templateTable_ppc_64.cpp revision 7575:a7fd2288ce2f
1/*
2 * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2013, 2014 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "interpreter/interpreter.hpp"
29#include "interpreter/interpreterRuntime.hpp"
30#include "interpreter/interp_masm.hpp"
31#include "interpreter/templateInterpreter.hpp"
32#include "interpreter/templateTable.hpp"
33#include "memory/universe.inline.hpp"
34#include "oops/objArrayKlass.hpp"
35#include "oops/oop.inline.hpp"
36#include "prims/methodHandles.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubRoutines.hpp"
39#include "runtime/synchronizer.hpp"
40#include "utilities/macros.hpp"
41
42#ifndef CC_INTERP
43
44#undef __
45#define __ _masm->
46
47// ============================================================================
48// Misc helpers
49
50// Do an oop store like *(base + index) = val OR *(base + offset) = val
51// (only one of both variants is possible at the same time).
52// Index can be noreg.
53// Kills:
54//   Rbase, Rtmp
55static void do_oop_store(InterpreterMacroAssembler* _masm,
56                         Register           Rbase,
57                         RegisterOrConstant offset,
58                         Register           Rval,         // Noreg means always null.
59                         Register           Rtmp1,
60                         Register           Rtmp2,
61                         Register           Rtmp3,
62                         BarrierSet::Name   barrier,
63                         bool               precise,
64                         bool               check_null) {
65  assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
66
67  switch (barrier) {
68#if INCLUDE_ALL_GCS
69    case BarrierSet::G1SATBCT:
70    case BarrierSet::G1SATBCTLogging:
71      {
72        // Load and record the previous value.
73        __ g1_write_barrier_pre(Rbase, offset,
74                                Rtmp3, /* holder of pre_val ? */
75                                Rtmp1, Rtmp2, false /* frame */);
76
77        Label Lnull, Ldone;
78        if (Rval != noreg) {
79          if (check_null) {
80            __ cmpdi(CCR0, Rval, 0);
81            __ beq(CCR0, Lnull);
82          }
83          __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
84          // Mark the card.
85          if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
86            __ add(Rbase, offset, Rbase);
87          }
88          __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
89          if (check_null) { __ b(Ldone); }
90        }
91
92        if (Rval == noreg || check_null) { // Store null oop.
93          Register Rnull = Rval;
94          __ bind(Lnull);
95          if (Rval == noreg) {
96            Rnull = Rtmp1;
97            __ li(Rnull, 0);
98          }
99          if (UseCompressedOops) {
100            __ stw(Rnull, offset, Rbase);
101          } else {
102            __ std(Rnull, offset, Rbase);
103          }
104        }
105        __ bind(Ldone);
106      }
107      break;
108#endif // INCLUDE_ALL_GCS
109    case BarrierSet::CardTableModRef:
110    case BarrierSet::CardTableExtension:
111      {
112        Label Lnull, Ldone;
113        if (Rval != noreg) {
114          if (check_null) {
115            __ cmpdi(CCR0, Rval, 0);
116            __ beq(CCR0, Lnull);
117          }
118          __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
119          // Mark the card.
120          if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
121            __ add(Rbase, offset, Rbase);
122          }
123          __ card_write_barrier_post(Rbase, Rval, Rtmp1);
124          if (check_null) {
125            __ b(Ldone);
126          }
127        }
128
129        if (Rval == noreg || check_null) { // Store null oop.
130          Register Rnull = Rval;
131          __ bind(Lnull);
132          if (Rval == noreg) {
133            Rnull = Rtmp1;
134            __ li(Rnull, 0);
135          }
136          if (UseCompressedOops) {
137            __ stw(Rnull, offset, Rbase);
138          } else {
139            __ std(Rnull, offset, Rbase);
140          }
141        }
142        __ bind(Ldone);
143      }
144      break;
145    case BarrierSet::ModRef:
146    case BarrierSet::Other:
147      ShouldNotReachHere();
148      break;
149    default:
150      ShouldNotReachHere();
151  }
152}
153
154// ============================================================================
155// Platform-dependent initialization
156
157void TemplateTable::pd_initialize() {
158  // No ppc64 specific initialization.
159}
160
161Address TemplateTable::at_bcp(int offset) {
162  // Not used on ppc.
163  ShouldNotReachHere();
164  return Address();
165}
166
167// Patches the current bytecode (ptr to it located in bcp)
168// in the bytecode stream with a new one.
169void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
170  // With sharing on, may need to test method flag.
171  if (!RewriteBytecodes) return;
172  Label L_patch_done;
173
174  switch (new_bc) {
175    case Bytecodes::_fast_aputfield:
176    case Bytecodes::_fast_bputfield:
177    case Bytecodes::_fast_cputfield:
178    case Bytecodes::_fast_dputfield:
179    case Bytecodes::_fast_fputfield:
180    case Bytecodes::_fast_iputfield:
181    case Bytecodes::_fast_lputfield:
182    case Bytecodes::_fast_sputfield:
183    {
184      // We skip bytecode quickening for putfield instructions when
185      // the put_code written to the constant pool cache is zero.
186      // This is required so that every execution of this instruction
187      // calls out to InterpreterRuntime::resolve_get_put to do
188      // additional, required work.
189      assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
190      assert(load_bc_into_bc_reg, "we use bc_reg as temp");
191      __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
192      // ((*(cache+indices))>>((1+byte_no)*8))&0xFF:
193#if defined(VM_LITTLE_ENDIAN)
194      __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 1 + byte_no, Rtemp);
195#else
196      __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
197#endif
198      __ cmpwi(CCR0, Rnew_bc, 0);
199      __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
200      __ beq(CCR0, L_patch_done);
201      // __ isync(); // acquire not needed
202      break;
203    }
204
205    default:
206      assert(byte_no == -1, "sanity");
207      if (load_bc_into_bc_reg) {
208        __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
209      }
210  }
211
212  if (JvmtiExport::can_post_breakpoint()) {
213    Label L_fast_patch;
214    __ lbz(Rtemp, 0, R14_bcp);
215    __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
216    __ bne(CCR0, L_fast_patch);
217    // Perform the quickening, slowly, in the bowels of the breakpoint table.
218    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
219    __ b(L_patch_done);
220    __ bind(L_fast_patch);
221  }
222
223  // Patch bytecode.
224  __ stb(Rnew_bc, 0, R14_bcp);
225
226  __ bind(L_patch_done);
227}
228
229// ============================================================================
230// Individual instructions
231
232void TemplateTable::nop() {
233  transition(vtos, vtos);
234  // Nothing to do.
235}
236
237void TemplateTable::shouldnotreachhere() {
238  transition(vtos, vtos);
239  __ stop("shouldnotreachhere bytecode");
240}
241
242void TemplateTable::aconst_null() {
243  transition(vtos, atos);
244  __ li(R17_tos, 0);
245}
246
247void TemplateTable::iconst(int value) {
248  transition(vtos, itos);
249  assert(value >= -1 && value <= 5, "");
250  __ li(R17_tos, value);
251}
252
253void TemplateTable::lconst(int value) {
254  transition(vtos, ltos);
255  assert(value >= -1 && value <= 5, "");
256  __ li(R17_tos, value);
257}
258
259void TemplateTable::fconst(int value) {
260  transition(vtos, ftos);
261  static float zero = 0.0;
262  static float one  = 1.0;
263  static float two  = 2.0;
264  switch (value) {
265    default: ShouldNotReachHere();
266    case 0: {
267      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
268      __ lfs(F15_ftos, simm16_offset, R11_scratch1);
269      break;
270    }
271    case 1: {
272      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
273      __ lfs(F15_ftos, simm16_offset, R11_scratch1);
274      break;
275    }
276    case 2: {
277      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
278      __ lfs(F15_ftos, simm16_offset, R11_scratch1);
279      break;
280    }
281  }
282}
283
284void TemplateTable::dconst(int value) {
285  transition(vtos, dtos);
286  static double zero = 0.0;
287  static double one  = 1.0;
288  switch (value) {
289    case 0: {
290      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
291      __ lfd(F15_ftos, simm16_offset, R11_scratch1);
292      break;
293    }
294    case 1: {
295      int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
296      __ lfd(F15_ftos, simm16_offset, R11_scratch1);
297      break;
298    }
299    default: ShouldNotReachHere();
300  }
301}
302
303void TemplateTable::bipush() {
304  transition(vtos, itos);
305  __ lbz(R17_tos, 1, R14_bcp);
306  __ extsb(R17_tos, R17_tos);
307}
308
309void TemplateTable::sipush() {
310  transition(vtos, itos);
311  __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
312}
313
314void TemplateTable::ldc(bool wide) {
315  Register Rscratch1 = R11_scratch1,
316           Rscratch2 = R12_scratch2,
317           Rcpool    = R3_ARG1;
318
319  transition(vtos, vtos);
320  Label notInt, notClass, exit;
321
322  __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
323  if (wide) { // Read index.
324    __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
325  } else {
326    __ lbz(Rscratch1, 1, R14_bcp);
327  }
328
329  const int base_offset = ConstantPool::header_size() * wordSize;
330  const int tags_offset = Array<u1>::base_offset_in_bytes();
331
332  // Get type from tags.
333  __ addi(Rscratch2, Rscratch2, tags_offset);
334  __ lbzx(Rscratch2, Rscratch2, Rscratch1);
335
336  __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
337  __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
338  __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
339
340  // Resolved class - need to call vm to get java mirror of the class.
341  __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
342  __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
343  __ beq(CCR0, notClass);
344
345  __ li(R4, wide ? 1 : 0);
346  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
347  __ push(atos);
348  __ b(exit);
349
350  __ align(32, 12);
351  __ bind(notClass);
352  __ addi(Rcpool, Rcpool, base_offset);
353  __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
354  __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
355  __ bne(CCR0, notInt);
356  __ lwax(R17_tos, Rcpool, Rscratch1);
357  __ push(itos);
358  __ b(exit);
359
360  __ align(32, 12);
361  __ bind(notInt);
362#ifdef ASSERT
363  // String and Object are rewritten to fast_aldc
364  __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
365  __ asm_assert_eq("unexpected type", 0x8765);
366#endif
367  __ lfsx(F15_ftos, Rcpool, Rscratch1);
368  __ push(ftos);
369
370  __ align(32, 12);
371  __ bind(exit);
372}
373
374// Fast path for caching oop constants.
375void TemplateTable::fast_aldc(bool wide) {
376  transition(vtos, atos);
377
378  int index_size = wide ? sizeof(u2) : sizeof(u1);
379  const Register Rscratch = R11_scratch1;
380  Label resolved;
381
382  // We are resolved if the resolved reference cache entry contains a
383  // non-null object (CallSite, etc.)
384  __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
385  __ load_resolved_reference_at_index(R17_tos, Rscratch);
386  __ cmpdi(CCR0, R17_tos, 0);
387  __ bne(CCR0, resolved);
388  __ load_const_optimized(R3_ARG1, (int)bytecode());
389
390  address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
391
392  // First time invocation - must resolve first.
393  __ call_VM(R17_tos, entry, R3_ARG1);
394
395  __ align(32, 12);
396  __ bind(resolved);
397  __ verify_oop(R17_tos);
398}
399
400void TemplateTable::ldc2_w() {
401  transition(vtos, vtos);
402  Label Llong, Lexit;
403
404  Register Rindex = R11_scratch1,
405           Rcpool = R12_scratch2,
406           Rtag   = R3_ARG1;
407  __ get_cpool_and_tags(Rcpool, Rtag);
408  __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
409
410  const int base_offset = ConstantPool::header_size() * wordSize;
411  const int tags_offset = Array<u1>::base_offset_in_bytes();
412  // Get type from tags.
413  __ addi(Rcpool, Rcpool, base_offset);
414  __ addi(Rtag, Rtag, tags_offset);
415
416  __ lbzx(Rtag, Rtag, Rindex);
417
418  __ sldi(Rindex, Rindex, LogBytesPerWord);
419  __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
420  __ bne(CCR0, Llong);
421  // A double can be placed at word-aligned locations in the constant pool.
422  // Check out Conversions.java for an example.
423  // Also ConstantPool::header_size() is 20, which makes it very difficult
424  // to double-align double on the constant pool. SG, 11/7/97
425  __ lfdx(F15_ftos, Rcpool, Rindex);
426  __ push(dtos);
427  __ b(Lexit);
428
429  __ bind(Llong);
430  __ ldx(R17_tos, Rcpool, Rindex);
431  __ push(ltos);
432
433  __ bind(Lexit);
434}
435
436// Get the locals index located in the bytecode stream at bcp + offset.
437void TemplateTable::locals_index(Register Rdst, int offset) {
438  __ lbz(Rdst, offset, R14_bcp);
439}
440
441void TemplateTable::iload() {
442  transition(vtos, itos);
443
444  // Get the local value into tos
445  const Register Rindex = R22_tmp2;
446  locals_index(Rindex);
447
448  // Rewrite iload,iload  pair into fast_iload2
449  //         iload,caload pair into fast_icaload
450  if (RewriteFrequentPairs) {
451    Label Lrewrite, Ldone;
452    Register Rnext_byte  = R3_ARG1,
453             Rrewrite_to = R6_ARG4,
454             Rscratch    = R11_scratch1;
455
456    // get next byte
457    __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
458
459    // if _iload, wait to rewrite to iload2. We only want to rewrite the
460    // last two iloads in a pair. Comparing against fast_iload means that
461    // the next bytecode is neither an iload or a caload, and therefore
462    // an iload pair.
463    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
464    __ beq(CCR0, Ldone);
465
466    __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
467    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
468    __ beq(CCR1, Lrewrite);
469
470    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
471    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
472    __ beq(CCR0, Lrewrite);
473
474    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
475
476    __ bind(Lrewrite);
477    patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
478    __ bind(Ldone);
479  }
480
481  __ load_local_int(R17_tos, Rindex, Rindex);
482}
483
484// Load 2 integers in a row without dispatching
485void TemplateTable::fast_iload2() {
486  transition(vtos, itos);
487
488  __ lbz(R3_ARG1, 1, R14_bcp);
489  __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
490
491  __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
492  __ load_local_int(R17_tos, R12_scratch2, R17_tos);
493  __ push_i(R3_ARG1);
494}
495
496void TemplateTable::fast_iload() {
497  transition(vtos, itos);
498  // Get the local value into tos
499
500  const Register Rindex = R11_scratch1;
501  locals_index(Rindex);
502  __ load_local_int(R17_tos, Rindex, Rindex);
503}
504
505// Load a local variable type long from locals area to TOS cache register.
506// Local index resides in bytecodestream.
507void TemplateTable::lload() {
508  transition(vtos, ltos);
509
510  const Register Rindex = R11_scratch1;
511  locals_index(Rindex);
512  __ load_local_long(R17_tos, Rindex, Rindex);
513}
514
515void TemplateTable::fload() {
516  transition(vtos, ftos);
517
518  const Register Rindex = R11_scratch1;
519  locals_index(Rindex);
520  __ load_local_float(F15_ftos, Rindex, Rindex);
521}
522
523void TemplateTable::dload() {
524  transition(vtos, dtos);
525
526  const Register Rindex = R11_scratch1;
527  locals_index(Rindex);
528  __ load_local_double(F15_ftos, Rindex, Rindex);
529}
530
531void TemplateTable::aload() {
532  transition(vtos, atos);
533
534  const Register Rindex = R11_scratch1;
535  locals_index(Rindex);
536  __ load_local_ptr(R17_tos, Rindex, Rindex);
537}
538
539void TemplateTable::locals_index_wide(Register Rdst) {
540  // Offset is 2, not 1, because Lbcp points to wide prefix code.
