interp_masm_ppc_64.cpp revision 7575:a7fd2288ce2f
1/*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2014 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26
27#include "precompiled.hpp"
28#include "asm/macroAssembler.inline.hpp"
29#include "interp_masm_ppc_64.hpp"
30#include "interpreter/interpreterRuntime.hpp"
31#include "prims/jvmtiThreadState.hpp"
32
33#ifdef PRODUCT
34#define BLOCK_COMMENT(str) // nothing
35#else
36#define BLOCK_COMMENT(str) block_comment(str)
37#endif
38
39void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
40#ifdef CC_INTERP
41  address exception_entry = StubRoutines::throw_NullPointerException_at_call_entry();
42#else
43  address exception_entry = Interpreter::throw_NullPointerException_entry();
44#endif
45  MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
46}
47
48void InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
49  assert(entry, "Entry must have been generated by now");
50  if (is_within_range_of_b(entry, pc())) {
51    b(entry);
52  } else {
53    load_const_optimized(Rscratch, entry, R0);
54    mtctr(Rscratch);
55    bctr();
56  }
57}
58
59#ifndef CC_INTERP
60
61void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
62  Register bytecode = R12_scratch2;
63  if (bcp_incr != 0) {
64    lbzu(bytecode, bcp_incr, R14_bcp);
65  } else {
66    lbz(bytecode, 0, R14_bcp);
67  }
68
69  dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
70}
71
72void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
73  // Load current bytecode.
74  Register bytecode = R12_scratch2;
75  lbz(bytecode, 0, R14_bcp);
76  dispatch_Lbyte_code(state, bytecode, table);
77}
78
79// Dispatch code executed in the prolog of a bytecode which does not do it's
80// own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
81void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
82  Register bytecode = R12_scratch2;
83  lbz(bytecode, bcp_incr, R14_bcp);
84
85  load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
86
87  sldi(bytecode, bytecode, LogBytesPerWord);
88  ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
89}
90
91// Dispatch code executed in the epilog of a bytecode which does not do it's
92// own dispatch. The dispatch address in R24_dispatch_addr is used for the
93// dispatch.
94void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
95  mtctr(R24_dispatch_addr);
96  addi(R14_bcp, R14_bcp, bcp_incr);
97  bctr();
98}
99
100void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
101  assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
102  if (JvmtiExport::can_pop_frame()) {
103    Label L;
104
105    // Check the "pending popframe condition" flag in the current thread.
106    lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
107
108    // Initiate popframe handling only if it is not already being
109    // processed. If the flag has the popframe_processing bit set, it
110    // means that this code is called *during* popframe handling - we
111    // don't want to reenter.
112    andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
113    beq(CCR0, L);
114
115    andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
116    bne(CCR0, L);
117
118    // Call the Interpreter::remove_activation_preserving_args_entry()
119    // func to get the address of the same-named entrypoint in the
120    // generated interpreter code.
121#if defined(ABI_ELFv2)
122    call_c(CAST_FROM_FN_PTR(address,
123                            Interpreter::remove_activation_preserving_args_entry),
124           relocInfo::none);
125#else
126    call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
127                            Interpreter::remove_activation_preserving_args_entry),
128           relocInfo::none);
129#endif
130
131    // Jump to Interpreter::_remove_activation_preserving_args_entry.
132    mtctr(R3_RET);
133    bctr();
134
135    align(32, 12);
136    bind(L);
137  }
138}
139
140void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
141  const Register Rthr_state_addr = scratch_reg;
142  if (JvmtiExport::can_force_early_return()) {
143    Label Lno_early_ret;
144    ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
145    cmpdi(CCR0, Rthr_state_addr, 0);
146    beq(CCR0, Lno_early_ret);
147
148    lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
149    cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
150    bne(CCR0, Lno_early_ret);
151
152    // Jump to Interpreter::_earlyret_entry.
153    lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
154    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
155    mtlr(R3_RET);
156    blr();
157
158    align(32, 12);
159    bind(Lno_early_ret);
160  }
161}
162
163void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
164  const Register RjvmtiState = Rscratch1;
165  const Register Rscratch2   = R0;
166
167  ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
168  li(Rscratch2, 0);
169
170  switch (state) {
171    case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
172               std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
173               break;
174    case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
175               break;
176    case btos: // fall through
177    case ctos: // fall through
178    case stos: // fall through
179    case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
180               break;
181    case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
182               break;
183    case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
184               break;
185    case vtos: break;
186    default  : ShouldNotReachHere();
187  }
188
189  // Clean up tos value in the jvmti thread state.
190  std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
191  // Set tos state field to illegal value.
192  li(Rscratch2, ilgl);
193  stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
194}
195
196// Common code to dispatch and dispatch_only.
197// Dispatch value in Lbyte_code and increment Lbcp.
