
1332    if (VM_Version::has_LoadStoreConditional()) {
1333      Register one       = Z_R0_scratch;
1334      Register minus_one = Z_R1_scratch;
1335      __ z_cgr(left->as_register_lo(), right->as_register_lo());
1336      __ z_lghi(minus_one, -1);
1337      __ z_lghi(one,  1);
1338      __ z_lghi(dreg, 0);
1339      __ z_locgr(dreg, one, Assembler::bcondHigh);
1340      __ z_locgr(dreg, minus_one, Assembler::bcondLow);
1341    } else {
1342      __ z_cgr(left->as_register_lo(), right->as_register_lo());
1343      __ z_lghi(dreg,  0);     // eq value
1344      __ z_bre(done);
1345      __ z_lghi(dreg,  1);     // gt value
1346      __ z_brh(done);
1347      __ z_lghi(dreg, -1);     // lt value
1348    }
1349  }
1350  __ bind(done);
1351}
1352
1353// result = condition ? opr1 : opr2
1354void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1355  Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
1356  switch (condition) {
1357    case lir_cond_equal:        acond = Assembler::bcondEqual;    ncond = Assembler::bcondNotEqual; break;
1358    case lir_cond_notEqual:     acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual;    break;
1359    case lir_cond_less:         acond = Assembler::bcondLow;      ncond = Assembler::bcondNotLow;   break;
1360    case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1361    case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1362    case lir_cond_greater:      acond = Assembler::bcondHigh;     ncond = Assembler::bcondNotHigh;  break;
1363    case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1364    case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1365    default:                    ShouldNotReachHere();
1366  }
1367
1368  if (opr1->is_cpu_register()) {
1369    reg2reg(opr1, result);
1370  } else if (opr1->is_stack()) {
1371    stack2reg(opr1, result, result->type());
1372  } else if (opr1->is_constant()) {
1373    const2reg(opr1, result, lir_patch_none, NULL);
1374  } else {
1375    ShouldNotReachHere();
1376  }
1377
1378  if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
1379    // Optimized version that does not require a branch.
1380    if (opr2->is_single_cpu()) {
1381      assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1382      __ z_locgr(result->as_register(), opr2->as_register(), ncond);
1383    } else if (opr2->is_double_cpu()) {
1384      assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1385      assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1386      __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
1387    } else if (opr2->is_single_stack()) {
1388      __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
1389    } else if (opr2->is_double_stack()) {
1390      __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
1391    } else {
1392      ShouldNotReachHere();
1393    }
1394  } else {
1395    Label skip;
1396    __ z_brc(acond, skip);
1397    if (opr2->is_cpu_register()) {
1398      reg2reg(opr2, result);
1399    } else if (opr2->is_stack()) {
1400      stack2reg(opr2, result, result->type());
1401    } else if (opr2->is_constant()) {
1402      const2reg(opr2, result, lir_patch_none, NULL);
1403    } else {
1404      ShouldNotReachHere();
1405    }
1406    __ bind(skip);
1407  }
1408}
1409
1410void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1411                             CodeEmitInfo* info, bool pop_fpu_stack) {
1412  assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1413
1414  if (left->is_single_cpu()) {
1415    assert(left == dest, "left and dest must be equal");
1416    Register lreg = left->as_register();
1417
1418    if (right->is_single_cpu()) {
1419      // cpu register - cpu register
1420      Register rreg = right->as_register();
1421      switch (code) {
1422        case lir_add: __ z_ar (lreg, rreg); break;
1423        case lir_sub: __ z_sr (lreg, rreg); break;
1424        case lir_mul: __ z_msr(lreg, rreg); break;
1425        default: ShouldNotReachHere();
1426      }
1427
1428    } else if (right->is_stack()) {
1429      // cpu register - stack
1430      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1431      switch (code) {
1432        case lir_add: __ z_ay(lreg, raddr); break;
1433        case lir_sub: __ z_sy(lreg, raddr); break;
1434        default: ShouldNotReachHere();
1435      }
1436
1437    } else if (right->is_constant()) {
1438      // cpu register - constant
1439      jint c = right->as_constant_ptr()->as_jint();
1440      switch (code) {
1441        case lir_add: __ z_agfi(lreg, c);  break;
1442        case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
1443        case lir_mul: __ z_msfi(lreg, c);  break;
1444        default: ShouldNotReachHere();
1445      }
1446
1447    } else {
1448      ShouldNotReachHere();
1449    }
1450
1451  } else if (left->is_double_cpu()) {
1452    assert(left == dest, "left and dest must be equal");
1453    Register lreg_lo = left->as_register_lo();
1454    Register lreg_hi = left->as_register_hi();
1455
1456    if (right->is_double_cpu()) {
1457      // cpu register - cpu register
1458      Register rreg_lo = right->as_register_lo();
1459      Register rreg_hi = right->as_register_hi();
1460      assert_different_registers(lreg_lo, rreg_lo);
1461      switch (code) {
1462        case lir_add:
1463          __ z_agr(lreg_lo, rreg_lo);
1464          break;
1465        case lir_sub:
1466          __ z_sgr(lreg_lo, rreg_lo);
1467          break;
1468        case lir_mul:
1469          __ z_msgr(lreg_lo, rreg_lo);
1470          break;
1471        default:
1472          ShouldNotReachHere();
1473      }
1474
1475    } else if (right->is_constant()) {
1476      // cpu register - constant
1477      jlong c = right->as_constant_ptr()->as_jlong_bits();
1478      switch (code) {
1479        case lir_add: __ z_agfi(lreg_lo, c); break;
1480        case lir_sub:
1481          if (c != min_jint) {
1482                      __ z_agfi(lreg_lo, -c);
1483          } else {
1484            // -min_jint cannot be represented as simm32 in z_agfi
1485            // min_jint sign extended:      0xffffffff80000000
1486            // -min_jint as 64 bit integer: 0x0000000080000000
1487            // 0x80000000 can be represented as uimm32 in z_algfi
1488            // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
1489                      __ z_algfi(lreg_lo, UCONST64(0x80000000));
1490          }
1491          break;
1492        case lir_mul: __ z_msgfi(lreg_lo, c); break;
1493        default:
1494          ShouldNotReachHere();
1495      }
1496
1497    } else {
1498      ShouldNotReachHere();
1499    }
1500
1501  } else if (left->is_single_fpu()) {
1502    assert(left == dest, "left and dest must be equal");
1503    FloatRegister lreg = left->as_float_reg();
1504    FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
1505    Address raddr;
1506
1507    if (rreg == fnoreg) {
1508      assert(right->is_single_stack(), "constants should be loaded into register");
1509      raddr = frame_map()->address_for_slot(right->single_stack_ix());
1510      if (!Immediate::is_uimm12(raddr.disp())) {
1511        __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
1512      }
1513    }
1514
1515    if (rreg != fnoreg) {
1516      switch (code) {
1517        case lir_add: __ z_aebr(lreg, rreg);  break;
1518        case lir_sub: __ z_sebr(lreg, rreg);  break;