541  __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
542}
543
544void TemplateTable::wide_iload() {
545  // Get the local value into tos.
546
547  const Register Rindex = R11_scratch1;
548  locals_index_wide(Rindex);
549  __ load_local_int(R17_tos, Rindex, Rindex);
550}
551
552void TemplateTable::wide_lload() {
553  transition(vtos, ltos);
554
555  const Register Rindex = R11_scratch1;
556  locals_index_wide(Rindex);
557  __ load_local_long(R17_tos, Rindex, Rindex);
558}
559
560void TemplateTable::wide_fload() {
561  transition(vtos, ftos);
562
563  const Register Rindex = R11_scratch1;
564  locals_index_wide(Rindex);
565  __ load_local_float(F15_ftos, Rindex, Rindex);
566}
567
568void TemplateTable::wide_dload() {
569  transition(vtos, dtos);
570
571  const Register Rindex = R11_scratch1;
572  locals_index_wide(Rindex);
573  __ load_local_double(F15_ftos, Rindex, Rindex);
574}
575
576void TemplateTable::wide_aload() {
577  transition(vtos, atos);
578
579  const Register Rindex = R11_scratch1;
580  locals_index_wide(Rindex);
581  __ load_local_ptr(R17_tos, Rindex, Rindex);
582}
583
584void TemplateTable::iaload() {
585  transition(itos, itos);
586
587  const Register Rload_addr = R3_ARG1,
588                 Rarray     = R4_ARG2,
589                 Rtemp      = R5_ARG3;
590  __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
591  __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
592}
593
594void TemplateTable::laload() {
595  transition(itos, ltos);
596
597  const Register Rload_addr = R3_ARG1,
598                 Rarray     = R4_ARG2,
599                 Rtemp      = R5_ARG3;
600  __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
601  __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
602}
603
604void TemplateTable::faload() {
605  transition(itos, ftos);
606
607  const Register Rload_addr = R3_ARG1,
608                 Rarray     = R4_ARG2,
609                 Rtemp      = R5_ARG3;
610  __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
611  __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
612}
613
614void TemplateTable::daload() {
615  transition(itos, dtos);
616
617  const Register Rload_addr = R3_ARG1,
618                 Rarray     = R4_ARG2,
619                 Rtemp      = R5_ARG3;
620  __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
621  __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
622}
623
624void TemplateTable::aaload() {
625  transition(itos, atos);
626
627  // tos: index
628  // result tos: array
629  const Register Rload_addr = R3_ARG1,
630                 Rarray     = R4_ARG2,
631                 Rtemp      = R5_ARG3;
632  __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
633  __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
634  __ verify_oop(R17_tos);
635  //__ dcbt(R17_tos); // prefetch
636}
637
638void TemplateTable::baload() {
639  transition(itos, itos);
640
641  const Register Rload_addr = R3_ARG1,
642                 Rarray     = R4_ARG2,
643                 Rtemp      = R5_ARG3;
644  __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
645  __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
646  __ extsb(R17_tos, R17_tos);
647}
648
649void TemplateTable::caload() {
650  transition(itos, itos);
651
652  const Register Rload_addr = R3_ARG1,
653                 Rarray     = R4_ARG2,
654                 Rtemp      = R5_ARG3;
655  __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
656  __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
657}
658
659// Iload followed by caload frequent pair.
660void TemplateTable::fast_icaload() {
661  transition(vtos, itos);
662
663  const Register Rload_addr = R3_ARG1,
664                 Rarray     = R4_ARG2,
665                 Rtemp      = R11_scratch1;
666
667  locals_index(R17_tos);
668  __ load_local_int(R17_tos, Rtemp, R17_tos);
669  __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
670  __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
671}
672
673void TemplateTable::saload() {
674  transition(itos, itos);
675
676  const Register Rload_addr = R11_scratch1,
677                 Rarray     = R12_scratch2,
678                 Rtemp      = R3_ARG1;
679  __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
680  __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
681}
682
683void TemplateTable::iload(int n) {
684  transition(vtos, itos);
685
686  __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
687}
688
689void TemplateTable::lload(int n) {
690  transition(vtos, ltos);
691
692  __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
693}
694
695void TemplateTable::fload(int n) {
696  transition(vtos, ftos);
697
698  __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
699}
700
701void TemplateTable::dload(int n) {
702  transition(vtos, dtos);
703
704  __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
705}
706
707void TemplateTable::aload(int n) {
708  transition(vtos, atos);
709
710  __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
711}
712
713void TemplateTable::aload_0() {
714  transition(vtos, atos);
715  // According to bytecode histograms, the pairs:
716  //
717  // _aload_0, _fast_igetfield
718  // _aload_0, _fast_agetfield
719  // _aload_0, _fast_fgetfield
720  //
721  // occur frequently. If RewriteFrequentPairs is set, the (slow)
722  // _aload_0 bytecode checks if the next bytecode is either
723  // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
724  // rewrites the current bytecode into a pair bytecode; otherwise it
725  // rewrites the current bytecode into _0 that doesn't do
726  // the pair check anymore.
727  //
728  // Note: If the next bytecode is _getfield, the rewrite must be
729  //       delayed, otherwise we may miss an opportunity for a pair.
730  //
731  // Also rewrite frequent pairs
732  //   aload_0, aload_1
733  //   aload_0, iload_1
734  // These bytecodes with a small amount of code are most profitable
735  // to rewrite.
736
737  if (RewriteFrequentPairs) {
738
739    Label Lrewrite, Ldont_rewrite;
740    Register Rnext_byte  = R3_ARG1,
741             Rrewrite_to = R6_ARG4,
742             Rscratch    = R11_scratch1;
743
744    // Get next byte.
745    __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
746
747    // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
748    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
749    __ beq(CCR0, Ldont_rewrite);
750
751    __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
752    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
753    __ beq(CCR1, Lrewrite);
754
755    __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
756    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
757    __ beq(CCR0, Lrewrite);
758
759    __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
760    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
761    __ beq(CCR1, Lrewrite);
762
763    __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
764
765    __ bind(Lrewrite);
766    patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
767    __ bind(Ldont_rewrite);
768  }
769
770  // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
771  aload(0);
772}
773
774void TemplateTable::istore() {
775  transition(itos, vtos);
776
777  const Register Rindex = R11_scratch1;
778  locals_index(Rindex);
779  __ store_local_int(R17_tos, Rindex);
780}
781
782void TemplateTable::lstore() {
783  transition(ltos, vtos);
784  const Register Rindex = R11_scratch1;
785  locals_index(Rindex);
786  __ store_local_long(R17_tos, Rindex);
787}
788
789void TemplateTable::fstore() {
790  transition(ftos, vtos);
791
792  const Register Rindex = R11_scratch1;
793  locals_index(Rindex);
794  __ store_local_float(F15_ftos, Rindex);
795}
796
797void TemplateTable::dstore() {
798  transition(dtos, vtos);
799
800  const Register Rindex = R11_scratch1;
801  locals_index(Rindex);
802  __ store_local_double(F15_ftos, Rindex);
803}
804
805void TemplateTable::astore() {
806  transition(vtos, vtos);
807
808  const Register Rindex = R11_scratch1;
809  __ pop_ptr();
810  __ verify_oop_or_return_address(R17_tos, Rindex);
811  locals_index(Rindex);
812  __ store_local_ptr(R17_tos, Rindex);
813}
814
815void TemplateTable::wide_istore() {
816  transition(vtos, vtos);
817
818  const Register Rindex = R11_scratch1;
819  __ pop_i();
820  locals_index_wide(Rindex);
821  __ store_local_int(R17_tos, Rindex);
822}
823
824void TemplateTable::wide_lstore() {
825  transition(vtos, vtos);
826
827  const Register Rindex = R11_scratch1;
828  __ pop_l();
829  locals_index_wide(Rindex);
830  __ store_local_long(R17_tos, Rindex);
831}
832
833void TemplateTable::wide_fstore() {
834  transition(vtos, vtos);
835
836  const Register Rindex = R11_scratch1;
837  __ pop_f();
838  locals_index_wide(Rindex);
839  __ store_local_float(F15_ftos, Rindex);
840}
841
842void TemplateTable::wide_dstore() {
843  transition(vtos, vtos);
844
845  const Register Rindex = R11_scratch1;
846  __ pop_d();
847  locals_index_wide(Rindex);
848  __ store_local_double(F15_ftos, Rindex);
849}
850
851void TemplateTable::wide_astore() {
852  transition(vtos, vtos);
853
854  const Register Rindex = R11_scratch1;
855  __ pop_ptr();
856  __ verify_oop_or_return_address(R17_tos, Rindex);
857  locals_index_wide(Rindex);
858  __ store_local_ptr(R17_tos, Rindex);
859}
860
861void TemplateTable::iastore() {
862  transition(itos, vtos);
863
864  const Register Rindex      = R3_ARG1,
865                 Rstore_addr = R4_ARG2,
866                 Rarray      = R5_ARG3,
867                 Rtemp       = R6_ARG4;
868  __ pop_i(Rindex);
869  __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
870  __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
871  }
872
873void TemplateTable::lastore() {
874  transition(ltos, vtos);
875
876  const Register Rindex      = R3_ARG1,
877                 Rstore_addr = R4_ARG2,
878                 Rarray      = R5_ARG3,
879                 Rtemp       = R6_ARG4;
880  __ pop_i(Rindex);
881  __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
882  __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
883  }
884
885void TemplateTable::fastore() {
886  transition(ftos, vtos);
887
888  const Register Rindex      = R3_ARG1,
889                 Rstore_addr = R4_ARG2,
890                 Rarray      = R5_ARG3,
891                 Rtemp       = R6_ARG4;
892  __ pop_i(Rindex);
893  __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
894  __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
895  }
896
897void TemplateTable::dastore() {
898  transition(dtos, vtos);
899
900  const Register Rindex      = R3_ARG1,
901                 Rstore_addr = R4_ARG2,
902                 Rarray      = R5_ARG3,
903                 Rtemp       = R6_ARG4;
904  __ pop_i(Rindex);
905  __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
906  __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
907  }
908
909// Pop 3 values from the stack and...
910void TemplateTable::aastore() {
911  transition(vtos, vtos);
912
913  Label Lstore_ok, Lis_null, Ldone;
914  const Register Rindex    = R3_ARG1,
915                 Rarray    = R4_ARG2,
916                 Rscratch  = R11_scratch1,
917                 Rscratch2 = R12_scratch2,
918                 Rarray_klass = R5_ARG3,
919                 Rarray_element_klass = Rarray_klass,
920                 Rvalue_klass = R6_ARG4,
921                 Rstore_addr = R31;    // Use register which survives VM call.
922
923  __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
924  __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
925  __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
926
927  __ verify_oop(R17_tos);
928  __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
929  // Rindex is dead!
930  Register Rscratch3 = Rindex;
931
932  // Do array store check - check for NULL value first.
933  __ cmpdi(CCR0, R17_tos, 0);
934  __ beq(CCR0, Lis_null);
935
936  __ load_klass(Rarray_klass, Rarray);
937  __ load_klass(Rvalue_klass, R17_tos);
938
939  // Do fast instanceof cache test.
940  __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
941
942  // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
943  __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
944
945  // Fell through: subtype check failed => throw an exception.
946  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
947  __ mtctr(R11_scratch1);
948  __ bctr();
949
950  __ bind(Lis_null);
951  do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
952               Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
953  __ profile_null_seen(Rscratch, Rscratch2);
954  __ b(Ldone);
955
956  // Store is OK.
957  __ bind(Lstore_ok);
958  do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
959               Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
960
961  __ bind(Ldone);
962  // Adjust sp (pops array, index and value).
963  __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
964}
965
966void TemplateTable::bastore() {
967  transition(itos, vtos);
968
969  const Register Rindex   = R11_scratch1,
970                 Rarray   = R12_scratch2,
971                 Rscratch = R3_ARG1;
972  __ pop_i(Rindex);
973  // tos: val
974  // Rarray: array ptr (popped by index_check)
975  __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
976  __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
977}
978
979void TemplateTable::castore() {
980  transition(itos, vtos);
981
982  const Register Rindex   = R11_scratch1,
983                 Rarray   = R12_scratch2,
984                 Rscratch = R3_ARG1;
985  __ pop_i(Rindex);
986  // tos: val
987  // Rarray: array ptr (popped by index_check)
988  __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
989  __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
990}
991
992void TemplateTable::sastore() {
993  castore();
994}
995
996void TemplateTable::istore(int n) {
997  transition(itos, vtos);
998  __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
999}
1000
1001void TemplateTable::lstore(int n) {
1002  transition(ltos, vtos);
1003  __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1004}
1005
1006void TemplateTable::fstore(int n) {
1007  transition(ftos, vtos);
1008  __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1009}
1010
1011void TemplateTable::dstore(int n) {
1012  transition(dtos, vtos);
1013  __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1014}
1015
1016void TemplateTable::astore(int n) {
1017  transition(vtos, vtos);
1018
1019  __ pop_ptr();
1020  __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1021  __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1022}
1023
1024void TemplateTable::pop() {
1025  transition(vtos, vtos);
1026
1027  __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1028}
1029
1030void TemplateTable::pop2() {
1031  transition(vtos, vtos);
1032
1033  __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1034}
1035
1036void TemplateTable::dup() {
1037  transition(vtos, vtos);
1038
1039  __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1040  __ push_ptr(R11_scratch1);
1041}
1042
1043void TemplateTable::dup_x1() {
1044  transition(vtos, vtos);
1045
1046  Register Ra = R11_scratch1,
1047           Rb = R12_scratch2;
1048  // stack: ..., a, b
1049  __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1050  __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1051  __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1052  __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1053  __ push_ptr(Rb);
1054  // stack: ..., b, a, b
1055}
1056
1057void TemplateTable::dup_x2() {
1058  transition(vtos, vtos);
1059
1060  Register Ra = R11_scratch1,
1061           Rb = R12_scratch2,
1062           Rc = R3_ARG1;
1063
1064  // stack: ..., a, b, c
1065  __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1066  __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1067  __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1068  __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1069  // stack: ..., c, b, c
1070  __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1071  // stack: ..., c, a, c
1072  __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1073  __ push_ptr(Rc);                                        // push c
1074  // stack: ..., c, a, b, c
1075}
1076
1077void TemplateTable::dup2() {
1078  transition(vtos, vtos);
1079
1080  Register Ra = R11_scratch1,
1081           Rb = R12_scratch2;
1082  // stack: ..., a, b
1083  __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1084  __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1085  __ push_2ptrs(Ra, Rb);
1086  // stack: ..., a, b, a, b
1087}
1088
1089void TemplateTable::dup2_x1() {
1090  transition(vtos, vtos);
1091
1092  Register Ra = R11_scratch1,
1093           Rb = R12_scratch2,
1094           Rc = R3_ARG1;
1095  // stack: ..., a, b, c
1096  __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1097  __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1098  __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1099  __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1100  __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1101  __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1102  // stack: ..., b, c, a
1103  __ push_2ptrs(Rb, Rc);
1104  // stack: ..., b, c, a, b, c
1105}
1106
1107void TemplateTable::dup2_x2() {
1108  transition(vtos, vtos);
1109
1110  Register Ra = R11_scratch1,
1111           Rb = R12_scratch2,
1112           Rc = R3_ARG1,
1113           Rd = R4_ARG2;
1114  // stack: ..., a, b, c, d
1115  __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1116  __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1117  __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1118  __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1119  __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1120  __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1121  __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1122  __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1123  // stack: ..., c, d, a, b
1124  __ push_2ptrs(Rc, Rd);
1125  // stack: ..., c, d, a, b, c, d
1126}
1127
1128void TemplateTable::swap() {
1129  transition(vtos, vtos);
1130  // stack: ..., a, b
1131
1132  Register Ra = R11_scratch1,
1133           Rb = R12_scratch2;
1134  // stack: ..., a, b
1135  __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1136  __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1137  __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1138  __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1139  // stack: ..., b, a
1140}
1141
1142void TemplateTable::iop2(Operation op) {
1143  transition(itos, itos);
1144
1145  Register Rscratch = R11_scratch1;
1146
1147  __ pop_i(Rscratch);
1148  // tos  = number of bits to shift
1149  // Rscratch = value to shift
1150  switch (op) {
1151    case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1152    case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1153    case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1154    case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1155    case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1156    case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1157    case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1158    case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1159    case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1160    default:     ShouldNotReachHere();
1161  }
1162}
1163
1164void TemplateTable::lop2(Operation op) {
1165  transition(ltos, ltos);
1166
1167  Register Rscratch = R11_scratch1;
1168  __ pop_l(Rscratch);
1169  switch (op) {
1170    case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1171    case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1172    case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1173    case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1174    case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1175    default:     ShouldNotReachHere();
1176  }
1177}
1178
1179void TemplateTable::idiv() {
1180  transition(itos, itos);