198
199void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
200  address table_base = (address)Interpreter::dispatch_table((TosState)0);
201  intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
202  if (is_simm16(table_offs)) {
203    addi(dst, R25_templateTableBase, (int)table_offs);
204  } else {
205    load_const_optimized(dst, table, R0);
206  }
207}
208
209void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
210  if (verify) {
211    unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
212  }
213
214#ifdef FAST_DISPATCH
215  unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
216#else
217  assert_different_registers(bytecode, R11_scratch1);
218
219  // Calc dispatch table address.
220  load_dispatch_table(R11_scratch1, table);
221
222  sldi(R12_scratch2, bytecode, LogBytesPerWord);
223  ldx(R11_scratch1, R11_scratch1, R12_scratch2);
224
225  // Jump off!
226  mtctr(R11_scratch1);
227  bctr();
228#endif
229}
230
231void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
232  sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
233  ldx(Rrecv_dst, Rrecv_dst, R15_esp);
234}
235
236// helpers for expression stack
237
238void InterpreterMacroAssembler::pop_i(Register r) {
239  lwzu(r, Interpreter::stackElementSize, R15_esp);
240}
241
242void InterpreterMacroAssembler::pop_ptr(Register r) {
243  ldu(r, Interpreter::stackElementSize, R15_esp);
244}
245
246void InterpreterMacroAssembler::pop_l(Register r) {
247  ld(r, Interpreter::stackElementSize, R15_esp);
248  addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
249}
250
251void InterpreterMacroAssembler::pop_f(FloatRegister f) {
252  lfsu(f, Interpreter::stackElementSize, R15_esp);
253}
254
255void InterpreterMacroAssembler::pop_d(FloatRegister f) {
256  lfd(f, Interpreter::stackElementSize, R15_esp);
257  addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
258}
259
260void InterpreterMacroAssembler::push_i(Register r) {
261  stw(r, 0, R15_esp);
262  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
263}
264
265void InterpreterMacroAssembler::push_ptr(Register r) {
266  std(r, 0, R15_esp);
267  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
268}
269
270void InterpreterMacroAssembler::push_l(Register r) {
271  std(r, - Interpreter::stackElementSize, R15_esp);
272  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
273}
274
275void InterpreterMacroAssembler::push_f(FloatRegister f) {
276  stfs(f, 0, R15_esp);
277  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
278}
279
280void InterpreterMacroAssembler::push_d(FloatRegister f)   {
281  stfd(f, - Interpreter::stackElementSize, R15_esp);
282  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
283}
284
285void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
286  std(first, 0, R15_esp);
287  std(second, -Interpreter::stackElementSize, R15_esp);
288  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
289}
290
291void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
292  std(l, 0, R15_esp);
293  lfd(d, 0, R15_esp);
294}
295
296void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
297  stfd(d, 0, R15_esp);
298  ld(l, 0, R15_esp);
299}
300
301void InterpreterMacroAssembler::push(TosState state) {
302  switch (state) {
303    case atos: push_ptr();                break;
304    case btos:
305    case ctos:
306    case stos:
307    case itos: push_i();                  break;
308    case ltos: push_l();                  break;
309    case ftos: push_f();                  break;
310    case dtos: push_d();                  break;
311    case vtos: /* nothing to do */        break;
312    default  : ShouldNotReachHere();
313  }
314}
315
316void InterpreterMacroAssembler::pop(TosState state) {
317  switch (state) {
318    case atos: pop_ptr();            break;
319    case btos:
320    case ctos:
321    case stos:
322    case itos: pop_i();              break;
323    case ltos: pop_l();              break;
324    case ftos: pop_f();              break;
325    case dtos: pop_d();              break;
326    case vtos: /* nothing to do */   break;
327    default  : ShouldNotReachHere();
328  }
329  verify_oop(R17_tos, state);
330}
331
332void InterpreterMacroAssembler::empty_expression_stack() {
333  addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
334}
335
336void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
337                                                          Register    Rdst,
338                                                          signedOrNot is_signed) {
339#if defined(VM_LITTLE_ENDIAN)
340  if (bcp_offset) {
341    load_const_optimized(Rdst, bcp_offset);
342    lhbrx(Rdst, R14_bcp, Rdst);
343  } else {
344    lhbrx(Rdst, R14_bcp);
345  }
346  if (is_signed == Signed) {
347    extsh(Rdst, Rdst);
348  }
349#else
350  // Read Java big endian format.
351  if (is_signed == Signed) {
352    lha(Rdst, bcp_offset, R14_bcp);
353  } else {
354    lhz(Rdst, bcp_offset, R14_bcp);
355  }
356#endif
357}
358
359void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
360                                                          Register    Rdst,
361                                                          signedOrNot is_signed) {
362#if defined(VM_LITTLE_ENDIAN)
363  if (bcp_offset) {
364    load_const_optimized(Rdst, bcp_offset);
365    lwbrx(Rdst, R14_bcp, Rdst);
366  } else {
367    lwbrx(Rdst, R14_bcp);
368  }
369  if (is_signed == Signed) {
370    extsw(Rdst, Rdst);
371  }
372#else
373  // Read Java big endian format.
