sharedRuntime_ppc.cpp revision 5990:b0133e4187d3
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2013 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "asm/macroAssembler.inline.hpp"
28#include "code/debugInfoRec.hpp"
29#include "code/icBuffer.hpp"
30#include "code/vtableStubs.hpp"
31#include "interpreter/interpreter.hpp"
32#include "oops/compiledICHolder.hpp"
33#include "prims/jvmtiRedefineClassesTrace.hpp"
34#include "runtime/sharedRuntime.hpp"
35#include "runtime/vframeArray.hpp"
36#include "vmreg_ppc.inline.hpp"
37#ifdef COMPILER1
38#include "c1/c1_Runtime1.hpp"
39#endif
40#ifdef COMPILER2
41#include "opto/runtime.hpp"
42#endif
43
44#define __ masm->
45
46#ifdef PRODUCT
47#define BLOCK_COMMENT(str) // nothing
48#else
49#define BLOCK_COMMENT(str) __ block_comment(str)
50#endif
51
52#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
53
54
55// Used by generate_deopt_blob.  Defined in .ad file.
56extern uint size_deopt_handler();
57
58
59class RegisterSaver {
60 // Used for saving volatile registers.
61 public:
62
63  // Support different return pc locations.
64  enum ReturnPCLocation {
65    return_pc_is_lr,
66    return_pc_is_r4,
67    return_pc_is_thread_saved_exception_pc
68  };
69
70  static OopMap* push_frame_abi112_and_save_live_registers(MacroAssembler* masm,
71                         int* out_frame_size_in_bytes,
72                         bool generate_oop_map,
73                         int return_pc_adjustment,
74                         ReturnPCLocation return_pc_location);
75  static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
76                         int frame_size_in_bytes,
77                         bool restore_ctr);
78
79  static void push_frame_and_save_argument_registers(MacroAssembler* masm,
80                         Register r_temp,
81                         int frame_size,
82                         int total_args,
83                         const VMRegPair *regs, const VMRegPair *regs2 = NULL);
84  static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
85                         int frame_size,
86                         int total_args,
87                         const VMRegPair *regs, const VMRegPair *regs2 = NULL);
88
89  // During deoptimization only the result registers need to be restored
90  // all the other values have already been extracted.
91  static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
92
93  // Constants and data structures:
94
95  typedef enum {
96    int_reg           = 0,
97    float_reg         = 1,
98    special_reg       = 2
99  } RegisterType;
100
101  typedef enum {
102    reg_size          = 8,
103    half_reg_size     = reg_size / 2,
104  } RegisterConstants;
105
106  typedef struct {
107    RegisterType        reg_type;
108    int                 reg_num;
109    VMReg               vmreg;
110  } LiveRegType;
111};
112
113
114#define RegisterSaver_LiveSpecialReg(regname) \
115  { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
116
117#define RegisterSaver_LiveIntReg(regname) \
118  { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
119
120#define RegisterSaver_LiveFloatReg(regname) \
121  { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
122
123static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
124  // Live registers which get spilled to the stack. Register
125  // positions in this array correspond directly to the stack layout.
126
127  //
128  // live special registers:
129  //
130  RegisterSaver_LiveSpecialReg(SR_CTR),
131  //
132  // live float registers:
133  //
134  RegisterSaver_LiveFloatReg( F0  ),
135  RegisterSaver_LiveFloatReg( F1  ),
136  RegisterSaver_LiveFloatReg( F2  ),
137  RegisterSaver_LiveFloatReg( F3  ),
138  RegisterSaver_LiveFloatReg( F4  ),
139  RegisterSaver_LiveFloatReg( F5  ),
140  RegisterSaver_LiveFloatReg( F6  ),
141  RegisterSaver_LiveFloatReg( F7  ),
142  RegisterSaver_LiveFloatReg( F8  ),
143  RegisterSaver_LiveFloatReg( F9  ),
144  RegisterSaver_LiveFloatReg( F10 ),
145  RegisterSaver_LiveFloatReg( F11 ),
146  RegisterSaver_LiveFloatReg( F12 ),
147  RegisterSaver_LiveFloatReg( F13 ),
148  RegisterSaver_LiveFloatReg( F14 ),
149  RegisterSaver_LiveFloatReg( F15 ),
150  RegisterSaver_LiveFloatReg( F16 ),
151  RegisterSaver_LiveFloatReg( F17 ),
152  RegisterSaver_LiveFloatReg( F18 ),
153  RegisterSaver_LiveFloatReg( F19 ),
154  RegisterSaver_LiveFloatReg( F20 ),
155  RegisterSaver_LiveFloatReg( F21 ),
156  RegisterSaver_LiveFloatReg( F22 ),
157  RegisterSaver_LiveFloatReg( F23 ),
158  RegisterSaver_LiveFloatReg( F24 ),
159  RegisterSaver_LiveFloatReg( F25 ),
160  RegisterSaver_LiveFloatReg( F26 ),
161  RegisterSaver_LiveFloatReg( F27 ),
162  RegisterSaver_LiveFloatReg( F28 ),
163  RegisterSaver_LiveFloatReg( F29 ),
164  RegisterSaver_LiveFloatReg( F30 ),
165  RegisterSaver_LiveFloatReg( F31 ),
166  //
167  // live integer registers:
168  //
169  RegisterSaver_LiveIntReg(   R0  ),
170  //RegisterSaver_LiveIntReg( R1  ), // stack pointer
171  RegisterSaver_LiveIntReg(   R2  ),
172  RegisterSaver_LiveIntReg(   R3  ),
173  RegisterSaver_LiveIntReg(   R4  ),
174  RegisterSaver_LiveIntReg(   R5  ),
175  RegisterSaver_LiveIntReg(   R6  ),
176  RegisterSaver_LiveIntReg(   R7  ),
177  RegisterSaver_LiveIntReg(   R8  ),
178  RegisterSaver_LiveIntReg(   R9  ),
179  RegisterSaver_LiveIntReg(   R10 ),
180  RegisterSaver_LiveIntReg(   R11 ),
181  RegisterSaver_LiveIntReg(   R12 ),
182  //RegisterSaver_LiveIntReg( R13 ), // system thread id
183  RegisterSaver_LiveIntReg(   R14 ),
184  RegisterSaver_LiveIntReg(   R15 ),
185  RegisterSaver_LiveIntReg(   R16 ),
186  RegisterSaver_LiveIntReg(   R17 ),
187  RegisterSaver_LiveIntReg(   R18 ),
188  RegisterSaver_LiveIntReg(   R19 ),
189  RegisterSaver_LiveIntReg(   R20 ),
190  RegisterSaver_LiveIntReg(   R21 ),
191  RegisterSaver_LiveIntReg(   R22 ),
192  RegisterSaver_LiveIntReg(   R23 ),
193  RegisterSaver_LiveIntReg(   R24 ),
194  RegisterSaver_LiveIntReg(   R25 ),
195  RegisterSaver_LiveIntReg(   R26 ),
196  RegisterSaver_LiveIntReg(   R27 ),
197  RegisterSaver_LiveIntReg(   R28 ),
198  RegisterSaver_LiveIntReg(   R29 ),
199  RegisterSaver_LiveIntReg(   R31 ),
200  RegisterSaver_LiveIntReg(   R30 ), // r30 must be the last register
201};
202
203OopMap* RegisterSaver::push_frame_abi112_and_save_live_registers(MacroAssembler* masm,
204                         int* out_frame_size_in_bytes,
205                         bool generate_oop_map,
206                         int return_pc_adjustment,
207                         ReturnPCLocation return_pc_location) {
208  // Push an abi112-frame and store all registers which may be live.
209  // If requested, create an OopMap: Record volatile registers as
210  // callee-save values in an OopMap so their save locations will be
211  // propagated to the RegisterMap of the caller frame during
212  // StackFrameStream construction (needed for deoptimization; see
213  // compiledVFrame::create_stack_value).
214  // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
215
216  int i;
217  int offset;
218
219  // calcualte frame size
220  const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
221                                   sizeof(RegisterSaver::LiveRegType);
222  const int register_save_size   = regstosave_num * reg_size;
223  const int frame_size_in_bytes  = round_to(register_save_size, frame::alignment_in_bytes)
224                                   + frame::abi_112_size;
225  *out_frame_size_in_bytes       = frame_size_in_bytes;
226  const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
227  const int register_save_offset = frame_size_in_bytes - register_save_size;
228
229  // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
230  OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
231
232  BLOCK_COMMENT("push_frame_abi112_and_save_live_registers {");
233
234  // Save r30 in the last slot of the not yet pushed frame so that we
235  // can use it as scratch reg.
236  __ std(R30, -reg_size, R1_SP);
237  assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size),
238         "consistency check");
239
240  // save the flags
241  // Do the save_LR_CR by hand and adjust the return pc if requested.
242  __ mfcr(R30);
243  __ std(R30, _abi(cr), R1_SP);
244  switch (return_pc_location) {
245    case return_pc_is_lr:    __ mflr(R30);           break;
246    case return_pc_is_r4:    __ mr(R30, R4);     break;
247    case return_pc_is_thread_saved_exception_pc:
248                                 __ ld(R30, thread_(saved_exception_pc)); break;
249    default: ShouldNotReachHere();
250  }
251  if (return_pc_adjustment != 0)
252    __ addi(R30, R30, return_pc_adjustment);
253  __ std(R30, _abi(lr), R1_SP);
254
255  // push a new frame
256  __ push_frame(frame_size_in_bytes, R30);
257
258  // save all registers (ints and floats)
259  offset = register_save_offset;
260  for (int i = 0; i < regstosave_num; i++) {
261    int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
262    int reg_type = RegisterSaver_LiveRegs[i].reg_type;
263
264    switch (reg_type) {
265      case RegisterSaver::int_reg: {
266        if (reg_num != 30) { // We spilled R30 right at the beginning.
267          __ std(as_Register(reg_num), offset, R1_SP);
268        }
269        break;
270      }
271      case RegisterSaver::float_reg: {
272        __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
273        break;
274      }
275      case RegisterSaver::special_reg: {
276        if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
277          __ mfctr(R30);
278          __ std(R30, offset, R1_SP);
279        } else {
280          Unimplemented();
281        }
282        break;
283      }
284      default:
285        ShouldNotReachHere();
286    }
287
288    if (generate_oop_map) {
289      map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
290                            RegisterSaver_LiveRegs[i].vmreg);
291      map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
292                            RegisterSaver_LiveRegs[i].vmreg->next());
293    }
294    offset += reg_size;
295  }
296
297  BLOCK_COMMENT("} push_frame_abi112_and_save_live_registers");
298
299  // And we're done.
300  return map;
301}
302
303
304// Pop the current frame and restore all the registers that we
305// saved.
306void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
307                                                         int frame_size_in_bytes,
308                                                         bool restore_ctr) {
309  int i;
310  int offset;
311  const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
312                                   sizeof(RegisterSaver::LiveRegType);
313  const int register_save_size   = regstosave_num * reg_size;
314  const int register_save_offset = frame_size_in_bytes - register_save_size;
315
316  BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
317
318  // restore all registers (ints and floats)
319  offset = register_save_offset;
320  for (int i = 0; i < regstosave_num; i++) {
321    int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
322    int reg_type = RegisterSaver_LiveRegs[i].reg_type;
323
324    switch (reg_type) {
325      case RegisterSaver::int_reg: {
326        if (reg_num != 30) // R30 restored at the end, it's the tmp reg!
327          __ ld(as_Register(reg_num), offset, R1_SP);
328        break;
329      }
330      case RegisterSaver::float_reg: {
331        __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
332        break;
333      }
334      case RegisterSaver::special_reg: {
335        if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
336          if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
337            __ ld(R30, offset, R1_SP);
338            __ mtctr(R30);
339          }
340        } else {
341          Unimplemented();
342        }
343        break;
344      }
345      default:
346        ShouldNotReachHere();
347    }
348    offset += reg_size;
349  }
350
351  // pop the frame
352  __ pop_frame();
353
354  // restore the flags
355  __ restore_LR_CR(R30);
356
357  // restore scratch register's value
358  __ ld(R30, -reg_size, R1_SP);
359
360  BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
361}
362
363void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
364                                                           int frame_size,int total_args, const VMRegPair *regs,
365                                                           const VMRegPair *regs2) {
366  __ push_frame(frame_size, r_temp);
367  int st_off = frame_size - wordSize;
368  for (int i = 0; i < total_args; i++) {
369    VMReg r_1 = regs[i].first();
370    VMReg r_2 = regs[i].second();
371    if (!r_1->is_valid()) {
372      assert(!r_2->is_valid(), "");
373      continue;
374    }
375    if (r_1->is_Register()) {
376      Register r = r_1->as_Register();
377      __ std(r, st_off, R1_SP);
378      st_off -= wordSize;
379    } else if (r_1->is_FloatRegister()) {
380      FloatRegister f = r_1->as_FloatRegister();
381      __ stfd(f, st_off, R1_SP);
382      st_off -= wordSize;
383    }
384  }
385  if (regs2 != NULL) {
386    for (int i = 0; i < total_args; i++) {
387      VMReg r_1 = regs2[i].first();
388      VMReg r_2 = regs2[i].second();
389      if (!r_1->is_valid()) {
390        assert(!r_2->is_valid(), "");
391        continue;
392      }
393      if (r_1->is_Register()) {
394        Register r = r_1->as_Register();
395        __ std(r, st_off, R1_SP);
396        st_off -= wordSize;
397      } else if (r_1->is_FloatRegister()) {
398        FloatRegister f = r_1->as_FloatRegister();
399        __ stfd(f, st_off, R1_SP);
400        st_off -= wordSize;
401      }
402    }
403  }
404}
405
406void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
407                                                             int total_args, const VMRegPair *regs,
408                                                             const VMRegPair *regs2) {
409  int st_off = frame_size - wordSize;
410  for (int i = 0; i < total_args; i++) {
411    VMReg r_1 = regs[i].first();
412    VMReg r_2 = regs[i].second();
413    if (r_1->is_Register()) {
414      Register r = r_1->as_Register();
415      __ ld(r, st_off, R1_SP);
416      st_off -= wordSize;
417    } else if (r_1->is_FloatRegister()) {
418      FloatRegister f = r_1->as_FloatRegister();
419      __ lfd(f, st_off, R1_SP);
420      st_off -= wordSize;
421    }
422  }
423  if (regs2 != NULL)
424    for (int i = 0; i < total_args; i++) {
425      VMReg r_1 = regs2[i].first();
426      VMReg r_2 = regs2[i].second();
427      if (r_1->is_Register()) {
428        Register r = r_1->as_Register();
429        __ ld(r, st_off, R1_SP);
430        st_off -= wordSize;
431      } else if (r_1->is_FloatRegister()) {
432        FloatRegister f = r_1->as_FloatRegister();
433        __ lfd(f, st_off, R1_SP);
434        st_off -= wordSize;
435      }
436    }
437  __ pop_frame();
438}
439
440// Restore the registers that might be holding a result.