1181
1182  Label Lnormal, Lexception, Ldone;
1183  Register Rdividend = R11_scratch1; // Used by irem.
1184
1185  __ addi(R0, R17_tos, 1);
1186  __ cmplwi(CCR0, R0, 2);
1187  __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1188
1189  __ cmpwi(CCR1, R17_tos, 0);
1190  __ beq(CCR1, Lexception); // divisor == 0
1191
1192  __ pop_i(Rdividend);
1193  __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1194  __ b(Ldone);
1195
1196  __ bind(Lexception);
1197  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1198  __ mtctr(R11_scratch1);
1199  __ bctr();
1200
1201  __ align(32, 12);
1202  __ bind(Lnormal);
1203  __ pop_i(Rdividend);
1204  __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1205  __ bind(Ldone);
1206}
1207
1208void TemplateTable::irem() {
1209  transition(itos, itos);
1210
1211  __ mr(R12_scratch2, R17_tos);
1212  idiv();
1213  __ mullw(R17_tos, R17_tos, R12_scratch2);
1214  __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1215}
1216
1217void TemplateTable::lmul() {
1218  transition(ltos, ltos);
1219
1220  __ pop_l(R11_scratch1);
1221  __ mulld(R17_tos, R11_scratch1, R17_tos);
1222}
1223
1224void TemplateTable::ldiv() {
1225  transition(ltos, ltos);
1226
1227  Label Lnormal, Lexception, Ldone;
1228  Register Rdividend = R11_scratch1; // Used by lrem.
1229
1230  __ addi(R0, R17_tos, 1);
1231  __ cmpldi(CCR0, R0, 2);
1232  __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1233
1234  __ cmpdi(CCR1, R17_tos, 0);
1235  __ beq(CCR1, Lexception); // divisor == 0
1236
1237  __ pop_l(Rdividend);
1238  __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1239  __ b(Ldone);
1240
1241  __ bind(Lexception);
1242  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1243  __ mtctr(R11_scratch1);
1244  __ bctr();
1245
1246  __ align(32, 12);
1247  __ bind(Lnormal);
1248  __ pop_l(Rdividend);
1249  __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1250  __ bind(Ldone);
1251}
1252
1253void TemplateTable::lrem() {
1254  transition(ltos, ltos);
1255
1256  __ mr(R12_scratch2, R17_tos);
1257  ldiv();
1258  __ mulld(R17_tos, R17_tos, R12_scratch2);
1259  __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1260}
1261
1262void TemplateTable::lshl() {
1263  transition(itos, ltos);
1264
1265  __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1266  __ pop_l(R11_scratch1);
1267  __ sld(R17_tos, R11_scratch1, R17_tos);
1268}
1269
1270void TemplateTable::lshr() {
1271  transition(itos, ltos);
1272
1273  __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1274  __ pop_l(R11_scratch1);
1275  __ srad(R17_tos, R11_scratch1, R17_tos);
1276}
1277
1278void TemplateTable::lushr() {
1279  transition(itos, ltos);
1280
1281  __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1282  __ pop_l(R11_scratch1);
1283  __ srd(R17_tos, R11_scratch1, R17_tos);
1284}
1285
1286void TemplateTable::fop2(Operation op) {
1287  transition(ftos, ftos);
1288
1289  switch (op) {
1290    case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1291    case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1292    case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1293    case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1294    case rem:
1295      __ pop_f(F1_ARG1);
1296      __ fmr(F2_ARG2, F15_ftos);
1297      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1298      __ fmr(F15_ftos, F1_RET);
1299      break;
1300
1301    default: ShouldNotReachHere();
1302  }
1303}
1304
1305void TemplateTable::dop2(Operation op) {
1306  transition(dtos, dtos);
1307
1308  switch (op) {
1309    case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1310    case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1311    case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1312    case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1313    case rem:
1314      __ pop_d(F1_ARG1);
1315      __ fmr(F2_ARG2, F15_ftos);
1316      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1317      __ fmr(F15_ftos, F1_RET);
1318      break;
1319
1320    default: ShouldNotReachHere();
1321  }
1322}
1323
1324// Negate the value in the TOS cache.
1325void TemplateTable::ineg() {
1326  transition(itos, itos);
1327
1328  __ neg(R17_tos, R17_tos);
1329}
1330
1331// Negate the value in the TOS cache.
1332void TemplateTable::lneg() {
1333  transition(ltos, ltos);
1334
1335  __ neg(R17_tos, R17_tos);
1336}
1337
1338void TemplateTable::fneg() {
1339  transition(ftos, ftos);
1340
1341  __ fneg(F15_ftos, F15_ftos);
1342}
1343
1344void TemplateTable::dneg() {
1345  transition(dtos, dtos);
1346
1347  __ fneg(F15_ftos, F15_ftos);
1348}
1349
1350// Increments a local variable in place.
1351void TemplateTable::iinc() {
1352  transition(vtos, vtos);
1353
1354  const Register Rindex     = R11_scratch1,
1355                 Rincrement = R0,
1356                 Rvalue     = R12_scratch2;
1357
1358  locals_index(Rindex);              // Load locals index from bytecode stream.
1359  __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1360  __ extsb(Rincrement, Rincrement);
1361
1362  __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1363
1364  __ add(Rvalue, Rincrement, Rvalue);
1365  __ stw(Rvalue, 0, Rindex);
1366}
1367
1368void TemplateTable::wide_iinc() {
1369  transition(vtos, vtos);
1370
1371  Register Rindex       = R11_scratch1,
1372           Rlocals_addr = Rindex,
1373           Rincr        = R12_scratch2;
1374  locals_index_wide(Rindex);
1375  __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1376  __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1377  __ add(R17_tos, Rincr, R17_tos);
1378  __ stw(R17_tos, 0, Rlocals_addr);
1379}
1380
1381void TemplateTable::convert() {
1382  // %%%%% Factor this first part accross platforms
1383#ifdef ASSERT
1384  TosState tos_in  = ilgl;
1385  TosState tos_out = ilgl;
1386  switch (bytecode()) {
1387    case Bytecodes::_i2l: // fall through
1388    case Bytecodes::_i2f: // fall through
1389    case Bytecodes::_i2d: // fall through
1390    case Bytecodes::_i2b: // fall through
1391    case Bytecodes::_i2c: // fall through
1392    case Bytecodes::_i2s: tos_in = itos; break;
1393    case Bytecodes::_l2i: // fall through
1394    case Bytecodes::_l2f: // fall through
1395    case Bytecodes::_l2d: tos_in = ltos; break;
1396    case Bytecodes::_f2i: // fall through
1397    case Bytecodes::_f2l: // fall through
1398    case Bytecodes::_f2d: tos_in = ftos; break;
1399    case Bytecodes::_d2i: // fall through
1400    case Bytecodes::_d2l: // fall through
1401    case Bytecodes::_d2f: tos_in = dtos; break;
1402    default             : ShouldNotReachHere();
1403  }
1404  switch (bytecode()) {
1405    case Bytecodes::_l2i: // fall through
1406    case Bytecodes::_f2i: // fall through
1407    case Bytecodes::_d2i: // fall through
1408    case Bytecodes::_i2b: // fall through
1409    case Bytecodes::_i2c: // fall through
1410    case Bytecodes::_i2s: tos_out = itos; break;
1411    case Bytecodes::_i2l: // fall through
1412    case Bytecodes::_f2l: // fall through
1413    case Bytecodes::_d2l: tos_out = ltos; break;
1414    case Bytecodes::_i2f: // fall through
1415    case Bytecodes::_l2f: // fall through
1416    case Bytecodes::_d2f: tos_out = ftos; break;
1417    case Bytecodes::_i2d: // fall through
1418    case Bytecodes::_l2d: // fall through
1419    case Bytecodes::_f2d: tos_out = dtos; break;
1420    default             : ShouldNotReachHere();
1421  }
1422  transition(tos_in, tos_out);
1423#endif
1424
1425  // Conversion
1426  Label done;
1427  switch (bytecode()) {
1428    case Bytecodes::_i2l:
1429      __ extsw(R17_tos, R17_tos);
1430      break;
1431
1432    case Bytecodes::_l2i:
1433      // Nothing to do, we'll continue to work with the lower bits.
1434      break;
1435
1436    case Bytecodes::_i2b:
1437      __ extsb(R17_tos, R17_tos);
1438      break;
1439
1440    case Bytecodes::_i2c:
1441      __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1442      break;
1443
1444    case Bytecodes::_i2s:
1445      __ extsh(R17_tos, R17_tos);
1446      break;
1447
1448    case Bytecodes::_i2d:
1449      __ extsw(R17_tos, R17_tos);
1450    case Bytecodes::_l2d:
1451      __ push_l_pop_d();
1452      __ fcfid(F15_ftos, F15_ftos);
1453      break;
1454
1455    case Bytecodes::_i2f:
1456      __ extsw(R17_tos, R17_tos);
1457      __ push_l_pop_d();
1458      if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1459        // Comment: alternatively, load with sign extend could be done by lfiwax.
1460        __ fcfids(F15_ftos, F15_ftos);
1461      } else {
1462        __ fcfid(F15_ftos, F15_ftos);
1463        __ frsp(F15_ftos, F15_ftos);
1464      }
1465      break;
1466
1467    case Bytecodes::_l2f:
1468      if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1469        __ push_l_pop_d();
1470        __ fcfids(F15_ftos, F15_ftos);
1471      } else {
1472        // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1473        __ mr(R3_ARG1, R17_tos);
1474        __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1475        __ fmr(F15_ftos, F1_RET);
1476      }
1477      break;
1478
1479    case Bytecodes::_f2d:
1480      // empty
1481      break;
1482
1483    case Bytecodes::_d2f:
1484      __ frsp(F15_ftos, F15_ftos);
1485      break;
1486
1487    case Bytecodes::_d2i:
1488    case Bytecodes::_f2i:
1489      __ fcmpu(CCR0, F15_ftos, F15_ftos);
1490      __ li(R17_tos, 0); // 0 in case of NAN
1491      __ bso(CCR0, done);
1492      __ fctiwz(F15_ftos, F15_ftos);
1493      __ push_d_pop_l();
1494      break;
1495
1496    case Bytecodes::_d2l:
1497    case Bytecodes::_f2l:
1498      __ fcmpu(CCR0, F15_ftos, F15_ftos);
1499      __ li(R17_tos, 0); // 0 in case of NAN
1500      __ bso(CCR0, done);
1501      __ fctidz(F15_ftos, F15_ftos);
1502      __ push_d_pop_l();
1503      break;
1504
1505    default: ShouldNotReachHere();
1506  }
1507  __ bind(done);
1508}
1509
1510// Long compare
1511void TemplateTable::lcmp() {
1512  transition(ltos, itos);
1513
1514  const Register Rscratch = R11_scratch1;
1515  __ pop_l(Rscratch); // first operand, deeper in stack
1516
1517  __ cmpd(CCR0, Rscratch, R17_tos); // compare
1518  __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1519  __ srwi(Rscratch, R17_tos, 30);
1520  __ srawi(R17_tos, R17_tos, 31);
1521  __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1522}
1523
1524// fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1525// unordered_result == -1 => fcmpl or dcmpl
1526// unordered_result ==  1 => fcmpg or dcmpg
1527void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1528  const FloatRegister Rfirst  = F0_SCRATCH,
1529                      Rsecond = F15_ftos;
1530  const Register Rscratch = R11_scratch1;
1531
1532  if (is_float) {
1533    __ pop_f(Rfirst);
1534  } else {
1535    __ pop_d(Rfirst);
1536  }
1537
1538  Label Lunordered, Ldone;
1539  __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1540  if (unordered_result) {
1541    __ bso(CCR0, Lunordered);
1542  }
1543  __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1544  __ srwi(Rscratch, R17_tos, 30);
1545  __ srawi(R17_tos, R17_tos, 31);
1546  __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1547  if (unordered_result) {
1548    __ b(Ldone);
1549    __ bind(Lunordered);
1550    __ load_const_optimized(R17_tos, unordered_result);
1551  }
1552  __ bind(Ldone);
1553}
1554
1555// Branch_conditional which takes TemplateTable::Condition.
1556void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1557  bool positive = false;
1558  Assembler::Condition cond = Assembler::equal;
1559  switch (cc) {
1560    case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1561    case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1562    case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1563    case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1564    case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1565    case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1566    default: ShouldNotReachHere();
1567  }
1568  int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1569  int bi = Assembler::bi0(crx, cond);
1570  __ bc(bo, bi, L);
1571}
1572
1573void TemplateTable::branch(bool is_jsr, bool is_wide) {
1574
1575  // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1576  __ verify_thread();
1577
1578  const Register Rscratch1    = R11_scratch1,
1579                 Rscratch2    = R12_scratch2,
1580                 Rscratch3    = R3_ARG1,
1581                 R4_counters  = R4_ARG2,
1582                 bumped_count = R31,
1583                 Rdisp        = R22_tmp2;
1584
1585  __ profile_taken_branch(Rscratch1, bumped_count);
1586
1587  // Get (wide) offset.
1588  if (is_wide) {
1589    __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1590  } else {
1591    __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1592  }
1593
1594  // --------------------------------------------------------------------------
1595  // Handle all the JSR stuff here, then exit.
1596  // It's much shorter and cleaner than intermingling with the
1597  // non-JSR normal-branch stuff occurring below.
1598  if (is_jsr) {
1599    // Compute return address as bci in Otos_i.
1600    __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1601    __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1602    __ subf(R17_tos, Rscratch1, Rscratch2);
1603
1604    // Bump bcp to target of JSR.
1605    __ add(R14_bcp, Rdisp, R14_bcp);
1606    // Push returnAddress for "ret" on stack.
1607    __ push_ptr(R17_tos);
1608    // And away we go!
1609    __ dispatch_next(vtos);
1610    return;
1611  }
1612
1613  // --------------------------------------------------------------------------
1614  // Normal (non-jsr) branch handling
1615
1616  const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1617  if (increment_invocation_counter_for_backward_branches) {
1618    //__ unimplemented("branch invocation counter");
1619
1620    Label Lforward;
1621    __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1622
1623    // Check branch direction.
1624    __ cmpdi(CCR0, Rdisp, 0);
1625    __ bgt(CCR0, Lforward);
1626
1627    __ get_method_counters(R19_method, R4_counters, Lforward);
1628
1629    if (TieredCompilation) {
1630      Label Lno_mdo, Loverflow;
1631      const int increment = InvocationCounter::count_increment;
1632      const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1633      if (ProfileInterpreter) {
1634        Register Rmdo = Rscratch1;
1635
1636        // If no method data exists, go to profile_continue.