374  if (bcp_offset & 3) { // Offset unaligned?
375    load_const_optimized(Rdst, bcp_offset);
376    if (is_signed == Signed) {
377      lwax(Rdst, R14_bcp, Rdst);
378    } else {
379      lwzx(Rdst, R14_bcp, Rdst);
380    }
381  } else {
382    if (is_signed == Signed) {
383      lwa(Rdst, bcp_offset, R14_bcp);
384    } else {
385      lwz(Rdst, bcp_offset, R14_bcp);
386    }
387  }
388#endif
389}
390
391
392// Load the constant pool cache index from the bytecode stream.
393//
394// Kills / writes:
395//   - Rdst, Rscratch
396void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
397  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
398  // Cache index is always in the native format, courtesy of Rewriter.
399  if (index_size == sizeof(u2)) {
400    lhz(Rdst, bcp_offset, R14_bcp);
401  } else if (index_size == sizeof(u4)) {
402    if (bcp_offset & 3) {
403      load_const_optimized(Rdst, bcp_offset);
404      lwax(Rdst, R14_bcp, Rdst);
405    } else {
406      lwa(Rdst, bcp_offset, R14_bcp);
407    }
408    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
409    nand(Rdst, Rdst, Rdst); // convert to plain index
410  } else if (index_size == sizeof(u1)) {
411    lbz(Rdst, bcp_offset, R14_bcp);
412  } else {
413    ShouldNotReachHere();
414  }
415  // Rdst now contains cp cache index.
416}
417
418void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
419  get_cache_index_at_bcp(cache, bcp_offset, index_size);
420  sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
421  add(cache, R27_constPoolCache, cache);
422}
423
424// Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
425// from (Rsrc)+offset.
426void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
427                                       signedOrNot is_signed) {
428#if defined(VM_LITTLE_ENDIAN)
429  if (offset) {
430    load_const_optimized(Rdst, offset);
431    lwbrx(Rdst, Rdst, Rsrc);
432  } else {
433    lwbrx(Rdst, Rsrc);
434  }
435  if (is_signed == Signed) {
436    extsw(Rdst, Rdst);
437  }
438#else
439  if (is_signed == Signed) {
440    lwa(Rdst, offset, Rsrc);
441  } else {
442    lwz(Rdst, offset, Rsrc);
443  }
444#endif
445}
446
447// Load object from cpool->resolved_references(index).
448void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
449  assert_different_registers(result, index);
450  get_constant_pool(result);
451
452  // Convert from field index to resolved_references() index and from
453  // word index to byte offset. Since this is a java object, it can be compressed.
454  Register tmp = index;  // reuse
455  sldi(tmp, index, LogBytesPerHeapOop);
456  // Load pointer for resolved_references[] objArray.
457  ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
458  // JNIHandles::resolve(result)
459  ld(result, 0, result);
460#ifdef ASSERT
461  Label index_ok;
462  lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
463  sldi(R0, R0, LogBytesPerHeapOop);
464  cmpd(CCR0, tmp, R0);
465  blt(CCR0, index_ok);
466  stop("resolved reference index out of bounds", 0x09256);
467  bind(index_ok);
468#endif
469  // Add in the index.
470  add(result, tmp, result);
471  load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
472}
473
474// Generate a subtype check: branch to ok_is_subtype if sub_klass is
475// a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
476void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
477                                                  Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
478  // Profile the not-null value's klass.
479  profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
480  check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
481  profile_typecheck_failed(Rtmp1, Rtmp2);
482}
483
484void InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
485  Label done;
486  sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
487  ld(Rscratch1, thread_(stack_overflow_limit));
488  cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
489  bgt(CCR0/*is_stack_overflow*/, done);
490
491  // Load target address of the runtime stub.
492  assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
493  load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
494  mtctr(Rscratch1);
495  // Restore caller_sp.
496#ifdef ASSERT
497  ld(Rscratch1, 0, R1_SP);
498  ld(R0, 0, R21_sender_SP);
499  cmpd(CCR0, R0, Rscratch1);
500  asm_assert_eq("backlink", 0x547);
501#endif // ASSERT
502  mr(R1_SP, R21_sender_SP);
503  bctr();
504
505  align(32, 12);
506  bind(done);
507}
508
509// Separate these two to allow for delay slot in middle.
510// These are used to do a test and full jump to exception-throwing code.
511
512// Check that index is in range for array, then shift index by index_shift,
513// and put arrayOop + shifted_index into res.
514// Note: res is still shy of address by array offset into object.