441void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
442  int i;
443  int offset;
444  const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
445                                   sizeof(RegisterSaver::LiveRegType);
446  const int register_save_size   = regstosave_num * reg_size;
447  const int register_save_offset = frame_size_in_bytes - register_save_size;
448
449  // restore all result registers (ints and floats)
450  offset = register_save_offset;
451  for (int i = 0; i < regstosave_num; i++) {
452    int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
453    int reg_type = RegisterSaver_LiveRegs[i].reg_type;
454    switch (reg_type) {
455      case RegisterSaver::int_reg: {
456        if (as_Register(reg_num)==R3_RET) // int result_reg
457          __ ld(as_Register(reg_num), offset, R1_SP);
458        break;
459      }
460      case RegisterSaver::float_reg: {
461        if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
462          __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
463        break;
464      }
465      case RegisterSaver::special_reg: {
466        // Special registers don't hold a result.
467        break;
468      }
469      default:
470        ShouldNotReachHere();
471    }
472    offset += reg_size;
473  }
474}
475
476// Is vector's size (in bytes) bigger than a size saved by default?
477bool SharedRuntime::is_wide_vector(int size) {
478  ResourceMark rm;
479  // Note, MaxVectorSize == 8 on PPC64.
480  assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
481  return size > 8;
482}
483#ifdef COMPILER2
484static int reg2slot(VMReg r) {
485  return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
486}
487
488static int reg2offset(VMReg r) {
489  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
490}
491#endif
492
493// ---------------------------------------------------------------------------
494// Read the array of BasicTypes from a signature, and compute where the
495// arguments should go. Values in the VMRegPair regs array refer to 4-byte
496// quantities. Values less than VMRegImpl::stack0 are registers, those above
497// refer to 4-byte stack slots. All stack slots are based off of the stack pointer
498// as framesizes are fixed.
499// VMRegImpl::stack0 refers to the first slot 0(sp).
500// and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
501// up to RegisterImpl::number_of_registers) are the 64-bit
502// integer registers.
503
504// Note: the INPUTS in sig_bt are in units of Java argument words, which are
505// either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
506// units regardless of build. Of course for i486 there is no 64 bit build
507
508// The Java calling convention is a "shifted" version of the C ABI.
509// By skipping the first C ABI register we can call non-static jni methods
510// with small numbers of arguments without having to shuffle the arguments
511// at all. Since we control the java ABI we ought to at least get some
512// advantage out of it.
513
514const VMReg java_iarg_reg[8] = {
515  R3->as_VMReg(),
516  R4->as_VMReg(),
517  R5->as_VMReg(),
518  R6->as_VMReg(),
519  R7->as_VMReg(),
520  R8->as_VMReg(),
521  R9->as_VMReg(),
522  R10->as_VMReg()
523};
524
525const VMReg java_farg_reg[13] = {
526  F1->as_VMReg(),
527  F2->as_VMReg(),
528  F3->as_VMReg(),
529  F4->as_VMReg(),
530  F5->as_VMReg(),
531  F6->as_VMReg(),
532  F7->as_VMReg(),
533  F8->as_VMReg(),
534  F9->as_VMReg(),
535  F10->as_VMReg(),
536  F11->as_VMReg(),
537  F12->as_VMReg(),
538  F13->as_VMReg()
539};
540
541const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
542const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
543
544int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
545                                           VMRegPair *regs,
546                                           int total_args_passed,
547                                           int is_outgoing) {
548  // C2c calling conventions for compiled-compiled calls.
549  // Put 8 ints/longs into registers _AND_ 13 float/doubles into
550  // registers _AND_ put the rest on the stack.
551
552  const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
553  const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
554
555  int i;
556  VMReg reg;
557  int stk = 0;
558  int ireg = 0;
559  int freg = 0;
560
561  // We put the first 8 arguments into registers and the rest on the
562  // stack, float arguments are already in their argument registers
563  // due to c2c calling conventions (see calling_convention).
564  for (int i = 0; i < total_args_passed; ++i) {
565    switch(sig_bt[i]) {
566    case T_BOOLEAN:
567    case T_CHAR:
568    case T_BYTE:
569    case T_SHORT:
570    case T_INT:
571      if (ireg < num_java_iarg_registers) {
572        // Put int/ptr in register
573        reg = java_iarg_reg[ireg];
574        ++ireg;
575      } else {
576        // Put int/ptr on stack.
577        reg = VMRegImpl::stack2reg(stk);
578        stk += inc_stk_for_intfloat;
579      }
580      regs[i].set1(reg);
581      break;
582    case T_LONG:
583      assert(sig_bt[i+1] == T_VOID, "expecting half");
584      if (ireg < num_java_iarg_registers) {
585        // Put long in register.
586        reg = java_iarg_reg[ireg];
587        ++ireg;
588      } else {
589        // Put long on stack. They must be aligned to 2 slots.
590        if (stk & 0x1) ++stk;
591        reg = VMRegImpl::stack2reg(stk);
592        stk += inc_stk_for_longdouble;
593      }
594      regs[i].set2(reg);
595      break;
596    case T_OBJECT:
597    case T_ARRAY:
598    case T_ADDRESS:
599      if (ireg < num_java_iarg_registers) {
600        // Put ptr in register.
601        reg = java_iarg_reg[ireg];
602        ++ireg;
603      } else {
604        // Put ptr on stack. Objects must be aligned to 2 slots too,
605        // because "64-bit pointers record oop-ishness on 2 aligned
606        // adjacent registers." (see OopFlow::build_oop_map).
607        if (stk & 0x1) ++stk;
608        reg = VMRegImpl::stack2reg(stk);
609        stk += inc_stk_for_longdouble;
610      }
611      regs[i].set2(reg);
612      break;
613    case T_FLOAT:
614      if (freg < num_java_farg_registers) {
615        // Put float in register.
616        reg = java_farg_reg[freg];
617        ++freg;
618      } else {
619        // Put float on stack.
620        reg = VMRegImpl::stack2reg(stk);
621        stk += inc_stk_for_intfloat;
622      }
623      regs[i].set1(reg);
624      break;
625    case T_DOUBLE:
626      assert(sig_bt[i+1] == T_VOID, "expecting half");
627      if (freg < num_java_farg_registers) {
628        // Put double in register.
629        reg = java_farg_reg[freg];
630        ++freg;
631      } else {
632        // Put double on stack. They must be aligned to 2 slots.
633        if (stk & 0x1) ++stk;
634        reg = VMRegImpl::stack2reg(stk);
635        stk += inc_stk_for_longdouble;
636      }
637      regs[i].set2(reg);
638      break;
639    case T_VOID:
640      // Do not count halves.
641      regs[i].set_bad();
642      break;
643    default:
644      ShouldNotReachHere();
645    }
646  }
647  return round_to(stk, 2);
648}
649
650#ifdef COMPILER2
651// Calling convention for calling C code.
652int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
653                                        VMRegPair *regs,
654                                        VMRegPair *regs2,
655                                        int total_args_passed) {
656  // Calling conventions for C runtime calls and calls to JNI native methods.
657  //
658  // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
659  // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
660  // the first 13 flt/dbl's in the first 13 fp regs but additionally
661  // copy flt/dbl to the stack if they are beyond the 8th argument.
662
663  const VMReg iarg_reg[8] = {
664    R3->as_VMReg(),
665    R4->as_VMReg(),
666    R5->as_VMReg(),
667    R6->as_VMReg(),
668    R7->as_VMReg(),
669    R8->as_VMReg(),
670    R9->as_VMReg(),
671    R10->as_VMReg()
672  };
673
674  const VMReg farg_reg[13] = {
675    F1->as_VMReg(),
676    F2->as_VMReg(),
677    F3->as_VMReg(),
678    F4->as_VMReg(),
679    F5->as_VMReg(),
680    F6->as_VMReg(),
681    F7->as_VMReg(),
682    F8->as_VMReg(),
683    F9->as_VMReg(),
684    F10->as_VMReg(),
685    F11->as_VMReg(),
686    F12->as_VMReg(),
687    F13->as_VMReg()
688  };
689
690  const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
691  const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
692
693  // The first 8 arguments are not passed on the stack.
694  const int num_args_in_regs = 8;
695#define put_arg_in_reg(arg) ((arg) < num_args_in_regs)
696
697  // Check calling conventions consistency.
698  assert(num_iarg_registers == num_args_in_regs
699         && num_iarg_registers == 8
700         && num_farg_registers == 13,
701         "consistency");
702
703  // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
704  // 2 such slots, like 64 bit values do.
705  const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
706  const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
707
708  int ill_i = 0;
709  int ill_t = 0;
710  int i;
711  VMReg reg;
712  // Leave room for C-compatible ABI_112.
713  int stk = (frame::abi_112_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
714  int arg = 0;
715  int freg = 0;
716
717  // Avoid passing C arguments in the wrong stack slots.
718  assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
719         "passing C arguments in wrong stack slots");
720
721  // We fill-out regs AND regs2 if an argument must be passed in a
722  // register AND in a stack slot. If regs2 is NULL in such a
723  // situation, we bail-out with a fatal error.
724  for (int i = 0; i < total_args_passed; ++i, ++arg) {
725    // Initialize regs2 to BAD.
726    if (regs2 != NULL) regs2[i].set_bad();
727
728    switch(sig_bt[i]) {
729    case T_BOOLEAN:
730    case T_CHAR:
731    case T_BYTE:
732    case T_SHORT:
733    case T_INT:
734      // We must cast ints to longs and use full 64 bit stack slots
735      // here. We do the cast in GraphKit::gen_stub() and just guard
736      // here against loosing that change.
737      assert(CCallingConventionRequiresIntsAsLongs,
738             "argument of type int should be promoted to type long");
739      guarantee(i > 0 && sig_bt[i-1] == T_LONG,
740                "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in "
741                "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
742      // Do not count halves.
743      regs[i].set_bad();
744      --arg;
745      break;
746    case T_LONG:
747      guarantee(sig_bt[i+1] == T_VOID    ||
748                sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR  ||
749                sig_bt[i+1] == T_BYTE    || sig_bt[i+1] == T_SHORT ||
750                sig_bt[i+1] == T_INT,
751                "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
752    case T_OBJECT:
753    case T_ARRAY:
754    case T_ADDRESS:
755    case T_METADATA:
756      // Oops are already boxed if required (JNI).
757      if (put_arg_in_reg(arg)) {
758        reg = iarg_reg[arg];
759      } else {
760        reg = VMRegImpl::stack2reg(stk);
761        stk += inc_stk_for_longdouble;
762      }
763      regs[i].set2(reg);
764      break;
765    case T_FLOAT:
766      if (put_arg_in_reg(arg)) {
767        reg = farg_reg[freg];
768      } else {
769        // Put float on stack
770#       if defined(LINUX)
771        reg = VMRegImpl::stack2reg(stk+1);
772#       elif defined(AIX)
773        reg = VMRegImpl::stack2reg(stk);
774#       else
775#       error "unknown OS"
776#       endif
777        stk += inc_stk_for_intfloat;
778      }
779
780      if (freg < num_farg_registers) {
781        // There are still some float argument registers left. Put the
782        // float in a register if not already done.
783        if (reg != farg_reg[freg]) {
784          guarantee(regs2 != NULL, "must pass float in register and stack slot");
785          VMReg reg2 = farg_reg[freg];
786          regs2[i].set1(reg2);
787        }
788        ++freg;
789      }
790
791      regs[i].set1(reg);
792      break;
793    case T_DOUBLE:
794      assert(sig_bt[i+1] == T_VOID, "expecting half");
795      if (put_arg_in_reg(arg)) {
796        reg = farg_reg[freg];
797      } else {
798        // Put double on stack.
799        reg = VMRegImpl::stack2reg(stk);
800        stk += inc_stk_for_longdouble;
801      }
802
803      if (freg < num_farg_registers) {
804        // There are still some float argument registers left. Put the
805        // float in a register if not already done.
806        if (reg != farg_reg[freg]) {
807          guarantee(regs2 != NULL, "must pass float in register and stack slot");
808          VMReg reg2 = farg_reg[freg];
809          regs2[i].set2(reg2);
810        }
811        ++freg;
812      }
813
814      regs[i].set2(reg);
815      break;
816    case T_VOID:
817      // Do not count halves.