1519        case lir_mul_strictfp: // fall through
1520        case lir_mul: __ z_meebr(lreg, rreg); break;
1521        case lir_div_strictfp: // fall through
1522        case lir_div: __ z_debr(lreg, rreg);  break;
1523        default: ShouldNotReachHere();
1524      }
1525    } else {
1526      switch (code) {
1527        case lir_add: __ z_aeb(lreg, raddr);  break;
1528        case lir_sub: __ z_seb(lreg, raddr);  break;
1529        case lir_mul_strictfp: // fall through
1530        case lir_mul: __ z_meeb(lreg, raddr);  break;
1531        case lir_div_strictfp: // fall through
1532        case lir_div: __ z_deb(lreg, raddr);  break;
1533        default: ShouldNotReachHere();
1534      }
1535    }
1536  } else if (left->is_double_fpu()) {
1537    assert(left == dest, "left and dest must be equal");
1538    FloatRegister lreg = left->as_double_reg();
1539    FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
1540    Address raddr;
1541
1542    if (rreg == fnoreg) {
1543      assert(right->is_double_stack(), "constants should be loaded into register");
1544      raddr = frame_map()->address_for_slot(right->double_stack_ix());
1545      if (!Immediate::is_uimm12(raddr.disp())) {
1546        __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
1547      }
1548    }
1549
1550    if (rreg != fnoreg) {
1551      switch (code) {
1552        case lir_add: __ z_adbr(lreg, rreg); break;
1553        case lir_sub: __ z_sdbr(lreg, rreg); break;
1554        case lir_mul_strictfp: // fall through
1555        case lir_mul: __ z_mdbr(lreg, rreg); break;
1556        case lir_div_strictfp: // fall through
1557        case lir_div: __ z_ddbr(lreg, rreg); break;
1558        default: ShouldNotReachHere();
1559      }
1560    } else {
1561      switch (code) {
1562        case lir_add: __ z_adb(lreg, raddr); break;
1563        case lir_sub: __ z_sdb(lreg, raddr); break;
1564        case lir_mul_strictfp: // fall through
1565        case lir_mul: __ z_mdb(lreg, raddr); break;
1566        case lir_div_strictfp: // fall through
1567        case lir_div: __ z_ddb(lreg, raddr); break;
1568        default: ShouldNotReachHere();
1569      }
1570    }
1571  } else if (left->is_address()) {
1572    assert(left == dest, "left and dest must be equal");
1573    assert(code == lir_add, "unsupported operation");
1574    assert(right->is_constant(), "unsupported operand");
1575    jint c = right->as_constant_ptr()->as_jint();
1576    LIR_Address* lir_addr = left->as_address_ptr();
1577    Address addr = as_Address(lir_addr);
1578    switch (lir_addr->type()) {
1579      case T_INT:
1580        __ add2mem_32(addr, c, Z_R1_scratch);
1581        break;
1582      case T_LONG:
1583        __ add2mem_64(addr, c, Z_R1_scratch);
1584        break;
1585      default:
1586        ShouldNotReachHere();
1587    }
1588  } else {
1589    ShouldNotReachHere();
1590  }
1591}
1592
1593void LIR_Assembler::fpop() {
1594  // do nothing
1595}
1596
1597void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1598  switch (code) {
1599    case lir_sqrt: {
1600      assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1601      FloatRegister src_reg = value->as_double_reg();
1602      FloatRegister dst_reg = dest->as_double_reg();
1603      __ z_sqdbr(dst_reg, src_reg);
1604      break;
1605    }
1606    case lir_abs: {
1607      assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1608      FloatRegister src_reg = value->as_double_reg();
1609      FloatRegister dst_reg = dest->as_double_reg();
1610      __ z_lpdbr(dst_reg, src_reg);
1611      break;
1612    }
1613    default: {
1614      ShouldNotReachHere();
1615      break;
1616    }
1617  }
1618}
1619
1620void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1621  if (left->is_single_cpu()) {
1622    Register reg = left->as_register();
1623    if (right->is_constant()) {
1624      int val = right->as_constant_ptr()->as_jint();
1625      switch (code) {
1626        case lir_logic_and: __ z_nilf(reg, val); break;
1627        case lir_logic_or:  __ z_oilf(reg, val); break;
1628        case lir_logic_xor: __ z_xilf(reg, val); break;
1629        default: ShouldNotReachHere();
1630      }
1631    } else if (right->is_stack()) {
1632      Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1633      switch (code) {
1634        case lir_logic_and: __ z_ny(reg, raddr); break;
1635        case lir_logic_or:  __ z_oy(reg, raddr); break;
1636        case lir_logic_xor: __ z_xy(reg, raddr); break;
1637        default: ShouldNotReachHere();
1638      }
1639    } else {
1640      Register rright = right->as_register();
1641      switch (code) {
1642        case lir_logic_and: __ z_nr(reg, rright); break;
1643        case lir_logic_or : __ z_or(reg, rright); break;
1644        case lir_logic_xor: __ z_xr(reg, rright); break;
1645        default: ShouldNotReachHere();
1646      }
1647    }
1648    move_regs(reg, dst->as_register());
1649  } else {
1650    Register l_lo = left->as_register_lo();
1651    if (right->is_constant()) {
1652      __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
1653      switch (code) {
1654        case lir_logic_and:
1655          __ z_ngr(l_lo, Z_R1_scratch);
1656          break;
1657        case lir_logic_or:
1658          __ z_ogr(l_lo, Z_R1_scratch);
1659          break;
1660        case lir_logic_xor:
1661          __ z_xgr(l_lo, Z_R1_scratch);
1662          break;
1663        default: ShouldNotReachHere();
1664      }
1665    } else {
1666      Register r_lo;
1667      if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
1668        r_lo = right->as_register();
1669      } else {
1670        r_lo = right->as_register_lo();
1671      }
1672      switch (code) {
1673        case lir_logic_and:
1674          __ z_ngr(l_lo, r_lo);
1675          break;
1676        case lir_logic_or:
1677          __ z_ogr(l_lo, r_lo);
1678          break;
1679        case lir_logic_xor:
1680          __ z_xgr(l_lo, r_lo);
1681          break;
1682        default: ShouldNotReachHere();
1683      }
1684    }
1685
1686    Register dst_lo = dst->as_register_lo();
1687
1688    move_regs(l_lo, dst_lo);
1689  }
1690}
1691
1692// See operand selection in LIRGenerator::do_ArithmeticOp_Int().
1693void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
1694  if (left->is_double_cpu()) {
1695    // 64 bit integer case
1696    assert(left->is_double_cpu(), "left must be register");
1697    assert(right->is_double_cpu() || is_power_of_2_long(right->as_jlong()),
1698           "right must be register or power of 2 constant");
1699    assert(result->is_double_cpu(), "result must be register");
1700
1701    Register lreg = left->as_register_lo();
1702    Register dreg = result->as_register_lo();
1703
1704    if (right->is_constant()) {
1705      // Convert division by a power of two into some shifts and logical operations.
1706      Register treg1 = Z_R0_scratch;
1707      Register treg2 = Z_R1_scratch;
1708      jlong divisor = right->as_jlong();
1709      jlong log_divisor = log2_long(right->as_jlong());
1710
1711      if (divisor == min_jlong) {
1712        // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
1713        if (dreg == lreg) {
1714          NearLabel done;
1715          __ load_const_optimized(treg2, min_jlong);
1716          __ z_cgr(lreg, treg2);
1717          __ z_lghi(dreg, 0);           // Preserves condition code.
