templateInterpreterGenerator_ppc.cpp revision 12993:a8503d22944f
1/*
2 * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2015, 2017, SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "interpreter/bytecodeHistogram.hpp"
29#include "interpreter/interpreter.hpp"
30#include "interpreter/interpreterRuntime.hpp"
31#include "interpreter/interp_masm.hpp"
32#include "interpreter/templateInterpreterGenerator.hpp"
33#include "interpreter/templateTable.hpp"
34#include "oops/arrayOop.hpp"
35#include "oops/methodData.hpp"
36#include "oops/method.hpp"
37#include "oops/oop.inline.hpp"
38#include "prims/jvmtiExport.hpp"
39#include "prims/jvmtiThreadState.hpp"
40#include "runtime/arguments.hpp"
41#include "runtime/deoptimization.hpp"
42#include "runtime/frame.inline.hpp"
43#include "runtime/sharedRuntime.hpp"
44#include "runtime/stubRoutines.hpp"
45#include "runtime/synchronizer.hpp"
46#include "runtime/timer.hpp"
47#include "runtime/vframeArray.hpp"
48#include "utilities/debug.hpp"
49#include "utilities/macros.hpp"
50
51#undef __
52#define __ _masm->
53
54// Size of interpreter code.  Increase if too small.  Interpreter will
55// fail with a guarantee ("not enough space for interpreter generation");
56// if too small.
57// Run with +PrintInterpreter to get the VM to print out the size.
58// Max size with JVMTI
59int TemplateInterpreter::InterpreterCodeSize = 230*K;
60
61#ifdef PRODUCT
62#define BLOCK_COMMENT(str) /* nothing */
63#else
64#define BLOCK_COMMENT(str) __ block_comment(str)
65#endif
66
67#define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
68
69//-----------------------------------------------------------------------------
70
71address TemplateInterpreterGenerator::generate_slow_signature_handler() {
72  // Slow_signature handler that respects the PPC C calling conventions.
73  //
74  // We get called by the native entry code with our output register
75  // area == 8. First we call InterpreterRuntime::get_result_handler
76  // to copy the pointer to the signature string temporarily to the
77  // first C-argument and to return the result_handler in
78  // R3_RET. Since native_entry will copy the jni-pointer to the
79  // first C-argument slot later on, it is OK to occupy this slot
80  // temporarilly. Then we copy the argument list on the java
81  // expression stack into native varargs format on the native stack
82  // and load arguments into argument registers. Integer arguments in
83  // the varargs vector will be sign-extended to 8 bytes.
84  //
85  // On entry:
86  //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
87  //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
88  //     this method
89  //   R19_method
90  //
91  // On exit (just before return instruction):
92  //   R3_RET            - contains the address of the result_handler.
93  //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
94  //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
95  //                       ARGi contains this argument. Otherwise, ARGi is not updated.
96  //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
97
98  const int LogSizeOfTwoInstructions = 3;
99
100  // FIXME: use Argument:: GL: Argument names different numbers!
101  const int max_fp_register_arguments  = 13;
102  const int max_int_register_arguments = 6;  // first 2 are reserved
103
104  const Register arg_java       = R21_tmp1;
105  const Register arg_c          = R22_tmp2;
106  const Register signature      = R23_tmp3;  // is string
107  const Register sig_byte       = R24_tmp4;
108  const Register fpcnt          = R25_tmp5;
109  const Register argcnt         = R26_tmp6;
110  const Register intSlot        = R27_tmp7;
111  const Register target_sp      = R28_tmp8;
112  const FloatRegister floatSlot = F0;
113
114  address entry = __ function_entry();
115
116  __ save_LR_CR(R0);
117  __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
118  // We use target_sp for storing arguments in the C frame.
119  __ mr(target_sp, R1_SP);
120  __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
121
122  __ mr(arg_java, R3_ARG1);
123
124  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
125
126  // Signature is in R3_RET. Signature is callee saved.
127  __ mr(signature, R3_RET);
128
129  // Get the result handler.
130  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
131
132  {
133    Label L;
134    // test if static
135    // _access_flags._flags must be at offset 0.
136    // TODO PPC port: requires change in shared code.
137    //assert(in_bytes(AccessFlags::flags_offset()) == 0,
138    //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
139    // _access_flags must be a 32 bit value.
140    assert(sizeof(AccessFlags) == 4, "wrong size");
141    __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
142    // testbit with condition register.
143    __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
144    __ btrue(CCR0, L);
145    // For non-static functions, pass "this" in R4_ARG2 and copy it
146    // to 2nd C-arg slot.
147    // We need to box the Java object here, so we use arg_java
148    // (address of current Java stack slot) as argument and don't
149    // dereference it as in case of ints, floats, etc.
150    __ mr(R4_ARG2, arg_java);
151    __ addi(arg_java, arg_java, -BytesPerWord);
152    __ std(R4_ARG2, _abi(carg_2), target_sp);
153    __ bind(L);
154  }
155
156  // Will be incremented directly after loop_start. argcnt=0
157  // corresponds to 3rd C argument.
158  __ li(argcnt, -1);
159  // arg_c points to 3rd C argument
160  __ addi(arg_c, target_sp, _abi(carg_3));
161  // no floating-point args parsed so far
162  __ li(fpcnt, 0);
163
164  Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
165  Label loop_start, loop_end;
166  Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
167
168  // signature points to '(' at entry
169#ifdef ASSERT
170  __ lbz(sig_byte, 0, signature);
171  __ cmplwi(CCR0, sig_byte, '(');
172  __ bne(CCR0, do_dontreachhere);
173#endif
174
175  __ bind(loop_start);
176
177  __ addi(argcnt, argcnt, 1);
178  __ lbzu(sig_byte, 1, signature);
179
180  __ cmplwi(CCR0, sig_byte, ')'); // end of signature
181  __ beq(CCR0, loop_end);
182
183  __ cmplwi(CCR0, sig_byte, 'B'); // byte
184  __ beq(CCR0, do_int);
185
186  __ cmplwi(CCR0, sig_byte, 'C'); // char
187  __ beq(CCR0, do_int);
188
189  __ cmplwi(CCR0, sig_byte, 'D'); // double
190  __ beq(CCR0, do_double);
191
192  __ cmplwi(CCR0, sig_byte, 'F'); // float
193  __ beq(CCR0, do_float);
194
195  __ cmplwi(CCR0, sig_byte, 'I'); // int
196  __ beq(CCR0, do_int);
197
198  __ cmplwi(CCR0, sig_byte, 'J'); // long
199  __ beq(CCR0, do_long);
200
201  __ cmplwi(CCR0, sig_byte, 'S'); // short
202  __ beq(CCR0, do_int);
203
204  __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
205  __ beq(CCR0, do_int);
206
207  __ cmplwi(CCR0, sig_byte, 'L'); // object
208  __ beq(CCR0, do_object);
209
210  __ cmplwi(CCR0, sig_byte, '['); // array
211  __ beq(CCR0, do_array);
212
213  //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
214  //  __ beq(CCR0, do_void);
215
216  __ bind(do_dontreachhere);
217
218  __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
219
220  __ bind(do_array);
221
222  {
223    Label start_skip, end_skip;
224
225    __ bind(start_skip);
226    __ lbzu(sig_byte, 1, signature);
227    __ cmplwi(CCR0, sig_byte, '[');
228    __ beq(CCR0, start_skip); // skip further brackets
229    __ cmplwi(CCR0, sig_byte, '9');
230    __ bgt(CCR0, end_skip);   // no optional size
231    __ cmplwi(CCR0, sig_byte, '0');
232    __ bge(CCR0, start_skip); // skip optional size
233    __ bind(end_skip);
234
235    __ cmplwi(CCR0, sig_byte, 'L');
236    __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
237    __ b(do_boxed);          // otherwise, go directly to do_boxed
238  }
239
240  __ bind(do_object);
241  {
242    Label L;
243    __ bind(L);
244    __ lbzu(sig_byte, 1, signature);
245    __ cmplwi(CCR0, sig_byte, ';');
246    __ bne(CCR0, L);
247   }
248  // Need to box the Java object here, so we use arg_java (address of
249  // current Java stack slot) as argument and don't dereference it as
250  // in case of ints, floats, etc.
251  Label do_null;
252  __ bind(do_boxed);
253  __ ld(R0,0, arg_java);
254  __ cmpdi(CCR0, R0, 0);
255  __ li(intSlot,0);
256  __ beq(CCR0, do_null);
257  __ mr(intSlot, arg_java);
258  __ bind(do_null);
259  __ std(intSlot, 0, arg_c);
260  __ addi(arg_java, arg_java, -BytesPerWord);
261  __ addi(arg_c, arg_c, BytesPerWord);
262  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
263  __ blt(CCR0, move_intSlot_to_ARG);
264  __ b(loop_start);
265
266  __ bind(do_int);
267  __ lwa(intSlot, 0, arg_java);
268  __ std(intSlot, 0, arg_c);
269  __ addi(arg_java, arg_java, -BytesPerWord);
270  __ addi(arg_c, arg_c, BytesPerWord);
271  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
272  __ blt(CCR0, move_intSlot_to_ARG);
273  __ b(loop_start);
274
275  __ bind(do_long);
276  __ ld(intSlot, -BytesPerWord, arg_java);
277  __ std(intSlot, 0, arg_c);
278  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
279  __ addi(arg_c, arg_c, BytesPerWord);
280  __ cmplwi(CCR0, argcnt, max_int_register_arguments);
281  __ blt(CCR0, move_intSlot_to_ARG);
282  __ b(loop_start);
283
284  __ bind(do_float);
285  __ lfs(floatSlot, 0, arg_java);
286#if defined(LINUX)
287  // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
288  // in the least significant word of an argument slot.
289#if defined(VM_LITTLE_ENDIAN)
290  __ stfs(floatSlot, 0, arg_c);
291#else
292  __ stfs(floatSlot, 4, arg_c);
293#endif
294#elif defined(AIX)
295  // Although AIX runs on big endian CPU, float is in most significant
296  // word of an argument slot.