818      regs[i].set_bad();
819      --arg;
820      break;
821    default:
822      ShouldNotReachHere();
823    }
824  }
825
826  return round_to(stk, 2);
827}
828#endif // COMPILER2
829
830static address gen_c2i_adapter(MacroAssembler *masm,
831                            int total_args_passed,
832                            int comp_args_on_stack,
833                            const BasicType *sig_bt,
834                            const VMRegPair *regs,
835                            Label& call_interpreter,
836                            const Register& ientry) {
837
838  address c2i_entrypoint;
839
840  const Register sender_SP = R21_sender_SP; // == R21_tmp1
841  const Register code      = R22_tmp2;
842  //const Register ientry  = R23_tmp3;
843  const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
844  const int num_value_regs = sizeof(value_regs) / sizeof(Register);
845  int value_regs_index = 0;
846
847  const Register return_pc = R27_tmp7;
848  const Register tmp       = R28_tmp8;
849
850  assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
851
852  // Adapter needs TOP_IJAVA_FRAME_ABI.
853  const int adapter_size = frame::top_ijava_frame_abi_size +
854                           round_to(total_args_passed * wordSize, frame::alignment_in_bytes);
855
856  // regular (verified) c2i entry point
857  c2i_entrypoint = __ pc();
858
859  // Does compiled code exists? If yes, patch the caller's callsite.
860  __ ld(code, method_(code));
861  __ cmpdi(CCR0, code, 0);
862  __ ld(ientry, method_(interpreter_entry)); // preloaded
863  __ beq(CCR0, call_interpreter);
864
865
866  // Patch caller's callsite, method_(code) was not NULL which means that
867  // compiled code exists.
868  __ mflr(return_pc);
869  __ std(return_pc, _abi(lr), R1_SP);
870  RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
871
872  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
873
874  RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
875  __ ld(return_pc, _abi(lr), R1_SP);
876  __ ld(ientry, method_(interpreter_entry)); // preloaded
877  __ mtlr(return_pc);
878
879
880  // call the interpreter
881  __ BIND(call_interpreter);
882  __ mtctr(ientry);
883
884  // Get a copy of the current SP for loading caller's arguments.
885  __ mr(sender_SP, R1_SP);
886
887  // Add space for the adapter.
888  __ resize_frame(-adapter_size, R12_scratch2);
889
890  int st_off = adapter_size - wordSize;
891
892  // Write the args into the outgoing interpreter space.
893  for (int i = 0; i < total_args_passed; i++) {
894    VMReg r_1 = regs[i].first();
895    VMReg r_2 = regs[i].second();
896    if (!r_1->is_valid()) {
897      assert(!r_2->is_valid(), "");
898      continue;
899    }
900    if (r_1->is_stack()) {
901      Register tmp_reg = value_regs[value_regs_index];
902      value_regs_index = (value_regs_index + 1) % num_value_regs;
903      // The calling convention produces OptoRegs that ignore the out
904      // preserve area (JIT's ABI). We must account for it here.
905      int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
906      if (!r_2->is_valid()) {
907        __ lwz(tmp_reg, ld_off, sender_SP);
908      } else {
909        __ ld(tmp_reg, ld_off, sender_SP);
910      }
911      // Pretend stack targets were loaded into tmp_reg.
912      r_1 = tmp_reg->as_VMReg();
913    }
914
915    if (r_1->is_Register()) {
916      Register r = r_1->as_Register();
917      if (!r_2->is_valid()) {
918        __ stw(r, st_off, R1_SP);
919        st_off-=wordSize;
920      } else {
921        // Longs are given 2 64-bit slots in the interpreter, but the
922        // data is passed in only 1 slot.
923        if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
924          DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
925          st_off-=wordSize;
926        }
927        __ std(r, st_off, R1_SP);
928        st_off-=wordSize;
929      }
930    } else {
931      assert(r_1->is_FloatRegister(), "");
932      FloatRegister f = r_1->as_FloatRegister();
933      if (!r_2->is_valid()) {
934        __ stfs(f, st_off, R1_SP);
935        st_off-=wordSize;
936      } else {
937        // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
938        // data is passed in only 1 slot.
939        // One of these should get known junk...
940        DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
941        st_off-=wordSize;
942        __ stfd(f, st_off, R1_SP);
943        st_off-=wordSize;
944      }
945    }
946  }
947
948  // Jump to the interpreter just as if interpreter was doing it.
949
950  // load TOS
951  __ addi(R17_tos, R1_SP, st_off);
952
953  // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
954  assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
955  __ bctr();
956
957  return c2i_entrypoint;
958}
959
960static void gen_i2c_adapter(MacroAssembler *masm,
961                            int total_args_passed,
962                            int comp_args_on_stack,
963                            const BasicType *sig_bt,
964                            const VMRegPair *regs) {
965
966  // Load method's entry-point from methodOop.
967  __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
968  __ mtctr(R12_scratch2);
969
970  // We will only enter here from an interpreted frame and never from after
971  // passing thru a c2i. Azul allowed this but we do not. If we lose the
972  // race and use a c2i we will remain interpreted for the race loser(s).
973  // This removes all sorts of headaches on the x86 side and also eliminates
974  // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
975
976  // Note: r13 contains the senderSP on entry. We must preserve it since
977  // we may do a i2c -> c2i transition if we lose a race where compiled
978  // code goes non-entrant while we get args ready.
979  // In addition we use r13 to locate all the interpreter args as
980  // we must align the stack to 16 bytes on an i2c entry else we
981  // lose alignment we expect in all compiled code and register
982  // save code can segv when fxsave instructions find improperly
983  // aligned stack pointer.
984
985  const Register ld_ptr = R17_tos;
986  const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
987  const int num_value_regs = sizeof(value_regs) / sizeof(Register);
988  int value_regs_index = 0;
989
990  int ld_offset = total_args_passed*wordSize;
991
992  // Cut-out for having no stack args. Since up to 2 int/oop args are passed
993  // in registers, we will occasionally have no stack args.
994  int comp_words_on_stack = 0;
995  if (comp_args_on_stack) {
996    // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
997    // registers are below. By subtracting stack0, we either get a negative
998    // number (all values in registers) or the maximum stack slot accessed.
999
1000    // Convert 4-byte c2 stack slots to words.
1001    comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1002    // Round up to miminum stack alignment, in wordSize.
1003    comp_words_on_stack = round_to(comp_words_on_stack, 2);
1004    __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
1005  }
1006
1007  // Now generate the shuffle code.  Pick up all register args and move the
1008  // rest through register value=Z_R12.
1009  BLOCK_COMMENT("Shuffle arguments");
1010  for (int i = 0; i < total_args_passed; i++) {
1011    if (sig_bt[i] == T_VOID) {
1012      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1013      continue;
1014    }
1015
1016    // Pick up 0, 1 or 2 words from ld_ptr.
1017    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
1018            "scrambled load targets?");
1019    VMReg r_1 = regs[i].first();
1020    VMReg r_2 = regs[i].second();
1021    if (!r_1->is_valid()) {
1022      assert(!r_2->is_valid(), "");
1023      continue;
1024    }
1025    if (r_1->is_FloatRegister()) {
1026      if (!r_2->is_valid()) {
1027        __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
1028        ld_offset-=wordSize;
1029      } else {
1030        // Skip the unused interpreter slot.
1031        __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
1032        ld_offset-=2*wordSize;
1033      }
1034    } else {
1035      Register r;
1036      if (r_1->is_stack()) {
1037        // Must do a memory to memory move thru "value".
1038        r = value_regs[value_regs_index];
1039        value_regs_index = (value_regs_index + 1) % num_value_regs;
1040      } else {
1041        r = r_1->as_Register();
1042      }
1043      if (!r_2->is_valid()) {
1044        // Not sure we need to do this but it shouldn't hurt.
1045        if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
1046          __ ld(r, ld_offset, ld_ptr);
1047          ld_offset-=wordSize;
1048        } else {
1049          __ lwz(r, ld_offset, ld_ptr);
1050          ld_offset-=wordSize;
1051        }
1052      } else {
1053        // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
1054        // data is passed in only 1 slot.
1055        if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1056          ld_offset-=wordSize;
1057        }
1058        __ ld(r, ld_offset, ld_ptr);
1059        ld_offset-=wordSize;
1060      }
1061
1062      if (r_1->is_stack()) {
1063        // Now store value where the compiler expects it
1064        int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
1065
1066        if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
1067            sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
1068          __ stw(r, st_off, R1_SP);
1069        } else {
1070          __ std(r, st_off, R1_SP);
1071        }
1072      }
1073    }
1074  }
1075
1076  BLOCK_COMMENT("Store method oop");
1077  // Store method oop into thread->callee_target.
1078  // We might end up in handle_wrong_method if the callee is
1079  // deoptimized as we race thru here. If that happens we don't want
1080  // to take a safepoint because the caller frame will look
1081  // interpreted and arguments are now "compiled" so it is much better
1082  // to make this transition invisible to the stack walking
1083  // code. Unfortunately if we try and find the callee by normal means
1084  // a safepoint is possible. So we stash the desired callee in the
1085  // thread and the vm will find there should this case occur.
1086  __ std(R19_method, thread_(callee_target));
1087
1088  // Jump to the compiled code just as if compiled code was doing it.
1089  __ bctr();
1090}
1091
1092AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1093                                                            int total_args_passed,
1094                                                            int comp_args_on_stack,
1095                                                            const BasicType *sig_bt,
1096                                                            const VMRegPair *regs,
1097                                                            AdapterFingerPrint* fingerprint) {
1098  address i2c_entry;
1099  address c2i_unverified_entry;
1100  address c2i_entry;
1101
1102
1103  // entry: i2c
1104
1105  __ align(CodeEntryAlignment);
1106  i2c_entry = __ pc();
1107  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1108
1109
1110  // entry: c2i unverified
1111
1112  __ align(CodeEntryAlignment);
1113  BLOCK_COMMENT("c2i unverified entry");
1114  c2i_unverified_entry = __ pc();
1115
1116  // inline_cache contains a compiledICHolder
1117  const Register ic             = R19_method;
1118  const Register ic_klass       = R11_scratch1;
1119  const Register receiver_klass = R12_scratch2;
1120  const Register code           = R21_tmp1;
1121  const Register ientry         = R23_tmp3;
1122
1123  assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
1124  assert(R11_scratch1 == R11, "need prologue scratch register");
1125
1126  Label call_interpreter;
1127
1128  assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
1129         "klass offset should reach into any page");
1130  // Check for NULL argument if we don't have implicit null checks.
1131  if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1132    if (TrapBasedNullChecks) {
1133      __ trap_null_check(R3_ARG1);
1134    } else {
1135      Label valid;
1136      __ cmpdi(CCR0, R3_ARG1, 0);
1137      __ bne_predict_taken(CCR0, valid);
1138      // We have a null argument, branch to ic_miss_stub.
1139      __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1140                           relocInfo::runtime_call_type);
1141      __ BIND(valid);
1142    }
1143  }
1144  // Assume argument is not NULL, load klass from receiver.
1145  __ load_klass(receiver_klass, R3_ARG1);
1146
1147  __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
1148
1149  if (TrapBasedICMissChecks) {
1150    __ trap_ic_miss_check(receiver_klass, ic_klass);
1151  } else {
1152    Label valid;
1153    __ cmpd(CCR0, receiver_klass, ic_klass);
1154    __ beq_predict_taken(CCR0, valid);
1155    // We have an unexpected klass, branch to ic_miss_stub.
1156    __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1157                         relocInfo::runtime_call_type);
1158    __ BIND(valid);
1159  }
1160
1161  // Argument is valid and klass is as expected, continue.
1162
1163  // Extract method from inline cache, verified entry point needs it.
1164  __ ld(R19_method, CompiledICHolder::holder_method_offset(), ic);
1165  assert(R19_method == ic, "the inline cache register is dead here");
1166
1167  __ ld(code, method_(code));
1168  __ cmpdi(CCR0, code, 0);
1169  __ ld(ientry, method_(interpreter_entry)); // preloaded
1170  __ beq_predict_taken(CCR0, call_interpreter);
1171
1172  // Branch to ic_miss_stub.
1173  __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1174                       relocInfo::runtime_call_type);
1175
1176  // entry: c2i
1177
1178  c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
1179
1180  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
1181}
1182
1183#ifdef COMPILER2
1184// An oop arg. Must pass a handle not the oop itself.
1185static void object_move(MacroAssembler* masm,
1186                        int frame_size_in_slots,
1187                        OopMap* oop_map, int oop_handle_offset,
1188                        bool is_receiver, int* receiver_offset,
1189                        VMRegPair src, VMRegPair dst,
1190                        Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
1191  assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
1192         "receiver has already been moved");
1193
1194  // We must pass a handle. First figure out the location we use as a handle.
1195
1196  if (src.first()->is_stack()) {
1197    // stack to stack or reg
1198
1199    const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1200    Label skip;
1201    const int oop_slot_in_callers_frame = reg2slot(src.first());
1202
1203    guarantee(!is_receiver, "expecting receiver in register");
1204    oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
1205
1206    __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
1207    __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
1208    __ cmpdi(CCR0, r_temp_2, 0);
1209    __ bne(CCR0, skip);
1210    // Use a NULL handle if oop is NULL.
1211    __ li(r_handle, 0);
1212    __ bind(skip);
1213
1214    if (dst.first()->is_stack()) {
1215      // stack to stack
1216      __ std(r_handle, reg2offset(dst.first()), R1_SP);
1217    } else {
1218      // stack to reg
1219      // Nothing to do, r_handle is already the dst register.