1637        __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1638        __ cmpdi(CCR0, Rmdo, 0);
1639        __ beq(CCR0, Lno_mdo);
1640
1641        // Increment backedge counter in the MDO.
1642        const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1643        __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1644        __ load_const_optimized(Rscratch3, mask, R0);
1645        __ addi(Rscratch2, Rscratch2, increment);
1646        __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1647        __ and_(Rscratch3, Rscratch2, Rscratch3);
1648        __ bne(CCR0, Lforward);
1649        __ b(Loverflow);
1650      }
1651
1652      // If there's no MDO, increment counter in method.
1653      const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1654      __ bind(Lno_mdo);
1655      __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1656      __ load_const_optimized(Rscratch3, mask, R0);
1657      __ addi(Rscratch2, Rscratch2, increment);
1658      __ stw(Rscratch2, mo_bc_offs, R19_method);
1659      __ and_(Rscratch3, Rscratch2, Rscratch3);
1660      __ bne(CCR0, Lforward);
1661
1662      __ bind(Loverflow);
1663
1664      // Notify point for loop, pass branch bytecode.
1665      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
1666
1667      // Was an OSR adapter generated?
1668      // O0 = osr nmethod
1669      __ cmpdi(CCR0, R3_RET, 0);
1670      __ beq(CCR0, Lforward);
1671
1672      // Has the nmethod been invalidated already?
1673      __ lbz(R0, nmethod::state_offset(), R3_RET);
1674      __ cmpwi(CCR0, R0, nmethod::in_use);
1675      __ bne(CCR0, Lforward);
1676
1677      // Migrate the interpreter frame off of the stack.
1678      // We can use all registers because we will not return to interpreter from this point.
1679
1680      // Save nmethod.
1681      const Register osr_nmethod = R31;
1682      __ mr(osr_nmethod, R3_RET);
1683      __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1684      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1685      __ reset_last_Java_frame();
1686      // OSR buffer is in ARG1.
1687
1688      // Remove the interpreter frame.
1689      __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1690
1691      // Jump to the osr code.
1692      __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1693      __ mtlr(R0);
1694      __ mtctr(R11_scratch1);
1695      __ bctr();
1696
1697    } else {
1698
1699      const Register invoke_ctr = Rscratch1;
1700      // Update Backedge branch separately from invocations.
1701      __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1702
1703      if (ProfileInterpreter) {
1704        __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
1705        if (UseOnStackReplacement) {
1706          __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
1707        }
1708      } else {
1709        if (UseOnStackReplacement) {
1710          __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
1711        }
1712      }
1713    }
1714
1715    __ bind(Lforward);
1716
1717  } else {
1718    // Bump bytecode pointer by displacement (take the branch).
1719    __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1720  }
1721  // Continue with bytecode @ target.
1722  // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1723  // %%%%% and changing dispatch_next to dispatch_only.
1724  __ dispatch_next(vtos);
1725}
1726
1727// Helper function for if_cmp* methods below.
1728// Factored out common compare and branch code.
1729void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1730  Label Lnot_taken;
1731  // Note: The condition code we get is the condition under which we
1732  // *fall through*! So we have to inverse the CC here.
1733
1734  if (is_jint) {
1735    if (cmp0) {
1736      __ cmpwi(CCR0, Rfirst, 0);
1737    } else {
1738      __ cmpw(CCR0, Rfirst, Rsecond);
1739    }
1740  } else {
1741    if (cmp0) {
1742      __ cmpdi(CCR0, Rfirst, 0);
1743    } else {
1744      __ cmpd(CCR0, Rfirst, Rsecond);
1745    }
1746  }
1747  branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1748
1749  // Conition is false => Jump!
1750  branch(false, false);
1751
1752  // Condition is not true => Continue.
1753  __ align(32, 12);
1754  __ bind(Lnot_taken);
1755  __ profile_not_taken_branch(Rscratch1, Rscratch2);
1756}
1757
1758// Compare integer values with zero and fall through if CC holds, branch away otherwise.
1759void TemplateTable::if_0cmp(Condition cc) {
1760  transition(itos, vtos);
1761
1762  if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1763}
1764
1765// Compare integer values and fall through if CC holds, branch away otherwise.
1766//
1767// Interface:
1768//  - Rfirst: First operand  (older stack value)
1769//  - tos:    Second operand (younger stack value)
1770void TemplateTable::if_icmp(Condition cc) {
1771  transition(itos, vtos);
1772
1773  const Register Rfirst  = R0,
1774                 Rsecond = R17_tos;
1775
1776  __ pop_i(Rfirst);
1777  if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1778}
1779
1780void TemplateTable::if_nullcmp(Condition cc) {
1781  transition(atos, vtos);
1782
1783  if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1784}
1785
1786void TemplateTable::if_acmp(Condition cc) {
1787  transition(atos, vtos);
1788
1789  const Register Rfirst  = R0,
1790                 Rsecond = R17_tos;
1791
1792  __ pop_ptr(Rfirst);
1793  if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1794}
1795
1796void TemplateTable::ret() {
1797  locals_index(R11_scratch1);
1798  __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1799
1800  __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1801
1802  __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1803  __ add(R11_scratch1, R17_tos, R11_scratch1);
1804  __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1805  __ dispatch_next(vtos);
1806}
1807
1808void TemplateTable::wide_ret() {
1809  transition(vtos, vtos);
1810
1811  const Register Rindex = R3_ARG1,
1812                 Rscratch1 = R11_scratch1,
1813                 Rscratch2 = R12_scratch2;
1814
1815  locals_index_wide(Rindex);
1816  __ load_local_ptr(R17_tos, R17_tos, Rindex);
1817  __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1818  // Tos now contains the bci, compute the bcp from that.
1819  __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1820  __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1821  __ add(R14_bcp, Rscratch1, Rscratch2);
1822  __ dispatch_next(vtos);
1823}
1824
1825void TemplateTable::tableswitch() {
1826  transition(itos, vtos);
1827
1828  Label Ldispatch, Ldefault_case;
1829  Register Rlow_byte         = R3_ARG1,
1830           Rindex            = Rlow_byte,
1831           Rhigh_byte        = R4_ARG2,
1832           Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1833           Rscratch1         = R11_scratch1,
1834           Rscratch2         = R12_scratch2,
1835           Roffset           = R6_ARG4;
1836
1837  // Align bcp.
1838  __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1839  __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1840
1841  // Load lo & hi.
1842  __ get_u4(Rlow_byte, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1843  __ get_u4(Rhigh_byte, Rdef_offset_addr, 2 *BytesPerInt, InterpreterMacroAssembler::Unsigned);
1844
1845  // Check for default case (=index outside [low,high]).
1846  __ cmpw(CCR0, R17_tos, Rlow_byte);
1847  __ cmpw(CCR1, R17_tos, Rhigh_byte);
1848  __ blt(CCR0, Ldefault_case);
1849  __ bgt(CCR1, Ldefault_case);
1850
1851  // Lookup dispatch offset.
1852  __ sub(Rindex, R17_tos, Rlow_byte);
1853  __ extsw(Rindex, Rindex);
1854  __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
1855  __ sldi(Rindex, Rindex, LogBytesPerInt);
1856  __ addi(Rindex, Rindex, 3 * BytesPerInt);
1857#if defined(VM_LITTLE_ENDIAN)
1858  __ lwbrx(Roffset, Rdef_offset_addr, Rindex);
1859  __ extsw(Roffset, Roffset);
1860#else
1861  __ lwax(Roffset, Rdef_offset_addr, Rindex);
1862#endif
1863  __ b(Ldispatch);
1864
1865  __ bind(Ldefault_case);
1866  __ profile_switch_default(Rhigh_byte, Rscratch1);
1867  __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1868
1869  __ bind(Ldispatch);
1870
1871  __ add(R14_bcp, Roffset, R14_bcp);
1872  __ dispatch_next(vtos);
1873}
1874
1875void TemplateTable::lookupswitch() {
1876  transition(itos, itos);
1877  __ stop("lookupswitch bytecode should have been rewritten");
1878}
1879
1880// Table switch using linear search through cases.
1881// Bytecode stream format:
1882// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1883// Note: Everything is big-endian format here.
1884void TemplateTable::fast_linearswitch() {
1885  transition(itos, vtos);
1886
1887  Label Lloop_entry, Lsearch_loop, Lcontinue_execution, Ldefault_case;
1888  Register Rcount           = R3_ARG1,
1889           Rcurrent_pair    = R4_ARG2,
1890           Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
1891           Roffset          = R31,     // Might need to survive C call.
1892           Rvalue           = R12_scratch2,
1893           Rscratch         = R11_scratch1,
1894           Rcmp_value       = R17_tos;
1895
1896  // Align bcp.
1897  __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1898  __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1899
1900  // Setup loop counter and limit.
1901  __ get_u4(Rcount, Rdef_offset_addr, BytesPerInt, InterpreterMacroAssembler::Unsigned);
1902  __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
1903
1904  __ mtctr(Rcount);
1905  __ cmpwi(CCR0, Rcount, 0);
1906  __ bne(CCR0, Lloop_entry);
1907
1908  // Default case
1909  __ bind(Ldefault_case);
1910  __ get_u4(Roffset, Rdef_offset_addr, 0, InterpreterMacroAssembler::Signed);
1911  if (ProfileInterpreter) {
1912    __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
1913  }
1914  __ b(Lcontinue_execution);
1915
1916  // Next iteration
1917  __ bind(Lsearch_loop);
1918  __ bdz(Ldefault_case);
1919  __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
1920  __ bind(Lloop_entry);
1921  __ get_u4(Rvalue, Rcurrent_pair, 0, InterpreterMacroAssembler::Unsigned);
1922  __ cmpw(CCR0, Rvalue, Rcmp_value);
1923  __ bne(CCR0, Lsearch_loop);
1924
1925  // Found, load offset.
1926  __ get_u4(Roffset, Rcurrent_pair, BytesPerInt, InterpreterMacroAssembler::Signed);
1927  // Calculate case index and profile
1928  __ mfctr(Rcurrent_pair);
1929  if (ProfileInterpreter) {
1930    __ sub(Rcurrent_pair, Rcount, Rcurrent_pair);
1931    __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
1932  }
1933
1934  __ bind(Lcontinue_execution);
1935  __ add(R14_bcp, Roffset, R14_bcp);
1936  __ dispatch_next(vtos);
1937}
1938
1939// Table switch using binary search (value/offset pairs are ordered).
1940// Bytecode stream format:
1941// Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1942// Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
1943void TemplateTable::fast_binaryswitch() {
1944
1945  transition(itos, vtos);
1946  // Implementation using the following core algorithm: (copied from Intel)
1947  //
1948  // int binary_search(int key, LookupswitchPair* array, int n) {
1949  //   // Binary search according to "Methodik des Programmierens" by
1950  //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1951  //   int i = 0;
1952  //   int j = n;
1953  //   while (i+1 < j) {
1954  //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1955  //     // with      Q: for all i: 0 <= i < n: key < a[i]
1956  //     // where a stands for the array and assuming that the (inexisting)
1957  //     // element a[n] is infinitely big.
1958  //     int h = (i + j) >> 1;
1959  //     // i < h < j
1960  //     if (key < array[h].fast_match()) {
1961  //       j = h;
1962  //     } else {
1963  //       i = h;
1964  //     }
1965  //   }
1966  //   // R: a[i] <= key < a[i+1] or Q
1967  //   // (i.e., if key is within array, i is the correct index)
1968  //   return i;
1969  // }
1970
1971  // register allocation
1972  const Register Rkey     = R17_tos;          // already set (tosca)
1973  const Register Rarray   = R3_ARG1;
1974  const Register Ri       = R4_ARG2;
1975  const Register Rj       = R5_ARG3;
1976  const Register Rh       = R6_ARG4;
1977  const Register Rscratch = R11_scratch1;
1978
1979  const int log_entry_size = 3;
1980  const int entry_size = 1 << log_entry_size;
1981
1982  Label found;
1983
1984  // Find Array start,
1985  __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
1986  __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
1987
1988  // initialize i & j
1989  __ li(Ri,0);
1990  __ get_u4(Rj, Rarray, -BytesPerInt, InterpreterMacroAssembler::Unsigned);
1991
1992  // and start.
1993  Label entry;
1994  __ b(entry);
1995
1996  // binary search loop
1997  { Label loop;
1998    __ bind(loop);
1999    // int h = (i + j) >> 1;
2000    __ srdi(Rh, Rh, 1);
2001    // if (key < array[h].fast_match()) {
2002    //   j = h;
2003    // } else {
2004    //   i = h;
2005    // }
2006    __ sldi(Rscratch, Rh, log_entry_size);
2007#if defined(VM_LITTLE_ENDIAN)
2008    __ lwbrx(Rscratch, Rscratch, Rarray);
2009#else
2010    __ lwzx(Rscratch, Rscratch, Rarray);
2011#endif
2012
2013    // if (key < current value)
2014    //   Rh = Rj
2015    // else
2016    //   Rh = Ri
2017    Label Lgreater;
2018    __ cmpw(CCR0, Rkey, Rscratch);
2019    __ bge(CCR0, Lgreater);
2020    __ mr(Rj, Rh);
2021    __ b(entry);
2022    __ bind(Lgreater);
2023    __ mr(Ri, Rh);
2024
2025    // while (i+1 < j)
2026    __ bind(entry);
2027    __ addi(Rscratch, Ri, 1);
2028    __ cmpw(CCR0, Rscratch, Rj);
2029    __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2030
2031    __ blt(CCR0, loop);
2032  }
2033
2034  // End of binary search, result index is i (must check again!).
2035  Label default_case;
2036  Label continue_execution;
2037  if (ProfileInterpreter) {
2038    __ mr(Rh, Ri);              // Save index in i for profiling.
2039  }
2040  // Ri = value offset
2041  __ sldi(Ri, Ri, log_entry_size);
2042  __ add(Ri, Ri, Rarray);
2043  __ get_u4(Rscratch, Ri, 0, InterpreterMacroAssembler::Unsigned);
2044
2045  Label not_found;
2046  // Ri = offset offset
2047  __ cmpw(CCR0, Rkey, Rscratch);
2048  __ beq(CCR0, not_found);
2049  // entry not found -> j = default offset
2050  __ get_u4(Rj, Rarray, -2 * BytesPerInt, InterpreterMacroAssembler::Unsigned);
2051  __ b(default_case);
2052
2053  __ bind(not_found);
2054  // entry found -> j = offset
2055  __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2056  __ get_u4(Rj, Ri, BytesPerInt, InterpreterMacroAssembler::Unsigned);
2057
2058  if (ProfileInterpreter) {
2059    __ b(continue_execution);
2060  }
2061
2062  __ bind(default_case); // fall through (if not profiling)
2063  __ profile_switch_default(Ri, Rscratch);
2064
2065  __ bind(continue_execution);
2066
2067  __ extsw(Rj, Rj);
2068  __ add(R14_bcp, Rj, R14_bcp);
2069  __ dispatch_next(vtos);
2070}
2071
2072void TemplateTable::_return(TosState state) {
2073  transition(state, state);
2074  assert(_desc->calls_vm(),
2075         "inconsistent calls_vm information"); // call in remove_activation
2076
2077  if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2078
2079    Register Rscratch     = R11_scratch1,
2080             Rklass       = R12_scratch2,
2081             Rklass_flags = Rklass;
2082    Label Lskip_register_finalizer;
2083
2084    // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2085    assert(state == vtos, "only valid state");
2086    __ ld(R17_tos, 0, R18_locals);
2087
2088    // Load klass of this obj.