297  __ stfs(floatSlot, 0, arg_c);
298#else
299#error "unknown OS"
300#endif
301  __ addi(arg_java, arg_java, -BytesPerWord);
302  __ addi(arg_c, arg_c, BytesPerWord);
303  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
304  __ blt(CCR0, move_floatSlot_to_FARG);
305  __ b(loop_start);
306
307  __ bind(do_double);
308  __ lfd(floatSlot, - BytesPerWord, arg_java);
309  __ stfd(floatSlot, 0, arg_c);
310  __ addi(arg_java, arg_java, - 2 * BytesPerWord);
311  __ addi(arg_c, arg_c, BytesPerWord);
312  __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
313  __ blt(CCR0, move_floatSlot_to_FARG);
314  __ b(loop_start);
315
316  __ bind(loop_end);
317
318  __ pop_frame();
319  __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
320  __ restore_LR_CR(R0);
321
322  __ blr();
323
324  Label move_int_arg, move_float_arg;
325  __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
326  __ mr(R5_ARG3, intSlot);  __ b(loop_start);
327  __ mr(R6_ARG4, intSlot);  __ b(loop_start);
328  __ mr(R7_ARG5, intSlot);  __ b(loop_start);
329  __ mr(R8_ARG6, intSlot);  __ b(loop_start);
330  __ mr(R9_ARG7, intSlot);  __ b(loop_start);
331  __ mr(R10_ARG8, intSlot); __ b(loop_start);
332
333  __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
334  __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
335  __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
336  __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
337  __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
338  __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
339  __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
340  __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
341  __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
342  __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
343  __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
344  __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
345  __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
346  __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
347
348  __ bind(move_intSlot_to_ARG);
349  __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
350  __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
351  __ add(R11_scratch1, R0, R11_scratch1);
352  __ mtctr(R11_scratch1/*branch_target*/);
353  __ bctr();
354  __ bind(move_floatSlot_to_FARG);
355  __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
356  __ addi(fpcnt, fpcnt, 1);
357  __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
358  __ add(R11_scratch1, R0, R11_scratch1);
359  __ mtctr(R11_scratch1/*branch_target*/);
360  __ bctr();
361
362  return entry;
363}
364
365address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
366  //
367  // Registers alive
368  //   R3_RET
369  //   LR
370  //
371  // Registers updated
372  //   R3_RET
373  //
374
375  Label done;
376  address entry = __ pc();
377
378  switch (type) {
379  case T_BOOLEAN:
380    // convert !=0 to 1
381    __ neg(R0, R3_RET);
382    __ orr(R0, R3_RET, R0);
383    __ srwi(R3_RET, R0, 31);
384    break;
385  case T_BYTE:
386     // sign extend 8 bits
387     __ extsb(R3_RET, R3_RET);
388     break;
389  case T_CHAR:
390     // zero extend 16 bits
391     __ clrldi(R3_RET, R3_RET, 48);
392     break;
393  case T_SHORT:
394     // sign extend 16 bits
395     __ extsh(R3_RET, R3_RET);
396     break;
397  case T_INT:
398     // sign extend 32 bits
399     __ extsw(R3_RET, R3_RET);
400     break;
401  case T_LONG:
402     break;
403  case T_OBJECT:
404    // JNIHandles::resolve result.
405    __ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
406    break;
407  case T_FLOAT:
408     break;
409  case T_DOUBLE:
410     break;
411  case T_VOID:
412     break;
413  default: ShouldNotReachHere();
414  }
415
416  BIND(done);
417  __ blr();
418
419  return entry;
420}
421
422// Abstract method entry.
423//
424address TemplateInterpreterGenerator::generate_abstract_entry(void) {
425  address entry = __ pc();
426
427  //
428  // Registers alive
429  //   R16_thread     - JavaThread*
430  //   R19_method     - callee's method (method to be invoked)
431  //   R1_SP          - SP prepared such that caller's outgoing args are near top
432  //   LR             - return address to caller
433  //
434  // Stack layout at this point:
435  //
436  //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
437  //           alignment (optional)
438  //           [outgoing Java arguments]
439  //           ...
440  //   PARENT  [PARENT_IJAVA_FRAME_ABI]
441  //            ...
442  //
443
444  // Can't use call_VM here because we have not set up a new
445  // interpreter state. Make the call to the vm and make it look like
446  // our caller set up the JavaFrameAnchor.
447  __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
448
449  // Push a new C frame and save LR.
450  __ save_LR_CR(R0);
451  __ push_frame_reg_args(0, R11_scratch1);
452
453  // This is not a leaf but we have a JavaFrameAnchor now and we will
454  // check (create) exceptions afterward so this is ok.
455  __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
456                  R16_thread);
457
458  // Pop the C frame and restore LR.
459  __ pop_frame();
460  __ restore_LR_CR(R0);
461
462  // Reset JavaFrameAnchor from call_VM_leaf above.
463  __ reset_last_Java_frame();
464
465  // We don't know our caller, so jump to the general forward exception stub,
466  // which will also pop our full frame off. Satisfy the interface of
467  // SharedRuntime::generate_forward_exception()
468  __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
469  __ mtctr(R11_scratch1);
470  __ bctr();
471
472  return entry;
473}
474
475// Interpreter intrinsic for WeakReference.get().
476// 1. Don't push a full blown frame and go on dispatching, but fetch the value
477//    into R8 and return quickly
478// 2. If G1 is active we *must* execute this intrinsic for corrrectness:
479//    It contains a GC barrier which puts the reference into the satb buffer
480//    to indicate that someone holds a strong reference to the object the
481//    weak ref points to!
482address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
483  // Code: _aload_0, _getfield, _areturn
484  // parameter size = 1
485  //
486  // The code that gets generated by this routine is split into 2 parts:
487  //    1. the "intrinsified" code for G1 (or any SATB based GC),
488  //    2. the slow path - which is an expansion of the regular method entry.
489  //
490  // Notes:
491  // * In the G1 code we do not check whether we need to block for
492  //   a safepoint. If G1 is enabled then we must execute the specialized
493  //   code for Reference.get (except when the Reference object is null)
494  //   so that we can log the value in the referent field with an SATB
495  //   update buffer.
496  //   If the code for the getfield template is modified so that the
497  //   G1 pre-barrier code is executed when the current method is
498  //   Reference.get() then going through the normal method entry
499  //   will be fine.
500  // * The G1 code can, however, check the receiver object (the instance
501  //   of java.lang.Reference) and jump to the slow path if null. If the
502  //   Reference object is null then we obviously cannot fetch the referent
503  //   and so we don't need to call the G1 pre-barrier. Thus we can use the
504  //   regular method entry code to generate the NPE.
505  //
506
507  if (UseG1GC) {
508    address entry = __ pc();
509
510    const int referent_offset = java_lang_ref_Reference::referent_offset;
511    guarantee(referent_offset > 0, "referent offset not initialized");
512
513    Label slow_path;
514
515    // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
516
517    // In the G1 code we don't check if we need to reach a safepoint. We
518    // continue and the thread will safepoint at the next bytecode dispatch.
519
520    // If the receiver is null then it is OK to jump to the slow path.
521    __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
522
523    // Check if receiver == NULL and go the slow path.
524    __ cmpdi(CCR0, R3_RET, 0);
525    __ beq(CCR0, slow_path);
526
527    // Load the value of the referent field.
528    __ load_heap_oop(R3_RET, referent_offset, R3_RET);
529
530    // Generate the G1 pre-barrier code to log the value of
531    // the referent field in an SATB buffer. Note with
532    // these parameters the pre-barrier does not generate
533    // the load of the previous value.
534
535    // Restore caller sp for c2i case.
536#ifdef ASSERT
537      __ ld(R9_ARG7, 0, R1_SP);
538      __ ld(R10_ARG8, 0, R21_sender_SP);
539      __ cmpd(CCR0, R9_ARG7, R10_ARG8);
540      __ asm_assert_eq("backlink", 0x544);
541#endif // ASSERT
542    __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
543
544    __ g1_write_barrier_pre(noreg,         // obj
545                            noreg,         // offset
546                            R3_RET,        // pre_val
547                            R11_scratch1,  // tmp
548                            R12_scratch2,  // tmp
549                            true);         // needs_frame
550
551    __ blr();
552
553    // Generate regular method entry.
554    __ bind(slow_path);
555    __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
556    return entry;
557  }
558
559  return NULL;
560}
561
562address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
563  address entry = __ pc();
564
565  // Expression stack must be empty before entering the VM if an
566  // exception happened.
567  __ empty_expression_stack();
568  // Throw exception.
569  __ call_VM(noreg,
570             CAST_FROM_FN_PTR(address,
571                              InterpreterRuntime::throw_StackOverflowError));
572  return entry;
573}
574
575address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
576  address entry = __ pc();
577  __ empty_expression_stack();
578  __ load_const_optimized(R4_ARG2, (address) name);
579  // Index is in R17_tos.
580  __ mr(R5_ARG3, R17_tos);
581  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
582  return entry;
583}
584
585#if 0
586// Call special ClassCastException constructor taking object to cast
587// and target class as arguments.
588address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
589  address entry = __ pc();
590
591  // Expression stack must be empty before entering the VM if an
592  // exception happened.
593  __ empty_expression_stack();
594
595  // Thread will be loaded to R3_ARG1.
596  // Target class oop is in register R5_ARG3 by convention!
597  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
598  // Above call must not return here since exception pending.
599  DEBUG_ONLY(__ should_not_reach_here();)
600  return entry;
601}
602#endif
603
604address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
605  address entry = __ pc();
606  // Expression stack must be empty before entering the VM if an
607  // exception happened.
608  __ empty_expression_stack();
609
610  // Load exception object.
611  // Thread will be loaded to R3_ARG1.
612  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
613#ifdef ASSERT
614  // Above call must not return here since exception pending.