1220    }
1221  } else {
1222    // reg to stack or reg
1223    const Register r_oop      = src.first()->as_Register();
1224    const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1225    const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
1226                                + oop_handle_offset; // in slots
1227    const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
1228    Label skip;
1229
1230    if (is_receiver) {
1231      *receiver_offset = oop_offset;
1232    }
1233    oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
1234
1235    __ std( r_oop,    oop_offset, R1_SP);
1236    __ addi(r_handle, R1_SP, oop_offset);
1237
1238    __ cmpdi(CCR0, r_oop, 0);
1239    __ bne(CCR0, skip);
1240    // Use a NULL handle if oop is NULL.
1241    __ li(r_handle, 0);
1242    __ bind(skip);
1243
1244    if (dst.first()->is_stack()) {
1245      // reg to stack
1246      __ std(r_handle, reg2offset(dst.first()), R1_SP);
1247    } else {
1248      // reg to reg
1249      // Nothing to do, r_handle is already the dst register.
1250    }
1251  }
1252}
1253
1254static void int_move(MacroAssembler*masm,
1255                     VMRegPair src, VMRegPair dst,
1256                     Register r_caller_sp, Register r_temp) {
1257  assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int");
1258  assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1259
1260  if (src.first()->is_stack()) {
1261    if (dst.first()->is_stack()) {
1262      // stack to stack
1263      __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
1264      __ std(r_temp, reg2offset(dst.first()), R1_SP);
1265    } else {
1266      // stack to reg
1267      __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1268    }
1269  } else if (dst.first()->is_stack()) {
1270    // reg to stack
1271    __ extsw(r_temp, src.first()->as_Register());
1272    __ std(r_temp, reg2offset(dst.first()), R1_SP);
1273  } else {
1274    // reg to reg
1275    __ extsw(dst.first()->as_Register(), src.first()->as_Register());
1276  }
1277}
1278
1279static void long_move(MacroAssembler*masm,
1280                      VMRegPair src, VMRegPair dst,
1281                      Register r_caller_sp, Register r_temp) {
1282  assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
1283  assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1284
1285  if (src.first()->is_stack()) {
1286    if (dst.first()->is_stack()) {
1287      // stack to stack
1288      __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1289      __ std(r_temp, reg2offset(dst.first()), R1_SP);
1290    } else {
1291      // stack to reg
1292      __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1293    }
1294  } else if (dst.first()->is_stack()) {
1295    // reg to stack
1296    __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
1297  } else {
1298    // reg to reg
1299    if (dst.first()->as_Register() != src.first()->as_Register())
1300      __ mr(dst.first()->as_Register(), src.first()->as_Register());
1301  }
1302}
1303
1304static void float_move(MacroAssembler*masm,
1305                       VMRegPair src, VMRegPair dst,
1306                       Register r_caller_sp, Register r_temp) {
1307  assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
1308  assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
1309
1310  if (src.first()->is_stack()) {
1311    if (dst.first()->is_stack()) {
1312      // stack to stack
1313      __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
1314      __ stw(r_temp, reg2offset(dst.first()), R1_SP);
1315    } else {
1316      // stack to reg
1317      __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1318    }
1319  } else if (dst.first()->is_stack()) {
1320    // reg to stack
1321    __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1322  } else {
1323    // reg to reg
1324    if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1325      __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1326  }
1327}
1328
1329static void double_move(MacroAssembler*masm,
1330                        VMRegPair src, VMRegPair dst,
1331                        Register r_caller_sp, Register r_temp) {
1332  assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
1333  assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
1334
1335  if (src.first()->is_stack()) {
1336    if (dst.first()->is_stack()) {
1337      // stack to stack
1338      __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1339      __ std(r_temp, reg2offset(dst.first()), R1_SP);
1340    } else {
1341      // stack to reg
1342      __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1343    }
1344  } else if (dst.first()->is_stack()) {
1345    // reg to stack
1346    __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1347  } else {
1348    // reg to reg
1349    if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1350      __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1351  }
1352}
1353
1354void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1355  switch (ret_type) {
1356    case T_BOOLEAN:
1357    case T_CHAR:
1358    case T_BYTE:
1359    case T_SHORT:
1360    case T_INT:
1361      __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1362      break;
1363    case T_ARRAY:
1364    case T_OBJECT:
1365    case T_LONG:
1366      __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1367      break;
1368    case T_FLOAT:
1369      __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1370      break;
1371    case T_DOUBLE:
1372      __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1373      break;
1374    case T_VOID:
1375      break;
1376    default:
1377      ShouldNotReachHere();
1378      break;
1379  }
1380}
1381
1382void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1383  switch (ret_type) {
1384    case T_BOOLEAN:
1385    case T_CHAR:
1386    case T_BYTE:
1387    case T_SHORT:
1388    case T_INT:
1389      __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1390      break;
1391    case T_ARRAY:
1392    case T_OBJECT:
1393    case T_LONG:
1394      __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1395      break;
1396    case T_FLOAT:
1397      __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1398      break;
1399    case T_DOUBLE:
1400      __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1401      break;
1402    case T_VOID:
1403      break;
1404    default:
1405      ShouldNotReachHere();
1406      break;
1407  }
1408}
1409
1410static void save_or_restore_arguments(MacroAssembler* masm,
1411                                      const int stack_slots,
1412                                      const int total_in_args,
1413                                      const int arg_save_area,
1414                                      OopMap* map,
1415                                      VMRegPair* in_regs,
1416                                      BasicType* in_sig_bt) {
1417  // If map is non-NULL then the code should store the values,
1418  // otherwise it should load them.
1419  int slot = arg_save_area;
1420  // Save down double word first.
1421  for (int i = 0; i < total_in_args; i++) {
1422    if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
1423      int offset = slot * VMRegImpl::stack_slot_size;
1424      slot += VMRegImpl::slots_per_word;
1425      assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
1426      if (map != NULL) {
1427        __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1428      } else {
1429        __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1430      }
1431    } else if (in_regs[i].first()->is_Register() &&
1432        (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1433      int offset = slot * VMRegImpl::stack_slot_size;
1434      if (map != NULL) {
1435        __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
1436        if (in_sig_bt[i] == T_ARRAY) {
1437          map->set_oop(VMRegImpl::stack2reg(slot));
1438        }
1439      } else {
1440        __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
1441      }
1442      slot += VMRegImpl::slots_per_word;
1443      assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
1444    }
1445  }
1446  // Save or restore single word registers.
1447  for (int i = 0; i < total_in_args; i++) {
1448    // PPC64: pass ints as longs: must only deal with floats here.
1449    if (in_regs[i].first()->is_FloatRegister()) {
1450      if (in_sig_bt[i] == T_FLOAT) {
1451        int offset = slot * VMRegImpl::stack_slot_size;
1452        slot++;
1453        assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
1454        if (map != NULL) {
1455          __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1456        } else {
1457          __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
1458        }
1459      }
1460    } else if (in_regs[i].first()->is_stack()) {
1461      if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1462        int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1463        map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1464      }
1465    }
1466  }
1467}
1468
1469// Check GC_locker::needs_gc and enter the runtime if it's true. This
1470// keeps a new JNI critical region from starting until a GC has been
1471// forced. Save down any oops in registers and describe them in an
1472// OopMap.
1473static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1474                                               const int stack_slots,
1475                                               const int total_in_args,
1476                                               const int arg_save_area,
1477                                               OopMapSet* oop_maps,
1478                                               VMRegPair* in_regs,
1479                                               BasicType* in_sig_bt,
1480                                               Register tmp_reg ) {
1481  __ block_comment("check GC_locker::needs_gc");
1482  Label cont;
1483  __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address());
1484  __ cmplwi(CCR0, tmp_reg, 0);
1485  __ beq(CCR0, cont);
1486
1487  // Save down any values that are live in registers and call into the
1488  // runtime to halt for a GC.
1489  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1490  save_or_restore_arguments(masm, stack_slots, total_in_args,
1491                            arg_save_area, map, in_regs, in_sig_bt);
1492
1493  __ mr(R3_ARG1, R16_thread);
1494  __ set_last_Java_frame(R1_SP, noreg);
1495
1496  __ block_comment("block_for_jni_critical");
1497  address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
1498  __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
1499  address start           = __ pc() - __ offset(),
1500          calls_return_pc = __ last_calls_return_pc();
1501  oop_maps->add_gc_map(calls_return_pc - start, map);
1502
1503  __ reset_last_Java_frame();
1504
1505  // Reload all the register arguments.
1506  save_or_restore_arguments(masm, stack_slots, total_in_args,
1507                            arg_save_area, NULL, in_regs, in_sig_bt);
1508
1509  __ BIND(cont);
1510
1511#ifdef ASSERT
1512  if (StressCriticalJNINatives) {
1513    // Stress register saving.
1514    OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1515    save_or_restore_arguments(masm, stack_slots, total_in_args,
1516                              arg_save_area, map, in_regs, in_sig_bt);
1517    // Destroy argument registers.
1518    for (int i = 0; i < total_in_args; i++) {
1519      if (in_regs[i].first()->is_Register()) {
1520        const Register reg = in_regs[i].first()->as_Register();
1521        __ neg(reg, reg);
1522      } else if (in_regs[i].first()->is_FloatRegister()) {
1523        __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
1524      }
1525    }
1526
1527    save_or_restore_arguments(masm, stack_slots, total_in_args,
1528                              arg_save_area, NULL, in_regs, in_sig_bt);
1529  }
1530#endif
1531}
1532
1533static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
1534  if (src.first()->is_stack()) {
1535    if (dst.first()->is_stack()) {
1536      // stack to stack
1537      __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
1538      __ std(r_temp, reg2offset(dst.first()), R1_SP);
1539    } else {
1540      // stack to reg
1541      __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1542    }
1543  } else if (dst.first()->is_stack()) {
1544    // reg to stack
1545    __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
1546  } else {
1547    if (dst.first() != src.first()) {
1548      __ mr(dst.first()->as_Register(), src.first()->as_Register());
1549    }
1550  }
1551}
1552
1553// Unpack an array argument into a pointer to the body and the length
1554// if the array is non-null, otherwise pass 0 for both.
1555static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
1556                                  VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
1557                                  Register tmp_reg, Register tmp2_reg) {
1558  assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1559         "possible collision");
1560  assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1561         "possible collision");
1562
1563  // Pass the length, ptr pair.
1564  Label set_out_args;
1565  VMRegPair tmp, tmp2;
1566  tmp.set_ptr(tmp_reg->as_VMReg());
1567  tmp2.set_ptr(tmp2_reg->as_VMReg());
1568  if (reg.first()->is_stack()) {
1569    // Load the arg up from the stack.
1570    move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
1571    reg = tmp;
1572  }
1573  __ li(tmp2_reg, 0); // Pass zeros if Array=null.
1574  if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
1575  __ cmpdi(CCR0, reg.first()->as_Register(), 0);
1576  __ beq(CCR0, set_out_args);
1577  __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
1578  __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
1579  __ bind(set_out_args);
1580  move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
1581  move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
1582}
1583
1584static void verify_oop_args(MacroAssembler* masm,
1585                            methodHandle method,
1586                            const BasicType* sig_bt,
1587                            const VMRegPair* regs) {
1588  Register temp_reg = R19_method;  // not part of any compiled calling seq
1589  if (VerifyOops) {
1590    for (int i = 0; i < method->size_of_parameters(); i++) {
1591      if (sig_bt[i] == T_OBJECT ||
1592          sig_bt[i] == T_ARRAY) {
1593        VMReg r = regs[i].first();
1594        assert(r->is_valid(), "bad oop arg");
1595        if (r->is_stack()) {
1596          __ ld(temp_reg, reg2offset(r), R1_SP);
1597          __ verify_oop(temp_reg);
1598        } else {
1599          __ verify_oop(r->as_Register());
1600        }
1601      }
1602    }
1603  }
1604}
1605
1606static void gen_special_dispatch(MacroAssembler* masm,
1607                                 methodHandle method,
1608                                 const BasicType* sig_bt,
1609                                 const VMRegPair* regs) {
1610  verify_oop_args(masm, method, sig_bt, regs);
1611  vmIntrinsics::ID iid = method->intrinsic_id();
1612
1613  // Now write the args into the outgoing interpreter space
1614  bool     has_receiver   = false;
1615  Register receiver_reg   = noreg;
1616  int      member_arg_pos = -1;
1617  Register member_reg     = noreg;
1618  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1619  if (ref_kind != 0) {
1620    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1621    member_reg = R19_method;  // known to be free at this point
1622    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1623  } else if (iid == vmIntrinsics::_invokeBasic) {
1624    has_receiver = true;
1625  } else {
1626    fatal(err_msg_res("unexpected intrinsic id %d", iid));
1627  }
1628
1629  if (member_reg != noreg) {
1630    // Load the member_arg into register, if necessary.
1631    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1632    VMReg r = regs[member_arg_pos].first();
1633    if (r->is_stack()) {
1634      __ ld(member_reg, reg2offset(r), R1_SP);
1635    } else {
1636      // no data motion is needed
1637      member_reg = r->as_Register();
1638    }
1639  }
1640
1641  if (has_receiver) {
1642    // Make sure the receiver is loaded into a register.
1643    assert(method->size_of_parameters() > 0, "oob");
1644    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1645    VMReg r = regs[0].first();
1646    assert(r->is_valid(), "bad receiver arg");
1647    if (r->is_stack()) {
1648      // Porting note:  This assumes that compiled calling conventions always
1649      // pass the receiver oop in a register.  If this is not true on some
1650      // platform, pick a temp and load the receiver from stack.