1718          __ z_brne(done);
1719          __ z_lghi(dreg, 1);           // min_jlong / min_jlong = 1
1720          __ bind(done);
1721        } else {
1722          assert_different_registers(dreg, lreg);
1723          NearLabel done;
1724          __ z_lghi(dreg, 0);
1725          __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
1726          __ z_lghi(dreg, 1);
1727          __ bind(done);
1728        }
1729        return;
1730      }
1731      __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
1732      if (divisor == 2) {
1733        __ z_srlg(treg2, dreg, 63);     // dividend < 0 ? 1 : 0
1734      } else {
1735        __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1736        __ and_imm(treg2, divisor - 1, treg1, true);
1737      }
1738      if (code == lir_idiv) {
1739        __ z_agr(dreg, treg2);
1740        __ z_srag(dreg, dreg, log_divisor);
1741      } else {
1742        assert(code == lir_irem, "check");
1743        __ z_agr(treg2, dreg);
1744        __ and_imm(treg2, ~(divisor - 1), treg1, true);
1745        __ z_sgr(dreg, treg2);
1746      }
1747      return;
1748    }
1749
1750    // Divisor is not a power of 2 constant.
1751    Register rreg = right->as_register_lo();
1752    Register treg = temp->as_register_lo();
1753    assert(right->is_double_cpu(), "right must be register");
1754    assert(lreg == Z_R11, "see ldivInOpr()");
1755    assert(rreg != lreg, "right register must not be same as left register");
1756    assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
1757           (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
1758
1759    Register R1 = lreg->predecessor();
1760    Register R2 = rreg;
1761    assert(code != lir_idiv || lreg==dreg, "see code below");
1762    if (code == lir_idiv) {
1763      __ z_lcgr(lreg, lreg);
1764    } else {
1765      __ clear_reg(dreg, true, false);
1766    }
1767    NearLabel done;
1768    __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
1769    if (code == lir_idiv) {
1770      __ z_lcgr(lreg, lreg); // Revert lcgr above.
1771    }
1772    if (ImplicitDiv0Checks) {
1773      // No debug info because the idiv won't trap.
1774      // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1775      // which is unnecessary, too.
1776      add_debug_info_for_div0(__ offset(), info);
1777    }
1778    __ z_dsgr(R1, R2);
1779    __ bind(done);
1780    return;
1781  }
1782
1783  // 32 bit integer case
1784
1785  assert(left->is_single_cpu(), "left must be register");
1786  assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
1787  assert(result->is_single_cpu(), "result must be register");
1788
1789  Register lreg = left->as_register();
1790  Register dreg = result->as_register();
1791
1792  if (right->is_constant()) {
1793    // Convert division by a power of two into some shifts and logical operations.
1794    Register treg1 = Z_R0_scratch;
1795    Register treg2 = Z_R1_scratch;
1796    jlong divisor = right->as_jint();
1797    jlong log_divisor = log2_long(right->as_jint());
1798    __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
1799    if (divisor == 2) {
1800      __ z_srlg(treg2, dreg, 63);     // dividend < 0 ?  1 : 0
1801    } else {
1802      __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1803      __ and_imm(treg2, divisor - 1, treg1, true);
1804    }
1805    if (code == lir_idiv) {
1806      __ z_agr(dreg, treg2);
1807      __ z_srag(dreg, dreg, log_divisor);
1808    } else {
1809      assert(code == lir_irem, "check");
1810      __ z_agr(treg2, dreg);
1811      __ and_imm(treg2, ~(divisor - 1), treg1, true);
1812      __ z_sgr(dreg, treg2);
1813    }
1814    return;
1815  }
1816
1817  // Divisor is not a power of 2 constant.
1818  Register rreg = right->as_register();
1819  Register treg = temp->as_register();
1820  assert(right->is_single_cpu(), "right must be register");
1821  assert(lreg == Z_R11, "left register must be rax,");
1822  assert(rreg != lreg, "right register must not be same as left register");
1823  assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
1824      || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
1825
1826  Register R1 = lreg->predecessor();
1827  Register R2 = rreg;
1828  __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
1829  if (ImplicitDiv0Checks) {
1830    // No debug info because the idiv won't trap.
1831    // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1832    // which is unnecessary, too.
1833    add_debug_info_for_div0(__ offset(), info);
1834  }
1835  __ z_dsgfr(R1, R2);
1836}
1837
1838void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1839  assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1840  assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
1841
1842  // Exception object is not added to oop map by LinearScan
1843  // (LinearScan assumes that no oops are in fixed registers).
1844  info->add_register_oop(exceptionOop);
1845
1846  // Reuse the debug info from the safepoint poll for the throw op itself.
1847  __ get_PC(Z_EXC_PC);
1848  add_call_info(__ offset(), info); // for exception handler
1849  address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1850                                                                    : Runtime1::handle_exception_nofpu_id);
1851  emit_call_c(stub);
1852}
1853
1854void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1855  assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1856
1857  __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
1858}
1859
1860void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1861  ciArrayKlass* default_type = op->expected_type();
1862  Register src = op->src()->as_register();
1863  Register dst = op->dst()->as_register();
1864  Register src_pos = op->src_pos()->as_register();
1865  Register dst_pos = op->dst_pos()->as_register();
1866  Register length  = op->length()->as_register();
1867  Register tmp = op->tmp()->as_register();
1868
1869  CodeStub* stub = op->stub();
1870  int flags = op->flags();
1871  BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1872  if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1873
1874  // If we don't know anything, just go through the generic arraycopy.
1875  if (default_type == NULL) {
1876    Label done;
1877    // Save outgoing arguments in callee saved registers (C convention) in case
1878    // a call to System.arraycopy is needed.
1879    Register callee_saved_src     = Z_R10;
1880    Register callee_saved_src_pos = Z_R11;
1881    Register callee_saved_dst     = Z_R12;
1882    Register callee_saved_dst_pos = Z_R13;
1883    Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
1884
1885    __ lgr_if_needed(callee_saved_src, src);
1886    __ lgr_if_needed(callee_saved_src_pos, src_pos);
1887    __ lgr_if_needed(callee_saved_dst, dst);
1888    __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
1889    __ lgr_if_needed(callee_saved_length, length);
1890
1891    // C function requires 64 bit values.
1892    __ z_lgfr(src_pos, src_pos);
1893    __ z_lgfr(dst_pos, dst_pos);
1894    __ z_lgfr(length, length);
1895
1896    address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
1897
1898    address copyfunc_addr = StubRoutines::generic_arraycopy();
1899
1900    // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
1901
1902    // The arguments are in the corresponding registers.
1903    assert(Z_ARG1 == src,     "assumption");
1904    assert(Z_ARG2 == src_pos, "assumption");
1905    assert(Z_ARG3 == dst,     "assumption");
1906    assert(Z_ARG4 == dst_pos, "assumption");
1907    assert(Z_ARG5 == length,  "assumption");
1908    if (copyfunc_addr == NULL) { // Use C version if stub was not generated.
1909      emit_call_c(C_entry);
1910    } else {
1911#ifndef PRODUCT
1912      if (PrintC1Statistics) {
1913        __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
1914        __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
1915      }
1916#endif
1917      emit_call_c(copyfunc_addr);
1918    }
1919    CHECK_BAILOUT();
1920
1921    __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
1922
1923    if (copyfunc_addr != NULL) {
1924      __ z_lgr(tmp, Z_RET);
1925      __ z_xilf(tmp, -1);
1926    }
1927
1928    // Restore values from callee saved registers so they are where the stub
1929    // expects them.