615  __ should_not_reach_here();
616#endif
617  return entry;
618}
619
620address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
621  address entry = __ pc();
622  //__ untested("generate_exception_handler_common");
623  Register Rexception = R17_tos;
624
625  // Expression stack must be empty before entering the VM if an exception happened.
626  __ empty_expression_stack();
627
628  __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
629  if (pass_oop) {
630    __ mr(R5_ARG3, Rexception);
631    __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
632  } else {
633    __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
634    __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
635  }
636
637  // Throw exception.
638  __ mr(R3_ARG1, Rexception);
639  __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
640  __ mtctr(R11_scratch1);
641  __ bctr();
642
643  return entry;
644}
645
646// This entry is returned to when a call returns to the interpreter.
647// When we arrive here, we expect that the callee stack frame is already popped.
648address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
649  address entry = __ pc();
650
651  // Move the value out of the return register back to the TOS cache of current frame.
652  switch (state) {
653    case ltos:
654    case btos:
655    case ztos:
656    case ctos:
657    case stos:
658    case atos:
659    case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
660    case ftos:
661    case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
662    case vtos: break;                           // Nothing to do, this was a void return.
663    default  : ShouldNotReachHere();
664  }
665
666  __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
667  __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
668  __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
669
670  // Compiled code destroys templateTableBase, reload.
671  __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
672
673  if (state == atos) {
674    __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
675  }
676
677  const Register cache = R11_scratch1;
678  const Register size  = R12_scratch2;
679  __ get_cache_and_index_at_bcp(cache, 1, index_size);
680
681  // Get least significant byte of 64 bit value:
682#if defined(VM_LITTLE_ENDIAN)
683  __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
684#else
685  __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
686#endif
687  __ sldi(size, size, Interpreter::logStackElementSize);
688  __ add(R15_esp, R15_esp, size);
689
690 __ check_and_handle_popframe(R11_scratch1);
691 __ check_and_handle_earlyret(R11_scratch1);
692
693  __ dispatch_next(state, step);
694  return entry;
695}
696
697address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
698  address entry = __ pc();
699  // If state != vtos, we're returning from a native method, which put it's result
700  // into the result register. So move the value out of the return register back
701  // to the TOS cache of current frame.
702
703  switch (state) {
704    case ltos:
705    case btos:
706    case ztos:
707    case ctos:
708    case stos:
709    case atos:
710    case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
711    case ftos:
712    case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
713    case vtos: break;                           // Nothing to do, this was a void return.
714    default  : ShouldNotReachHere();
715  }
716
717  // Load LcpoolCache @@@ should be already set!
718  __ get_constant_pool_cache(R27_constPoolCache);
719
720  // Handle a pending exception, fall through if none.
721  __ check_and_forward_exception(R11_scratch1, R12_scratch2);
722
723  // Start executing bytecodes.
724  __ dispatch_next(state, step);
725
726  return entry;
727}
728
729address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
730  address entry = __ pc();
731
732  __ push(state);
733  __ call_VM(noreg, runtime_entry);
734  __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
735
736  return entry;
737}
738
739// Helpers for commoning out cases in the various type of method entries.
740
741// Increment invocation count & check for overflow.
742//
743// Note: checking for negative value instead of overflow
744//       so we have a 'sticky' overflow test.
745//
746void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
747  // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
748  Register Rscratch1   = R11_scratch1;
749  Register Rscratch2   = R12_scratch2;
750  Register R3_counters = R3_ARG1;
751  Label done;
752
753  if (TieredCompilation) {
754    const int increment = InvocationCounter::count_increment;
755    Label no_mdo;
756    if (ProfileInterpreter) {
757      const Register Rmdo = R3_counters;
758      // If no method data exists, go to profile_continue.
759      __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
760      __ cmpdi(CCR0, Rmdo, 0);
761      __ beq(CCR0, no_mdo);
762
763      // Increment invocation counter in the MDO.
764      const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
765      __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
766      __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
767      __ addi(Rscratch2, Rscratch2, increment);
768      __ stw(Rscratch2, mdo_ic_offs, Rmdo);
769      __ and_(Rscratch1, Rscratch2, Rscratch1);
770      __ bne(CCR0, done);
771      __ b(*overflow);
772    }
773
774    // Increment counter in MethodCounters*.
775    const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
776    __ bind(no_mdo);
777    __ get_method_counters(R19_method, R3_counters, done);
778    __ lwz(Rscratch2, mo_ic_offs, R3_counters);
779    __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
780    __ addi(Rscratch2, Rscratch2, increment);
781    __ stw(Rscratch2, mo_ic_offs, R3_counters);
782    __ and_(Rscratch1, Rscratch2, Rscratch1);
783    __ beq(CCR0, *overflow);
784
785    __ bind(done);
786
787  } else {
788
789    // Update standard invocation counters.
790    Register Rsum_ivc_bec = R4_ARG2;
791    __ get_method_counters(R19_method, R3_counters, done);
792    __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
793    // Increment interpreter invocation counter.
794    if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
795      __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
796      __ addi(R12_scratch2, R12_scratch2, 1);
797      __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
798    }
799    // Check if we must create a method data obj.
800    if (ProfileInterpreter && profile_method != NULL) {
801      const Register profile_limit = Rscratch1;
802      __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
803      // Test to see if we should create a method data oop.
804      __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
805      __ blt(CCR0, *profile_method_continue);
806      // If no method data exists, go to profile_method.
807      __ test_method_data_pointer(*profile_method);
808    }
809    // Finally check for counter overflow.
810    if (overflow) {
811      const Register invocation_limit = Rscratch1;
812      __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
813      __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
814      __ bge(CCR0, *overflow);
815    }
816
817    __ bind(done);
818  }
819}
820
821// Generate code to initiate compilation on invocation counter overflow.
822void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
823  // Generate code to initiate compilation on the counter overflow.
824
825  // InterpreterRuntime::frequency_counter_overflow takes one arguments,
826  // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
827  // We pass zero in.
828  // The call returns the address of the verified entry point for the method or NULL
829  // if the compilation did not complete (either went background or bailed out).
830  //
831  // Unlike the C++ interpreter above: Check exceptions!
832  // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
833  // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
834
835  __ li(R4_ARG2, 0);
836  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
837
838  // Returns verified_entry_point or NULL.
839  // We ignore it in any case.
840  __ b(continue_entry);
841}
842
843// See if we've got enough room on the stack for locals plus overhead below
844// JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
845// without going through the signal handler, i.e., reserved and yellow zones
846// will not be made usable. The shadow zone must suffice to handle the
847// overflow.
848//
849// Kills Rmem_frame_size, Rscratch1.
850void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
851  Label done;
852  assert_different_registers(Rmem_frame_size, Rscratch1);
853
854  BLOCK_COMMENT("stack_overflow_check_with_compare {");
855  __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
856  __ ld(Rscratch1, thread_(stack_overflow_limit));
857  __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
858  __ bgt(CCR0/*is_stack_overflow*/, done);
859
860  // The stack overflows. Load target address of the runtime stub and call it.
861  assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
862  __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
863  __ mtctr(Rscratch1);
864  // Restore caller_sp.
865#ifdef ASSERT
866  __ ld(Rscratch1, 0, R1_SP);
867  __ ld(R0, 0, R21_sender_SP);
868  __ cmpd(CCR0, R0, Rscratch1);
869  __ asm_assert_eq("backlink", 0x547);
870#endif // ASSERT
871  __ mr(R1_SP, R21_sender_SP);
872  __ bctr();
873
874  __ align(32, 12);
875  __ bind(done);
876  BLOCK_COMMENT("} stack_overflow_check_with_compare");
877}
878
879// Lock the current method, interpreter register window must be set up!
880void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
881  const Register Robj_to_lock = Rscratch2;
882
883  {
884    if (!flags_preloaded) {
885      __ lwz(Rflags, method_(access_flags));
886    }
887
888#ifdef ASSERT
889    // Check if methods needs synchronization.
890    {
891      Label Lok;
892      __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
893      __ btrue(CCR0,Lok);
894      __ stop("method doesn't need synchronization");
895      __ bind(Lok);
896    }
897#endif // ASSERT
898  }
899
900  // Get synchronization object to Rscratch2.
901  {
902    Label Lstatic;
903    Label Ldone;
904
905    __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
906    __ btrue(CCR0, Lstatic);
907
908    // Non-static case: load receiver obj from stack and we're done.
909    __ ld(Robj_to_lock, R18_locals);
910    __ b(Ldone);
911
912    __ bind(Lstatic); // Static case: Lock the java mirror
913    // Load mirror from interpreter frame.
914    __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
915    __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
916
917    __ bind(Ldone);
918    __ verify_oop(Robj_to_lock);
919  }
920
921  // Got the oop to lock => execute!
922  __ add_monitor_to_stack(true, Rscratch1, R0);
923
924  __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
925  __ lock_object(R26_monitor, Robj_to_lock);
926}
927
928// Generate a fixed interpreter frame for pure interpreter
929// and I2N native transition frames.
930//
931// Before (stack grows downwards):
932//
933//         |  ...         |
934//         |------------- |
935//         |  java arg0   |
936//         |  ...         |
937//         |  java argn   |
938//         |              |   <-   R15_esp
939//         |              |
940//         |--------------|
941//         | abi_112      |
942//         |              |   <-   R1_SP
943//         |==============|
944//
945//
946// After:
947//
948//         |  ...         |
949//         |  java arg0   |<-   R18_locals
950//         |  ...         |
951//         |  java argn   |
952//         |--------------|
953//         |              |
954//         |  java locals |
955//         |              |
956//         |--------------|
957//         |  abi_48      |
958//         |==============|
959//         |              |
960//         |   istate     |
961//         |              |
962//         |--------------|
963//         |   monitor    |<-   R26_monitor
964//         |--------------|
965//         |              |<-   R15_esp
966//         | expression   |
967//         | stack        |
968//         |              |
969//         |--------------|
970//         |              |
971//         | abi_112      |<-   R1_SP
972//         |==============|
973//
974// The top most frame needs an abi space of 112 bytes. This space is needed,
975// since we call to c. The c function may spill their arguments to the caller
976// frame. When we call to java, we don't need these spill slots. In order to save
977// space on the stack, we resize the caller. However, java locals reside in
978// the caller frame and the frame has to be increased. The frame_size for the
979// current frame was calculated based on max_stack as size for the expression
980// stack. At the call, just a part of the expression stack might be used.