1651      fatal("receiver always in a register");
1652      receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
1653      __ ld(receiver_reg, reg2offset(r), R1_SP);
1654    } else {
1655      // no data motion is needed
1656      receiver_reg = r->as_Register();
1657    }
1658  }
1659
1660  // Figure out which address we are really jumping to:
1661  MethodHandles::generate_method_handle_dispatch(masm, iid,
1662                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1663}
1664
1665#endif // COMPILER2
1666
1667// ---------------------------------------------------------------------------
1668// Generate a native wrapper for a given method. The method takes arguments
1669// in the Java compiled code convention, marshals them to the native
1670// convention (handlizes oops, etc), transitions to native, makes the call,
1671// returns to java state (possibly blocking), unhandlizes any result and
1672// returns.
1673//
1674// Critical native functions are a shorthand for the use of
1675// GetPrimtiveArrayCritical and disallow the use of any other JNI
1676// functions.  The wrapper is expected to unpack the arguments before
1677// passing them to the callee and perform checks before and after the
1678// native call to ensure that they GC_locker
1679// lock_critical/unlock_critical semantics are followed.  Some other
1680// parts of JNI setup are skipped like the tear down of the JNI handle
1681// block and the check for pending exceptions it's impossible for them
1682// to be thrown.
1683//
1684// They are roughly structured like this:
1685//   if (GC_locker::needs_gc())
1686//     SharedRuntime::block_for_jni_critical();
1687//   tranistion to thread_in_native
1688//   unpack arrray arguments and call native entry point
1689//   check for safepoint in progress
1690//   check if any thread suspend flags are set
1691//     call into JVM and possible unlock the JNI critical
1692//     if a GC was suppressed while in the critical native.
1693//   transition back to thread_in_Java
1694//   return to caller
1695//
1696nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
1697                                                methodHandle method,
1698                                                int compile_id,
1699                                                BasicType *in_sig_bt,
1700                                                VMRegPair *in_regs,
1701                                                BasicType ret_type) {
1702#ifdef COMPILER2
1703  if (method->is_method_handle_intrinsic()) {
1704    vmIntrinsics::ID iid = method->intrinsic_id();
1705    intptr_t start = (intptr_t)__ pc();
1706    int vep_offset = ((intptr_t)__ pc()) - start;
1707    gen_special_dispatch(masm,
1708                         method,
1709                         in_sig_bt,
1710                         in_regs);
1711    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1712    __ flush();
1713    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1714    return nmethod::new_native_nmethod(method,
1715                                       compile_id,
1716                                       masm->code(),
1717                                       vep_offset,
1718                                       frame_complete,
1719                                       stack_slots / VMRegImpl::slots_per_word,
1720                                       in_ByteSize(-1),
1721                                       in_ByteSize(-1),
1722                                       (OopMapSet*)NULL);
1723  }
1724
1725  bool is_critical_native = true;
1726  address native_func = method->critical_native_function();
1727  if (native_func == NULL) {
1728    native_func = method->native_function();
1729    is_critical_native = false;
1730  }
1731  assert(native_func != NULL, "must have function");
1732
1733  // First, create signature for outgoing C call
1734  // --------------------------------------------------------------------------
1735
1736  int total_in_args = method->size_of_parameters();
1737  // We have received a description of where all the java args are located
1738  // on entry to the wrapper. We need to convert these args to where
1739  // the jni function will expect them. To figure out where they go
1740  // we convert the java signature to a C signature by inserting
1741  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1742  //
1743  // Additionally, on ppc64 we must convert integers to longs in the C
1744  // signature. We do this in advance in order to have no trouble with
1745  // indexes into the bt-arrays.
1746  // So convert the signature and registers now, and adjust the total number
1747  // of in-arguments accordingly.
1748  int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs.
1749
1750  // Calculate the total number of C arguments and create arrays for the
1751  // signature and the outgoing registers.
1752  // On ppc64, we have two arrays for the outgoing registers, because
1753  // some floating-point arguments must be passed in registers _and_
1754  // in stack locations.
1755  bool method_is_static = method->is_static();
1756  int  total_c_args     = i2l_argcnt;
1757
1758  if (!is_critical_native) {
1759    int n_hidden_args = method_is_static ? 2 : 1;
1760    total_c_args += n_hidden_args;
1761  } else {
1762    // No JNIEnv*, no this*, but unpacked arrays (base+length).
1763    for (int i = 0; i < total_in_args; i++) {
1764      if (in_sig_bt[i] == T_ARRAY) {
1765        total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention)
1766      }
1767    }
1768  }
1769
1770  BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1771  VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1772  VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1773  BasicType* in_elem_bt = NULL;
1774
1775  // Create the signature for the C call:
1776  //   1) add the JNIEnv*
1777  //   2) add the class if the method is static
1778  //   3) copy the rest of the incoming signature (shifted by the number of
1779  //      hidden arguments).
1780
1781  int argc = 0;
1782  if (!is_critical_native) {
1783    convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
1784
1785    out_sig_bt[argc++] = T_ADDRESS;
1786    if (method->is_static()) {
1787      out_sig_bt[argc++] = T_OBJECT;
1788    }
1789
1790    for (int i = 0; i < total_in_args ; i++ ) {
1791      out_sig_bt[argc++] = in_sig_bt[i];
1792    }
1793  } else {
1794    Thread* THREAD = Thread::current();
1795    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
1796    SignatureStream ss(method->signature());
1797    int o = 0;
1798    for (int i = 0; i < total_in_args ; i++, o++) {
1799      if (in_sig_bt[i] == T_ARRAY) {
1800        // Arrays are passed as int, elem* pair
1801        Symbol* atype = ss.as_symbol(CHECK_NULL);
1802        const char* at = atype->as_C_string();
1803        if (strlen(at) == 2) {
1804          assert(at[0] == '[', "must be");
1805          switch (at[1]) {
1806            case 'B': in_elem_bt[o] = T_BYTE; break;
1807            case 'C': in_elem_bt[o] = T_CHAR; break;
1808            case 'D': in_elem_bt[o] = T_DOUBLE; break;
1809            case 'F': in_elem_bt[o] = T_FLOAT; break;
1810            case 'I': in_elem_bt[o] = T_INT; break;
1811            case 'J': in_elem_bt[o] = T_LONG; break;
1812            case 'S': in_elem_bt[o] = T_SHORT; break;
1813            case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
1814            default: ShouldNotReachHere();
1815          }
1816        }
1817      } else {
1818        in_elem_bt[o] = T_VOID;
1819        switch(in_sig_bt[i]) { // PPC64: pass ints as longs.
1820          case T_BOOLEAN:
1821          case T_CHAR:
1822          case T_BYTE:
1823          case T_SHORT:
1824          case T_INT: in_elem_bt[++o] = T_VOID; break;
1825          default: break;
1826        }
1827      }
1828      if (in_sig_bt[i] != T_VOID) {
1829        assert(in_sig_bt[i] == ss.type(), "must match");
1830        ss.next();
1831      }
1832    }
1833    assert(i2l_argcnt==o, "must match");
1834
1835    convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
1836
1837    for (int i = 0; i < total_in_args ; i++ ) {
1838      if (in_sig_bt[i] == T_ARRAY) {
1839        // Arrays are passed as int, elem* pair.
1840        out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs.
1841        out_sig_bt[argc++] = T_INT;
1842        out_sig_bt[argc++] = T_ADDRESS;
1843      } else {
1844        out_sig_bt[argc++] = in_sig_bt[i];
1845      }
1846    }
1847  }
1848
1849
1850  // Compute the wrapper's frame size.
1851  // --------------------------------------------------------------------------
1852
1853  // Now figure out where the args must be stored and how much stack space
1854  // they require.
1855  //
1856  // Compute framesize for the wrapper. We need to handlize all oops in
1857  // incoming registers.
1858  //
1859  // Calculate the total number of stack slots we will need:
1860  //   1) abi requirements
1861  //   2) outgoing arguments
1862  //   3) space for inbound oop handle area
1863  //   4) space for handlizing a klass if static method
1864  //   5) space for a lock if synchronized method
1865  //   6) workspace for saving return values, int <-> float reg moves, etc.
1866  //   7) alignment
1867  //
1868  // Layout of the native wrapper frame:
1869  // (stack grows upwards, memory grows downwards)
1870  //
1871  // NW     [ABI_112]                  <-- 1) R1_SP
1872  //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
1873  //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
1874  //        klass                      <-- 4) R1_SP + klass_offset
1875  //        lock                       <-- 5) R1_SP + lock_offset
1876  //        [workspace]                <-- 6) R1_SP + workspace_offset
1877  //        [alignment] (optional)     <-- 7)
1878  // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
1879  //
1880  // - *_slot_offset Indicates offset from SP in number of stack slots.
1881  // - *_offset      Indicates offset from SP in bytes.
1882
1883  int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2)
1884                  + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
1885
1886  // Now the space for the inbound oop handle area.
1887  int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
1888  if (is_critical_native) {
1889    // Critical natives may have to call out so they need a save area
1890    // for register arguments.
1891    int double_slots = 0;
1892    int single_slots = 0;
1893    for (int i = 0; i < total_in_args; i++) {
1894      if (in_regs[i].first()->is_Register()) {
1895        const Register reg = in_regs[i].first()->as_Register();
1896        switch (in_sig_bt[i]) {
1897          case T_BOOLEAN:
1898          case T_BYTE:
1899          case T_SHORT:
1900          case T_CHAR:
1901          case T_INT:  /*single_slots++;*/ break; // PPC64: pass ints as longs.
1902          case T_ARRAY:
1903          case T_LONG: double_slots++; break;
1904          default:  ShouldNotReachHere();
1905        }
1906      } else if (in_regs[i].first()->is_FloatRegister()) {
1907        switch (in_sig_bt[i]) {
1908          case T_FLOAT:  single_slots++; break;
1909          case T_DOUBLE: double_slots++; break;
1910          default:  ShouldNotReachHere();
1911        }
1912      }
1913    }
1914    total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even
1915  }
1916
1917  int oop_handle_slot_offset = stack_slots;
1918  stack_slots += total_save_slots;                                                // 3)
1919
1920  int klass_slot_offset = 0;
1921  int klass_offset      = -1;
1922  if (method_is_static && !is_critical_native) {                                  // 4)
1923    klass_slot_offset  = stack_slots;
1924    klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
1925    stack_slots       += VMRegImpl::slots_per_word;
1926  }
1927
1928  int lock_slot_offset = 0;
1929  int lock_offset      = -1;
1930  if (method->is_synchronized()) {                                                // 5)
1931    lock_slot_offset   = stack_slots;
1932    lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
1933    stack_slots       += VMRegImpl::slots_per_word;
1934  }
1935
1936  int workspace_slot_offset = stack_slots;                                        // 6)
1937  stack_slots         += 2;
1938
1939  // Now compute actual number of stack words we need.
1940  // Rounding to make stack properly aligned.
1941  stack_slots = round_to(stack_slots,                                             // 7)
1942                         frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
1943  int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
1944
1945
1946  // Now we can start generating code.
1947  // --------------------------------------------------------------------------
1948
1949  intptr_t start_pc = (intptr_t)__ pc();
1950  intptr_t vep_start_pc;
1951  intptr_t frame_done_pc;
1952  intptr_t oopmap_pc;
1953
1954  Label    ic_miss;
1955  Label    handle_pending_exception;
1956
1957  Register r_callers_sp = R21;
1958  Register r_temp_1     = R22;
1959  Register r_temp_2     = R23;
1960  Register r_temp_3     = R24;
1961  Register r_temp_4     = R25;
1962  Register r_temp_5     = R26;
1963  Register r_temp_6     = R27;
1964  Register r_return_pc  = R28;
1965
1966  Register r_carg1_jnienv        = noreg;
1967  Register r_carg2_classorobject = noreg;
1968  if (!is_critical_native) {
1969    r_carg1_jnienv        = out_regs[0].first()->as_Register();
1970    r_carg2_classorobject = out_regs[1].first()->as_Register();
1971  }
1972
1973
1974  // Generate the Unverified Entry Point (UEP).
1975  // --------------------------------------------------------------------------
1976  assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
1977
1978  // Check ic: object class == cached class?
1979  if (!method_is_static) {
1980  Register ic = as_Register(Matcher::inline_cache_reg_encode());
1981  Register receiver_klass = r_temp_1;
1982
1983  __ cmpdi(CCR0, R3_ARG1, 0);
1984  __ beq(CCR0, ic_miss);
1985  __ verify_oop(R3_ARG1);
1986  __ load_klass(receiver_klass, R3_ARG1);
1987
1988  __ cmpd(CCR0, receiver_klass, ic);
1989  __ bne(CCR0, ic_miss);
1990  }
1991
1992
1993  // Generate the Verified Entry Point (VEP).
1994  // --------------------------------------------------------------------------
1995  vep_start_pc = (intptr_t)__ pc();
1996
1997  __ save_LR_CR(r_temp_1);
1998  __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
1999  __ mr(r_callers_sp, R1_SP);                       // Remember frame pointer.
2000  __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
2001  frame_done_pc = (intptr_t)__ pc();
2002
2003  // Native nmethod wrappers never take possesion of the oop arguments.
2004  // So the caller will gc the arguments.
2005  // The only thing we need an oopMap for is if the call is static.
2006  //
2007  // An OopMap for lock (and class if static), and one for the VM call itself.
2008  OopMapSet *oop_maps = new OopMapSet();
2009  OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2010
2011  if (is_critical_native) {
2012    check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1);
2013  }
2014
2015  // Move arguments from register/stack to register/stack.