515
516void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
517  // Check that index is in range for array, then shift index by index_shift,
518  // and put arrayOop + shifted_index into res.
519  // Note: res is still shy of address by array offset into object.
520  // Kills:
521  //   - Rindex
522  // Writes:
523  //   - Rres: Address that corresponds to the array index if check was successful.
524  verify_oop(Rarray);
525  const Register Rlength   = R0;
526  const Register RsxtIndex = Rtmp;
527  Label LisNull, LnotOOR;
528
529  // Array nullcheck
530  if (!ImplicitNullChecks) {
531    cmpdi(CCR0, Rarray, 0);
532    beq(CCR0, LisNull);
533  } else {
534    null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
535  }
536
537  // Rindex might contain garbage in upper bits (remember that we don't sign extend
538  // during integer arithmetic operations). So kill them and put value into same register
539  // where ArrayIndexOutOfBounds would expect the index in.
540  rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
541
542  // Index check
543  lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
544  cmplw(CCR0, Rindex, Rlength);
545  sldi(RsxtIndex, RsxtIndex, index_shift);
546  blt(CCR0, LnotOOR);
547  // Index should be in R17_tos, array should be in R4_ARG2.
548  mr(R17_tos, Rindex);
549  mr(R4_ARG2, Rarray);
550  load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
551  mtctr(Rtmp);
552  bctr();
553
554  if (!ImplicitNullChecks) {
555    bind(LisNull);
556    load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
557    mtctr(Rtmp);
558    bctr();
559  }
560
561  align(32, 16);
562  bind(LnotOOR);
563
564  // Calc address
565  add(Rres, RsxtIndex, Rarray);
566}
567
568void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
569  // pop array
570  pop_ptr(array);
571
572  // check array
573  index_check_without_pop(array, index, index_shift, tmp, res);
574}
575
576void InterpreterMacroAssembler::get_const(Register Rdst) {
577  ld(Rdst, in_bytes(Method::const_offset()), R19_method);
578}
579
580void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
581  get_const(Rdst);
582  ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
583}
584
585void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
586  get_constant_pool(Rdst);
587  ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
588}
589
590void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
591  get_constant_pool(Rcpool);
592  ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
593}
594
595// Unlock if synchronized method.
596//
597// Unlock the receiver if this is a synchronized method.
598// Unlock any Java monitors from synchronized blocks.
599//
600// If there are locked Java monitors
601//   If throw_monitor_exception
602//     throws IllegalMonitorStateException
603//   Else if install_monitor_exception
604//     installs IllegalMonitorStateException
605//   Else
606//     no error processing
607void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
608                                                              bool throw_monitor_exception,
609                                                              bool install_monitor_exception) {
610  Label Lunlocked, Lno_unlock;
611  {
612    Register Rdo_not_unlock_flag = R11_scratch1;
613    Register Raccess_flags       = R12_scratch2;
614
615    // Check if synchronized method or unlocking prevented by
616    // JavaThread::do_not_unlock_if_synchronized flag.
617    lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
618    lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
619    li(R0, 0);
620    stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
621
622    push(state);
623
624    // Skip if we don't have to unlock.
625    rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
626    beq(CCR0, Lunlocked);
627
628    cmpwi(CCR0, Rdo_not_unlock_flag, 0);
629    bne(CCR0, Lno_unlock);
630  }
631
632  // Unlock
633  {
634    Register Rmonitor_base = R11_scratch1;
635
636    Label Lunlock;
637    // If it's still locked, everything is ok, unlock it.
638    ld(Rmonitor_base, 0, R1_SP);
639    addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
640
641    ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
642    cmpdi(CCR0, R0, 0);
643    bne(CCR0, Lunlock);
644
645    // If it's already unlocked, throw exception.
646    if (throw_monitor_exception) {
647      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
648      should_not_reach_here();
649    } else {
650      if (install_monitor_exception) {
651        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
652        b(Lunlocked);
653      }
654    }
655
656    bind(Lunlock);
657    unlock_object(Rmonitor_base);
658  }
659
660  // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
661  bind(Lunlocked);
662  {
663    Label Lexception, Lrestart;
664    Register Rcurrent_obj_addr = R11_scratch1;
665    const int delta = frame::interpreter_frame_monitor_size_in_bytes();
666    assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
667
668    bind(Lrestart);
669    // Set up search loop: Calc num of iterations.
670    {
671      Register Riterations = R12_scratch2;
672      Register Rmonitor_base = Rcurrent_obj_addr;
673      ld(Rmonitor_base, 0, R1_SP);
674      addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
675
676      subf_(Riterations, R26_monitor, Rmonitor_base);
677      ble(CCR0, Lno_unlock);
678
679      addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
680      // Check if any monitor is on stack, bail out if not
681      srdi(Riterations, Riterations, exact_log2(delta));
682      mtctr(Riterations);
683    }
684
685    // The search loop: Look for locked monitors.