2089    __ load_klass(Rklass, R17_tos);
2090    __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2091    __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2092    __ bfalse(CCR0, Lskip_register_finalizer);
2093
2094    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2095
2096    __ align(32, 12);
2097    __ bind(Lskip_register_finalizer);
2098  }
2099
2100  // Move the result value into the correct register and remove memory stack frame.
2101  __ remove_activation(state, /* throw_monitor_exception */ true);
2102  // Restoration of lr done by remove_activation.
2103  switch (state) {
2104    case ltos:
2105    case btos:
2106    case ctos:
2107    case stos:
2108    case atos:
2109    case itos: __ mr(R3_RET, R17_tos); break;
2110    case ftos:
2111    case dtos: __ fmr(F1_RET, F15_ftos); break;
2112    case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2113               // to get visible before the reference to the object gets stored anywhere.
2114               __ membar(Assembler::StoreStore); break;
2115    default  : ShouldNotReachHere();
2116  }
2117  __ blr();
2118}
2119
2120// ============================================================================
2121// Constant pool cache access
2122//
2123// Memory ordering:
2124//
2125// Like done in C++ interpreter, we load the fields
2126//   - _indices
2127//   - _f12_oop
2128// acquired, because these are asked if the cache is already resolved. We don't
2129// want to float loads above this check.
2130// See also comments in ConstantPoolCacheEntry::bytecode_1(),
2131// ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2132
2133// Call into the VM if call site is not yet resolved
2134//
2135// Input regs:
2136//   - None, all passed regs are outputs.
2137//
2138// Returns:
2139//   - Rcache:  The const pool cache entry that contains the resolved result.
2140//   - Rresult: Either noreg or output for f1/f2.
2141//
2142// Kills:
2143//   - Rscratch
2144void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2145
2146  __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2147  Label Lresolved, Ldone;
2148
2149  assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2150  // We are resolved if the indices offset contains the current bytecode.
2151#if defined(VM_LITTLE_ENDIAN)
2152  __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + byte_no + 1, Rcache);
2153#else
2154  __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2155#endif
2156  // Acquire by cmp-br-isync (see below).
2157  __ cmpdi(CCR0, Rscratch, (int)bytecode());
2158  __ beq(CCR0, Lresolved);
2159
2160  address entry = NULL;
2161  switch (bytecode()) {
2162    case Bytecodes::_getstatic      : // fall through
2163    case Bytecodes::_putstatic      : // fall through
2164    case Bytecodes::_getfield       : // fall through
2165    case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2166    case Bytecodes::_invokevirtual  : // fall through
2167    case Bytecodes::_invokespecial  : // fall through
2168    case Bytecodes::_invokestatic   : // fall through
2169    case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2170    case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
2171    case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2172    default                         : ShouldNotReachHere(); break;
2173  }
2174  __ li(R4_ARG2, (int)bytecode());
2175  __ call_VM(noreg, entry, R4_ARG2, true);
2176
2177  // Update registers with resolved info.
2178  __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2179  __ b(Ldone);
2180
2181  __ bind(Lresolved);
2182  __ isync(); // Order load wrt. succeeding loads.
2183  __ bind(Ldone);
2184}
2185
2186// Load the constant pool cache entry at field accesses into registers.
2187// The Rcache and Rindex registers must be set before call.
2188// Input:
2189//   - Rcache, Rindex
2190// Output:
2191//   - Robj, Roffset, Rflags
2192void TemplateTable::load_field_cp_cache_entry(Register Robj,
2193                                              Register Rcache,
2194                                              Register Rindex /* unused on PPC64 */,
2195                                              Register Roffset,
2196                                              Register Rflags,
2197                                              bool is_static = false) {
2198  assert_different_registers(Rcache, Rflags, Roffset);
2199  // assert(Rindex == noreg, "parameter not used on PPC64");
2200
2201  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2202  __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2203  __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2204  if (is_static) {
2205    __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2206    __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2207    // Acquire not needed here. Following access has an address dependency on this value.
2208  }
2209}
2210
2211// Load the constant pool cache entry at invokes into registers.
2212// Resolve if necessary.
2213
2214// Input Registers:
2215//   - None, bcp is used, though
2216//
2217// Return registers:
2218//   - Rmethod       (f1 field or f2 if invokevirtual)
2219//   - Ritable_index (f2 field)
2220//   - Rflags        (flags field)
2221//
2222// Kills:
2223//   - R21
2224//
2225void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2226                                               Register Rmethod,
2227                                               Register Ritable_index,
2228                                               Register Rflags,
2229                                               bool is_invokevirtual,
2230                                               bool is_invokevfinal,
2231                                               bool is_invokedynamic) {
2232
2233  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2234  // Determine constant pool cache field offsets.
2235  assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2236  const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2237  const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2238  // Access constant pool cache fields.
2239  const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2240
2241  Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2242
2243  if (is_invokevfinal) {
2244    assert(Ritable_index == noreg, "register not used");
2245    // Already resolved.
2246    __ get_cache_and_index_at_bcp(Rcache, 1);
2247  } else {
2248    resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2249  }
2250
2251  __ ld(Rmethod, method_offset, Rcache);
2252  __ ld(Rflags, flags_offset, Rcache);
2253
2254  if (Ritable_index != noreg) {
2255    __ ld(Ritable_index, index_offset, Rcache);
2256  }
2257}
2258
2259// ============================================================================
2260// Field access
2261
2262// Volatile variables demand their effects be made known to all CPU's
2263// in order. Store buffers on most chips allow reads & writes to
2264// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2265// without some kind of memory barrier (i.e., it's not sufficient that
2266// the interpreter does not reorder volatile references, the hardware
2267// also must not reorder them).
2268//
2269// According to the new Java Memory Model (JMM):
2270// (1) All volatiles are serialized wrt to each other. ALSO reads &
2271//     writes act as aquire & release, so:
2272// (2) A read cannot let unrelated NON-volatile memory refs that
2273//     happen after the read float up to before the read. It's OK for
2274//     non-volatile memory refs that happen before the volatile read to
2275//     float down below it.
2276// (3) Similar a volatile write cannot let unrelated NON-volatile
2277//     memory refs that happen BEFORE the write float down to after the
2278//     write. It's OK for non-volatile memory refs that happen after the
2279//     volatile write to float up before it.
2280//
2281// We only put in barriers around volatile refs (they are expensive),
2282// not _between_ memory refs (that would require us to track the
2283// flavor of the previous memory refs). Requirements (2) and (3)
2284// require some barriers before volatile stores and after volatile
2285// loads. These nearly cover requirement (1) but miss the
2286// volatile-store-volatile-load case.  This final case is placed after
2287// volatile-stores although it could just as well go before
2288// volatile-loads.
2289
2290// The registers cache and index expected to be set before call.
2291// Correct values of the cache and index registers are preserved.
2292// Kills:
2293//   Rcache (if has_tos)
2294//   Rscratch
2295void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2296
2297  assert_different_registers(Rcache, Rscratch);
2298
2299  if (JvmtiExport::can_post_field_access()) {
2300    ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2301    Label Lno_field_access_post;
2302
2303    // Check if post field access in enabled.
2304    int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2305    __ lwz(Rscratch, offs, Rscratch);
2306
2307    __ cmpwi(CCR0, Rscratch, 0);
2308    __ beq(CCR0, Lno_field_access_post);
2309
2310    // Post access enabled - do it!
2311    __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2312    if (is_static) {
2313      __ li(R17_tos, 0);
2314    } else {
2315      if (has_tos) {
2316        // The fast bytecode versions have obj ptr in register.
2317        // Thus, save object pointer before call_VM() clobbers it
2318        // put object on tos where GC wants it.
2319        __ push_ptr(R17_tos);
2320      } else {
2321        // Load top of stack (do not pop the value off the stack).
2322        __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2323      }
2324      __ verify_oop(R17_tos);
2325    }
2326    // tos:   object pointer or NULL if static
2327    // cache: cache entry pointer
2328    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2329    if (!is_static && has_tos) {
2330      // Restore object pointer.
2331      __ pop_ptr(R17_tos);
2332      __ verify_oop(R17_tos);
2333    } else {
2334      // Cache is still needed to get class or obj.
2335      __ get_cache_and_index_at_bcp(Rcache, 1);
2336    }
2337
2338    __ align(32, 12);
2339    __ bind(Lno_field_access_post);
2340  }
2341}
2342
2343// kills R11_scratch1
2344void TemplateTable::pop_and_check_object(Register Roop) {
2345  Register Rtmp = R11_scratch1;
2346
2347  assert_different_registers(Rtmp, Roop);
2348  __ pop_ptr(Roop);
2349  // For field access must check obj.
2350  __ null_check_throw(Roop, -1, Rtmp);
2351  __ verify_oop(Roop);
2352}
2353
2354// PPC64: implement volatile loads as fence-store-acquire.
2355void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2356  transition(vtos, vtos);
2357
2358  Label Lacquire, Lisync;
2359
2360  const Register Rcache        = R3_ARG1,
2361                 Rclass_or_obj = R22_tmp2,
2362                 Roffset       = R23_tmp3,
2363                 Rflags        = R31,
2364                 Rbtable       = R5_ARG3,
2365                 Rbc           = R6_ARG4,
2366                 Rscratch      = R12_scratch2;
2367
2368  static address field_branch_table[number_of_states],
2369                 static_branch_table[number_of_states];
2370
2371  address* branch_table = is_static ? static_branch_table : field_branch_table;
2372
2373  // Get field offset.
2374  resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2375
2376  // JVMTI support
2377  jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2378
2379  // Load after possible GC.
2380  load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2381
2382  // Load pointer to branch table.
2383  __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2384
2385  // Get volatile flag.
2386  __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2387  // Note: sync is needed before volatile load on PPC64.
2388
2389  // Check field type.
2390  __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2391
2392#ifdef ASSERT
2393  Label LFlagInvalid;
2394  __ cmpldi(CCR0, Rflags, number_of_states);
2395  __ bge(CCR0, LFlagInvalid);
2396#endif
2397
2398  // Load from branch table and dispatch (volatile case: one instruction ahead).
2399  __ sldi(Rflags, Rflags, LogBytesPerWord);
2400  __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2401  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2402    __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2403  }
2404  __ ldx(Rbtable, Rbtable, Rflags);
2405
2406  // Get the obj from stack.
2407  if (!is_static) {
2408    pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2409  } else {
2410    __ verify_oop(Rclass_or_obj);
2411  }
2412
2413  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2414    __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2415  }
2416  __ mtctr(Rbtable);
2417  __ bctr();
2418
2419#ifdef ASSERT
2420  __ bind(LFlagInvalid);
2421  __ stop("got invalid flag", 0x654);
2422
2423  // __ bind(Lvtos);
2424  address pc_before_fence = __ pc();
2425  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2426  assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2427  assert(branch_table[vtos] == 0, "can't compute twice");
2428  branch_table[vtos] = __ pc(); // non-volatile_entry point
2429  __ stop("vtos unexpected", 0x655);
2430#endif
2431
2432  __ align(32, 28, 28); // Align load.
2433  // __ bind(Ldtos);
2434  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2435  assert(branch_table[dtos] == 0, "can't compute twice");
2436  branch_table[dtos] = __ pc(); // non-volatile_entry point
2437  __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2438  __ push(dtos);
2439  if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2440  {
2441    Label acquire_double;
2442    __ beq(CCR6, acquire_double); // Volatile?
2443    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2444
2445    __ bind(acquire_double);
2446    __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2447    __ beq_predict_taken(CCR0, Lisync);
2448    __ b(Lisync); // In case of NAN.
2449  }
2450
2451  __ align(32, 28, 28); // Align load.
2452  // __ bind(Lftos);
2453  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2454  assert(branch_table[ftos] == 0, "can't compute twice");
2455  branch_table[ftos] = __ pc(); // non-volatile_entry point
2456  __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2457  __ push(ftos);
2458  if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
2459  {
2460    Label acquire_float;
2461    __ beq(CCR6, acquire_float); // Volatile?
2462    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2463
2464    __ bind(acquire_float);
2465    __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2466    __ beq_predict_taken(CCR0, Lisync);
2467    __ b(Lisync); // In case of NAN.
2468  }
2469
2470  __ align(32, 28, 28); // Align load.
2471  // __ bind(Litos);
2472  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2473  assert(branch_table[itos] == 0, "can't compute twice");
2474  branch_table[itos] = __ pc(); // non-volatile_entry point
2475  __ lwax(R17_tos, Rclass_or_obj, Roffset);
2476  __ push(itos);
2477  if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2478  __ beq(CCR6, Lacquire); // Volatile?
2479  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2480
2481  __ align(32, 28, 28); // Align load.
2482  // __ bind(Lltos);
2483  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2484  assert(branch_table[ltos] == 0, "can't compute twice");
2485  branch_table[ltos] = __ pc(); // non-volatile_entry point
2486  __ ldx(R17_tos, Rclass_or_obj, Roffset);
2487  __ push(ltos);
2488  if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2489  __ beq(CCR6, Lacquire); // Volatile?
2490  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2491
2492  __ align(32, 28, 28); // Align load.
2493  // __ bind(Lbtos);
2494  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2495  assert(branch_table[btos] == 0, "can't compute twice");
2496  branch_table[btos] = __ pc(); // non-volatile_entry point
2497  __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2498  __ extsb(R17_tos, R17_tos);
2499  __ push(btos);
2500  if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2501  __ beq(CCR6, Lacquire); // Volatile?
2502  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2503
2504  __ align(32, 28, 28); // Align load.
2505  // __ bind(Lctos);
2506  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2507  assert(branch_table[ctos] == 0, "can't compute twice");
2508  branch_table[ctos] = __ pc(); // non-volatile_entry point
2509  __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2510  __ push(ctos);
2511  if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2512  __ beq(CCR6, Lacquire); // Volatile?
2513  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2514
2515  __ align(32, 28, 28); // Align load.
2516  // __ bind(Lstos);
2517  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2518  assert(branch_table[stos] == 0, "can't compute twice");
2519  branch_table[stos] = __ pc(); // non-volatile_entry point
2520  __ lhax(R17_tos, Rclass_or_obj, Roffset);
2521  __ push(stos);
2522  if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2523  __ beq(CCR6, Lacquire); // Volatile?
2524  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2525
2526  __ align(32, 28, 28); // Align load.
2527  // __ bind(Latos);
2528  __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2529  assert(branch_table[atos] == 0, "can't compute twice");
2530  branch_table[atos] = __ pc(); // non-volatile_entry point
2531  __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2532  __ verify_oop(R17_tos);
2533  __ push(atos);
2534  //__ dcbt(R17_tos); // prefetch
2535  if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2536  __ beq(CCR6, Lacquire); // Volatile?
2537  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2538
2539  __ align(32, 12);
2540  __ bind(Lacquire);
2541  __ twi_0(R17_tos);
2542  __ bind(Lisync);
2543  __ isync(); // acquire
2544
2545#ifdef ASSERT
2546  for (int i = 0; i<number_of_states; ++i) {
2547    assert(branch_table[i], "get initialization");
2548    //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2549    //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2550  }
2551#endif
2552}
2553
2554void TemplateTable::getfield(int byte_no) {
2555  getfield_or_static(byte_no, false);
2556}
2557
2558void TemplateTable::getstatic(int byte_no) {
2559  getfield_or_static(byte_no, true);
2560}
2561
2562// The registers cache and index expected to be set before call.
2563// The function may destroy various registers, just not the cache and index registers.
2564void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2565
2566  assert_different_registers(Rcache, Rscratch, R6_ARG4);
2567
2568  if (JvmtiExport::can_post_field_modification()) {
2569    Label Lno_field_mod_post;
2570
2571    // Check if post field access in enabled.