981// We don't want to waste this space and cut the frame back accordingly.
982// The resulting amount for resizing is calculated as follows:
983// resize =   (number_of_locals - number_of_arguments) * slot_size
984//          + (R1_SP - R15_esp) + 48
985//
986// The size for the callee frame is calculated:
987// framesize = 112 + max_stack + monitor + state_size
988//
989// maxstack:   Max number of slots on the expression stack, loaded from the method.
990// monitor:    We statically reserve room for one monitor object.
991// state_size: We save the current state of the interpreter to this area.
992//
993void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
994  Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
995           top_frame_size      = R7_ARG5,
996           Rconst_method       = R8_ARG6;
997
998  assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
999
1000  __ ld(Rconst_method, method_(const));
1001  __ lhz(Rsize_of_parameters /* number of params */,
1002         in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
1003  if (native_call) {
1004    // If we're calling a native method, we reserve space for the worst-case signature
1005    // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
1006    // We add two slots to the parameter_count, one for the jni
1007    // environment and one for a possible native mirror.
1008    Label skip_native_calculate_max_stack;
1009    __ addi(top_frame_size, Rsize_of_parameters, 2);
1010    __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
1011    __ bge(CCR0, skip_native_calculate_max_stack);
1012    __ li(top_frame_size, Argument::n_register_parameters);
1013    __ bind(skip_native_calculate_max_stack);
1014    __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1015    __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1016    __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1017    assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
1018  } else {
1019    __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
1020    __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
1021    __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
1022    __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
1023    __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
1024    __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
1025    __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1026    __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1027  }
1028
1029  // Compute top frame size.
1030  __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1031
1032  // Cut back area between esp and max_stack.
1033  __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1034
1035  __ round_to(top_frame_size, frame::alignment_in_bytes);
1036  __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1037  // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1038  // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1039
1040  if (!native_call) {
1041    // Stack overflow check.
1042    // Native calls don't need the stack size check since they have no
1043    // expression stack and the arguments are already on the stack and
1044    // we only add a handful of words to the stack.
1045    __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1046    generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1047  }
1048
1049  // Set up interpreter state registers.
1050
1051  __ add(R18_locals, R15_esp, Rsize_of_parameters);
1052  __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1053  __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1054
1055  // Set method data pointer.
1056  if (ProfileInterpreter) {
1057    Label zero_continue;
1058    __ ld(R28_mdx, method_(method_data));
1059    __ cmpdi(CCR0, R28_mdx, 0);
1060    __ beq(CCR0, zero_continue);
1061    __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1062    __ bind(zero_continue);
1063  }
1064
1065  if (native_call) {
1066    __ li(R14_bcp, 0); // Must initialize.
1067  } else {
1068    __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1069  }
1070
1071  // Resize parent frame.
1072  __ mflr(R12_scratch2);
1073  __ neg(parent_frame_resize, parent_frame_resize);
1074  __ resize_frame(parent_frame_resize, R11_scratch1);
1075  __ std(R12_scratch2, _abi(lr), R1_SP);
1076
1077  // Get mirror and store it in the frame as GC root for this Method*.
1078  __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1079
1080  __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1081  __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1082
1083  // Store values.
1084  // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1085  // in InterpreterMacroAssembler::call_from_interpreter.
1086  __ std(R19_method, _ijava_state_neg(method), R1_SP);
1087  __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1088  __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1089  __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1090  __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1091
1092  // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1093  // be found in the frame after save_interpreter_state is done. This is always true
1094  // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1095  // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1096  // (Enhanced Stack Trace).
1097  // The signal handler does not save the interpreter state into the frame.
1098  __ li(R0, 0);
1099#ifdef ASSERT
1100  // Fill remaining slots with constants.
1101  __ load_const_optimized(R11_scratch1, 0x5afe);
1102  __ load_const_optimized(R12_scratch2, 0xdead);
1103#endif
1104  // We have to initialize some frame slots for native calls (accessed by GC).
1105  if (native_call) {
1106    __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1107    __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1108    if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1109  }
1110#ifdef ASSERT
1111  else {
1112    __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1113    __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1114    __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1115  }
1116  __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1117  __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1118  __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1119  __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1120#endif
1121  __ subf(R12_scratch2, top_frame_size, R1_SP);
1122  __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1123  __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1124
1125  // Push top frame.
1126  __ push_frame(top_frame_size, R11_scratch1);
1127}
1128
1129// End of helpers
1130
1131address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1132
1133  // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1134  bool use_instruction = false;
1135  address runtime_entry = NULL;
1136  int num_args = 1;
1137  bool double_precision = true;
1138
1139  // PPC64 specific:
1140  switch (kind) {
1141    case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1142    case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1143    case Interpreter::java_lang_math_fmaF:
1144    case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1145    default: break; // Fall back to runtime call.
1146  }
1147
1148  switch (kind) {
1149    case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1150    case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1151    case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1152    case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1153    case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1154    case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1155    case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1156    case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1157    case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1158    case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1159    case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1160    default: ShouldNotReachHere();
1161  }
1162
1163  // Use normal entry if neither instruction nor runtime call is used.
1164  if (!use_instruction && runtime_entry == NULL) return NULL;
1165
1166  address entry = __ pc();
1167
1168  // Load arguments
1169  assert(num_args <= 13, "passed in registers");
1170  if (double_precision) {
1171    int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1172    for (int i = 0; i < num_args; ++i) {
1173      __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1174      offset -= 2 * Interpreter::stackElementSize;
1175    }
1176  } else {
1177    int offset = num_args * Interpreter::stackElementSize;
1178    for (int i = 0; i < num_args; ++i) {
1179      __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1180      offset -= Interpreter::stackElementSize;
1181    }
1182  }
1183
1184  // Pop c2i arguments (if any) off when we return.
1185#ifdef ASSERT
1186  __ ld(R9_ARG7, 0, R1_SP);
1187  __ ld(R10_ARG8, 0, R21_sender_SP);
1188  __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1189  __ asm_assert_eq("backlink", 0x545);
1190#endif // ASSERT
1191  __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1192
1193  if (use_instruction) {
1194    switch (kind) {
1195      case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1196      case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1197      case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1198      case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1199      default: ShouldNotReachHere();
1200    }
1201  } else {
1202    // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1203    //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1204    //__ call_c_and_return_to_caller(R12_scratch2);
1205
1206    // Push a new C frame and save LR.
1207    __ save_LR_CR(R0);
1208    __ push_frame_reg_args(0, R11_scratch1);
1209
1210    __ call_VM_leaf(runtime_entry);
1211
1212    // Pop the C frame and restore LR.
1213    __ pop_frame();
1214    __ restore_LR_CR(R0);
1215  }
1216
1217  __ blr();
1218
1219  __ flush();
1220
1221  return entry;
1222}
1223
1224void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1225  // Quick & dirty stack overflow checking: bang the stack & handle trap.
1226  // Note that we do the banging after the frame is setup, since the exception
1227  // handling code expects to find a valid interpreter frame on the stack.
1228  // Doing the banging earlier fails if the caller frame is not an interpreter
1229  // frame.
1230  // (Also, the exception throwing code expects to unlock any synchronized
1231  // method receiever, so do the banging after locking the receiver.)
1232
1233  // Bang each page in the shadow zone. We can't assume it's been done for
1234  // an interpreter frame with greater than a page of locals, so each page
1235  // needs to be checked.  Only true for non-native.
1236  if (UseStackBanging) {
1237    const int page_size = os::vm_page_size();
1238    const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1239    const int start_page = native_call ? n_shadow_pages : 1;
1240    BLOCK_COMMENT("bang_stack_shadow_pages:");
1241    for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1242      __ bang_stack_with_offset(pages*page_size);
1243    }
1244  }
1245}
1246
1247// Interpreter stub for calling a native method. (asm interpreter)
1248// This sets up a somewhat different looking stack for calling the
1249// native method than the typical interpreter frame setup.
1250//
1251// On entry:
1252//   R19_method    - method
1253//   R16_thread    - JavaThread*
1254//   R15_esp       - intptr_t* sender tos
1255//
1256//   abstract stack (grows up)
1257//     [  IJava (caller of JNI callee)  ]  <-- ASP
1258//        ...
1259address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1260
1261  address entry = __ pc();
1262
1263  const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1264
1265  // -----------------------------------------------------------------------------
1266  // Allocate a new frame that represents the native callee (i2n frame).
1267  // This is not a full-blown interpreter frame, but in particular, the
1268  // following registers are valid after this:
1269  // - R19_method
1270  // - R18_local (points to start of arguments to native function)
1271  //
1272  //   abstract stack (grows up)
1273  //     [  IJava (caller of JNI callee)  ]  <-- ASP
1274  //        ...
1275
1276  const Register signature_handler_fd = R11_scratch1;
1277  const Register pending_exception    = R0;
1278  const Register result_handler_addr  = R31;
1279  const Register native_method_fd     = R11_scratch1;
1280  const Register access_flags         = R22_tmp2;
1281  const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1282  const Register sync_state           = R12_scratch2;
1283  const Register sync_state_addr      = sync_state;   // Address is dead after use.
1284  const Register suspend_flags        = R11_scratch1;
1285
1286  //=============================================================================
1287  // Allocate new frame and initialize interpreter state.
1288
1289  Label exception_return;
1290  Label exception_return_sync_check;
1291  Label stack_overflow_return;
1292
1293  // Generate new interpreter state and jump to stack_overflow_return in case of
1294  // a stack overflow.