1930    __ lgr_if_needed(src, callee_saved_src);
1931    __ lgr_if_needed(src_pos, callee_saved_src_pos);
1932    __ lgr_if_needed(dst, callee_saved_dst);
1933    __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
1934    __ lgr_if_needed(length, callee_saved_length);
1935
1936    if (copyfunc_addr != NULL) {
1937      __ z_sr(length, tmp);
1938      __ z_ar(src_pos, tmp);
1939      __ z_ar(dst_pos, tmp);
1940    }
1941    __ branch_optimized(Assembler::bcondAlways, *stub->entry());
1942
1943    __ bind(*stub->continuation());
1944    return;
1945  }
1946
1947  assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
1948
1949  int elem_size = type2aelembytes(basic_type);
1950  int shift_amount;
1951
1952  switch (elem_size) {
1953    case 1 :
1954      shift_amount = 0;
1955      break;
1956    case 2 :
1957      shift_amount = 1;
1958      break;
1959    case 4 :
1960      shift_amount = 2;
1961      break;
1962    case 8 :
1963      shift_amount = 3;
1964      break;
1965    default:
1966      shift_amount = -1;
1967      ShouldNotReachHere();
1968  }
1969
1970  Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
1971  Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
1972  Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
1973  Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
1974
1975  // Length and pos's are all sign extended at this point on 64bit.
1976
1977  // test for NULL
1978  if (flags & LIR_OpArrayCopy::src_null_check) {
1979    __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
1980  }
1981  if (flags & LIR_OpArrayCopy::dst_null_check) {
1982    __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
1983  }
1984
1985  // Check if negative.
1986  if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1987    __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
1988  }
1989  if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1990    __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
1991  }
1992
1993  // If the compiler was not able to prove that exact type of the source or the destination
1994  // of the arraycopy is an array type, check at runtime if the source or the destination is
1995  // an instance type.
1996  if (flags & LIR_OpArrayCopy::type_check) {
1997    assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
1998
1999    if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2000      __ load_klass(tmp, dst);
2001      __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2002      __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2003    }
2004
2005    if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2006      __ load_klass(tmp, src);
2007      __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2008      __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2009    }
2010  }
2011
2012  if (flags & LIR_OpArrayCopy::src_range_check) {
2013    __ z_la(tmp, Address(src_pos, length));
2014    __ z_cl(tmp, src_length_addr);
2015    __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2016  }
2017  if (flags & LIR_OpArrayCopy::dst_range_check) {
2018    __ z_la(tmp, Address(dst_pos, length));
2019    __ z_cl(tmp, dst_length_addr);
2020    __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2021  }
2022
2023  if (flags & LIR_OpArrayCopy::length_positive_check) {
2024    __ z_ltr(length, length);
2025    __ branch_optimized(Assembler::bcondNegative, *stub->entry());
2026  }
2027
2028  // Stubs require 64 bit values.
2029  __ z_lgfr(src_pos, src_pos); // int -> long
2030  __ z_lgfr(dst_pos, dst_pos); // int -> long
2031  __ z_lgfr(length, length);   // int -> long
2032
2033  if (flags & LIR_OpArrayCopy::type_check) {
2034    // We don't know the array types are compatible.
2035    if (basic_type != T_OBJECT) {
2036      // Simple test for basic type arrays.
2037      if (UseCompressedClassPointers) {
2038        __ z_l(tmp, src_klass_addr);
2039        __ z_c(tmp, dst_klass_addr);
2040      } else {
2041        __ z_lg(tmp, src_klass_addr);
2042        __ z_cg(tmp, dst_klass_addr);
2043      }
2044      __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2045    } else {
2046      // For object arrays, if src is a sub class of dst then we can
2047      // safely do the copy.
2048      NearLabel cont, slow;
2049      Register src_klass = Z_R1_scratch;
2050      Register dst_klass = Z_R10;
2051
2052      __ load_klass(src_klass, src);
2053      __ load_klass(dst_klass, dst);
2054
2055      __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, NULL);
2056
2057      store_parameter(src_klass, 0); // sub
2058      store_parameter(dst_klass, 1); // super
2059      emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id));
2060      CHECK_BAILOUT();
2061      // Sets condition code 0 for match (2 otherwise).
2062      __ branch_optimized(Assembler::bcondEqual, cont);
2063
2064      __ bind(slow);
2065
2066      address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2067      if (copyfunc_addr != NULL) { // use stub if available
2068        // Src is not a sub class of dst so we have to do a
2069        // per-element check.
2070
2071        int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2072        if ((flags & mask) != mask) {
2073          // Check that at least both of them object arrays.
2074          assert(flags & mask, "one of the two should be known to be an object array");
2075
2076          if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2077            __ load_klass(tmp, src);
2078          } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2079            __ load_klass(tmp, dst);
2080          }
2081          Address klass_lh_addr(tmp, Klass::layout_helper_offset());
2082          jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2083          __ load_const_optimized(Z_R1_scratch, objArray_lh);
2084          __ z_c(Z_R1_scratch, klass_lh_addr);
2085          __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2086        }
2087
2088        // Save outgoing arguments in callee saved registers (C convention) in case
2089        // a call to System.arraycopy is needed.
2090        Register callee_saved_src     = Z_R10;
2091        Register callee_saved_src_pos = Z_R11;
2092        Register callee_saved_dst     = Z_R12;
2093        Register callee_saved_dst_pos = Z_R13;
2094        Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
2095
2096        __ lgr_if_needed(callee_saved_src, src);
2097        __ lgr_if_needed(callee_saved_src_pos, src_pos);
2098        __ lgr_if_needed(callee_saved_dst, dst);
2099        __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
2100        __ lgr_if_needed(callee_saved_length, length);
2101
2102        __ z_llgfr(length, length); // Higher 32bits must be null.
2103
2104        __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
2105        __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
2106
2107        __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
2108        assert_different_registers(Z_ARG1, dst, dst_pos, length);
2109        __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
2110        assert_different_registers(Z_ARG2, dst, length);
2111
2112        __ z_lgr(Z_ARG3, length);
2113        assert_different_registers(Z_ARG3, dst);
2114
2115        __ load_klass(Z_ARG5, dst);
2116        __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
2117        __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
2118        emit_call_c(copyfunc_addr);
2119        CHECK_BAILOUT();
2120
2121#ifndef PRODUCT
2122        if (PrintC1Statistics) {
2123          NearLabel failed;
2124          __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
2125          __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
2126          __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2127          __ bind(failed);
2128        }
2129#endif
2130
2131        __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2132
2133#ifndef PRODUCT
2134        if (PrintC1Statistics) {
2135          __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
2136          __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2137        }
2138#endif
2139
2140        __ z_lgr(tmp, Z_RET);
2141        __ z_xilf(tmp, -1);
2142
2143        // Restore previously spilled arguments
2144        __ lgr_if_needed(src, callee_saved_src);
2145        __ lgr_if_needed(src_pos, callee_saved_src_pos);
2146        __ lgr_if_needed(dst, callee_saved_dst);
2147        __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2148        __ lgr_if_needed(length, callee_saved_length);
2149
2150        __ z_sr(length, tmp);
2151        __ z_ar(src_pos, tmp);
2152        __ z_ar(dst_pos, tmp);
2153      }
2154
2155      __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2156
2157      __ bind(cont);
2158    }
2159  }
2160
2161#ifdef ASSERT
2162  if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2163    // Sanity check the known type with the incoming class. For the
2164    // primitive case the types must match exactly with src.klass and
2165    // dst.klass each exactly matching the default type. For the
2166    // object array case, if no type check is needed then either the
2167    // dst type is exactly the expected type and the src type is a
2168    // subtype which we can't check or src is the same array as dst
2169    // but not necessarily exactly of type default_type.