686    {
687      const Register Rcurrent_obj = R0;
688      Label Lloop;
689
690      ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
691      addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
692      bind(Lloop);
693
694      // Check if current entry is used.
695      cmpdi(CCR0, Rcurrent_obj, 0);
696      bne(CCR0, Lexception);
697      // Preload next iteration's compare value.
698      ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
699      addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
700      bdnz(Lloop);
701    }
702    // Fell through: Everything's unlocked => finish.
703    b(Lno_unlock);
704
705    // An object is still locked => need to throw exception.
706    bind(Lexception);
707    if (throw_monitor_exception) {
708      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
709      should_not_reach_here();
710    } else {
711      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
712      // Unlock does not block, so don't have to worry about the frame.
713      Register Rmonitor_addr = R11_scratch1;
714      addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
715      unlock_object(Rmonitor_addr);
716      if (install_monitor_exception) {
717        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
718      }
719      b(Lrestart);
720    }
721  }
722
723  align(32, 12);
724  bind(Lno_unlock);
725  pop(state);
726}
727
728// Support function for remove_activation & Co.
729void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
730  // Pop interpreter frame.
731  ld(Rscratch1, 0, R1_SP); // *SP
732  ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
733  ld(Rscratch2, 0, Rscratch1); // **SP
734#ifdef ASSERT
735  {
736    Label Lok;
737    ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
738    cmpdi(CCR0, R0, 0x5afe);
739    beq(CCR0, Lok);
740    stop("frame corrupted (remove activation)", 0x5afe);
741    bind(Lok);
742  }
743#endif
744  if (return_pc!=noreg) {
745    ld(return_pc, _abi(lr), Rscratch1); // LR
746  }
747
748  // Merge top frames.
749  subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
750  stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
751}
752
753// Remove activation.
754//
755// Unlock the receiver if this is a synchronized method.
756// Unlock any Java monitors from synchronized blocks.
757// Remove the activation from the stack.
758//
759// If there are locked Java monitors
760//    If throw_monitor_exception
761//       throws IllegalMonitorStateException
762//    Else if install_monitor_exception
763//       installs IllegalMonitorStateException
764//    Else
765//       no error processing
766void InterpreterMacroAssembler::remove_activation(TosState state,
767                                                  bool throw_monitor_exception,
768                                                  bool install_monitor_exception) {
769  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
770
771  // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
772  notify_method_exit(false, state, NotifyJVMTI, true);
773
774  verify_oop(R17_tos, state);
775  verify_thread();
776
777  merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
778  mtlr(R0);
779}
780
781#endif // !CC_INTERP
782
783// Lock object
784//
785// Registers alive
786//   monitor - Address of the BasicObjectLock to be used for locking,
787//             which must be initialized with the object to lock.
788//   object  - Address of the object to be locked.
789//
790void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
791  if (UseHeavyMonitors) {
792    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
793            monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
794  } else {
795    // template code:
796    //
797    // markOop displaced_header = obj->mark().set_unlocked();
798    // monitor->lock()->set_displaced_header(displaced_header);
799    // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
800    //   // We stored the monitor address into the object's mark word.
801    // } else if (THREAD->is_lock_owned((address)displaced_header))
802    //   // Simple recursive case.
803    //   monitor->lock()->set_displaced_header(NULL);
804    // } else {
805    //   // Slow path.
806    //   InterpreterRuntime::monitorenter(THREAD, monitor);
807    // }
808
809    const Register displaced_header = R7_ARG5;
810    const Register object_mark_addr = R8_ARG6;
811    const Register current_header   = R9_ARG7;
812    const Register tmp              = R10_ARG8;
813
814    Label done;
815    Label cas_failed, slow_case;
816
817    assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
818
819    // markOop displaced_header = obj->mark().set_unlocked();
820
821    // Load markOop from object into displaced_header.
822    ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
823
824    if (UseBiasedLocking) {
825      biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
826    }
827
828    // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
829    ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
830
831    // monitor->lock()->set_displaced_header(displaced_header);
832
833    // Initialize the box (Must happen before we update the object mark!).
834    std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
835        BasicLock::displaced_header_offset_in_bytes(), monitor);
836
837    // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
838
839    // Store stack address of the BasicObjectLock (this is monitor) into object.
840    addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
841
842    // Must fence, otherwise, preceding store(s) may float below cmpxchg.
843    // CmpxchgX sets CCR0 to cmpX(current, displaced).
844    fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
845    cmpxchgd(/*flag=*/CCR0,
846             /*current_value=*/current_header,
847             /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
848             /*where=*/object_mark_addr,
849             MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
850             MacroAssembler::cmpxchgx_hint_acquire_lock(),
851             noreg,
852             &cas_failed);
853
854    // If the compare-and-exchange succeeded, then we found an unlocked
855    // object and we have now locked it.