1295  //generate_compute_interpreter_state(stack_overflow_return);
1296
1297  Register size_of_parameters = R22_tmp2;
1298
1299  generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1300
1301  //=============================================================================
1302  // Increment invocation counter. On overflow, entry to JNI method
1303  // will be compiled.
1304  Label invocation_counter_overflow, continue_after_compile;
1305  if (inc_counter) {
1306    if (synchronized) {
1307      // Since at this point in the method invocation the exception handler
1308      // would try to exit the monitor of synchronized methods which hasn't
1309      // been entered yet, we set the thread local variable
1310      // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1311      // runtime, exception handling i.e. unlock_if_synchronized_method will
1312      // check this thread local flag.
1313      // This flag has two effects, one is to force an unwind in the topmost
1314      // interpreter frame and not perform an unlock while doing so.
1315      __ li(R0, 1);
1316      __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1317    }
1318    generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1319
1320    BIND(continue_after_compile);
1321  }
1322
1323  bang_stack_shadow_pages(true);
1324
1325  if (inc_counter) {
1326    // Reset the _do_not_unlock_if_synchronized flag.
1327    if (synchronized) {
1328      __ li(R0, 0);
1329      __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1330    }
1331  }
1332
1333  // access_flags = method->access_flags();
1334  // Load access flags.
1335  assert(access_flags->is_nonvolatile(),
1336         "access_flags must be in a non-volatile register");
1337  // Type check.
1338  assert(4 == sizeof(AccessFlags), "unexpected field size");
1339  __ lwz(access_flags, method_(access_flags));
1340
1341  // We don't want to reload R19_method and access_flags after calls
1342  // to some helper functions.
1343  assert(R19_method->is_nonvolatile(),
1344         "R19_method must be a non-volatile register");
1345
1346  // Check for synchronized methods. Must happen AFTER invocation counter
1347  // check, so method is not locked if counter overflows.
1348
1349  if (synchronized) {
1350    lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1351
1352    // Update monitor in state.
1353    __ ld(R11_scratch1, 0, R1_SP);
1354    __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1355  }
1356
1357  // jvmti/jvmpi support
1358  __ notify_method_entry();
1359
1360  //=============================================================================
1361  // Get and call the signature handler.
1362
1363  __ ld(signature_handler_fd, method_(signature_handler));
1364  Label call_signature_handler;
1365
1366  __ cmpdi(CCR0, signature_handler_fd, 0);
1367  __ bne(CCR0, call_signature_handler);
1368
1369  // Method has never been called. Either generate a specialized
1370  // handler or point to the slow one.
1371  //
1372  // Pass parameter 'false' to avoid exception check in call_VM.
1373  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1374
1375  // Check for an exception while looking up the target method. If we
1376  // incurred one, bail.
1377  __ ld(pending_exception, thread_(pending_exception));
1378  __ cmpdi(CCR0, pending_exception, 0);
1379  __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1380
1381  // Reload signature handler, it may have been created/assigned in the meanwhile.
1382  __ ld(signature_handler_fd, method_(signature_handler));
1383  __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1384
1385  BIND(call_signature_handler);
1386
1387  // Before we call the signature handler we push a new frame to
1388  // protect the interpreter frame volatile registers when we return
1389  // from jni but before we can get back to Java.
1390
1391  // First set the frame anchor while the SP/FP registers are
1392  // convenient and the slow signature handler can use this same frame
1393  // anchor.
1394
1395  // We have a TOP_IJAVA_FRAME here, which belongs to us.
1396  __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1397
1398  // Now the interpreter frame (and its call chain) have been
1399  // invalidated and flushed. We are now protected against eager
1400  // being enabled in native code. Even if it goes eager the
1401  // registers will be reloaded as clean and we will invalidate after
1402  // the call so no spurious flush should be possible.
1403
1404  // Call signature handler and pass locals address.
1405  //
1406  // Our signature handlers copy required arguments to the C stack
1407  // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1408  __ mr(R3_ARG1, R18_locals);
1409#if !defined(ABI_ELFv2)
1410  __ ld(signature_handler_fd, 0, signature_handler_fd);
1411#endif
1412
1413  __ call_stub(signature_handler_fd);
1414
1415  // Remove the register parameter varargs slots we allocated in
1416  // compute_interpreter_state. SP+16 ends up pointing to the ABI
1417  // outgoing argument area.
1418  //
1419  // Not needed on PPC64.
1420  //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1421
1422  assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1423  // Save across call to native method.
1424  __ mr(result_handler_addr, R3_RET);
1425
1426  __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1427
1428  // Set up fixed parameters and call the native method.
1429  // If the method is static, get mirror into R4_ARG2.
1430  {
1431    Label method_is_not_static;
1432    // Access_flags is non-volatile and still, no need to restore it.
1433
1434    // Restore access flags.
1435    __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1436    __ bfalse(CCR0, method_is_not_static);
1437
1438    __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1439    // Load mirror from interpreter frame.
1440    __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1441    // R4_ARG2 = &state->_oop_temp;
1442    __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1443    __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1444    BIND(method_is_not_static);
1445  }
1446
1447  // At this point, arguments have been copied off the stack into
1448  // their JNI positions. Oops are boxed in-place on the stack, with
1449  // handles copied to arguments. The result handler address is in a
1450  // register.
1451
1452  // Pass JNIEnv address as first parameter.
1453  __ addir(R3_ARG1, thread_(jni_environment));
1454
1455  // Load the native_method entry before we change the thread state.
1456  __ ld(native_method_fd, method_(native_function));
1457
1458  //=============================================================================
1459  // Transition from _thread_in_Java to _thread_in_native. As soon as
1460  // we make this change the safepoint code needs to be certain that
1461  // the last Java frame we established is good. The pc in that frame
1462  // just needs to be near here not an actual return address.
1463
1464  // We use release_store_fence to update values like the thread state, where
1465  // we don't want the current thread to continue until all our prior memory
1466  // accesses (including the new thread state) are visible to other threads.
1467  __ li(R0, _thread_in_native);
1468  __ release();
1469
1470  // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1471  __ stw(R0, thread_(thread_state));
1472
1473  if (UseMembar) {
1474    __ fence();
1475  }
1476
1477  //=============================================================================
1478  // Call the native method. Argument registers must not have been
1479  // overwritten since "__ call_stub(signature_handler);" (except for
1480  // ARG1 and ARG2 for static methods).
1481  __ call_c(native_method_fd);
1482
1483  __ li(R0, 0);
1484  __ ld(R11_scratch1, 0, R1_SP);
1485  __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1486  __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1487  __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1488
1489  // Note: C++ interpreter needs the following here:
1490  // The frame_manager_lr field, which we use for setting the last
1491  // java frame, gets overwritten by the signature handler. Restore
1492  // it now.
1493  //__ get_PC_trash_LR(R11_scratch1);
1494  //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1495
1496  // Because of GC R19_method may no longer be valid.
1497
1498  // Block, if necessary, before resuming in _thread_in_Java state.
1499  // In order for GC to work, don't clear the last_Java_sp until after
1500  // blocking.
1501
1502  //=============================================================================
1503  // Switch thread to "native transition" state before reading the
1504  // synchronization state. This additional state is necessary
1505  // because reading and testing the synchronization state is not
1506  // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1507  // in _thread_in_native state, loads _not_synchronized and is
1508  // preempted. VM thread changes sync state to synchronizing and
1509  // suspends threads for GC. Thread A is resumed to finish this
1510  // native method, but doesn't block here since it didn't see any
1511  // synchronization in progress, and escapes.
1512
1513  // We use release_store_fence to update values like the thread state, where
1514  // we don't want the current thread to continue until all our prior memory
1515  // accesses (including the new thread state) are visible to other threads.
1516  __ li(R0/*thread_state*/, _thread_in_native_trans);
1517  __ release();
1518  __ stw(R0/*thread_state*/, thread_(thread_state));
1519  if (UseMembar) {
1520    __ fence();
1521  }
1522  // Write serialization page so that the VM thread can do a pseudo remote
1523  // membar. We use the current thread pointer to calculate a thread
1524  // specific offset to write to within the page. This minimizes bus
1525  // traffic due to cache line collision.
1526  else {
1527    __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
1528  }
1529
1530  // Now before we return to java we must look for a current safepoint
1531  // (a new safepoint can not start since we entered native_trans).
1532  // We must check here because a current safepoint could be modifying
1533  // the callers registers right this moment.
1534
1535  // Acquire isn't strictly necessary here because of the fence, but
1536  // sync_state is declared to be volatile, so we do it anyway
1537  // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1538  int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1539
1540  // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
1541  __ lwz(sync_state, sync_state_offs, sync_state_addr);
1542
1543  // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1544  __ lwz(suspend_flags, thread_(suspend_flags));
1545
1546  Label sync_check_done;
1547  Label do_safepoint;
1548  // No synchronization in progress nor yet synchronized.
1549  __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1550  // Not suspended.
1551  __ cmpwi(CCR1, suspend_flags, 0);
1552
1553  __ bne(CCR0, do_safepoint);
1554  __ beq(CCR1, sync_check_done);
1555  __ bind(do_safepoint);
1556  __ isync();
1557  // Block. We do the call directly and leave the current
1558  // last_Java_frame setup undisturbed. We must save any possible
1559  // native result across the call. No oop is present.
1560
1561  __ mr(R3_ARG1, R16_thread);
1562#if defined(ABI_ELFv2)
1563  __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1564            relocInfo::none);
1565#else
1566  __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1567            relocInfo::none);
1568#endif
1569
1570  __ bind(sync_check_done);
1571
1572  //=============================================================================
1573  // <<<<<< Back in Interpreter Frame >>>>>
1574
1575  // We are in thread_in_native_trans here and back in the normal
1576  // interpreter frame. We don't have to do anything special about
1577  // safepoints and we can switch to Java mode anytime we are ready.