2170    NearLabel known_ok, halt;
2171    metadata2reg(default_type->constant_encoding(), tmp);
2172    if (UseCompressedClassPointers) {
2173      __ encode_klass_not_null(tmp);
2174    }
2175
2176    if (basic_type != T_OBJECT) {
2177      if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2178      else                                    { __ z_cg(tmp, dst_klass_addr); }
2179      __ branch_optimized(Assembler::bcondNotEqual, halt);
2180      if (UseCompressedClassPointers)         { __ z_c (tmp, src_klass_addr); }
2181      else                                    { __ z_cg(tmp, src_klass_addr); }
2182      __ branch_optimized(Assembler::bcondEqual, known_ok);
2183    } else {
2184      if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2185      else                                    { __ z_cg(tmp, dst_klass_addr); }
2186      __ branch_optimized(Assembler::bcondEqual, known_ok);
2187      __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
2188    }
2189    __ bind(halt);
2190    __ stop("incorrect type information in arraycopy");
2191    __ bind(known_ok);
2192  }
2193#endif
2194
2195#ifndef PRODUCT
2196  if (PrintC1Statistics) {
2197    __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
2198    __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2199  }
2200#endif
2201
2202  __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
2203  __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
2204
2205  assert_different_registers(Z_ARG1, dst, dst_pos, length);
2206  __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
2207  assert_different_registers(Z_ARG2, length);
2208  __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
2209  __ lgr_if_needed(Z_ARG3, length);
2210
2211  bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2212  bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2213  const char *name;
2214  address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2215  __ call_VM_leaf(entry);
2216
2217  __ bind(*stub->continuation());
2218}
2219
2220void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2221  if (dest->is_single_cpu()) {
2222    if (left->type() == T_OBJECT) {
2223      switch (code) {
2224        case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2225        case lir_shr:  __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2226        case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2227        default: ShouldNotReachHere();
2228      }
2229    } else {
2230      assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2231      Register masked_count = Z_R1_scratch;
2232      __ z_lr(masked_count, count->as_register());
2233      __ z_nill(masked_count, 31);
2234      switch (code) {
2235        case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
2236        case lir_shr:  __ z_sra  (dest->as_register(), 0, masked_count); break;
2237        case lir_ushr: __ z_srl  (dest->as_register(), 0, masked_count); break;
2238        default: ShouldNotReachHere();
2239      }
2240    }
2241  } else {
2242    switch (code) {
2243      case lir_shl:  __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2244      case lir_shr:  __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2245      case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2246      default: ShouldNotReachHere();
2247    }
2248  }
2249}
2250
2251void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2252  if (left->type() == T_OBJECT) {
2253    count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2254    Register l = left->as_register();
2255    Register d = dest->as_register_lo();
2256    switch (code) {
2257      case lir_shl:  __ z_sllg (d, l, count); break;
2258      case lir_shr:  __ z_srag (d, l, count); break;
2259      case lir_ushr: __ z_srlg (d, l, count); break;
2260      default: ShouldNotReachHere();
2261    }
2262    return;
2263  }
2264  if (dest->is_single_cpu()) {
2265    assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2266    count = count & 0x1F; // Java spec
2267    switch (code) {
2268      case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), count); break;
2269      case lir_shr:  __ z_sra  (dest->as_register(), count); break;
2270      case lir_ushr: __ z_srl  (dest->as_register(), count); break;
2271      default: ShouldNotReachHere();
2272    }
2273  } else if (dest->is_double_cpu()) {
2274    count = count & 63; // Java spec
2275    Register l = left->as_pointer_register();
2276    Register d = dest->as_pointer_register();
2277    switch (code) {
2278      case lir_shl:  __ z_sllg (d, l, count); break;
2279      case lir_shr:  __ z_srag (d, l, count); break;
2280      case lir_ushr: __ z_srlg (d, l, count); break;
2281      default: ShouldNotReachHere();
2282    }
2283  } else {
2284    ShouldNotReachHere();
2285  }
2286}
2287
2288void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2289  if (op->init_check()) {
2290    // Make sure klass is initialized & doesn't have finalizer.
2291    const int state_offset = in_bytes(InstanceKlass::init_state_offset());
2292    Register iklass = op->klass()->as_register();
2293    add_debug_info_for_null_check_here(op->stub()->info());
2294    if (Immediate::is_uimm12(state_offset)) {
2295      __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
2296    } else {
2297      __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
2298    }
2299    __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
2300  }
2301  __ allocate_object(op->obj()->as_register(),
2302                     op->tmp1()->as_register(),
2303                     op->tmp2()->as_register(),
2304                     op->header_size(),
2305                     op->object_size(),
2306                     op->klass()->as_register(),
2307                     *op->stub()->entry());
2308  __ bind(*op->stub()->continuation());
2309  __ verify_oop(op->obj()->as_register());
2310}
2311
2312void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2313  Register len = op->len()->as_register();
2314  __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
2315
2316  if (UseSlowPath ||
2317      (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2318      (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2319    __ z_brul(*op->stub()->entry());
2320  } else {
2321    __ allocate_array(op->obj()->as_register(),
2322                      op->len()->as_register(),
2323                      op->tmp1()->as_register(),
2324                      op->tmp2()->as_register(),
2325                      arrayOopDesc::header_size(op->type()),
2326                      type2aelembytes(op->type()),
2327                      op->klass()->as_register(),
2328                      *op->stub()->entry());
2329  }
2330  __ bind(*op->stub()->continuation());
2331}
2332
2333void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
2334                                        Register recv, Register tmp1, Label* update_done) {
2335  uint i;
2336  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2337    Label next_test;
2338    // See if the receiver is receiver[n].
2339    Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2340    __ z_cg(recv, receiver_addr);
2341    __ z_brne(next_test);
2342    Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
2343    __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2344    __ branch_optimized(Assembler::bcondAlways, *update_done);
2345    __ bind(next_test);
2346  }
2347
2348  // Didn't find receiver; find next empty slot and fill it in.
2349  for (i = 0; i < VirtualCallData::row_limit(); i++) {
2350    Label next_test;
2351    Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2352    __ z_ltg(Z_R0_scratch, recv_addr);
2353    __ z_brne(next_test);
2354    __ z_stg(recv, recv_addr);
2355    __ load_const_optimized(tmp1, DataLayout::counter_increment);
2356    __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
2357    __ branch_optimized(Assembler::bcondAlways, *update_done);
2358    __ bind(next_test);
2359  }
2360}
2361
2362void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2363                                    ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2364  Unimplemented();
2365}
2366
2367void LIR_Assembler::store_parameter(Register r, int param_num) {
2368  assert(param_num >= 0, "invalid num");
2369  int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
2370  assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2371  __ z_stg(r, offset_in_bytes, Z_SP);
2372}
2373
2374void LIR_Assembler::store_parameter(jint c, int param_num) {
2375  assert(param_num >= 0, "invalid num");
2376  int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
2377  assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2378  __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
2379}
2380
2381void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2382  // We always need a stub for the failure case.