856    b(done);
857    bind(cas_failed);
858
859    // } else if (THREAD->is_lock_owned((address)displaced_header))
860    //   // Simple recursive case.
861    //   monitor->lock()->set_displaced_header(NULL);
862
863    // We did not see an unlocked object so try the fast recursive case.
864
865    // Check if owner is self by comparing the value in the markOop of object
866    // (current_header) with the stack pointer.
867    sub(current_header, current_header, R1_SP);
868
869    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
870    load_const_optimized(tmp,
871                         (address) (~(os::vm_page_size()-1) |
872                                    markOopDesc::lock_mask_in_place));
873
874    and_(R0/*==0?*/, current_header, tmp);
875    // If condition is true we are done and hence we can store 0 in the displaced
876    // header indicating it is a recursive lock.
877    bne(CCR0, slow_case);
878    release();
879    std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
880        BasicLock::displaced_header_offset_in_bytes(), monitor);
881    b(done);
882
883    // } else {
884    //   // Slow path.
885    //   InterpreterRuntime::monitorenter(THREAD, monitor);
886
887    // None of the above fast optimizations worked so we have to get into the
888    // slow case of monitor enter.
889    bind(slow_case);
890    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
891            monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
892    // }
893    align(32, 12);
894    bind(done);
895  }
896}
897
898// Unlocks an object. Used in monitorexit bytecode and remove_activation.
899//
900// Registers alive
901//   monitor - Address of the BasicObjectLock to be used for locking,
902//             which must be initialized with the object to lock.
903//
904// Throw IllegalMonitorException if object is not locked by current thread.
905void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
906  if (UseHeavyMonitors) {
907    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
908            monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
909  } else {
910
911    // template code:
912    //
913    // if ((displaced_header = monitor->displaced_header()) == NULL) {
914    //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
915    //   monitor->set_obj(NULL);
916    // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
917    //   // We swapped the unlocked mark in displaced_header into the object's mark word.
918    //   monitor->set_obj(NULL);
919    // } else {
920    //   // Slow path.
921    //   InterpreterRuntime::monitorexit(THREAD, monitor);
922    // }
923
924    const Register object           = R7_ARG5;
925    const Register displaced_header = R8_ARG6;
926    const Register object_mark_addr = R9_ARG7;
927    const Register current_header   = R10_ARG8;
928
929    Label free_slot;
930    Label slow_case;
931
932    assert_different_registers(object, displaced_header, object_mark_addr, current_header);
933
934    if (UseBiasedLocking) {
935      // The object address from the monitor is in object.
936      ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
937      assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
938      biased_locking_exit(CCR0, object, displaced_header, free_slot);
939    }
940
941    // Test first if we are in the fast recursive case.
942    ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
943           BasicLock::displaced_header_offset_in_bytes(), monitor);
944
945    // If the displaced header is zero, we have a recursive unlock.
946    cmpdi(CCR0, displaced_header, 0);
947    beq(CCR0, free_slot); // recursive unlock
948
949    // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
950    //   // We swapped the unlocked mark in displaced_header into the object's mark word.
951    //   monitor->set_obj(NULL);
952
953    // If we still have a lightweight lock, unlock the object and be done.
954
955    // The object address from the monitor is in object.
956    if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
957    addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
958
959    // We have the displaced header in displaced_header. If the lock is still
960    // lightweight, it will contain the monitor address and we'll store the
961    // displaced header back into the object's mark word.
962    // CmpxchgX sets CCR0 to cmpX(current, monitor).
963    cmpxchgd(/*flag=*/CCR0,
964             /*current_value=*/current_header,
965             /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
966             /*where=*/object_mark_addr,
967             MacroAssembler::MemBarRel,
968             MacroAssembler::cmpxchgx_hint_release_lock(),
969             noreg,
970             &slow_case);
971    b(free_slot);
972
973    // } else {
974    //   // Slow path.
975    //   InterpreterRuntime::monitorexit(THREAD, monitor);
976
977    // The lock has been converted into a heavy lock and hence
978    // we need to get into the slow case.
979    bind(slow_case);
980    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
981            monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
982    // }
983
984    Label done;
985    b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
986
987    // Exchange worked, do monitor->set_obj(NULL);
988    align(32, 12);
989    bind(free_slot);
990    li(R0, 0);
991    std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
992    bind(done);
993  }
994}
995
996#ifndef CC_INTERP
997
998// Load compiled (i2c) or interpreter entry when calling from interpreted and
999// do the call. Centralized so that all interpreter calls will do the same actions.
1000// If jvmti single stepping is on for a thread we must not call compiled code.
1001//
1002// Input:
1003//   - Rtarget_method: method to call
1004//   - Rret_addr:      return address
1005//   - 2 scratch regs
1006//
1007void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
1008  assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1009  // Assume we want to go compiled if available.