1578
1579  // Note: frame::interpreter_frame_result has a dependency on how the
1580  // method result is saved across the call to post_method_exit. For
1581  // native methods it assumes that the non-FPU/non-void result is
1582  // saved in _native_lresult and a FPU result in _native_fresult. If
1583  // this changes then the interpreter_frame_result implementation
1584  // will need to be updated too.
1585
1586  // On PPC64, we have stored the result directly after the native call.
1587
1588  //=============================================================================
1589  // Back in Java
1590
1591  // We use release_store_fence to update values like the thread state, where
1592  // we don't want the current thread to continue until all our prior memory
1593  // accesses (including the new thread state) are visible to other threads.
1594  __ li(R0/*thread_state*/, _thread_in_Java);
1595  __ release();
1596  __ stw(R0/*thread_state*/, thread_(thread_state));
1597  if (UseMembar) {
1598    __ fence();
1599  }
1600
1601  if (CheckJNICalls) {
1602    // clear_pending_jni_exception_check
1603    __ load_const_optimized(R0, 0L);
1604    __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1605  }
1606
1607  __ reset_last_Java_frame();
1608
1609  // Jvmdi/jvmpi support. Whether we've got an exception pending or
1610  // not, and whether unlocking throws an exception or not, we notify
1611  // on native method exit. If we do have an exception, we'll end up
1612  // in the caller's context to handle it, so if we don't do the
1613  // notify here, we'll drop it on the floor.
1614  __ notify_method_exit(true/*native method*/,
1615                        ilgl /*illegal state (not used for native methods)*/,
1616                        InterpreterMacroAssembler::NotifyJVMTI,
1617                        false /*check_exceptions*/);
1618
1619  //=============================================================================
1620  // Handle exceptions
1621
1622  if (synchronized) {
1623    // Don't check for exceptions since we're still in the i2n frame. Do that
1624    // manually afterwards.
1625    __ unlock_object(R26_monitor, false); // Can also unlock methods.
1626  }
1627
1628  // Reset active handles after returning from native.
1629  // thread->active_handles()->clear();
1630  __ ld(active_handles, thread_(active_handles));
1631  // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1632  __ li(R0, 0);
1633  __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1634
1635  Label exception_return_sync_check_already_unlocked;
1636  __ ld(R0/*pending_exception*/, thread_(pending_exception));
1637  __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1638  __ bne(CCR0, exception_return_sync_check_already_unlocked);
1639
1640  //-----------------------------------------------------------------------------
1641  // No exception pending.
1642
1643  // Move native method result back into proper registers and return.
1644  // Invoke result handler (may unbox/promote).
1645  __ ld(R11_scratch1, 0, R1_SP);
1646  __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1647  __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1648  __ call_stub(result_handler_addr);
1649
1650  __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1651
1652  // Must use the return pc which was loaded from the caller's frame
1653  // as the VM uses return-pc-patching for deoptimization.
1654  __ mtlr(R0);
1655  __ blr();
1656
1657  //-----------------------------------------------------------------------------
1658  // An exception is pending. We call into the runtime only if the
1659  // caller was not interpreted. If it was interpreted the
1660  // interpreter will do the correct thing. If it isn't interpreted
1661  // (call stub/compiled code) we will change our return and continue.
1662
1663  BIND(exception_return_sync_check);
1664
1665  if (synchronized) {
1666    // Don't check for exceptions since we're still in the i2n frame. Do that
1667    // manually afterwards.
1668    __ unlock_object(R26_monitor, false); // Can also unlock methods.
1669  }
1670  BIND(exception_return_sync_check_already_unlocked);
1671
1672  const Register return_pc = R31;
1673
1674  __ ld(return_pc, 0, R1_SP);
1675  __ ld(return_pc, _abi(lr), return_pc);
1676
1677  // Get the address of the exception handler.
1678  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1679                  R16_thread,
1680                  return_pc /* return pc */);
1681  __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1682
1683  // Load the PC of the the exception handler into LR.
1684  __ mtlr(R3_RET);
1685
1686  // Load exception into R3_ARG1 and clear pending exception in thread.
1687  __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1688  __ li(R4_ARG2, 0);
1689  __ std(R4_ARG2, thread_(pending_exception));
1690
1691  // Load the original return pc into R4_ARG2.
1692  __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1693
1694  // Return to exception handler.
1695  __ blr();
1696
1697  //=============================================================================
1698  // Counter overflow.
1699
1700  if (inc_counter) {
1701    // Handle invocation counter overflow.
1702    __ bind(invocation_counter_overflow);
1703
1704    generate_counter_overflow(continue_after_compile);
1705  }
1706
1707  return entry;
1708}
1709
1710// Generic interpreted method entry to (asm) interpreter.
1711//
1712address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1713  bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1714  address entry = __ pc();
1715  // Generate the code to allocate the interpreter stack frame.
1716  Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1717           Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1718
1719  // Does also a stack check to assure this frame fits on the stack.
1720  generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1721
1722  // --------------------------------------------------------------------------
1723  // Zero out non-parameter locals.
1724  // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1725  // worth to ask the flag, just do it.
1726  Register Rslot_addr = R6_ARG4,
1727           Rnum       = R7_ARG5;
1728  Label Lno_locals, Lzero_loop;
1729
1730  // Set up the zeroing loop.
1731  __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1732  __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1733  __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1734  __ beq(CCR0, Lno_locals);
1735  __ li(R0, 0);
1736  __ mtctr(Rnum);
1737
1738  // The zero locals loop.
1739  __ bind(Lzero_loop);
1740  __ std(R0, 0, Rslot_addr);
1741  __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1742  __ bdnz(Lzero_loop);
1743
1744  __ bind(Lno_locals);
1745
1746  // --------------------------------------------------------------------------
1747  // Counter increment and overflow check.
1748  Label invocation_counter_overflow,
1749        profile_method,
1750        profile_method_continue;
1751  if (inc_counter || ProfileInterpreter) {
1752
1753    Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1754    if (synchronized) {
1755      // Since at this point in the method invocation the exception handler
1756      // would try to exit the monitor of synchronized methods which hasn't
1757      // been entered yet, we set the thread local variable
1758      // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1759      // runtime, exception handling i.e. unlock_if_synchronized_method will
1760      // check this thread local flag.
1761      // This flag has two effects, one is to force an unwind in the topmost
1762      // interpreter frame and not perform an unlock while doing so.
1763      __ li(R0, 1);
1764      __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1765    }
1766
1767    // Argument and return type profiling.
1768    __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1769
1770    // Increment invocation counter and check for overflow.
1771    if (inc_counter) {
1772      generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1773    }
1774
1775    __ bind(profile_method_continue);
1776  }
1777
1778  bang_stack_shadow_pages(false);
1779
1780  if (inc_counter || ProfileInterpreter) {
1781    // Reset the _do_not_unlock_if_synchronized flag.
1782    if (synchronized) {
1783      __ li(R0, 0);
1784      __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1785    }
1786  }
1787
1788  // --------------------------------------------------------------------------
1789  // Locking of synchronized methods. Must happen AFTER invocation_counter
1790  // check and stack overflow check, so method is not locked if overflows.
1791  if (synchronized) {
1792    lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1793  }
1794#ifdef ASSERT
1795  else {
1796    Label Lok;
1797    __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1798    __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1799    __ asm_assert_eq("method needs synchronization", 0x8521);
1800    __ bind(Lok);
1801  }
1802#endif // ASSERT
1803
1804  __ verify_thread();
1805
1806  // --------------------------------------------------------------------------
1807  // JVMTI support
1808  __ notify_method_entry();
1809
1810  // --------------------------------------------------------------------------
1811  // Start executing instructions.
1812  __ dispatch_next(vtos);
1813
1814  // --------------------------------------------------------------------------
1815  // Out of line counter overflow and MDO creation code.
1816  if (ProfileInterpreter) {
1817    // We have decided to profile this method in the interpreter.
1818    __ bind(profile_method);
1819    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1820    __ set_method_data_pointer_for_bcp();
1821    __ b(profile_method_continue);
1822  }
1823
1824  if (inc_counter) {
1825    // Handle invocation counter overflow.
1826    __ bind(invocation_counter_overflow);
1827    generate_counter_overflow(profile_method_continue);
1828  }
1829  return entry;
1830}
1831
1832// CRC32 Intrinsics.
1833//
1834// Contract on scratch and work registers.
1835// =======================================
1836//
1837// On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1838// You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1839// You can't rely on these registers across calls.
1840//
1841// The generators for CRC32_update and for CRC32_updateBytes use the
1842// scratch/work register set internally, passing the work registers
1843// as arguments to the MacroAssembler emitters as required.
1844//
1845// R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1846// Their contents is not constant but may change according to the requirements
1847// of the emitted code.
1848//
1849// All other registers from the scratch/work register set are used "internally"
1850// and contain garbage (i.e. unpredictable values) once blr() is reached.
1851// Basically, only R3_RET contains a defined value which is the function result.
1852//
1853/**
1854 * Method entry for static native methods:
1855 *   int java.util.zip.CRC32.update(int crc, int b)
1856 */
1857address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1858  if (UseCRC32Intrinsics) {
1859    address start = __ pc();  // Remember stub start address (is rtn value).
1860    Label slow_path;
1861
1862    // Safepoint check
1863    const Register sync_state = R11_scratch1;
1864    int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1865    __ lwz(sync_state, sync_state_offs, sync_state);
1866    __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1867    __ bne(CCR0, slow_path);
1868
1869    // We don't generate local frame and don't align stack because
1870    // we not even call stub code (we generate the code inline)
1871    // and there is no safepoint on this path.
1872
1873    // Load java parameters.
1874    // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1875    const Register argP    = R15_esp;
1876    const Register crc     = R3_ARG1;  // crc value
1877    const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1878    const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1879    const Register table   = R6_ARG4;  // address of crc32 table
1880    const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1881
1882    BLOCK_COMMENT("CRC32_update {");
1883
1884    // Arguments are reversed on java expression stack
1885#ifdef VM_LITTLE_ENDIAN
1886    __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1887                                       // Being passed as an int, the single byte is at offset +0.