2383  CodeStub* stub = op->stub();
2384  Register obj = op->object()->as_register();
2385  Register k_RInfo = op->tmp1()->as_register();
2386  Register klass_RInfo = op->tmp2()->as_register();
2387  Register dst = op->result_opr()->as_register();
2388  Register Rtmp1 = Z_R1_scratch;
2389  ciKlass* k = op->klass();
2390
2391  assert(!op->tmp3()->is_valid(), "tmp3's not needed");
2392
2393  // Check if it needs to be profiled.
2394  ciMethodData* md = NULL;
2395  ciProfileData* data = NULL;
2396
2397  if (op->should_profile()) {
2398    ciMethod* method = op->profiled_method();
2399    assert(method != NULL, "Should have method");
2400    int bci = op->profiled_bci();
2401    md = method->method_data_or_null();
2402    assert(md != NULL, "Sanity");
2403    data = md->bci_to_data(bci);
2404    assert(data != NULL,                "need data for type check");
2405    assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2406  }
2407
2408  // Temp operands do not overlap with inputs, if this is their last
2409  // use (end of range is exclusive), so a register conflict is possible.
2410  if (obj == k_RInfo) {
2411    k_RInfo = dst;
2412  } else if (obj == klass_RInfo) {
2413    klass_RInfo = dst;
2414  }
2415  assert_different_registers(obj, k_RInfo, klass_RInfo);
2416
2417  if (op->should_profile()) {
2418    NearLabel not_null;
2419    __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2420    // Object is null; update MDO and exit.
2421    Register mdo = klass_RInfo;
2422    metadata2reg(md->constant_encoding(), mdo);
2423    Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2424    int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2425    __ or2mem_8(data_addr, header_bits);
2426    __ branch_optimized(Assembler::bcondAlways, *obj_is_null);
2427    __ bind(not_null);
2428  } else {
2429    __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
2430  }
2431
2432  NearLabel profile_cast_failure, profile_cast_success;
2433  Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2434  Label *success_target = op->should_profile() ? &profile_cast_success : success;
2435
2436  // Patching may screw with our temporaries on sparc,
2437  // so let's do it before loading the class.
2438  if (k->is_loaded()) {
2439    metadata2reg(k->constant_encoding(), k_RInfo);
2440  } else {
2441    klass2reg_with_patching(k_RInfo, op->info_for_patch());
2442  }
2443  assert(obj != k_RInfo, "must be different");
2444
2445  __ verify_oop(obj);
2446
2447  // Get object class.
2448  // Not a safepoint as obj null check happens earlier.
2449  if (op->fast_check()) {
2450    if (UseCompressedClassPointers) {
2451      __ load_klass(klass_RInfo, obj);
2452      __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
2453    } else {
2454      __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
2455      __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2456    }
2457    // Successful cast, fall through to profile or jump.
2458  } else {
2459    bool need_slow_path = !k->is_loaded() ||
2460                          ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
2461    intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
2462    __ load_klass(klass_RInfo, obj);
2463    // Perform the fast part of the checking logic.
2464    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
2465                                     (need_slow_path ? success_target : NULL),
2466                                     failure_target, NULL,
2467                                     RegisterOrConstant(super_check_offset));
2468    if (need_slow_path) {
2469      // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2470      address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2471      store_parameter(klass_RInfo, 0); // sub
2472      store_parameter(k_RInfo, 1);     // super
2473      emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2474      CHECK_BAILOUT();
2475      __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2476      // Fall through to success case.
2477    }
2478  }
2479
2480  if (op->should_profile()) {
2481    Register mdo = klass_RInfo, recv = k_RInfo;
2482    assert_different_registers(obj, mdo, recv);
2483    __ bind(profile_cast_success);
2484    metadata2reg(md->constant_encoding(), mdo);
2485    __ load_klass(recv, obj);
2486    type_profile_helper(mdo, md, data, recv, Rtmp1, success);
2487    __ branch_optimized(Assembler::bcondAlways, *success);
2488
2489    __ bind(profile_cast_failure);
2490    metadata2reg(md->constant_encoding(), mdo);
2491    __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2492    __ branch_optimized(Assembler::bcondAlways, *failure);
2493  } else {
2494    __ branch_optimized(Assembler::bcondAlways, *success);
2495  }
2496}
2497
2498void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2499  LIR_Code code = op->code();
2500  if (code == lir_store_check) {
2501    Register value = op->object()->as_register();
2502    Register array = op->array()->as_register();
2503    Register k_RInfo = op->tmp1()->as_register();
2504    Register klass_RInfo = op->tmp2()->as_register();
2505    Register Rtmp1 = Z_R1_scratch;
2506
2507    CodeStub* stub = op->stub();
2508
2509    // Check if it needs to be profiled.
2510    ciMethodData* md = NULL;
2511    ciProfileData* data = NULL;
2512
2513    assert_different_registers(value, k_RInfo, klass_RInfo);
2514
2515    if (op->should_profile()) {
2516      ciMethod* method = op->profiled_method();
2517      assert(method != NULL, "Should have method");
2518      int bci = op->profiled_bci();
2519      md = method->method_data_or_null();
2520      assert(md != NULL, "Sanity");
2521      data = md->bci_to_data(bci);
2522      assert(data != NULL,                "need data for type check");
2523      assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2524    }
2525    NearLabel profile_cast_success, profile_cast_failure, done;
2526    Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2527    Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2528
2529    if (op->should_profile()) {
2530      NearLabel not_null;
2531      __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2532      // Object is null; update MDO and exit.
2533      Register mdo = klass_RInfo;
2534      metadata2reg(md->constant_encoding(), mdo);
2535      Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2536      int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2537      __ or2mem_8(data_addr, header_bits);
2538      __ branch_optimized(Assembler::bcondAlways, done);
2539      __ bind(not_null);
2540    } else {
2541      __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
2542    }
2543
2544    add_debug_info_for_null_check_here(op->info_for_exception());
2545    __ load_klass(k_RInfo, array);
2546    __ load_klass(klass_RInfo, value);
2547
2548    // Get instance klass (it's already uncompressed).
2549    __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
2550    // Perform the fast part of the checking logic.
2551    __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
2552    // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2553    address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2554    store_parameter(klass_RInfo, 0); // sub
2555    store_parameter(k_RInfo, 1);     // super
2556    emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2557    CHECK_BAILOUT();
2558    __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2559    // Fall through to success case.
2560
2561    if (op->should_profile()) {
2562      Register mdo = klass_RInfo, recv = k_RInfo;
2563      assert_different_registers(value, mdo, recv);
2564      __ bind(profile_cast_success);
2565      metadata2reg(md->constant_encoding(), mdo);
2566      __ load_klass(recv, value);
2567      type_profile_helper(mdo, md, data, recv, Rtmp1, &done);
2568      __ branch_optimized(Assembler::bcondAlways, done);
2569
2570      __ bind(profile_cast_failure);
2571      metadata2reg(md->constant_encoding(), mdo);
2572      __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2573      __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2574    }
2575
2576    __ bind(done);
2577  } else {
2578    if (code == lir_checkcast) {
2579      Register obj = op->object()->as_register();
2580      Register dst = op->result_opr()->as_register();
2581      NearLabel success;
2582      emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2583      __ bind(success);
2584      __ lgr_if_needed(dst, obj);
2585    } else {
2586      if (code == lir_instanceof) {
2587        Register obj = op->object()->as_register();
2588        Register dst = op->result_opr()->as_register();
2589        NearLabel success, failure, done;
2590        emit_typecheck_helper(op, &success, &failure, &failure);
2591        __ bind(failure);
2592        __ clear_reg(dst);
2593        __ branch_optimized(Assembler::bcondAlways, done);
2594        __ bind(success);
2595        __ load_const_optimized(dst, 1);
2596        __ bind(done);
2597      } else {
2598        ShouldNotReachHere();
2599      }
2600    }
2601  }
2602}
2603
2604void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2605  Register addr = op->addr()->as_pointer_register();
2606  Register t1_cmp = Z_R1_scratch;
2607  if (op->code() == lir_cas_long) {
2608    assert(VM_Version::supports_cx8(), "wrong machine");
2609    Register cmp_value_lo = op->cmp_value()->as_register_lo();
2610    Register new_value_lo = op->new_value()->as_register_lo();
2611    __ z_lgr(t1_cmp, cmp_value_lo);
2612    // Perform the compare and swap operation.