2572    int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2573    __ lwz(Rscratch, offs, Rscratch);
2574
2575    __ cmpwi(CCR0, Rscratch, 0);
2576    __ beq(CCR0, Lno_field_mod_post);
2577
2578    // Do the post
2579    ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2580    const Register Robj = Rscratch;
2581
2582    __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2583    if (is_static) {
2584      // Life is simple. Null out the object pointer.
2585      __ li(Robj, 0);
2586    } else {
2587      // In case of the fast versions, value lives in registers => put it back on tos.
2588      int offs = Interpreter::expr_offset_in_bytes(0);
2589      Register base = R15_esp;
2590      switch(bytecode()) {
2591        case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2592        case Bytecodes::_fast_iputfield: // Fall through
2593        case Bytecodes::_fast_bputfield: // Fall through
2594        case Bytecodes::_fast_cputfield: // Fall through
2595        case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2596        case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2597        case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2598        case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2599        default: {
2600          offs = 0;
2601          base = Robj;
2602          const Register Rflags = Robj;
2603          Label is_one_slot;
2604          // Life is harder. The stack holds the value on top, followed by the
2605          // object. We don't know the size of the value, though; it could be
2606          // one or two words depending on its type. As a result, we must find
2607          // the type to determine where the object is.
2608          __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2609          __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2610
2611          __ cmpwi(CCR0, Rflags, ltos);
2612          __ cmpwi(CCR1, Rflags, dtos);
2613          __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2614          __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
2615          __ beq(CCR0, is_one_slot);
2616          __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2617          __ bind(is_one_slot);
2618          break;
2619        }
2620      }
2621      __ ld(Robj, offs, base);
2622      __ verify_oop(Robj);
2623    }
2624
2625    __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2626    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2627    __ get_cache_and_index_at_bcp(Rcache, 1);
2628
2629    // In case of the fast versions, value lives in registers => put it back on tos.
2630    switch(bytecode()) {
2631      case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2632      case Bytecodes::_fast_iputfield: // Fall through
2633      case Bytecodes::_fast_bputfield: // Fall through
2634      case Bytecodes::_fast_cputfield: // Fall through
2635      case Bytecodes::_fast_sputfield: __ pop_i(); break;
2636      case Bytecodes::_fast_lputfield: __ pop_l(); break;
2637      case Bytecodes::_fast_fputfield: __ pop_f(); break;
2638      case Bytecodes::_fast_dputfield: __ pop_d(); break;
2639      default: break; // Nothin' to do.
2640    }
2641
2642    __ align(32, 12);
2643    __ bind(Lno_field_mod_post);
2644  }
2645}
2646
2647// PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2648void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2649  Label Lvolatile;
2650
2651  const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2652                 Rclass_or_obj = R31,      // Needs to survive C call.
2653                 Roffset       = R22_tmp2, // Needs to survive C call.
2654                 Rflags        = R3_ARG1,
2655                 Rbtable       = R4_ARG2,
2656                 Rscratch      = R11_scratch1,
2657                 Rscratch2     = R12_scratch2,
2658                 Rscratch3     = R6_ARG4,
2659                 Rbc           = Rscratch3;
2660  const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2661
2662  static address field_branch_table[number_of_states],
2663                 static_branch_table[number_of_states];
2664
2665  address* branch_table = is_static ? static_branch_table : field_branch_table;
2666
2667  // Stack (grows up):
2668  //  value
2669  //  obj
2670
2671  // Load the field offset.
2672  resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2673  jvmti_post_field_mod(Rcache, Rscratch, is_static);
2674  load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2675
2676  // Load pointer to branch table.
2677  __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2678
2679  // Get volatile flag.
2680  __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2681
2682  // Check the field type.
2683  __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2684
2685#ifdef ASSERT
2686  Label LFlagInvalid;
2687  __ cmpldi(CCR0, Rflags, number_of_states);
2688  __ bge(CCR0, LFlagInvalid);
2689#endif
2690
2691  // Load from branch table and dispatch (volatile case: one instruction ahead).
2692  __ sldi(Rflags, Rflags, LogBytesPerWord);
2693  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
2694  __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2695  __ ldx(Rbtable, Rbtable, Rflags);
2696
2697  __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2698  __ mtctr(Rbtable);
2699  __ bctr();
2700
2701#ifdef ASSERT
2702  __ bind(LFlagInvalid);
2703  __ stop("got invalid flag", 0x656);
2704
2705  // __ bind(Lvtos);
2706  address pc_before_release = __ pc();
2707  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2708  assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2709  assert(branch_table[vtos] == 0, "can't compute twice");
2710  branch_table[vtos] = __ pc(); // non-volatile_entry point
2711  __ stop("vtos unexpected", 0x657);
2712#endif
2713
2714  __ align(32, 28, 28); // Align pop.
2715  // __ bind(Ldtos);
2716  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2717  assert(branch_table[dtos] == 0, "can't compute twice");
2718  branch_table[dtos] = __ pc(); // non-volatile_entry point
2719  __ pop(dtos);
2720  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2721  __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2722  if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
2723  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2724    __ beq(CR_is_vol, Lvolatile); // Volatile?
2725  }
2726  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2727
2728  __ align(32, 28, 28); // Align pop.
2729  // __ bind(Lftos);
2730  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2731  assert(branch_table[ftos] == 0, "can't compute twice");
2732  branch_table[ftos] = __ pc(); // non-volatile_entry point
2733  __ pop(ftos);
2734  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2735  __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2736  if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
2737  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2738    __ beq(CR_is_vol, Lvolatile); // Volatile?
2739  }
2740  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2741
2742  __ align(32, 28, 28); // Align pop.
2743  // __ bind(Litos);
2744  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2745  assert(branch_table[itos] == 0, "can't compute twice");
2746  branch_table[itos] = __ pc(); // non-volatile_entry point
2747  __ pop(itos);
2748  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2749  __ stwx(R17_tos, Rclass_or_obj, Roffset);
2750  if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
2751  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2752    __ beq(CR_is_vol, Lvolatile); // Volatile?
2753  }
2754  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2755
2756  __ align(32, 28, 28); // Align pop.
2757  // __ bind(Lltos);
2758  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2759  assert(branch_table[ltos] == 0, "can't compute twice");
2760  branch_table[ltos] = __ pc(); // non-volatile_entry point
2761  __ pop(ltos);
2762  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2763  __ stdx(R17_tos, Rclass_or_obj, Roffset);
2764  if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
2765  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2766    __ beq(CR_is_vol, Lvolatile); // Volatile?
2767  }
2768  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2769
2770  __ align(32, 28, 28); // Align pop.
2771  // __ bind(Lbtos);
2772  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2773  assert(branch_table[btos] == 0, "can't compute twice");
2774  branch_table[btos] = __ pc(); // non-volatile_entry point
2775  __ pop(btos);
2776  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2777  __ stbx(R17_tos, Rclass_or_obj, Roffset);
2778  if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
2779  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2780    __ beq(CR_is_vol, Lvolatile); // Volatile?
2781  }
2782  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2783
2784  __ align(32, 28, 28); // Align pop.
2785  // __ bind(Lctos);
2786  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2787  assert(branch_table[ctos] == 0, "can't compute twice");
2788  branch_table[ctos] = __ pc(); // non-volatile_entry point
2789  __ pop(ctos);
2790  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
2791  __ sthx(R17_tos, Rclass_or_obj, Roffset);
2792  if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
2793  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2794    __ beq(CR_is_vol, Lvolatile); // Volatile?
2795  }
2796  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2797
2798  __ align(32, 28, 28); // Align pop.
2799  // __ bind(Lstos);
2800  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2801  assert(branch_table[stos] == 0, "can't compute twice");
2802  branch_table[stos] = __ pc(); // non-volatile_entry point
2803  __ pop(stos);
2804  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2805  __ sthx(R17_tos, Rclass_or_obj, Roffset);
2806  if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
2807  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2808    __ beq(CR_is_vol, Lvolatile); // Volatile?
2809  }
2810  __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2811
2812  __ align(32, 28, 28); // Align pop.
2813  // __ bind(Latos);
2814  __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2815  assert(branch_table[atos] == 0, "can't compute twice");
2816  branch_table[atos] = __ pc(); // non-volatile_entry point
2817  __ pop(atos);
2818  if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
2819  do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2820  if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
2821  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2822    __ beq(CR_is_vol, Lvolatile); // Volatile?
2823    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2824
2825    __ align(32, 12);
2826    __ bind(Lvolatile);
2827    __ fence();
2828  }
2829  // fallthru: __ b(Lexit);
2830
2831#ifdef ASSERT
2832  for (int i = 0; i<number_of_states; ++i) {
2833    assert(branch_table[i], "put initialization");
2834    //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2835    //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2836  }
2837#endif
2838}
2839
2840void TemplateTable::putfield(int byte_no) {
2841  putfield_or_static(byte_no, false);
2842}
2843
2844void TemplateTable::putstatic(int byte_no) {
2845  putfield_or_static(byte_no, true);
2846}
2847
2848// See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
2849void TemplateTable::jvmti_post_fast_field_mod() {
2850  __ should_not_reach_here();
2851}
2852
2853void TemplateTable::fast_storefield(TosState state) {
2854  transition(state, vtos);
2855
2856  const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2857                 Rclass_or_obj = R31,      // Needs to survive C call.
2858                 Roffset       = R22_tmp2, // Needs to survive C call.
2859                 Rflags        = R3_ARG1,
2860                 Rscratch      = R11_scratch1,
2861                 Rscratch2     = R12_scratch2,
2862                 Rscratch3     = R4_ARG2;
2863  const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2864
2865  // Constant pool already resolved => Load flags and offset of field.
2866  __ get_cache_and_index_at_bcp(Rcache, 1);
2867  jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
2868  load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2869
2870  // Get the obj and the final store addr.
2871  pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2872
2873  // Get volatile flag.
2874  __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2875  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
2876  {
2877    Label LnotVolatile;
2878    __ beq(CCR0, LnotVolatile);
2879    __ release();
2880    __ align(32, 12);
2881    __ bind(LnotVolatile);
2882  }
2883
2884  // Do the store and fencing.
2885  switch(bytecode()) {
2886    case Bytecodes::_fast_aputfield:
2887      // Store into the field.
2888      do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2889      break;
2890
2891    case Bytecodes::_fast_iputfield:
2892      __ stwx(R17_tos, Rclass_or_obj, Roffset);
2893      break;
2894
2895    case Bytecodes::_fast_lputfield:
2896      __ stdx(R17_tos, Rclass_or_obj, Roffset);
2897      break;
2898
2899    case Bytecodes::_fast_bputfield:
2900      __ stbx(R17_tos, Rclass_or_obj, Roffset);
2901      break;
2902
2903    case Bytecodes::_fast_cputfield:
2904    case Bytecodes::_fast_sputfield:
2905      __ sthx(R17_tos, Rclass_or_obj, Roffset);
2906      break;
2907
2908    case Bytecodes::_fast_fputfield:
2909      __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2910      break;
2911
2912    case Bytecodes::_fast_dputfield:
2913      __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2914      break;
2915
2916    default: ShouldNotReachHere();
2917  }
2918
2919  if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2920    Label LVolatile;
2921    __ beq(CR_is_vol, LVolatile);
2922    __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2923
2924    __ align(32, 12);
2925    __ bind(LVolatile);
2926    __ fence();
2927  }
2928}
2929
2930void TemplateTable::fast_accessfield(TosState state) {
2931  transition(atos, state);
2932
2933  Label LisVolatile;
2934  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2935
2936  const Register Rcache        = R3_ARG1,
2937                 Rclass_or_obj = R17_tos,
2938                 Roffset       = R22_tmp2,
2939                 Rflags        = R23_tmp3,
2940                 Rscratch      = R12_scratch2;
2941
2942  // Constant pool already resolved. Get the field offset.
2943  __ get_cache_and_index_at_bcp(Rcache, 1);
2944  load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2945
2946  // JVMTI support
2947  jvmti_post_field_access(Rcache, Rscratch, false, true);
2948
2949  // Get the load address.
2950  __ null_check_throw(Rclass_or_obj, -1, Rscratch);
2951
2952  // Get volatile flag.
2953  __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2954  __ bne(CCR0, LisVolatile);
2955
2956  switch(bytecode()) {
2957    case Bytecodes::_fast_agetfield:
2958    {
2959      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2960      __ verify_oop(R17_tos);
2961      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2962
2963      __ bind(LisVolatile);
2964      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2965      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2966      __ verify_oop(R17_tos);
2967      __ twi_0(R17_tos);
2968      __ isync();
2969      break;
2970    }
2971    case Bytecodes::_fast_igetfield:
2972    {
2973      __ lwax(R17_tos, Rclass_or_obj, Roffset);
2974      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2975
2976      __ bind(LisVolatile);
2977      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2978      __ lwax(R17_tos, Rclass_or_obj, Roffset);
2979      __ twi_0(R17_tos);
2980      __ isync();
2981      break;
2982    }
2983    case Bytecodes::_fast_lgetfield:
2984    {
2985      __ ldx(R17_tos, Rclass_or_obj, Roffset);
2986      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2987
2988      __ bind(LisVolatile);
2989      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2990      __ ldx(R17_tos, Rclass_or_obj, Roffset);
2991      __ twi_0(R17_tos);
2992      __ isync();
2993      break;
2994    }
2995    case Bytecodes::_fast_bgetfield:
2996    {
2997      __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2998      __ extsb(R17_tos, R17_tos);
2999      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3000
3001      __ bind(LisVolatile);
3002      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3003      __ lbzx(R17_tos, Rclass_or_obj, Roffset);
3004      __ twi_0(R17_tos);
3005      __ extsb(R17_tos, R17_tos);
3006      __ isync();
3007      break;
3008    }
3009    case Bytecodes::_fast_cgetfield:
3010    {
3011      __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3012      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3013
3014      __ bind(LisVolatile);
3015      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3016      __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3017      __ twi_0(R17_tos);
3018      __ isync();
3019      break;
3020    }
3021    case Bytecodes::_fast_sgetfield:
3022    {
3023      __ lhax(R17_tos, Rclass_or_obj, Roffset);
3024      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3025
3026      __ bind(LisVolatile);
3027      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3028      __ lhax(R17_tos, Rclass_or_obj, Roffset);
3029      __ twi_0(R17_tos);
3030      __ isync();
3031      break;
3032    }
3033    case Bytecodes::_fast_fgetfield:
3034    {
3035      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3036      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3037
3038      __ bind(LisVolatile);
3039      Label Ldummy;
3040      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3041      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3042      __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3043      __ bne_predict_not_taken(CCR0, Ldummy);
3044      __ bind(Ldummy);
3045      __ isync();
3046      break;
3047    }
3048    case Bytecodes::_fast_dgetfield:
3049    {
3050      __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3051      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3052
3053      __ bind(LisVolatile);
3054      Label Ldummy;
3055      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3056      __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3057      __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3058      __ bne_predict_not_taken(CCR0, Ldummy);
3059      __ bind(Ldummy);
3060      __ isync();
3061      break;
3062    }
3063    default: ShouldNotReachHere();
3064  }
3065}
3066
3067void TemplateTable::fast_xaccess(TosState state) {
3068  transition(vtos, state);
3069
3070  Label LisVolatile;
3071  ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3072  const Register Rcache        = R3_ARG1,
3073                 Rclass_or_obj = R17_tos,
3074                 Roffset       = R22_tmp2,
3075                 Rflags        = R23_tmp3,
3076                 Rscratch      = R12_scratch2;
3077
3078  __ ld(Rclass_or_obj, 0, R18_locals);
3079
3080  // Constant pool already resolved. Get the field offset.
3081  __ get_cache_and_index_at_bcp(Rcache, 2);
3082  load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3083
3084  // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3085
3086  // Needed to report exception at the correct bcp.