1888#else
1889    __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1890                                       // Being passed from java as an int, the single byte is at offset +3.
1891#endif
1892    __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1893
1894    StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1895    __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp, true);
1896
1897    // Restore caller sp for c2i case and return.
1898    __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1899    __ blr();
1900
1901    // Generate a vanilla native entry as the slow path.
1902    BLOCK_COMMENT("} CRC32_update");
1903    BIND(slow_path);
1904    __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1905    return start;
1906  }
1907
1908  return NULL;
1909}
1910
1911// TODO: generate_CRC32_updateBytes_entry and generate_CRC32C_updateBytes_entry are identical
1912//       except for using different crc tables and some block comment strings.
1913//       We should provide a common implementation.
1914
1915// CRC32 Intrinsics.
1916/**
1917 * Method entry for static native methods:
1918 *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1919 *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1920 */
1921address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1922  if (UseCRC32Intrinsics) {
1923    address start = __ pc();  // Remember stub start address (is rtn value).
1924    Label slow_path;
1925
1926    // Safepoint check
1927    const Register sync_state = R11_scratch1;
1928    int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
1929    __ lwz(sync_state, sync_state_offs, sync_state);
1930    __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
1931    __ bne(CCR0, slow_path);
1932
1933    // We don't generate local frame and don't align stack because
1934    // we not even call stub code (we generate the code inline)
1935    // and there is no safepoint on this path.
1936
1937    // Load parameters.
1938    // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1939    const Register argP    = R15_esp;
1940    const Register crc     = R3_ARG1;  // crc value
1941    const Register data    = R4_ARG2;  // address of java byte array
1942    const Register dataLen = R5_ARG3;  // source data len
1943    const Register table   = R6_ARG4;  // address of crc32 table
1944
1945    const Register t0      = R9;       // scratch registers for crc calculation
1946    const Register t1      = R10;
1947    const Register t2      = R11;
1948    const Register t3      = R12;
1949
1950    const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1951    const Register tc1     = R7;
1952    const Register tc2     = R8;
1953    const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1954
1955    const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1956
1957    // Arguments are reversed on java expression stack.
1958    // Calculate address of start element.
1959    if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1960      BLOCK_COMMENT("CRC32_updateByteBuffer {");
1961      // crc     @ (SP + 5W) (32bit)
1962      // buf     @ (SP + 3W) (64bit ptr to long array)
1963      // off     @ (SP + 2W) (32bit)
1964      // dataLen @ (SP + 1W) (32bit)
1965      // data = buf + off
1966      __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1967      __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1968      __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1969      __ lwz( crc,     5*wordSize, argP);  // current crc state
1970      __ add( data, data, tmp);            // Add byte buffer offset.
1971    } else {                                                         // Used for "updateBytes update".
1972      BLOCK_COMMENT("CRC32_updateBytes {");
1973      // crc     @ (SP + 4W) (32bit)
1974      // buf     @ (SP + 3W) (64bit ptr to byte array)
1975      // off     @ (SP + 2W) (32bit)
1976      // dataLen @ (SP + 1W) (32bit)
1977      // data = buf + off + base_offset
1978      __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1979      __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1980      __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1981      __ add( data, data, tmp);            // add byte buffer offset
1982      __ lwz( crc,     4*wordSize, argP);  // current crc state
1983      __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1984    }
1985
1986    StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1987
1988    // Performance measurements show the 1word and 2word variants to be almost equivalent,
1989    // with very light advantages for the 1word variant. We chose the 1word variant for
1990    // code compactness.
1991    __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, true);
1992
1993    // Restore caller sp for c2i case and return.
1994    __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1995    __ blr();
1996
1997    // Generate a vanilla native entry as the slow path.
1998    BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1999    BIND(slow_path);
2000    __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
2001    return start;
2002  }
2003
2004  return NULL;
2005}
2006
2007// CRC32C Intrinsics.
2008/**
2009 * Method entry for static native methods:
2010 *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int len)
2011 *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int len)
2012 **/
2013address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
2014  if (UseCRC32CIntrinsics) {
2015    address start = __ pc();  // Remember stub start address (is rtn value).
2016
2017    // We don't generate local frame and don't align stack because
2018    // we not even call stub code (we generate the code inline)
2019    // and there is no safepoint on this path.
2020
2021    // Load parameters.
2022    // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
2023    const Register argP    = R15_esp;
2024    const Register crc     = R3_ARG1;  // crc value
2025    const Register data    = R4_ARG2;  // address of java byte array
2026    const Register dataLen = R5_ARG3;  // source data len
2027    const Register table   = R6_ARG4;  // address of crc32c table
2028
2029    const Register t0      = R9;       // scratch registers for crc calculation
2030    const Register t1      = R10;
2031    const Register t2      = R11;
2032    const Register t3      = R12;
2033
2034    const Register tc0     = R2;       // registers to hold pre-calculated column addresses
2035    const Register tc1     = R7;
2036    const Register tc2     = R8;
2037    const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
2038
2039    const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
2040
2041    // Arguments are reversed on java expression stack.
2042    // Calculate address of start element.
2043    if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
2044      BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
2045      // crc     @ (SP + 5W) (32bit)
2046      // buf     @ (SP + 3W) (64bit ptr to long array)
2047      // off     @ (SP + 2W) (32bit)
2048      // dataLen @ (SP + 1W) (32bit)
2049      // data = buf + off
2050      __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2051      __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2052      __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2053      __ lwz( crc,     5*wordSize, argP);  // current crc state
2054      __ add( data, data, tmp);            // Add byte buffer offset.
2055    } else {                                                         // Used for "updateBytes update".
2056      BLOCK_COMMENT("CRC32C_updateBytes {");
2057      // crc     @ (SP + 4W) (32bit)
2058      // buf     @ (SP + 3W) (64bit ptr to byte array)
2059      // off     @ (SP + 2W) (32bit)
2060      // dataLen @ (SP + 1W) (32bit)
2061      // data = buf + off + base_offset
2062      __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2063      __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2064      __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2065      __ add( data, data, tmp);            // add byte buffer offset
2066      __ lwz( crc,     4*wordSize, argP);  // current crc state
2067      __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2068    }
2069
2070    StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table);
2071
2072    // Performance measurements show the 1word and 2word variants to be almost equivalent,
2073    // with very light advantages for the 1word variant. We chose the 1word variant for
2074    // code compactness.
2075    __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, false);
2076
2077    // Restore caller sp for c2i case and return.
2078    __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
2079    __ blr();
2080
2081    BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2082    return start;
2083  }
2084
2085  return NULL;
2086}
2087
2088// =============================================================================
2089// Exceptions
2090
2091void TemplateInterpreterGenerator::generate_throw_exception() {
2092  Register Rexception    = R17_tos,
2093           Rcontinuation = R3_RET;
2094
2095  // --------------------------------------------------------------------------
2096  // Entry point if an method returns with a pending exception (rethrow).
2097  Interpreter::_rethrow_exception_entry = __ pc();
2098  {
2099    __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
2100    __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2101    __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2102
2103    // Compiled code destroys templateTableBase, reload.
2104    __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2105  }
2106
2107  // Entry point if a interpreted method throws an exception (throw).
2108  Interpreter::_throw_exception_entry = __ pc();
2109  {
2110    __ mr(Rexception, R3_RET);
2111
2112    __ verify_thread();
2113    __ verify_oop(Rexception);
2114
2115    // Expression stack must be empty before entering the VM in case of an exception.
2116    __ empty_expression_stack();
2117    // Find exception handler address and preserve exception oop.
2118    // Call C routine to find handler and jump to it.
2119    __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2120    __ mtctr(Rcontinuation);
2121    // Push exception for exception handler bytecodes.
2122    __ push_ptr(Rexception);
2123
2124    // Jump to exception handler (may be remove activation entry!).
2125    __ bctr();
2126  }
2127
2128  // If the exception is not handled in the current frame the frame is
2129  // removed and the exception is rethrown (i.e. exception
2130  // continuation is _rethrow_exception).
2131  //
2132  // Note: At this point the bci is still the bxi for the instruction
2133  // which caused the exception and the expression stack is
2134  // empty. Thus, for any VM calls at this point, GC will find a legal
2135  // oop map (with empty expression stack).
2136
2137  // In current activation
2138  // tos: exception
2139  // bcp: exception bcp
2140
2141  // --------------------------------------------------------------------------
2142  // JVMTI PopFrame support
2143
2144  Interpreter::_remove_activation_preserving_args_entry = __ pc();
2145  {
2146    // Set the popframe_processing bit in popframe_condition indicating that we are
2147    // currently handling popframe, so that call_VMs that may happen later do not
2148    // trigger new popframe handling cycles.
2149    __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2150    __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2151    __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2152
2153    // Empty the expression stack, as in normal exception handling.
2154    __ empty_expression_stack();
2155    __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2156
2157    // Check to see whether we are returning to a deoptimized frame.
2158    // (The PopFrame call ensures that the caller of the popped frame is
2159    // either interpreted or compiled and deoptimizes it if compiled.)
2160    // Note that we don't compare the return PC against the
2161    // deoptimization blob's unpack entry because of the presence of
2162    // adapter frames in C2.
2163    Label Lcaller_not_deoptimized;
2164    Register return_pc = R3_ARG1;
2165    __ ld(return_pc, 0, R1_SP);
2166    __ ld(return_pc, _abi(lr), return_pc);
2167    __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2168    __ cmpdi(CCR0, R3_RET, 0);
2169    __ bne(CCR0, Lcaller_not_deoptimized);
2170
2171    // The deoptimized case.
2172    // In this case, we can't call dispatch_next() after the frame is
2173    // popped, but instead must save the incoming arguments and restore
2174    // them after deoptimization has occurred.