2613    __ z_csg(t1_cmp, new_value_lo, 0, addr);
2614  } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2615    Register cmp_value = op->cmp_value()->as_register();
2616    Register new_value = op->new_value()->as_register();
2617    if (op->code() == lir_cas_obj) {
2618      if (UseCompressedOops) {
2619                 t1_cmp = op->tmp1()->as_register();
2620        Register t2_new = op->tmp2()->as_register();
2621        assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
2622        __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
2623        __ oop_encoder(t2_new, new_value, true /*maybe null*/);
2624        __ z_cs(t1_cmp, t2_new, 0, addr);
2625      } else {
2626        __ z_lgr(t1_cmp, cmp_value);
2627        __ z_csg(t1_cmp, new_value, 0, addr);
2628      }
2629    } else {
2630      __ z_lr(t1_cmp, cmp_value);
2631      __ z_cs(t1_cmp, new_value, 0, addr);
2632    }
2633  } else {
2634    ShouldNotReachHere(); // new lir_cas_??
2635  }
2636}
2637
2638void LIR_Assembler::set_24bit_FPU() {
2639  ShouldNotCallThis(); // x86 only
2640}
2641
2642void LIR_Assembler::reset_FPU() {
2643  ShouldNotCallThis(); // x86 only
2644}
2645
2646void LIR_Assembler::breakpoint() {
2647  Unimplemented();
2648  //  __ breakpoint_trap();
2649}
2650
2651void LIR_Assembler::push(LIR_Opr opr) {
2652  ShouldNotCallThis(); // unused
2653}
2654
2655void LIR_Assembler::pop(LIR_Opr opr) {
2656  ShouldNotCallThis(); // unused
2657}
2658
2659void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2660  Address addr = frame_map()->address_for_monitor_lock(monitor_no);
2661  __ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
2662}
2663
2664void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2665  Register obj = op->obj_opr()->as_register();  // May not be an oop.
2666  Register hdr = op->hdr_opr()->as_register();
2667  Register lock = op->lock_opr()->as_register();
2668  if (!UseFastLocking) {
2669    __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
2670  } else if (op->code() == lir_lock) {
2671    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2672    // Add debug info for NullPointerException only if one is possible.
2673    if (op->info() != NULL) {
2674      add_debug_info_for_null_check_here(op->info());
2675    }
2676    __ lock_object(hdr, obj, lock, *op->stub()->entry());
2677    // done
2678  } else if (op->code() == lir_unlock) {
2679    assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2680    __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2681  } else {
2682    ShouldNotReachHere();
2683  }
2684  __ bind(*op->stub()->continuation());
2685}
2686
2687void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2688  ciMethod* method = op->profiled_method();
2689  int bci          = op->profiled_bci();
2690  ciMethod* callee = op->profiled_callee();
2691
2692  // Update counter for all call types.
2693  ciMethodData* md = method->method_data_or_null();
2694  assert(md != NULL, "Sanity");
2695  ciProfileData* data = md->bci_to_data(bci);
2696  assert(data->is_CounterData(), "need CounterData for calls");
2697  assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2698  Register mdo  = op->mdo()->as_register();
2699  assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2700  Register tmp1 = op->tmp1()->as_register_lo();
2701  metadata2reg(md->constant_encoding(), mdo);
2702
2703  Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2704  Bytecodes::Code bc = method->java_code_at_bci(bci);
2705  const bool callee_is_static = callee->is_loaded() && callee->is_static();
2706  // Perform additional virtual call profiling for invokevirtual and
2707  // invokeinterface bytecodes.
2708  if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
2709      !callee_is_static &&  // Required for optimized MH invokes.
2710      C1ProfileVirtualCalls) {
2711    assert(op->recv()->is_single_cpu(), "recv must be allocated");
2712    Register recv = op->recv()->as_register();
2713    assert_different_registers(mdo, tmp1, recv);
2714    assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2715    ciKlass* known_klass = op->known_holder();
2716    if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2717      // We know the type that will be seen at this call site; we can
2718      // statically update the MethodData* rather than needing to do
2719      // dynamic tests on the receiver type.
2720
2721      // NOTE: we should probably put a lock around this search to
2722      // avoid collisions by concurrent compilations.
2723      ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2724      uint i;
2725      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2726        ciKlass* receiver = vc_data->receiver(i);
2727        if (known_klass->equals(receiver)) {
2728          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2729          __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2730          return;
2731        }
2732      }
2733
2734      // Receiver type not found in profile data. Select an empty slot.
2735
2736      // Note that this is less efficient than it should be because it
2737      // always does a write to the receiver part of the
2738      // VirtualCallData rather than just the first time.
2739      for (i = 0; i < VirtualCallData::row_limit(); i++) {
2740        ciKlass* receiver = vc_data->receiver(i);
2741        if (receiver == NULL) {
2742          Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2743          metadata2reg(known_klass->constant_encoding(), tmp1);
2744          __ z_stg(tmp1, recv_addr);
2745          Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2746          __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2747          return;
2748        }
2749      }
2750    } else {
2751      __ load_klass(recv, recv);
2752      NearLabel update_done;
2753      type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
2754      // Receiver did not match any saved receiver and there is no empty row for it.
2755      // Increment total counter to indicate polymorphic case.