3087  __ addi(R14_bcp, R14_bcp, 1);
3088
3089  // Get the load address.
3090  __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3091
3092  // Get volatile flag.
3093  __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3094  __ bne(CCR0, LisVolatile);
3095
3096  switch(state) {
3097  case atos:
3098    {
3099      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3100      __ verify_oop(R17_tos);
3101      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3102
3103      __ bind(LisVolatile);
3104      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3105      __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3106      __ verify_oop(R17_tos);
3107      __ twi_0(R17_tos);
3108      __ isync();
3109      break;
3110    }
3111  case itos:
3112    {
3113      __ lwax(R17_tos, Rclass_or_obj, Roffset);
3114      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3115
3116      __ bind(LisVolatile);
3117      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3118      __ lwax(R17_tos, Rclass_or_obj, Roffset);
3119      __ twi_0(R17_tos);
3120      __ isync();
3121      break;
3122    }
3123  case ftos:
3124    {
3125      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3126      __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3127
3128      __ bind(LisVolatile);
3129      Label Ldummy;
3130      if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3131      __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3132      __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3133      __ bne_predict_not_taken(CCR0, Ldummy);
3134      __ bind(Ldummy);
3135      __ isync();
3136      break;
3137    }
3138  default: ShouldNotReachHere();
3139  }
3140  __ addi(R14_bcp, R14_bcp, -1);
3141}
3142
3143// ============================================================================
3144// Calls
3145
3146// Common code for invoke
3147//
3148// Input:
3149//   - byte_no
3150//
3151// Output:
3152//   - Rmethod:        The method to invoke next.
3153//   - Rret_addr:      The return address to return to.
3154//   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3155//   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3156//   - Rflags:         Method flags from const pool cache.
3157//
3158//  Kills:
3159//   - Rscratch1
3160//
3161void TemplateTable::prepare_invoke(int byte_no,
3162                                   Register Rmethod,  // linked method (or i-klass)
3163                                   Register Rret_addr,// return address
3164                                   Register Rindex,   // itable index, MethodType, etc.
3165                                   Register Rrecv,    // If caller wants to see it.
3166                                   Register Rflags,   // If caller wants to test it.
3167                                   Register Rscratch
3168                                   ) {
3169  // Determine flags.
3170  const Bytecodes::Code code = bytecode();
3171  const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3172  const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3173  const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3174  const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3175  const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3176  const bool load_receiver       = (Rrecv != noreg);
3177  assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3178
3179  assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3180  assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3181  assert_different_registers(Rret_addr, Rscratch);
3182
3183  load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3184
3185  // Saving of SP done in call_from_interpreter.
3186
3187  // Maybe push "appendix" to arguments.
3188  if (is_invokedynamic || is_invokehandle) {
3189    Label Ldone;
3190    __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3191    __ beq(CCR0, Ldone);
3192    // Push "appendix" (MethodType, CallSite, etc.).
3193    // This must be done before we get the receiver,
3194    // since the parameter_size includes it.
3195    __ load_resolved_reference_at_index(Rscratch, Rindex);
3196    __ verify_oop(Rscratch);
3197    __ push_ptr(Rscratch);
3198    __ bind(Ldone);
3199  }
3200
3201  // Load receiver if needed (after appendix is pushed so parameter size is correct).
3202  if (load_receiver) {
3203    const Register Rparam_count = Rscratch;
3204    __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3205    __ load_receiver(Rparam_count, Rrecv);
3206    __ verify_oop(Rrecv);
3207  }
3208
3209  // Get return address.
3210  {
3211    Register Rtable_addr = Rscratch;
3212    Register Rret_type = Rret_addr;
3213    address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3214
3215    // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3216    __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3217    __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3218    __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3219    // Get return address.
3220    __ ldx(Rret_addr, Rtable_addr, Rret_type);
3221  }
3222}
3223
3224// Helper for virtual calls. Load target out of vtable and jump off!
3225// Kills all passed registers.
3226void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3227
3228  assert_different_registers(Rrecv_klass, Rtemp, Rret);
3229  const Register Rtarget_method = Rindex;
3230
3231  // Get target method & entry point.
3232  const int base = InstanceKlass::vtable_start_offset() * wordSize;
3233  // Calc vtable addr scale the vtable index by 8.
3234  __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
3235  // Load target.
3236  __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3237  __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3238  // Argument and return type profiling.
3239  __ profile_arguments_type(Rtarget_method, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */, true);
3240  __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3241}
3242
3243// Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3244void TemplateTable::invokevirtual(int byte_no) {
3245  transition(vtos, vtos);
3246
3247  Register Rtable_addr = R11_scratch1,
3248           Rret_type = R12_scratch2,
3249           Rret_addr = R5_ARG3,
3250           Rflags = R22_tmp2, // Should survive C call.
3251           Rrecv = R3_ARG1,
3252           Rrecv_klass = Rrecv,
3253           Rvtableindex_or_method = R31, // Should survive C call.
3254           Rnum_params = R4_ARG2,
3255           Rnew_bc = R6_ARG4;
3256
3257  Label LnotFinal;
3258
3259  load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3260
3261  __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3262  __ bfalse(CCR0, LnotFinal);
3263
3264  patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3265  invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3266
3267  __ align(32, 12);
3268  __ bind(LnotFinal);
3269  // Load "this" pointer (receiver).
3270  __ rldicl(Rnum_params, Rflags, 64, 48);
3271  __ load_receiver(Rnum_params, Rrecv);
3272  __ verify_oop(Rrecv);
3273
3274  // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3275  __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3276  __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3277  __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3278  __ ldx(Rret_addr, Rret_type, Rtable_addr);
3279  __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3280  __ load_klass(Rrecv_klass, Rrecv);
3281  __ verify_klass_ptr(Rrecv_klass);
3282  __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3283
3284  generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3285}
3286
3287void TemplateTable::fast_invokevfinal(int byte_no) {
3288  transition(vtos, vtos);
3289
3290  assert(byte_no == f2_byte, "use this argument");
3291  Register Rflags  = R22_tmp2,
3292           Rmethod = R31;
3293  load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3294  invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3295}
3296
3297void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3298
3299  assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3300
3301  // Load receiver from stack slot.
3302  Register Rrecv = Rscratch2;
3303  Register Rnum_params = Rrecv;
3304
3305  __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3306  __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3307
3308  // Get return address.
3309  Register Rtable_addr = Rscratch1,
3310           Rret_addr   = Rflags,
3311           Rret_type   = Rret_addr;
3312  // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3313  __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3314  __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3315  __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3316  __ ldx(Rret_addr, Rret_type, Rtable_addr);
3317
3318  // Load receiver and receiver NULL check.
3319  __ load_receiver(Rnum_params, Rrecv);
3320  __ null_check_throw(Rrecv, -1, Rscratch1);
3321
3322  __ profile_final_call(Rrecv, Rscratch1);
3323  // Argument and return type profiling.
3324  __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3325
3326  // Do the call.
3327  __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3328}
3329
3330void TemplateTable::invokespecial(int byte_no) {
3331  assert(byte_no == f1_byte, "use this argument");
3332  transition(vtos, vtos);
3333
3334  Register Rtable_addr = R3_ARG1,
3335           Rret_addr   = R4_ARG2,
3336           Rflags      = R5_ARG3,
3337           Rreceiver   = R6_ARG4,
3338           Rmethod     = R31;
3339
3340  prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3341
3342  // Receiver NULL check.
3343  __ null_check_throw(Rreceiver, -1, R11_scratch1);
3344
3345  __ profile_call(R11_scratch1, R12_scratch2);
3346  // Argument and return type profiling.
3347  __ profile_arguments_type(Rmethod, R11_scratch1, R12_scratch2, false);
3348  __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3349}
3350
3351void TemplateTable::invokestatic(int byte_no) {
3352  assert(byte_no == f1_byte, "use this argument");
3353  transition(vtos, vtos);
3354
3355  Register Rtable_addr = R3_ARG1,
3356           Rret_addr   = R4_ARG2,
3357           Rflags      = R5_ARG3;
3358
3359  prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3360
3361  __ profile_call(R11_scratch1, R12_scratch2);
3362  // Argument and return type profiling.
3363  __ profile_arguments_type(R19_method, R11_scratch1, R12_scratch2, false);
3364  __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3365}
3366
3367void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3368                                                  Register Rret,
3369                                                  Register Rflags,
3370                                                  Register Rindex,
3371                                                  Register Rtemp1,
3372                                                  Register Rtemp2) {
3373
3374  assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3375  Label LnotFinal;
3376
3377  // Check for vfinal.
3378  __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3379  __ bfalse(CCR0, LnotFinal);
3380
3381  Register Rscratch = Rflags; // Rflags is dead now.
3382
3383  // Final call case.
3384  __ profile_final_call(Rtemp1, Rscratch);
3385  // Argument and return type profiling.
3386  __ profile_arguments_type(Rindex, Rscratch, Rrecv_klass /* scratch */, true);
3387  // Do the final call - the index (f2) contains the method.
3388  __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
3389
3390  // Non-final callc case.
3391  __ bind(LnotFinal);
3392  __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3393  generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
3394}
3395
3396void TemplateTable::invokeinterface(int byte_no) {
3397  assert(byte_no == f1_byte, "use this argument");
3398  transition(vtos, vtos);
3399
3400  const Register Rscratch1        = R11_scratch1,
3401                 Rscratch2        = R12_scratch2,
3402                 Rscratch3        = R9_ARG7,
3403                 Rscratch4        = R10_ARG8,
3404                 Rtable_addr      = Rscratch2,
3405                 Rinterface_klass = R5_ARG3,
3406                 Rret_type        = R8_ARG6,
3407                 Rret_addr        = Rret_type,
3408                 Rindex           = R6_ARG4,
3409                 Rreceiver        = R4_ARG2,
3410                 Rrecv_klass      = Rreceiver,
3411                 Rflags           = R7_ARG5;
3412
3413  prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
3414
3415  // Get receiver klass.
3416  __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
3417  __ load_klass(Rrecv_klass, Rreceiver);
3418
3419  // Check corner case object method.
3420  Label LobjectMethod;
3421
3422  __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3423  __ btrue(CCR0, LobjectMethod);
3424
3425  // Fallthrough: The normal invokeinterface case.
3426  __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3427
3428  // Find entry point to call.
3429  Label Lthrow_icc, Lthrow_ame;
3430  // Result will be returned in Rindex.
3431  __ mr(Rscratch4, Rrecv_klass);
3432  __ mr(Rscratch3, Rindex);
3433  __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
3434
3435  __ cmpdi(CCR0, Rindex, 0);
3436  __ beq(CCR0, Lthrow_ame);
3437  // Found entry. Jump off!
3438  // Argument and return type profiling.
3439  __ profile_arguments_type(Rindex, Rscratch1, Rscratch2, true);
3440  __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
3441
3442  // Vtable entry was NULL => Throw abstract method error.
3443  __ bind(Lthrow_ame);
3444  __ mr(Rrecv_klass, Rscratch4);
3445  __ mr(Rindex, Rscratch3);
3446  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3447
3448  // Interface was not found => Throw incompatible class change error.
3449  __ bind(Lthrow_icc);
3450  __ mr(Rrecv_klass, Rscratch4);
3451  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3452
3453  __ should_not_reach_here();
3454
3455  // Special case of invokeinterface called for virtual method of
3456  // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3457  // The invokeinterface was rewritten to a invokevirtual, hence we have
3458  // to handle this corner case. This code isn't produced by javac, but could
3459  // be produced by another compliant java compiler.
3460  __ bind(LobjectMethod);
3461  invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
3462}
3463
3464void TemplateTable::invokedynamic(int byte_no) {
3465  transition(vtos, vtos);
3466
3467  const Register Rret_addr = R3_ARG1,
3468                 Rflags    = R4_ARG2,
3469                 Rmethod   = R22_tmp2,
3470                 Rscratch1 = R11_scratch1,
3471                 Rscratch2 = R12_scratch2;
3472
3473  prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3474
3475  // Profile this call.
3476  __ profile_call(Rscratch1, Rscratch2);
3477
3478  // Off we go. With the new method handles, we don't jump to a method handle
3479  // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3480  // to be the callsite object the bootstrap method returned. This is passed to a
3481  // "link" method which does the dispatch (Most likely just grabs the MH stored
3482  // inside the callsite and does an invokehandle).
3483  // Argument and return type profiling.
3484  __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, false);
3485  __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3486}
3487
3488void TemplateTable::invokehandle(int byte_no) {
3489  transition(vtos, vtos);
3490
3491  const Register Rret_addr = R3_ARG1,
3492                 Rflags    = R4_ARG2,
3493                 Rrecv     = R5_ARG3,
3494                 Rmethod   = R22_tmp2,
3495                 Rscratch1 = R11_scratch1,
3496                 Rscratch2 = R12_scratch2;
3497
3498  prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3499  __ verify_method_ptr(Rmethod);
3500  __ null_check_throw(Rrecv, -1, Rscratch2);
3501
3502  __ profile_final_call(Rrecv, Rscratch1);
3503
3504  // Still no call from handle => We call the method handle interpreter here.
3505  // Argument and return type profiling.
3506  __ profile_arguments_type(Rmethod, Rscratch1, Rscratch2, true);
3507  __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3508}
3509
3510// =============================================================================
3511// Allocation
3512
3513// Puts allocated obj ref onto the expression stack.
3514void TemplateTable::_new() {
3515  transition(vtos, atos);
3516
3517  Label Lslow_case,
3518        Ldone,
3519        Linitialize_header,
3520        Lallocate_shared,
3521        Linitialize_object;  // Including clearing the fields.
3522
3523  const Register RallocatedObject = R17_tos,
3524                 RinstanceKlass   = R9_ARG7,
3525                 Rscratch         = R11_scratch1,
3526                 Roffset          = R8_ARG6,
3527                 Rinstance_size   = Roffset,
3528                 Rcpool           = R4_ARG2,
3529                 Rtags            = R3_ARG1,
3530                 Rindex           = R5_ARG3;
3531
3532  const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc();
3533
3534  // --------------------------------------------------------------------------
3535  // Check if fast case is possible.
3536
3537  // Load pointers to const pool and const pool's tags array.
3538  __ get_cpool_and_tags(Rcpool, Rtags);
3539  // Load index of constant pool entry.
3540  __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3541
3542  if (UseTLAB) {
3543    // Make sure the class we're about to instantiate has been resolved
3544    // This is done before loading instanceKlass to be consistent with the order
3545    // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3546    __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3547    __ lbzx(Rtags, Rindex, Rtags);
3548
3549    __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3550    __ bne(CCR0, Lslow_case);
3551
3552    // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
3553    __ sldi(Roffset, Rindex, LogBytesPerWord);
3554    __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
3555    __ isync(); // Order load of instance Klass wrt. tags.
3556    __ ldx(RinstanceKlass, Roffset, Rscratch);
3557
3558    // Make sure klass is fully initialized and get instance_size.
3559    __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3560    __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3561
3562    __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3563    // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3564    __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3565
3566    __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
3567    __ beq(CCR0, Lslow_case);
3568
3569    // --------------------------------------------------------------------------
3570    // Fast case:
3571    // Allocate the instance.
3572    // 1) Try to allocate in the TLAB.
3573    // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
3574    // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3575
3576    Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3577    Register RnewTopValue = R6_ARG4;
3578    Register RendValue    = R7_ARG5;
3579
3580    // Check if we can allocate in the TLAB.
3581    __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3582    __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
3583
3584    __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3585
3586    // If there is enough space, we do not CAS and do not clear.
3587    __ cmpld(CCR0, RnewTopValue, RendValue);
3588    __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
3589
3590    __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3591
3592    if (ZeroTLAB) {
3593      // The fields have already been cleared.