2175    __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2176    __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2177    __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2178    __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2179    __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2180    // Save these arguments.
2181    __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2182
2183    // Inform deoptimization that it is responsible for restoring these arguments.
2184    __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2185    __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2186
2187    // Return from the current method into the deoptimization blob. Will eventually
2188    // end up in the deopt interpeter entry, deoptimization prepared everything that
2189    // we will reexecute the call that called us.
2190    __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2191    __ mtlr(return_pc);
2192    __ blr();
2193
2194    // The non-deoptimized case.
2195    __ bind(Lcaller_not_deoptimized);
2196
2197    // Clear the popframe condition flag.
2198    __ li(R0, 0);
2199    __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2200
2201    // Get out of the current method and re-execute the call that called us.
2202    __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2203    __ restore_interpreter_state(R11_scratch1);
2204    __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2205    __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2206    if (ProfileInterpreter) {
2207      __ set_method_data_pointer_for_bcp();
2208      __ ld(R11_scratch1, 0, R1_SP);
2209      __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2210    }
2211#if INCLUDE_JVMTI
2212    Label L_done;
2213
2214    __ lbz(R11_scratch1, 0, R14_bcp);
2215    __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2216    __ bne(CCR0, L_done);
2217
2218    // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2219    // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2220    __ ld(R4_ARG2, 0, R18_locals);
2221    __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2222    __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2223    __ cmpdi(CCR0, R4_ARG2, 0);
2224    __ beq(CCR0, L_done);
2225    __ std(R4_ARG2, wordSize, R15_esp);
2226    __ bind(L_done);
2227#endif // INCLUDE_JVMTI
2228    __ dispatch_next(vtos);
2229  }
2230  // end of JVMTI PopFrame support
2231
2232  // --------------------------------------------------------------------------
2233  // Remove activation exception entry.
2234  // This is jumped to if an interpreted method can't handle an exception itself
2235  // (we come from the throw/rethrow exception entry above). We're going to call
2236  // into the VM to find the exception handler in the caller, pop the current
2237  // frame and return the handler we calculated.
2238  Interpreter::_remove_activation_entry = __ pc();
2239  {
2240    __ pop_ptr(Rexception);
2241    __ verify_thread();
2242    __ verify_oop(Rexception);
2243    __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2244
2245    __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2246    __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2247
2248    __ get_vm_result(Rexception);
2249
2250    // We are done with this activation frame; find out where to go next.
2251    // The continuation point will be an exception handler, which expects
2252    // the following registers set up:
2253    //
2254    // RET:  exception oop
2255    // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2256
2257    Register return_pc = R31; // Needs to survive the runtime call.
2258    __ ld(return_pc, 0, R1_SP);
2259    __ ld(return_pc, _abi(lr), return_pc);
2260    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2261
2262    // Remove the current activation.
2263    __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2264
2265    __ mr(R4_ARG2, return_pc);
2266    __ mtlr(R3_RET);
2267    __ mr(R3_RET, Rexception);
2268    __ blr();
2269  }
2270}
2271
2272// JVMTI ForceEarlyReturn support.
2273// Returns "in the middle" of a method with a "fake" return value.
2274address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2275
2276  Register Rscratch1 = R11_scratch1,
2277           Rscratch2 = R12_scratch2;
2278
2279  address entry = __ pc();
2280  __ empty_expression_stack();
2281
2282  __ load_earlyret_value(state, Rscratch1);
2283
2284  __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2285  // Clear the earlyret state.
2286  __ li(R0, 0);
2287  __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2288
2289  __ remove_activation(state, false, false);
2290  // Copied from TemplateTable::_return.
2291  // Restoration of lr done by remove_activation.
2292  switch (state) {
2293    // Narrow result if state is itos but result type is smaller.
2294    case btos:
2295    case ztos:
2296    case ctos:
2297    case stos:
2298    case itos: __ narrow(R17_tos); /* fall through */
2299    case ltos:
2300    case atos: __ mr(R3_RET, R17_tos); break;
2301    case ftos:
2302    case dtos: __ fmr(F1_RET, F15_ftos); break;
2303    case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2304               // to get visible before the reference to the object gets stored anywhere.
2305               __ membar(Assembler::StoreStore); break;
2306    default  : ShouldNotReachHere();
2307  }
2308  __ blr();
2309
2310  return entry;
2311} // end of ForceEarlyReturn support
2312
2313//-----------------------------------------------------------------------------
2314// Helper for vtos entry point generation
2315
2316void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2317                                                         address& bep,
2318                                                         address& cep,
2319                                                         address& sep,
2320                                                         address& aep,
2321                                                         address& iep,
2322                                                         address& lep,
2323                                                         address& fep,
2324                                                         address& dep,
2325                                                         address& vep) {
2326  assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2327  Label L;
2328
2329  aep = __ pc();  __ push_ptr();  __ b(L);
2330  fep = __ pc();  __ push_f();    __ b(L);
2331  dep = __ pc();  __ push_d();    __ b(L);
2332  lep = __ pc();  __ push_l();    __ b(L);
2333  __ align(32, 12, 24); // align L
2334  bep = cep = sep =
2335  iep = __ pc();  __ push_i();
2336  vep = __ pc();
2337  __ bind(L);
2338  generate_and_dispatch(t);
2339}
2340
2341//-----------------------------------------------------------------------------
2342
2343// Non-product code
2344#ifndef PRODUCT
2345address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2346  //__ flush_bundle();
2347  address entry = __ pc();
2348
2349  const char *bname = NULL;
2350  uint tsize = 0;
2351  switch(state) {
2352  case ftos:
2353    bname = "trace_code_ftos {";
2354    tsize = 2;
2355    break;
2356  case btos:
2357    bname = "trace_code_btos {";
2358    tsize = 2;
2359    break;
2360  case ztos:
2361    bname = "trace_code_ztos {";
2362    tsize = 2;
2363    break;
2364  case ctos:
2365    bname = "trace_code_ctos {";
2366    tsize = 2;
2367    break;
2368  case stos:
2369    bname = "trace_code_stos {";
2370    tsize = 2;
2371    break;
2372  case itos:
2373    bname = "trace_code_itos {";
2374    tsize = 2;
2375    break;
2376  case ltos:
2377    bname = "trace_code_ltos {";
2378    tsize = 3;
2379    break;
2380  case atos:
2381    bname = "trace_code_atos {";
2382    tsize = 2;
2383    break;
2384  case vtos:
2385    // Note: In case of vtos, the topmost of stack value could be a int or doubl
2386    // In case of a double (2 slots) we won't see the 2nd stack value.
2387    // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2388    bname = "trace_code_vtos {";
2389    tsize = 2;
2390
2391    break;
2392  case dtos:
2393    bname = "trace_code_dtos {";
2394    tsize = 3;
2395    break;
2396  default:
2397    ShouldNotReachHere();
2398  }
2399  BLOCK_COMMENT(bname);
2400
2401  // Support short-cut for TraceBytecodesAt.
2402  // Don't call into the VM if we don't want to trace to speed up things.
2403  Label Lskip_vm_call;
2404  if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2405    int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2406    int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2407    __ ld(R11_scratch1, offs1, R11_scratch1);
2408    __ lwa(R12_scratch2, offs2, R12_scratch2);
2409    __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2410    __ blt(CCR0, Lskip_vm_call);
2411  }
2412
2413  __ push(state);
2414  // Load 2 topmost expression stack values.
2415  __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2416  __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2417  __ mflr(R31);
2418  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2419  __ mtlr(R31);
2420  __ pop(state);
2421
2422  if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2423    __ bind(Lskip_vm_call);
2424  }
2425  __ blr();
2426  BLOCK_COMMENT("} trace_code");
2427  return entry;
2428}
2429
2430void TemplateInterpreterGenerator::count_bytecode() {
2431  int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2432  __ lwz(R12_scratch2, offs, R11_scratch1);
2433  __ addi(R12_scratch2, R12_scratch2, 1);
2434  __ stw(R12_scratch2, offs, R11_scratch1);
2435}
2436
2437void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2438  int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2439  __ lwz(R12_scratch2, offs, R11_scratch1);
2440  __ addi(R12_scratch2, R12_scratch2, 1);
2441  __ stw(R12_scratch2, offs, R11_scratch1);
2442}
2443
2444void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2445  const Register addr = R11_scratch1,
2446                 tmp  = R12_scratch2;
2447  // Get index, shift out old bytecode, bring in new bytecode, and store it.
2448  // _index = (_index >> log2_number_of_codes) |
2449  //          (bytecode << log2_number_of_codes);
2450  int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2451  __ lwz(tmp, offs1, addr);
2452  __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2453  __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2454  __ stw(tmp, offs1, addr);
2455
2456  // Bump bucket contents.
2457  // _counters[_index] ++;
2458  int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2459  __ sldi(tmp, tmp, LogBytesPerInt);
2460  __ add(addr, tmp, addr);
2461  __ lwz(tmp, offs2, addr);
2462  __ addi(tmp, tmp, 1);
2463  __ stw(tmp, offs2, addr);
2464}
2465
2466void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2467  // Call a little run-time stub to avoid blow-up for each bytecode.
2468  // The run-time runtime saves the right registers, depending on
2469  // the tosca in-state for the given template.
2470
2471  assert(Interpreter::trace_code(t->tos_in()) != NULL,
2472         "entry must have been generated");
2473
2474  // Note: we destroy LR here.
2475  __ bl(Interpreter::trace_code(t->tos_in()));
2476}
2477
2478void TemplateInterpreterGenerator::stop_interpreter_at() {
2479  Label L;
2480  int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2481  int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2482  __ ld(R11_scratch1, offs1, R11_scratch1);
2483  __ lwa(R12_scratch2, offs2, R12_scratch2);
2484  __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2485  __ bne(CCR0, L);
2486  __ illtrap();
2487  __ bind(L);
2488}
2489
2490#endif // !PRODUCT
2491