2756      __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2757      __ bind(update_done);
2758    }
2759  } else {
2760    // static call
2761    __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2762  }
2763}
2764
2765void LIR_Assembler::align_backward_branch_target() {
2766  __ align(OptoLoopAlignment);
2767}
2768
2769void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2770  ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
2771}
2772
2773void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2774  assert(left->is_register(), "can only handle registers");
2775
2776  if (left->is_single_cpu()) {
2777    __ z_lcr(dest->as_register(), left->as_register());
2778  } else if (left->is_single_fpu()) {
2779    __ z_lcebr(dest->as_float_reg(), left->as_float_reg());
2780  } else if (left->is_double_fpu()) {
2781    __ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
2782  } else {
2783    assert(left->is_double_cpu(), "Must be a long");
2784    __ z_lcgr(dest->as_register_lo(), left->as_register_lo());
2785  }
2786}
2787
2788void LIR_Assembler::fxch(int i) {
2789  ShouldNotCallThis(); // x86 only
2790}
2791
2792void LIR_Assembler::fld(int i) {
2793  ShouldNotCallThis(); // x86 only
2794}
2795
2796void LIR_Assembler::ffree(int i) {
2797  ShouldNotCallThis(); // x86 only
2798}
2799
2800void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2801                            const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2802  assert(!tmp->is_valid(), "don't need temporary");
2803  emit_call_c(dest);
2804  CHECK_BAILOUT();
2805  if (info != NULL) {
2806    add_call_info_here(info);
2807  }
2808}
2809
2810void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2811  ShouldNotCallThis(); // not needed on ZARCH_64
2812}
2813
2814void LIR_Assembler::membar() {
2815  __ z_fence();
2816}
2817
2818void LIR_Assembler::membar_acquire() {
2819  __ z_acquire();
2820}
2821
2822void LIR_Assembler::membar_release() {
2823  __ z_release();
2824}
2825
2826void LIR_Assembler::membar_loadload() {
2827  __ z_acquire();
2828}
2829
2830void LIR_Assembler::membar_storestore() {
2831  __ z_release();
2832}
2833
2834void LIR_Assembler::membar_loadstore() {
2835  __ z_acquire();
2836}
2837
2838void LIR_Assembler::membar_storeload() {
2839  __ z_fence();
2840}
2841
2842void LIR_Assembler::on_spin_wait() {
2843  Unimplemented();
2844}
2845
2846void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
2847  LIR_Address* addr = addr_opr->as_address_ptr();
2848  assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
2849  __ load_address(dest->as_pointer_register(), as_Address(addr));
2850}
2851
2852void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2853  ShouldNotCallThis(); // unused
2854}
2855
2856#ifdef ASSERT
2857// Emit run-time assertion.
2858void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2859  Unimplemented();
2860}
2861#endif
2862
2863void LIR_Assembler::peephole(LIR_List*) {
2864  // Do nothing for now.
2865}
2866
2867void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2868  assert(code == lir_xadd, "lir_xchg not supported");
2869  Address src_addr = as_Address(src->as_address_ptr());
2870  Register base = src_addr.base();
2871  intptr_t disp = src_addr.disp();
2872  if (src_addr.index()->is_valid()) {
2873    // LAA and LAAG do not support index register.
2874    __ load_address(Z_R1_scratch, src_addr);
2875    base = Z_R1_scratch;
2876    disp = 0;
2877  }
2878  if (data->type() == T_INT) {
2879    __ z_laa(dest->as_register(), data->as_register(), disp, base);
2880  } else if (data->type() == T_LONG) {
2881    assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
2882    __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
2883  } else {
2884    ShouldNotReachHere();
2885  }
2886}
2887
2888void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2889  Register obj = op->obj()->as_register();
2890  Register tmp1 = op->tmp()->as_pointer_register();
2891  Register tmp2 = Z_R1_scratch;
2892  Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2893  ciKlass* exact_klass = op->exact_klass();
2894  intptr_t current_klass = op->current_klass();
2895  bool not_null = op->not_null();
2896  bool no_conflict = op->no_conflict();
2897
2898  Label update, next, none, null_seen, init_klass;
2899
2900  bool do_null = !not_null;
2901  bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2902  bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2903
2904  assert(do_null || do_update, "why are we here?");
2905  assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2906
2907  __ verify_oop(obj);
2908
2909  if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
2910    __ z_ltgr(tmp1, obj);
2911  }
2912  if (do_null) {
2913    __ z_brnz(update);
2914    if (!TypeEntries::was_null_seen(current_klass)) {
2915      __ z_lg(tmp1, mdo_addr);
2916      __ z_oill(tmp1, TypeEntries::null_seen);
2917      __ z_stg(tmp1, mdo_addr);
2918    }
2919    if (do_update) {
2920      __ z_bru(next);
2921    }
2922  } else {
2923    __ asm_assert_ne("unexpect null obj", __LINE__);
2924  }
2925
2926  __ bind(update);
2927
2928  if (do_update) {
2929#ifdef ASSERT
2930    if (exact_klass != NULL) {
2931      __ load_klass(tmp1, tmp1);
2932      metadata2reg(exact_klass->constant_encoding(), tmp2);
2933      __ z_cgr(tmp1, tmp2);
2934      __ asm_assert_eq("exact klass and actual klass differ", __LINE__);
2935    }
2936#endif
2937
2938    Label do_update;
2939    __ z_lg(tmp2, mdo_addr);
2940
2941    if (!no_conflict) {
2942      if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2943        if (exact_klass != NULL) {
2944          metadata2reg(exact_klass->constant_encoding(), tmp1);
2945        } else {
2946          __ load_klass(tmp1, tmp1);
2947        }
2948
2949        // Klass seen before: nothing to do (regardless of unknown bit).
2950        __ z_lgr(Z_R0_scratch, tmp2);
2951        assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
2952        __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
2953        __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
2954
2955        // Already unknown: Nothing to do anymore.
2956        __ z_tmll(tmp2, TypeEntries::type_unknown);
2957        __ z_brc(Assembler::bcondAllOne, next);
2958
2959        if (TypeEntries::is_type_none(current_klass)) {
2960          __ z_lgr(Z_R0_scratch, tmp2);
2961          assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
2962          __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
2963          __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
2964        }
2965      } else {
2966        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2967               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2968
2969        // Already unknown: Nothing to do anymore.
2970        __ z_tmll(tmp2, TypeEntries::type_unknown);
2971        __ z_brc(Assembler::bcondAllOne, next);
2972      }
2973
2974      // Different than before. Cannot keep accurate profile.
2975      __ z_oill(tmp2, TypeEntries::type_unknown);
2976      __ z_bru(do_update);
2977    } else {
2978      // There's a single possible klass at this profile point.
2979      assert(exact_klass != NULL, "should be");
2980      if (TypeEntries::is_type_none(current_klass)) {
2981        metadata2reg(exact_klass->constant_encoding(), tmp1);
2982        __ z_lgr(Z_R0_scratch, tmp2);
2983        assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
2984        __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
2985        __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
2986#ifdef ASSERT
2987        {
2988          Label ok;
2989          __ z_lgr(Z_R0_scratch, tmp2);
2990          assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
2991          __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
2992          __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
2993          __ stop("unexpected profiling mismatch");
2994          __ bind(ok);
2995        }
2996#endif
2997
2998      } else {
2999        assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3000               ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3001
3002        // Already unknown: Nothing to do anymore.
3003        __ z_tmll(tmp2, TypeEntries::type_unknown);
3004        __ z_brc(Assembler::bcondAllOne, next);
3005        __ z_oill(tmp2, TypeEntries::type_unknown);
3006        __ z_bru(do_update);
3007      }
3008    }
3009
3010    __ bind(init_klass);
3011    // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3012    __ z_ogr(tmp2, tmp1);
3013
3014    __ bind(do_update);
3015    __ z_stg(tmp2, mdo_addr);
3016
3017    __ bind(next);
3018  }
3019}
3020
3021void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3022  assert(op->crc()->is_single_cpu(), "crc must be register");
3023  assert(op->val()->is_single_cpu(), "byte value must be register");
3024  assert(op->result_opr()->is_single_cpu(), "result must be register");
3025  Register crc = op->crc()->as_register();
3026  Register val = op->val()->as_register();
3027  Register res = op->result_opr()->as_register();
3028
3029  assert_different_registers(val, crc, res);
3030
3031  __ load_const_optimized(res, StubRoutines::crc_table_addr());
3032  __ not_(crc, noreg, false); // ~crc
3033  __ update_byte_crc32(crc, val, res);
3034  __ not_(res, crc, false); // ~crc
3035}
3036
3037#undef __
3038