3594      __ b(Linitialize_header);
3595    } else {
3596      // Initialize both the header and fields.
3597      __ b(Linitialize_object);
3598    }
3599
3600    // Fall through: TLAB was too small.
3601    if (allow_shared_alloc) {
3602      Register RtlabWasteLimitValue = R10_ARG8;
3603      Register RfreeValue = RnewTopValue;
3604
3605      __ bind(Lallocate_shared);
3606      // Check if tlab should be discarded (refill_waste_limit >= free).
3607      __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3608      __ subf(RfreeValue, RoldTopValue, RendValue);
3609      __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
3610      __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
3611      __ bge(CCR0, Lslow_case);
3612
3613      // Increment waste limit to prevent getting stuck on this slow path.
3614      __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
3615      __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3616    }
3617    // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
3618  }
3619  // else: Always go the slow path.
3620
3621  // --------------------------------------------------------------------------
3622  // slow case
3623  __ bind(Lslow_case);
3624  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3625
3626  if (UseTLAB) {
3627    __ b(Ldone);
3628    // --------------------------------------------------------------------------
3629    // Init1: Zero out newly allocated memory.
3630
3631    if (!ZeroTLAB || allow_shared_alloc) {
3632      // Clear object fields.
3633      __ bind(Linitialize_object);
3634
3635      // Initialize remaining object fields.
3636      Register Rbase = Rtags;
3637      __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3638      __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3639      __ srdi(Rinstance_size, Rinstance_size, 3);
3640
3641      // Clear out object skipping header. Takes also care of the zero length case.
3642      __ clear_memory_doubleword(Rbase, Rinstance_size);
3643      // fallthru: __ b(Linitialize_header);
3644    }
3645
3646    // --------------------------------------------------------------------------
3647    // Init2: Initialize the header: mark, klass
3648    __ bind(Linitialize_header);
3649
3650    // Init mark.
3651    if (UseBiasedLocking) {
3652      __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3653    } else {
3654      __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3655    }
3656    __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3657
3658    // Init klass.
3659    __ store_klass_gap(RallocatedObject);
3660    __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3661
3662    // Check and trigger dtrace event.
3663    {
3664      SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
3665      __ push(atos);
3666      __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3667      __ pop(atos);
3668    }
3669  }
3670
3671  // continue
3672  __ bind(Ldone);
3673
3674  // Must prevent reordering of stores for object initialization with stores that publish the new object.
3675  __ membar(Assembler::StoreStore);
3676}
3677
3678void TemplateTable::newarray() {
3679  transition(itos, atos);
3680
3681  __ lbz(R4, 1, R14_bcp);
3682  __ extsw(R5, R17_tos);
3683  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3684
3685  // Must prevent reordering of stores for object initialization with stores that publish the new object.
3686  __ membar(Assembler::StoreStore);
3687}
3688
3689void TemplateTable::anewarray() {
3690  transition(itos, atos);
3691
3692  __ get_constant_pool(R4);
3693  __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3694  __ extsw(R6, R17_tos); // size
3695  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3696
3697  // Must prevent reordering of stores for object initialization with stores that publish the new object.
3698  __ membar(Assembler::StoreStore);
3699}
3700
3701// Allocate a multi dimensional array
3702void TemplateTable::multianewarray() {
3703  transition(vtos, atos);
3704
3705  Register Rptr = R31; // Needs to survive C call.
3706
3707  // Put ndims * wordSize into frame temp slot
3708  __ lbz(Rptr, 3, R14_bcp);
3709  __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3710  // Esp points past last_dim, so set to R4 to first_dim address.
3711  __ add(R4, Rptr, R15_esp);
3712  call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3713  // Pop all dimensions off the stack.
3714  __ add(R15_esp, Rptr, R15_esp);
3715
3716  // Must prevent reordering of stores for object initialization with stores that publish the new object.
3717  __ membar(Assembler::StoreStore);
3718}
3719
3720void TemplateTable::arraylength() {
3721  transition(atos, itos);
3722
3723  Label LnoException;
3724  __ verify_oop(R17_tos);
3725  __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3726  __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3727}
3728
3729// ============================================================================
3730// Typechecks
3731
3732void TemplateTable::checkcast() {
3733  transition(atos, atos);
3734
3735  Label Ldone, Lis_null, Lquicked, Lresolved;
3736  Register Roffset         = R6_ARG4,
3737           RobjKlass       = R4_ARG2,
3738           RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3739           Rcpool          = R11_scratch1,
3740           Rtags           = R12_scratch2;
3741
3742  // Null does not pass.
3743  __ cmpdi(CCR0, R17_tos, 0);
3744  __ beq(CCR0, Lis_null);
3745
3746  // Get constant pool tag to find out if the bytecode has already been "quickened".
3747  __ get_cpool_and_tags(Rcpool, Rtags);
3748
3749  __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3750
3751  __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3752  __ lbzx(Rtags, Rtags, Roffset);
3753
3754  __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3755  __ beq(CCR0, Lquicked);
3756
3757  // Call into the VM to "quicken" instanceof.
3758  __ push_ptr();  // for GC
3759  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3760  __ get_vm_result_2(RspecifiedKlass);
3761  __ pop_ptr();   // Restore receiver.
3762  __ b(Lresolved);
3763
3764  // Extract target class from constant pool.
3765  __ bind(Lquicked);
3766  __ sldi(Roffset, Roffset, LogBytesPerWord);
3767  __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3768  __ isync(); // Order load of specified Klass wrt. tags.
3769  __ ldx(RspecifiedKlass, Rcpool, Roffset);
3770
3771  // Do the checkcast.
3772  __ bind(Lresolved);
3773  // Get value klass in RobjKlass.
3774  __ load_klass(RobjKlass, R17_tos);
3775  // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3776  __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3777
3778  // Not a subtype; so must throw exception
3779  // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3780  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3781  __ mtctr(R11_scratch1);
3782  __ bctr();
3783
3784  // Profile the null case.
3785  __ align(32, 12);
3786  __ bind(Lis_null);
3787  __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3788
3789  __ align(32, 12);
3790  __ bind(Ldone);
3791}
3792
3793// Output:
3794//   - tos == 0: Obj was null or not an instance of class.
3795//   - tos == 1: Obj was an instance of class.
3796void TemplateTable::instanceof() {
3797  transition(atos, itos);
3798
3799  Label Ldone, Lis_null, Lquicked, Lresolved;
3800  Register Roffset         = R5_ARG3,
3801           RobjKlass       = R4_ARG2,
3802           RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
3803           Rcpool          = R11_scratch1,
3804           Rtags           = R12_scratch2;
3805
3806  // Null does not pass.
3807  __ cmpdi(CCR0, R17_tos, 0);
3808  __ beq(CCR0, Lis_null);
3809
3810  // Get constant pool tag to find out if the bytecode has already been "quickened".
3811  __ get_cpool_and_tags(Rcpool, Rtags);
3812
3813  __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3814
3815  __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3816  __ lbzx(Rtags, Rtags, Roffset);
3817
3818  __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3819  __ beq(CCR0, Lquicked);
3820
3821  // Call into the VM to "quicken" instanceof.
3822  __ push_ptr();  // for GC
3823  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3824  __ get_vm_result_2(RspecifiedKlass);
3825  __ pop_ptr();   // Restore receiver.
3826  __ b(Lresolved);
3827
3828  // Extract target class from constant pool.
3829  __ bind(Lquicked);
3830  __ sldi(Roffset, Roffset, LogBytesPerWord);
3831  __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3832  __ isync(); // Order load of specified Klass wrt. tags.
3833  __ ldx(RspecifiedKlass, Rcpool, Roffset);
3834
3835  // Do the checkcast.
3836  __ bind(Lresolved);
3837  // Get value klass in RobjKlass.
3838  __ load_klass(RobjKlass, R17_tos);
3839  // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3840  __ li(R17_tos, 1);
3841  __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3842  __ li(R17_tos, 0);
3843
3844  if (ProfileInterpreter) {
3845    __ b(Ldone);
3846  }
3847
3848  // Profile the null case.
3849  __ align(32, 12);
3850  __ bind(Lis_null);
3851  __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
3852
3853  __ align(32, 12);
3854  __ bind(Ldone);
3855}
3856
3857// =============================================================================
3858// Breakpoints
3859
3860void TemplateTable::_breakpoint() {
3861  transition(vtos, vtos);
3862
3863  // Get the unpatched byte code.
3864  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
3865  __ mr(R31, R3_RET);
3866
3867  // Post the breakpoint event.
3868  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
3869
3870  // Complete the execution of original bytecode.
3871  __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
3872}
3873
3874// =============================================================================
3875// Exceptions
3876
3877void TemplateTable::athrow() {
3878  transition(atos, vtos);
3879
3880  // Exception oop is in tos
3881  __ verify_oop(R17_tos);
3882
3883  __ null_check_throw(R17_tos, -1, R11_scratch1);
3884
3885  // Throw exception interpreter entry expects exception oop to be in R3.
3886  __ mr(R3_RET, R17_tos);
3887  __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
3888  __ mtctr(R11_scratch1);
3889  __ bctr();
3890}
3891
3892// =============================================================================
3893// Synchronization
3894// Searches the basic object lock list on the stack for a free slot
3895// and uses it to lock the obect in tos.
3896//
3897// Recursive locking is enabled by exiting the search if the same
3898// object is already found in the list. Thus, a new basic lock obj lock
3899// is allocated "higher up" in the stack and thus is found first
3900// at next monitor exit.
3901void TemplateTable::monitorenter() {
3902  transition(atos, vtos);
3903
3904  __ verify_oop(R17_tos);
3905
3906  Register Rcurrent_monitor  = R11_scratch1,
3907           Rcurrent_obj      = R12_scratch2,
3908           Robj_to_lock      = R17_tos,
3909           Rscratch1         = R3_ARG1,
3910           Rscratch2         = R4_ARG2,
3911           Rscratch3         = R5_ARG3,
3912           Rcurrent_obj_addr = R6_ARG4;
3913
3914  // ------------------------------------------------------------------------------
3915  // Null pointer exception.
3916  __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
3917
3918  // Try to acquire a lock on the object.
3919  // Repeat until succeeded (i.e., until monitorenter returns true).
3920
3921  // ------------------------------------------------------------------------------
3922  // Find a free slot in the monitor block.
3923  Label Lfound, Lexit, Lallocate_new;
3924  ConditionRegister found_free_slot = CCR0,
3925                    found_same_obj  = CCR1,
3926                    reached_limit   = CCR6;
3927  {
3928    Label Lloop, Lentry;
3929    Register Rlimit = Rcurrent_monitor;
3930
3931    // Set up search loop - start with topmost monitor.
3932    __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
3933
3934    __ ld(Rlimit, 0, R1_SP);
3935    __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
3936
3937    // Check if any slot is present => short cut to allocation if not.
3938    __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3939    __ bgt(reached_limit, Lallocate_new);
3940
3941    // Pre-load topmost slot.
3942    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3943    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3944    // The search loop.
3945    __ bind(Lloop);
3946    // Found free slot?
3947    __ cmpdi(found_free_slot, Rcurrent_obj, 0);
3948    // Is this entry for same obj? If so, stop the search and take the found
3949    // free slot or allocate a new one to enable recursive locking.
3950    __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
3951    __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3952    __ beq(found_free_slot, Lexit);
3953    __ beq(found_same_obj, Lallocate_new);
3954    __ bgt(reached_limit, Lallocate_new);
3955    // Check if last allocated BasicLockObj reached.
3956    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3957    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3958    // Next iteration if unchecked BasicObjectLocks exist on the stack.
3959    __ b(Lloop);
3960  }
3961
3962  // ------------------------------------------------------------------------------
3963  // Check if we found a free slot.
3964  __ bind(Lexit);
3965
3966  __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
3967  __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
3968  __ b(Lfound);
3969
3970  // We didn't find a free BasicObjLock => allocate one.
3971  __ align(32, 12);
3972  __ bind(Lallocate_new);
3973  __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
3974  __ mr(Rcurrent_monitor, R26_monitor);
3975  __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
3976
3977  // ------------------------------------------------------------------------------
3978  // We now have a slot to lock.
3979  __ bind(Lfound);
3980
3981  // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3982  // The object has already been poped from the stack, so the expression stack looks correct.
3983  __ addi(R14_bcp, R14_bcp, 1);
3984
3985  __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
3986  __ lock_object(Rcurrent_monitor, Robj_to_lock);
3987
3988  // Check if there's enough space on the stack for the monitors after locking.
3989  Label Lskip_stack_check;
3990  // Optimization: If the monitors stack section is less then a std page size (4K) don't run
3991  // the stack check. There should be enough shadow pages to fit that in.
3992  __ ld(Rscratch3, 0, R1_SP);
3993  __ sub(Rscratch3, Rscratch3, R26_monitor);
3994  __ cmpdi(CCR0, Rscratch3, 4*K);
3995  __ blt(CCR0, Lskip_stack_check);
3996
3997  DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
3998  __ li(Rscratch1, 0);
3999  __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
4000
4001  __ align(32, 12);
4002  __ bind(Lskip_stack_check);
4003
4004  // The bcp has already been incremented. Just need to dispatch to next instruction.
4005  __ dispatch_next(vtos);
4006}
4007
4008void TemplateTable::monitorexit() {
4009  transition(atos, vtos);
4010  __ verify_oop(R17_tos);
4011
4012  Register Rcurrent_monitor  = R11_scratch1,
4013           Rcurrent_obj      = R12_scratch2,
4014           Robj_to_lock      = R17_tos,
4015           Rcurrent_obj_addr = R3_ARG1,
4016           Rlimit            = R4_ARG2;
4017  Label Lfound, Lillegal_monitor_state;
4018
4019  // Check corner case: unbalanced monitorEnter / Exit.
4020  __ ld(Rlimit, 0, R1_SP);
4021  __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4022
4023  // Null pointer check.
4024  __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4025
4026  __ cmpld(CCR0, R26_monitor, Rlimit);
4027  __ bgt(CCR0, Lillegal_monitor_state);
4028
4029  // Find the corresponding slot in the monitors stack section.
4030  {
4031    Label Lloop;
4032
4033    // Start with topmost monitor.
4034    __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4035    __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4036    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4037    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4038
4039    __ bind(Lloop);
4040    // Is this entry for same obj?
4041    __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4042    __ beq(CCR0, Lfound);
4043
4044    // Check if last allocated BasicLockObj reached.
4045
4046    __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4047    __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4048    __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4049
4050    // Next iteration if unchecked BasicObjectLocks exist on the stack.
4051    __ ble(CCR0, Lloop);
4052  }
4053
4054  // Fell through without finding the basic obj lock => throw up!
4055  __ bind(Lillegal_monitor_state);
4056  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4057  __ should_not_reach_here();
4058
4059  __ align(32, 12);
4060  __ bind(Lfound);
4061  __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4062          -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4063  __ unlock_object(Rcurrent_monitor);
4064}
4065
4066// ============================================================================
4067// Wide bytecodes
4068
4069// Wide instructions. Simply redirects to the wide entry point for that instruction.
4070void TemplateTable::wide() {
4071  transition(vtos, vtos);
4072
4073  const Register Rtable = R11_scratch1,
4074                 Rindex = R12_scratch2,
4075                 Rtmp   = R0;
4076
4077  __ lbz(Rindex, 1, R14_bcp);
4078
4079  __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4080
4081  __ slwi(Rindex, Rindex, LogBytesPerWord);
4082  __ ldx(Rtmp, Rtable, Rindex);
4083  __ mtctr(Rtmp);
4084  __ bctr();
4085  // Note: the bcp increment step is part of the individual wide bytecode implementations.
4086}
4087#endif // !CC_INTERP
4088