2016  // --------------------------------------------------------------------------
2017  //
2018  // We immediately shuffle the arguments so that for any vm call we have
2019  // to make from here on out (sync slow path, jvmti, etc.) we will have
2020  // captured the oops from our caller and have a valid oopMap for them.
2021  //
2022  // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2023  // (derived from JavaThread* which is in R16_thread) and, if static,
2024  // the class mirror instead of a receiver. This pretty much guarantees that
2025  // register layout will not match. We ignore these extra arguments during
2026  // the shuffle. The shuffle is described by the two calling convention
2027  // vectors we have in our possession. We simply walk the java vector to
2028  // get the source locations and the c vector to get the destinations.
2029
2030  // Record sp-based slot for receiver on stack for non-static methods.
2031  int receiver_offset = -1;
2032
2033  // We move the arguments backward because the floating point registers
2034  // destination will always be to a register with a greater or equal
2035  // register number or the stack.
2036  //   in  is the index of the incoming Java arguments
2037  //   out is the index of the outgoing C arguments
2038
2039#ifdef ASSERT
2040  bool reg_destroyed[RegisterImpl::number_of_registers];
2041  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
2042  for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
2043    reg_destroyed[r] = false;
2044  }
2045  for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
2046    freg_destroyed[f] = false;
2047  }
2048#endif // ASSERT
2049
2050  for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
2051
2052#ifdef ASSERT
2053    if (in_regs[in].first()->is_Register()) {
2054      assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
2055    } else if (in_regs[in].first()->is_FloatRegister()) {
2056      assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
2057    }
2058    if (out_regs[out].first()->is_Register()) {
2059      reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
2060    } else if (out_regs[out].first()->is_FloatRegister()) {
2061      freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
2062    }
2063    if (out_regs2[out].first()->is_Register()) {
2064      reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
2065    } else if (out_regs2[out].first()->is_FloatRegister()) {
2066      freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
2067    }
2068#endif // ASSERT
2069
2070    switch (in_sig_bt[in]) {
2071      case T_BOOLEAN:
2072      case T_CHAR:
2073      case T_BYTE:
2074      case T_SHORT:
2075      case T_INT:
2076        guarantee(in > 0 && in_sig_bt[in-1] == T_LONG,
2077                  "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
2078        break;
2079      case T_LONG:
2080        if (in_sig_bt[in+1] == T_VOID) {
2081          long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2082        } else {
2083          guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR  ||
2084                    in_sig_bt[in+1] == T_BYTE    || in_sig_bt[in+1] == T_SHORT ||
2085                    in_sig_bt[in+1] == T_INT,
2086                 "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
2087          int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2088        }
2089        break;
2090      case T_ARRAY:
2091        if (is_critical_native) {
2092          int body_arg = out;
2093          out -= 2; // Point to length arg. PPC64: pass ints as longs.
2094          unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
2095                                r_callers_sp, r_temp_1, r_temp_2);
2096          break;
2097        }
2098      case T_OBJECT:
2099        assert(!is_critical_native, "no oop arguments");
2100        object_move(masm, stack_slots,
2101                    oop_map, oop_handle_slot_offset,
2102                    ((in == 0) && (!method_is_static)), &receiver_offset,
2103                    in_regs[in], out_regs[out],
2104                    r_callers_sp, r_temp_1, r_temp_2);
2105        break;
2106      case T_VOID:
2107        break;
2108      case T_FLOAT:
2109        float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2110        if (out_regs2[out].first()->is_valid()) {
2111          float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
2112        }
2113        break;
2114      case T_DOUBLE:
2115        double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2116        if (out_regs2[out].first()->is_valid()) {
2117          double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
2118        }
2119        break;
2120      case T_ADDRESS:
2121        fatal("found type (T_ADDRESS) in java args");
2122        break;
2123      default:
2124        ShouldNotReachHere();
2125        break;
2126    }
2127  }
2128
2129  // Pre-load a static method's oop into ARG2.
2130  // Used both by locking code and the normal JNI call code.
2131  if (method_is_static && !is_critical_native) {
2132    __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
2133                        r_carg2_classorobject);
2134
2135    // Now handlize the static class mirror in carg2. It's known not-null.
2136    __ std(r_carg2_classorobject, klass_offset, R1_SP);
2137    oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2138    __ addi(r_carg2_classorobject, R1_SP, klass_offset);
2139  }
2140
2141  // Get JNIEnv* which is first argument to native.
2142  if (!is_critical_native) {
2143    __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
2144  }
2145
2146  // NOTE:
2147  //
2148  // We have all of the arguments setup at this point.
2149  // We MUST NOT touch any outgoing regs from this point on.
2150  // So if we must call out we must push a new frame.
2151
2152  // Get current pc for oopmap, and load it patchable relative to global toc.
2153  oopmap_pc = (intptr_t) __ pc();
2154  __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
2155
2156  // We use the same pc/oopMap repeatedly when we call out.
2157  oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
2158
2159  // r_return_pc now has the pc loaded that we will use when we finally call
2160  // to native.
2161
2162  // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
2163  assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
2164
2165
2166# if 0
2167  // DTrace method entry
2168# endif
2169
2170  // Lock a synchronized method.
2171  // --------------------------------------------------------------------------
2172
2173  if (method->is_synchronized()) {
2174    assert(!is_critical_native, "unhandled");
2175    ConditionRegister r_flag = CCR1;
2176    Register          r_oop  = r_temp_4;
2177    const Register    r_box  = r_temp_5;
2178    Label             done, locked;
2179
2180    // Load the oop for the object or class. r_carg2_classorobject contains
2181    // either the handlized oop from the incoming arguments or the handlized
2182    // class mirror (if the method is static).
2183    __ ld(r_oop, 0, r_carg2_classorobject);
2184
2185    // Get the lock box slot's address.
2186    __ addi(r_box, R1_SP, lock_offset);
2187
2188#   ifdef ASSERT
2189    if (UseBiasedLocking) {
2190      // Making the box point to itself will make it clear it went unused
2191      // but also be obviously invalid.
2192      __ std(r_box, 0, r_box);
2193    }
2194#   endif // ASSERT
2195
2196    // Try fastpath for locking.
2197    // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
2198    __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2199    __ beq(r_flag, locked);
2200
2201    // None of the above fast optimizations worked so we have to get into the
2202    // slow case of monitor enter. Inline a special case of call_VM that
2203    // disallows any pending_exception.
2204
2205    // Save argument registers and leave room for C-compatible ABI_112.
2206    int frame_size = frame::abi_112_size +
2207                     round_to(total_c_args * wordSize, frame::alignment_in_bytes);
2208    __ mr(R11_scratch1, R1_SP);
2209    RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
2210
2211    // Do the call.
2212    __ set_last_Java_frame(R11_scratch1, r_return_pc);
2213    assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
2214    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
2215    __ reset_last_Java_frame();
2216
2217    RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
2218
2219    __ asm_assert_mem8_is_zero(thread_(pending_exception),
2220       "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
2221
2222    __ bind(locked);
2223  }
2224
2225
2226  // Publish thread state
2227  // --------------------------------------------------------------------------
2228
2229  // Use that pc we placed in r_return_pc a while back as the current frame anchor.
2230  __ set_last_Java_frame(R1_SP, r_return_pc);
2231
2232  // Transition from _thread_in_Java to _thread_in_native.
2233  __ li(R0, _thread_in_native);
2234  __ release();
2235  // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2236  __ stw(R0, thread_(thread_state));
2237  if (UseMembar) {
2238    __ fence();
2239  }
2240
2241
2242  // The JNI call
2243  // --------------------------------------------------------------------------
2244
2245  FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
2246  __ call_c(fd_native_method, relocInfo::runtime_call_type);
2247
2248
2249  // Now, we are back from the native code.
2250
2251
2252  // Unpack the native result.
2253  // --------------------------------------------------------------------------
2254
2255  // For int-types, we do any needed sign-extension required.
2256  // Care must be taken that the return values (R3_RET and F1_RET)
2257  // will survive any VM calls for blocking or unlocking.
2258  // An OOP result (handle) is done specially in the slow-path code.
2259
2260  switch (ret_type) {
2261    case T_VOID:    break;        // Nothing to do!
2262    case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
2263    case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
2264    case T_LONG:    break;        // Got it where we want it (unless slow-path).
2265    case T_OBJECT:  break;        // Really a handle.
2266                                  // Cannot de-handlize until after reclaiming jvm_lock.
2267    case T_ARRAY:   break;
2268
2269    case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
2270      Label skip_modify;
2271      __ cmpwi(CCR0, R3_RET, 0);
2272      __ beq(CCR0, skip_modify);
2273      __ li(R3_RET, 1);
2274      __ bind(skip_modify);
2275      break;
2276      }
2277    case T_BYTE: {                // sign extension
2278      __ extsb(R3_RET, R3_RET);
2279      break;
2280      }
2281    case T_CHAR: {                // unsigned result
2282      __ andi(R3_RET, R3_RET, 0xffff);
2283      break;
2284      }
2285    case T_SHORT: {               // sign extension
2286      __ extsh(R3_RET, R3_RET);
2287      break;
2288      }
2289    case T_INT:                   // nothing to do
2290      break;
2291    default:
2292      ShouldNotReachHere();
2293      break;
2294  }
2295
2296
2297  // Publish thread state
2298  // --------------------------------------------------------------------------
2299
2300  // Switch thread to "native transition" state before reading the
2301  // synchronization state. This additional state is necessary because reading
2302  // and testing the synchronization state is not atomic w.r.t. GC, as this
2303  // scenario demonstrates:
2304  //   - Java thread A, in _thread_in_native state, loads _not_synchronized
2305  //     and is preempted.
2306  //   - VM thread changes sync state to synchronizing and suspends threads
2307  //     for GC.
2308  //   - Thread A is resumed to finish this native method, but doesn't block
2309  //     here since it didn't see any synchronization in progress, and escapes.
2310
2311  // Transition from _thread_in_native to _thread_in_native_trans.
2312  __ li(R0, _thread_in_native_trans);
2313  __ release();
2314  // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2315  __ stw(R0, thread_(thread_state));
2316
2317
2318  // Must we block?
2319  // --------------------------------------------------------------------------
2320
2321  // Block, if necessary, before resuming in _thread_in_Java state.
2322  // In order for GC to work, don't clear the last_Java_sp until after blocking.
2323  Label after_transition;
2324  {
2325    Label no_block, sync;
2326
2327    if (os::is_MP()) {
2328      if (UseMembar) {
2329        // Force this write out before the read below.
2330        __ fence();
2331      } else {
2332        // Write serialization page so VM thread can do a pseudo remote membar.
2333        // We use the current thread pointer to calculate a thread specific
2334        // offset to write to within the page. This minimizes bus traffic
2335        // due to cache line collision.
2336        __ serialize_memory(R16_thread, r_temp_4, r_temp_5);
2337      }
2338    }
2339
2340    Register sync_state_addr = r_temp_4;
2341    Register sync_state      = r_temp_5;
2342    Register suspend_flags   = r_temp_6;
2343
2344    __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state);
2345
2346    // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
2347    __ lwz(sync_state, 0, sync_state_addr);
2348
2349    // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
2350    __ lwz(suspend_flags, thread_(suspend_flags));
2351
2352    __ acquire();
2353
2354    Label do_safepoint;
2355    // No synchronization in progress nor yet synchronized.
2356    __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
2357    // Not suspended.
2358    __ cmpwi(CCR1, suspend_flags, 0);
2359
2360    __ bne(CCR0, sync);
2361    __ beq(CCR1, no_block);
2362
2363    // Block. Save any potential method result value before the operation and
2364    // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2365    // lets us share the oopMap we used when we went native rather than create
2366    // a distinct one for this pc.
2367    __ bind(sync);
2368
2369    address entry_point = is_critical_native
2370      ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
2371      : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
2372    save_native_result(masm, ret_type, workspace_slot_offset);
2373    __ call_VM_leaf(entry_point, R16_thread);
2374    restore_native_result(masm, ret_type, workspace_slot_offset);
2375
2376    if (is_critical_native) {
2377      __ b(after_transition); // No thread state transition here.
2378    }
2379    __ bind(no_block);
2380  }
2381
2382  // Publish thread state.
2383  // --------------------------------------------------------------------------
2384
2385  // Thread state is thread_in_native_trans. Any safepoint blocking has
2386  // already happened so we can now change state to _thread_in_Java.
2387
2388  // Transition from _thread_in_native_trans to _thread_in_Java.
2389  __ li(R0, _thread_in_Java);
2390  __ release();
2391  // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2392  __ stw(R0, thread_(thread_state));
2393  if (UseMembar) {
2394    __ fence();
2395  }
2396  __ bind(after_transition);
2397
2398  // Reguard any pages if necessary.
2399  // --------------------------------------------------------------------------
2400
2401  Label no_reguard;
2402  __ lwz(r_temp_1, thread_(stack_guard_state));
2403  __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled);
2404  __ bne(CCR0, no_reguard);
2405
2406  save_native_result(masm, ret_type, workspace_slot_offset);
2407  __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2408  restore_native_result(masm, ret_type, workspace_slot_offset);
2409
2410  __ bind(no_reguard);
2411
2412
2413  // Unlock
2414  // --------------------------------------------------------------------------
2415
2416  if (method->is_synchronized()) {
2417
2418    ConditionRegister r_flag   = CCR1;
2419    const Register r_oop       = r_temp_4;
2420    const Register r_box       = r_temp_5;
2421    const Register r_exception = r_temp_6;
2422    Label done;
2423
2424    // Get oop and address of lock object box.