1010  const Register Rtarget_addr = Rscratch1;
1011  const Register Rinterp_only = Rscratch2;
1012
1013  ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1014
1015  if (JvmtiExport::can_post_interpreter_events()) {
1016    lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1017
1018    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1019    // compiled code in threads for which the event is enabled. Check here for
1020    // interp_only_mode if these events CAN be enabled.
1021    Label done;
1022    verify_thread();
1023    cmpwi(CCR0, Rinterp_only, 0);
1024    beq(CCR0, done);
1025    ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1026    align(32, 12);
1027    bind(done);
1028  }
1029
1030#ifdef ASSERT
1031  {
1032    Label Lok;
1033    cmpdi(CCR0, Rtarget_addr, 0);
1034    bne(CCR0, Lok);
1035    stop("null entry point");
1036    bind(Lok);
1037  }
1038#endif // ASSERT
1039
1040  mr(R21_sender_SP, R1_SP);
1041
1042  // Calc a precise SP for the call. The SP value we calculated in
1043  // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1044  // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1045  // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1046  // Since esp already points to an empty slot, we just have to sub 1 additional slot
1047  // to meet the abi scratch requirements.
1048  // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1049  // the return entry of the interpreter.
1050  addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1051  clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1052  resize_frame_absolute(Rscratch2, Rscratch2, R0);
1053
1054  mr_if_needed(R19_method, Rtarget_method);
1055  mtctr(Rtarget_addr);
1056  mtlr(Rret_addr);
1057
1058  save_interpreter_state(Rscratch2);
1059#ifdef ASSERT
1060  ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1061  cmpd(CCR0, R21_sender_SP, Rscratch1);
1062  asm_assert_eq("top_frame_sp incorrect", 0x951);
1063#endif
1064
1065  bctr();
1066}
1067
1068// Set the method data pointer for the current bcp.
1069void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1070  assert(ProfileInterpreter, "must be profiling interpreter");
1071  Label get_continue;
1072  ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1073  test_method_data_pointer(get_continue);
1074  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1075
1076  addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1077  add(R28_mdx, R28_mdx, R3_RET);
1078  bind(get_continue);
1079}
1080
1081// Test ImethodDataPtr. If it is null, continue at the specified label.
1082void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1083  assert(ProfileInterpreter, "must be profiling interpreter");
1084  cmpdi(CCR0, R28_mdx, 0);
1085  beq(CCR0, zero_continue);
1086}
1087
1088void InterpreterMacroAssembler::verify_method_data_pointer() {
1089  assert(ProfileInterpreter, "must be profiling interpreter");
1090#ifdef ASSERT
1091  Label verify_continue;
1092  test_method_data_pointer(verify_continue);
1093
1094  // If the mdp is valid, it will point to a DataLayout header which is
1095  // consistent with the bcp. The converse is highly probable also.
1096  lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1097  ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1098  addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1099  add(R11_scratch1, R12_scratch2, R12_scratch2);
1100  cmpd(CCR0, R11_scratch1, R14_bcp);
1101  beq(CCR0, verify_continue);
1102
1103  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1104
1105  bind(verify_continue);
1106#endif
1107}
1108
1109void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1110                                                                Register Rscratch,
1111                                                                Label &profile_continue) {
1112  assert(ProfileInterpreter, "must be profiling interpreter");
1113  // Control will flow to "profile_continue" if the counter is less than the
1114  // limit or if we call profile_method().
1115  Label done;
1116
1117  // If no method data exists, and the counter is high enough, make one.
1118  int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
1119  lwz(Rscratch, ipl_offs, Rscratch);
1120
1121  cmpdi(CCR0, R28_mdx, 0);
1122  // Test to see if we should create a method data oop.
1123  cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
1124  bne(CCR0, done);
1125  bge(CCR1, profile_continue);
1126
1127  // Build it now.
1128  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1129  set_method_data_pointer_for_bcp();
1130  b(profile_continue);
1131
1132  align(32, 12);
1133  bind(done);
1134}
1135
1136void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
1137  assert_different_registers(backedge_count, Rtmp, branch_bcp);
1138  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1139
1140  Label did_not_overflow;
1141  Label overflow_with_error;
1142
1143  int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
1144  lwz(Rtmp, ibbl_offs, Rtmp);
1145  cmpw(CCR0, backedge_count, Rtmp);
1146
1147  blt(CCR0, did_not_overflow);
1148
1149  // When ProfileInterpreter is on, the backedge_count comes from the
1150  // methodDataOop, which value does not get reset on the call to
1151  // frequency_counter_overflow(). To avoid excessive calls to the overflow
1152  // routine while the method is being compiled, add a second test to make sure
1153  // the overflow function is called only once every overflow_frequency.