2425    if (method_is_static) {
2426      assert(klass_offset != -1, "");
2427      __ ld(r_oop, klass_offset, R1_SP);
2428    } else {
2429      assert(receiver_offset != -1, "");
2430      __ ld(r_oop, receiver_offset, R1_SP);
2431    }
2432    __ addi(r_box, R1_SP, lock_offset);
2433
2434    // Try fastpath for unlocking.
2435    __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2436    __ beq(r_flag, done);
2437
2438    // Save and restore any potential method result value around the unlocking operation.
2439    save_native_result(masm, ret_type, workspace_slot_offset);
2440
2441    // Must save pending exception around the slow-path VM call. Since it's a
2442    // leaf call, the pending exception (if any) can be kept in a register.
2443    __ ld(r_exception, thread_(pending_exception));
2444    assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
2445    __ li(R0, 0);
2446    __ std(R0, thread_(pending_exception));
2447
2448    // Slow case of monitor enter.
2449    // Inline a special case of call_VM that disallows any pending_exception.
2450    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box);
2451
2452    __ asm_assert_mem8_is_zero(thread_(pending_exception),
2453       "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
2454
2455    restore_native_result(masm, ret_type, workspace_slot_offset);
2456
2457    // Check_forward_pending_exception jump to forward_exception if any pending
2458    // exception is set. The forward_exception routine expects to see the
2459    // exception in pending_exception and not in a register. Kind of clumsy,
2460    // since all folks who branch to forward_exception must have tested
2461    // pending_exception first and hence have it in a register already.
2462    __ std(r_exception, thread_(pending_exception));
2463
2464    __ bind(done);
2465  }
2466
2467# if 0
2468  // DTrace method exit
2469# endif
2470
2471  // Clear "last Java frame" SP and PC.
2472  // --------------------------------------------------------------------------
2473
2474  __ reset_last_Java_frame();
2475
2476  // Unpack oop result.
2477  // --------------------------------------------------------------------------
2478
2479  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2480    Label skip_unboxing;
2481    __ cmpdi(CCR0, R3_RET, 0);
2482    __ beq(CCR0, skip_unboxing);
2483    __ ld(R3_RET, 0, R3_RET);
2484    __ bind(skip_unboxing);
2485    __ verify_oop(R3_RET);
2486  }
2487
2488
2489  // Reset handle block.
2490  // --------------------------------------------------------------------------
2491  if (!is_critical_native) {
2492  __ ld(r_temp_1, thread_(active_handles));
2493  // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
2494  __ li(r_temp_2, 0);
2495  __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
2496
2497
2498  // Check for pending exceptions.
2499  // --------------------------------------------------------------------------
2500  __ ld(r_temp_2, thread_(pending_exception));
2501  __ cmpdi(CCR0, r_temp_2, 0);
2502  __ bne(CCR0, handle_pending_exception);
2503  }
2504
2505  // Return
2506  // --------------------------------------------------------------------------
2507
2508  __ pop_frame();
2509  __ restore_LR_CR(R11);
2510  __ blr();
2511
2512
2513  // Handler for pending exceptions (out-of-line).
2514  // --------------------------------------------------------------------------
2515
2516  // Since this is a native call, we know the proper exception handler
2517  // is the empty function. We just pop this frame and then jump to
2518  // forward_exception_entry.
2519  if (!is_critical_native) {
2520  __ align(InteriorEntryAlignment);
2521  __ bind(handle_pending_exception);
2522
2523  __ pop_frame();
2524  __ restore_LR_CR(R11);
2525  __ b64_patchable((address)StubRoutines::forward_exception_entry(),
2526                       relocInfo::runtime_call_type);
2527  }
2528
2529  // Handler for a cache miss (out-of-line).
2530  // --------------------------------------------------------------------------
2531
2532  if (!method_is_static) {
2533  __ align(InteriorEntryAlignment);
2534  __ bind(ic_miss);
2535
2536  __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2537                       relocInfo::runtime_call_type);
2538  }
2539
2540  // Done.
2541  // --------------------------------------------------------------------------
2542
2543  __ flush();
2544
2545  nmethod *nm = nmethod::new_native_nmethod(method,
2546                                            compile_id,
2547                                            masm->code(),
2548                                            vep_start_pc-start_pc,
2549                                            frame_done_pc-start_pc,
2550                                            stack_slots / VMRegImpl::slots_per_word,
2551                                            (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2552                                            in_ByteSize(lock_offset),
2553                                            oop_maps);
2554
2555  if (is_critical_native) {
2556    nm->set_lazy_critical_native(true);
2557  }
2558
2559  return nm;
2560#else
2561  ShouldNotReachHere();
2562  return NULL;
2563#endif // COMPILER2
2564}
2565
2566// This function returns the adjust size (in number of words) to a c2i adapter
2567// activation for use during deoptimization.
2568int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2569  return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
2570}
2571
2572uint SharedRuntime::out_preserve_stack_slots() {
2573#ifdef COMPILER2
2574  return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
2575#else
2576  return 0;
2577#endif
2578}
2579
2580#ifdef COMPILER2
2581// Frame generation for deopt and uncommon trap blobs.
2582static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
2583                                /* Read */
2584                                Register unroll_block_reg,
2585                                /* Update */
2586                                Register frame_sizes_reg,
2587                                Register number_of_frames_reg,
2588                                Register pcs_reg,
2589                                /* Invalidate */
2590                                Register frame_size_reg,
2591                                Register pc_reg) {
2592
2593  __ ld(pc_reg, 0, pcs_reg);
2594  __ ld(frame_size_reg, 0, frame_sizes_reg);
2595  __ std(pc_reg, _abi(lr), R1_SP);
2596  __ push_frame(frame_size_reg, R0/*tmp*/);
2597  __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2598  __ addi(number_of_frames_reg, number_of_frames_reg, -1);
2599  __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
2600  __ addi(pcs_reg, pcs_reg, wordSize);
2601}
2602
2603// Loop through the UnrollBlock info and create new frames.
2604static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
2605                                 /* read */
2606                                 Register unroll_block_reg,
2607                                 /* invalidate */
2608                                 Register frame_sizes_reg,
2609                                 Register number_of_frames_reg,
2610                                 Register pcs_reg,
2611                                 Register frame_size_reg,
2612                                 Register pc_reg) {
2613  Label loop;
2614
2615 // _number_of_frames is of type int (deoptimization.hpp)
2616  __ lwa(number_of_frames_reg,
2617             Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
2618             unroll_block_reg);
2619  __ ld(pcs_reg,
2620            Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
2621            unroll_block_reg);
2622  __ ld(frame_sizes_reg,
2623            Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
2624            unroll_block_reg);
2625
2626  // stack: (caller_of_deoptee, ...).
2627
2628  // At this point we either have an interpreter frame or a compiled
2629  // frame on top of stack. If it is a compiled frame we push a new c2i
2630  // adapter here
2631
2632  // Memorize top-frame stack-pointer.
2633  __ mr(frame_size_reg/*old_sp*/, R1_SP);
2634
2635  // Resize interpreter top frame OR C2I adapter.
2636
2637  // At this moment, the top frame (which is the caller of the deoptee) is
2638  // an interpreter frame or a newly pushed C2I adapter or an entry frame.
2639  // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
2640  // outgoing arguments.
2641  //
2642  // In order to push the interpreter frame for the deoptee, we need to
2643  // resize the top frame such that we are able to place the deoptee's
2644  // locals in the frame.
2645  // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
2646  // into a valid PARENT_IJAVA_FRAME_ABI.
2647
2648  __ lwa(R11_scratch1,
2649             Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
2650             unroll_block_reg);
2651  __ neg(R11_scratch1, R11_scratch1);
2652
2653  // R11_scratch1 contains size of locals for frame resizing.
2654  // R12_scratch2 contains top frame's lr.
2655
2656  // Resize frame by complete frame size prevents TOC from being
2657  // overwritten by locals. A more stack space saving way would be
2658  // to copy the TOC to its location in the new abi.
2659  __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
2660
2661  // now, resize the frame
2662  __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
2663
2664  // In the case where we have resized a c2i frame above, the optional
2665  // alignment below the locals has size 32 (why?).
2666  __ std(R12_scratch2, _abi(lr), R1_SP);
2667
2668  // Initialize initial_caller_sp.
2669  __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2670
2671#ifdef ASSERT
2672  // Make sure that there is at least one entry in the array.
2673  __ cmpdi(CCR0, number_of_frames_reg, 0);
2674  __ asm_assert_ne("array_size must be > 0", 0x205);
2675#endif
2676
2677  // Now push the new interpreter frames.
2678  //
2679  __ bind(loop);
2680  // Allocate a new frame, fill in the pc.
2681  push_skeleton_frame(masm, deopt,
2682                      unroll_block_reg,
2683                      frame_sizes_reg,
2684                      number_of_frames_reg,
2685                      pcs_reg,
2686                      frame_size_reg,
2687                      pc_reg);
2688  __ cmpdi(CCR0, number_of_frames_reg, 0);
2689  __ bne(CCR0, loop);
2690
2691  // Get the return address pointing into the frame manager.
2692  __ ld(R0, 0, pcs_reg);
2693  // Store it in the top interpreter frame.
2694  __ std(R0, _abi(lr), R1_SP);
2695  // Initialize frame_manager_lr of interpreter top frame.
2696  __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2697}
2698#endif
2699
2700void SharedRuntime::generate_deopt_blob() {
2701  // Allocate space for the code
2702  ResourceMark rm;
2703  // Setup code generation tools
2704  CodeBuffer buffer("deopt_blob", 2048, 1024);
2705  InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
2706  Label exec_mode_initialized;
2707  int frame_size_in_words;
2708  OopMap* map = NULL;
2709  OopMapSet *oop_maps = new OopMapSet();
2710
2711  // size of ABI112 plus spill slots for R3_RET and F1_RET.
2712  const int frame_size_in_bytes = frame::abi_112_spill_size;
2713  const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
2714  int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
2715
2716  const Register exec_mode_reg = R21_tmp1;
2717
2718  const address start = __ pc();
2719
2720#ifdef COMPILER2
2721  // --------------------------------------------------------------------------
2722  // Prolog for non exception case!
2723
2724  // We have been called from the deopt handler of the deoptee.
2725  //
2726  // deoptee:
2727  //                      ...
2728  //                      call X
2729  //                      ...
2730  //  deopt_handler:      call_deopt_stub
2731  //  cur. return pc  --> ...
2732  //
2733  // So currently SR_LR points behind the call in the deopt handler.
2734  // We adjust it such that it points to the start of the deopt handler.
2735  // The return_pc has been stored in the frame of the deoptee and
2736  // will replace the address of the deopt_handler in the call
2737  // to Deoptimization::fetch_unroll_info below.
2738  // We can't grab a free register here, because all registers may
2739  // contain live values, so let the RegisterSaver do the adjustment
2740  // of the return pc.
2741  const int return_pc_adjustment_no_exception = -size_deopt_handler();
2742
2743  // Push the "unpack frame"
2744  // Save everything in sight.
2745  map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
2746                                                                 &first_frame_size_in_bytes,
2747                                                                 /*generate_oop_map=*/ true,
2748                                                                 return_pc_adjustment_no_exception,
2749                                                                 RegisterSaver::return_pc_is_lr);
2750  assert(map != NULL, "OopMap must have been created");
2751
2752  __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
2753  // Save exec mode for unpack_frames.
2754  __ b(exec_mode_initialized);
2755
2756  // --------------------------------------------------------------------------
2757  // Prolog for exception case
2758
2759  // An exception is pending.
2760  // We have been called with a return (interpreter) or a jump (exception blob).
2761  //
2762  // - R3_ARG1: exception oop
2763  // - R4_ARG2: exception pc
2764
2765  int exception_offset = __ pc() - start;
2766
2767  BLOCK_COMMENT("Prolog for exception case");
2768
2769  // The RegisterSaves doesn't need to adjust the return pc for this situation.
2770  const int return_pc_adjustment_exception = 0;
2771
2772  // Push the "unpack frame".
2773  // Save everything in sight.
2774  assert(R4 == R4_ARG2, "exception pc must be in r4");
2775  RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
2776                                                           &first_frame_size_in_bytes,
2777                                                           /*generate_oop_map=*/ false,
2778                                                           return_pc_adjustment_exception,
2779                                                           RegisterSaver::return_pc_is_r4);
2780
2781  // Deopt during an exception. Save exec mode for unpack_frames.
2782  __ li(exec_mode_reg, Deoptimization::Unpack_exception);
2783
2784  // Store exception oop and pc in thread (location known to GC).
2785  // This is needed since the call to "fetch_unroll_info()" may safepoint.
2786  __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
2787  __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
2788
2789  // fall through
2790
2791  // --------------------------------------------------------------------------
2792  __ BIND(exec_mode_initialized);
2793
2794  {
2795  const Register unroll_block_reg = R22_tmp2;
2796
2797  // We need to set `last_Java_frame' because `fetch_unroll_info' will
2798  // call `last_Java_frame()'. The value of the pc in the frame is not
2799  // particularly important. It just needs to identify this blob.
2800  __ set_last_Java_frame(R1_SP, noreg);
2801
2802  // With EscapeAnalysis turned on, this call may safepoint!
2803  __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread);
2804  address calls_return_pc = __ last_calls_return_pc();
2805  // Set an oopmap for the call site that describes all our saved registers.
2806  oop_maps->add_gc_map(calls_return_pc - start, map);
2807
2808  __ reset_last_Java_frame();
2809  // Save the return value.
2810  __ mr(unroll_block_reg, R3_RET);
2811
2812  // Restore only the result registers that have been saved
2813  // by save_volatile_registers(...).
2814  RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
2815
2816  // In excp_deopt_mode, restore and clear exception oop which we
2817  // stored in the thread during exception entry above. The exception
2818  // oop will be the return value of this stub.
2819  Label skip_restore_excp;
2820  __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
2821  __ bne(CCR0, skip_restore_excp);
2822  __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
2823  __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
2824  __ li(R0, 0);
2825  __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
2826  __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
2827  __ BIND(skip_restore_excp);
2828
2829  // reload narrro_oop_base
2830  if (UseCompressedOops && Universe::narrow_oop_base() != 0) {
2831    __ load_const_optimized(R30, Universe::narrow_oop_base());
2832  }
2833
2834  __ pop_frame();
2835
2836  // stack: (deoptee, optional i2c, caller of deoptee, ...).
2837
2838  // pop the deoptee's frame
2839  __ pop_frame();
2840
2841  // stack: (caller_of_deoptee, ...).
2842
2843  // Loop through the `UnrollBlock' info and create interpreter frames.
2844  push_skeleton_frames(masm, true/*deopt*/,
2845                       unroll_block_reg,
2846                       R23_tmp3,
2847                       R24_tmp4,
2848                       R25_tmp5,
2849                       R26_tmp6,
2850                       R27_tmp7);
2851
2852  // stack: (skeletal interpreter frame, ..., optional skeletal
2853  // interpreter frame, optional c2i, caller of deoptee, ...).
2854  }
2855
2856  // push an `unpack_frame' taking care of float / int return values.
2857  __ push_frame(frame_size_in_bytes, R0/*tmp*/);
2858
2859  // stack: (unpack frame, skeletal interpreter frame, ..., optional
2860  // skeletal interpreter frame, optional c2i, caller of deoptee,
2861  // ...).
2862
2863  // Spill live volatile registers since we'll do a call.
2864  __ std( R3_RET,  _abi_112_spill(spill_ret),  R1_SP);
2865  __ stfd(F1_RET, _abi_112_spill(spill_fret), R1_SP);
2866
2867  // Let the unpacker layout information in the skeletal frames just
2868  // allocated.
2869  __ get_PC_trash_LR(R3_RET);
2870  __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
2871  // This is a call to a LEAF method, so no oop map is required.
2872  __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
2873                  R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
2874  __ reset_last_Java_frame();
2875
2876  // Restore the volatiles saved above.
2877  __ ld( R3_RET, _abi_112_spill(spill_ret),  R1_SP);
2878  __ lfd(F1_RET, _abi_112_spill(spill_fret), R1_SP);
2879
2880  // Pop the unpack frame.
2881  __ pop_frame();
2882  __ restore_LR_CR(R0);
2883
2884  // stack: (top interpreter frame, ..., optional interpreter frame,
2885  // optional c2i, caller of deoptee, ...).
2886
2887  // Initialize R14_state.
2888  __ ld(R14_state, 0, R1_SP);
2889  __ addi(R14_state, R14_state,
2890              -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
2891  // Also inititialize R15_prev_state.
2892  __ restore_prev_state();
2893
2894  // Return to the interpreter entry point.
2895  __ blr();
2896  __ flush();
2897#else // COMPILER2
2898  __ unimplemented("deopt blob needed only with compiler");
2899  int exception_offset = __ pc() - start;
2900#endif // COMPILER2
2901
2902  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize);
2903}
2904
2905#ifdef COMPILER2
2906void SharedRuntime::generate_uncommon_trap_blob() {
2907  // Allocate space for the code.
2908  ResourceMark rm;
2909  // Setup code generation tools.
2910  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2911  InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
2912  address start = __ pc();
2913
2914  Register unroll_block_reg = R21_tmp1;
2915  Register klass_index_reg  = R22_tmp2;
2916  Register unc_trap_reg     = R23_tmp3;
2917
2918  OopMapSet* oop_maps = new OopMapSet();
2919  int frame_size_in_bytes = frame::abi_112_size;
2920  OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
2921
2922  // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
2923
2924  // Push a dummy `unpack_frame' and call
2925  // `Deoptimization::uncommon_trap' to pack the compiled frame into a
2926  // vframe array and return the `UnrollBlock' information.
2927
2928  // Save LR to compiled frame.
2929  __ save_LR_CR(R11_scratch1);
2930
2931  // Push an "uncommon_trap" frame.
2932  __ push_frame_abi112(0, R11_scratch1);
2933
2934  // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
2935
2936  // Set the `unpack_frame' as last_Java_frame.
2937  // `Deoptimization::uncommon_trap' expects it and considers its
2938  // sender frame as the deoptee frame.
2939  // Remember the offset of the instruction whose address will be
2940  // moved to R11_scratch1.
2941  address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
2942
2943  __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
2944
2945  __ mr(klass_index_reg, R3);
2946  __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
2947                  R16_thread, klass_index_reg);
2948
2949  // Set an oopmap for the call site.
2950  oop_maps->add_gc_map(gc_map_pc - start, map);
2951
2952  __ reset_last_Java_frame();
2953
2954  // Pop the `unpack frame'.
2955  __ pop_frame();
2956
2957  // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
2958
2959  // Save the return value.
2960  __ mr(unroll_block_reg, R3_RET);
2961
2962  // Pop the uncommon_trap frame.
2963  __ pop_frame();
2964
2965  // stack: (caller_of_deoptee, ...).
2966
2967  // Allocate new interpreter frame(s) and possibly a c2i adapter
2968  // frame.
2969  push_skeleton_frames(masm, false/*deopt*/,
2970                       unroll_block_reg,
2971                       R22_tmp2,
2972                       R23_tmp3,
2973                       R24_tmp4,
2974                       R25_tmp5,
2975                       R26_tmp6);
2976
2977  // stack: (skeletal interpreter frame, ..., optional skeletal
2978  // interpreter frame, optional c2i, caller of deoptee, ...).
2979
2980  // Push a dummy `unpack_frame' taking care of float return values.
2981  // Call `Deoptimization::unpack_frames' to layout information in the
2982  // interpreter frames just created.
2983
2984  // Push a simple "unpack frame" here.
2985  __ push_frame_abi112(0, R11_scratch1);
2986
2987  // stack: (unpack frame, skeletal interpreter frame, ..., optional
2988  // skeletal interpreter frame, optional c2i, caller of deoptee,
2989  // ...).
2990
2991  // Set the "unpack_frame" as last_Java_frame.
2992  __ get_PC_trash_LR(R11_scratch1);
2993  __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
2994
2995  // Indicate it is the uncommon trap case.
2996  __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
2997  // Let the unpacker layout information in the skeletal frames just
2998  // allocated.
2999  __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3000                  R16_thread, unc_trap_reg);
3001
3002  __ reset_last_Java_frame();
3003  // Pop the `unpack frame'.
3004  __ pop_frame();
3005  // Restore LR from top interpreter frame.
3006  __ restore_LR_CR(R11_scratch1);
3007
3008  // stack: (top interpreter frame, ..., optional interpreter frame,
3009  // optional c2i, caller of deoptee, ...).
3010
3011  // Initialize R14_state, ...
3012  __ ld(R11_scratch1, 0, R1_SP);
3013  __ addi(R14_state, R11_scratch1,
3014              -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
3015  // also initialize R15_prev_state.
3016  __ restore_prev_state();
3017  // Return to the interpreter entry point.
3018  __ blr();
3019
3020  masm->flush();
3021
3022  _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
3023}
3024#endif // COMPILER2
3025
3026// Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
3027SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3028  assert(StubRoutines::forward_exception_entry() != NULL,
3029         "must be generated before");
3030
3031  ResourceMark rm;
3032  OopMapSet *oop_maps = new OopMapSet();
3033  OopMap* map;
3034
3035  // Allocate space for the code. Setup code generation tools.
3036  CodeBuffer buffer("handler_blob", 2048, 1024);
3037  MacroAssembler* masm = new MacroAssembler(&buffer);
3038
3039  address start = __ pc();
3040  int frame_size_in_bytes = 0;
3041
3042  RegisterSaver::ReturnPCLocation return_pc_location;
3043  bool cause_return = (poll_type == POLL_AT_RETURN);
3044  if (cause_return) {
3045    // Nothing to do here. The frame has already been popped in MachEpilogNode.
3046    // Register LR already contains the return pc.
3047    return_pc_location = RegisterSaver::return_pc_is_lr;
3048  } else {
3049    // Use thread()->saved_exception_pc() as return pc.
3050    return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
3051  }
3052
3053  // Save registers, fpu state, and flags.
3054  map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
3055                                                                 &frame_size_in_bytes,
3056                                                                 /*generate_oop_map=*/ true,
3057                                                                 /*return_pc_adjustment=*/0,
3058                                                                 return_pc_location);
3059
3060  // The following is basically a call_VM. However, we need the precise
3061  // address of the call in order to generate an oopmap. Hence, we do all the
3062  // work outselves.
3063  __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
3064
3065  // The return address must always be correct so that the frame constructor
3066  // never sees an invalid pc.
3067
3068  // Do the call
3069  __ call_VM_leaf(call_ptr, R16_thread);
3070  address calls_return_pc = __ last_calls_return_pc();
3071
3072  // Set an oopmap for the call site. This oopmap will map all
3073  // oop-registers and debug-info registers as callee-saved. This
3074  // will allow deoptimization at this safepoint to find all possible
3075  // debug-info recordings, as well as let GC find all oops.
3076  oop_maps->add_gc_map(calls_return_pc - start, map);
3077
3078  Label noException;
3079
3080  // Clear the last Java frame.
3081  __ reset_last_Java_frame();
3082
3083  BLOCK_COMMENT("  Check pending exception.");
3084  const Register pending_exception = R0;
3085  __ ld(pending_exception, thread_(pending_exception));
3086  __ cmpdi(CCR0, pending_exception, 0);
3087  __ beq(CCR0, noException);
3088
3089  // Exception pending
3090  RegisterSaver::restore_live_registers_and_pop_frame(masm,
3091                                                      frame_size_in_bytes,
3092                                                      /*restore_ctr=*/true);
3093
3094
3095  BLOCK_COMMENT("  Jump to forward_exception_entry.");
3096  // Jump to forward_exception_entry, with the issuing PC in LR
3097  // so it looks like the original nmethod called forward_exception_entry.
3098  __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3099
3100  // No exception case.
3101  __ BIND(noException);
3102
3103
3104  // Normal exit, restore registers and exit.
3105  RegisterSaver::restore_live_registers_and_pop_frame(masm,
3106                                                      frame_size_in_bytes,
3107                                                      /*restore_ctr=*/true);
3108
3109  __ blr();
3110
3111  // Make sure all code is generated
3112  masm->flush();
3113
3114  // Fill-out other meta info
3115  // CodeBlob frame size is in words.
3116  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
3117}
3118
3119// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
3120//
3121// Generate a stub that calls into the vm to find out the proper destination
3122// of a java call. All the argument registers are live at this point
3123// but since this is generic code we don't know what they are and the caller
3124// must do any gc of the args.
3125//
3126RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3127
3128  // allocate space for the code
3129  ResourceMark rm;
3130
3131  CodeBuffer buffer(name, 1000, 512);
3132  MacroAssembler* masm = new MacroAssembler(&buffer);
3133
3134  int frame_size_in_bytes;
3135
3136  OopMapSet *oop_maps = new OopMapSet();
3137  OopMap* map = NULL;
3138
3139  address start = __ pc();
3140
3141  map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
3142                                                                 &frame_size_in_bytes,
3143                                                                 /*generate_oop_map*/ true,
3144                                                                 /*return_pc_adjustment*/ 0,
3145                                                                 RegisterSaver::return_pc_is_lr);
3146
3147  // Use noreg as last_Java_pc, the return pc will be reconstructed
3148  // from the physical frame.
3149  __ set_last_Java_frame(/*sp*/R1_SP, noreg);
3150
3151  int frame_complete = __ offset();
3152
3153  // Pass R19_method as 2nd (optional) argument, used by
3154  // counter_overflow_stub.
3155  __ call_VM_leaf(destination, R16_thread, R19_method);
3156  address calls_return_pc = __ last_calls_return_pc();
3157  // Set an oopmap for the call site.
3158  // We need this not only for callee-saved registers, but also for volatile
3159  // registers that the compiler might be keeping live across a safepoint.
3160  // Create the oopmap for the call's return pc.
3161  oop_maps->add_gc_map(calls_return_pc - start, map);
3162
3163  // R3_RET contains the address we are going to jump to assuming no exception got installed.
3164
3165  // clear last_Java_sp
3166  __ reset_last_Java_frame();
3167
3168  // Check for pending exceptions.
3169  BLOCK_COMMENT("Check for pending exceptions.");
3170  Label pending;
3171  __ ld(R11_scratch1, thread_(pending_exception));
3172  __ cmpdi(CCR0, R11_scratch1, 0);
3173  __ bne(CCR0, pending);
3174
3175  __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
3176
3177  RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
3178
3179  // Get the returned methodOop.
3180  __ get_vm_result_2(R19_method);
3181
3182  __ bctr();
3183
3184
3185  // Pending exception after the safepoint.
3186  __ BIND(pending);
3187
3188  RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
3189
3190  // exception pending => remove activation and forward to exception handler
3191
3192  __ li(R11_scratch1, 0);
3193  __ ld(R3_ARG1, thread_(pending_exception));
3194  __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3195  __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3196
3197  // -------------
3198  // Make sure all code is generated.
3199  masm->flush();
3200
3201  // return the blob
3202  // frame_size_words or bytes??
3203  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
3204                                       oop_maps, true);
3205}
3206