1154  if (ProfileInterpreter) {
1155    const int overflow_frequency = 1024;
1156    li(Rtmp, overflow_frequency-1);
1157    andr(Rtmp, Rtmp, backedge_count);
1158    cmpwi(CCR0, Rtmp, 0);
1159    bne(CCR0, did_not_overflow);
1160  }
1161
1162  // Overflow in loop, pass branch bytecode.
1163  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
1164
1165  // Was an OSR adapter generated?
1166  // O0 = osr nmethod
1167  cmpdi(CCR0, R3_RET, 0);
1168  beq(CCR0, overflow_with_error);
1169
1170  // Has the nmethod been invalidated already?
1171  lbz(Rtmp, nmethod::state_offset(), R3_RET);
1172  cmpwi(CCR0, Rtmp, nmethod::in_use);
1173  bne(CCR0, overflow_with_error);
1174
1175  // Migrate the interpreter frame off of the stack.
1176  // We can use all registers because we will not return to interpreter from this point.
1177
1178  // Save nmethod.
1179  const Register osr_nmethod = R31;
1180  mr(osr_nmethod, R3_RET);
1181  set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1182  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1183  reset_last_Java_frame();
1184  // OSR buffer is in ARG1
1185
1186  // Remove the interpreter frame.
1187  merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1188
1189  // Jump to the osr code.
1190  ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1191  mtlr(R0);
1192  mtctr(R11_scratch1);
1193  bctr();
1194
1195  align(32, 12);
1196  bind(overflow_with_error);
1197  bind(did_not_overflow);
1198}
1199
1200// Store a value at some constant offset from the method data pointer.
1201void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1202  assert(ProfileInterpreter, "must be profiling interpreter");
1203
1204  std(value, constant, R28_mdx);
1205}
1206
1207// Increment the value at some constant offset from the method data pointer.
1208void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1209                                                      Register counter_addr,
1210                                                      Register Rbumped_count,
1211                                                      bool decrement) {
1212  // Locate the counter at a fixed offset from the mdp:
1213  addi(counter_addr, R28_mdx, constant);
1214  increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1215}
1216
1217// Increment the value at some non-fixed (reg + constant) offset from
1218// the method data pointer.
1219void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1220                                                      int constant,
1221                                                      Register scratch,
1222                                                      Register Rbumped_count,
1223                                                      bool decrement) {
1224  // Add the constant to reg to get the offset.
1225  add(scratch, R28_mdx, reg);
1226  // Then calculate the counter address.
1227  addi(scratch, scratch, constant);
1228  increment_mdp_data_at(scratch, Rbumped_count, decrement);
1229}
1230
1231void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1232                                                      Register Rbumped_count,
1233                                                      bool decrement) {
1234  assert(ProfileInterpreter, "must be profiling interpreter");
1235
1236  // Load the counter.
1237  ld(Rbumped_count, 0, counter_addr);
1238
1239  if (decrement) {
1240    // Decrement the register. Set condition codes.
1241    addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1242    // Store the decremented counter, if it is still negative.
1243    std(Rbumped_count, 0, counter_addr);
1244    // Note: add/sub overflow check are not ported, since 64 bit
1245    // calculation should never overflow.
1246  } else {
1247    // Increment the register. Set carry flag.
1248    addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1249    // Store the incremented counter.
1250    std(Rbumped_count, 0, counter_addr);
1251  }
1252}
1253
1254// Set a flag value at the current method data pointer position.
1255void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1256                                                Register scratch) {
1257  assert(ProfileInterpreter, "must be profiling interpreter");
1258  // Load the data header.
1259  lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1260  // Set the flag.
1261  ori(scratch, scratch, flag_constant);
1262  // Store the modified header.
1263  stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1264}
1265
1266// Test the location at some offset from the method data pointer.
1267// If it is not equal to value, branch to the not_equal_continue Label.
1268void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1269                                                 Register value,
1270                                                 Label& not_equal_continue,
1271                                                 Register test_out) {
1272  assert(ProfileInterpreter, "must be profiling interpreter");
1273
1274  ld(test_out, offset, R28_mdx);
1275  cmpd(CCR0,  value, test_out);
1276  bne(CCR0, not_equal_continue);
1277}
1278
1279// Update the method data pointer by the displacement located at some fixed
1280// offset from the method data pointer.
1281void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1282                                                     Register scratch) {
1283  assert(ProfileInterpreter, "must be profiling interpreter");
1284
1285  ld(scratch, offset_of_disp, R28_mdx);
1286  add(R28_mdx, scratch, R28_mdx);
1287}
1288
1289// Update the method data pointer by the displacement located at the
1290// offset (reg + offset_of_disp).
1291void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1292                                                     int offset_of_disp,
1293                                                     Register scratch) {
1294  assert(ProfileInterpreter, "must be profiling interpreter");
1295
1296  add(scratch, reg, R28_mdx);
1297  ld(scratch, offset_of_disp, scratch);
1298  add(R28_mdx, scratch, R28_mdx);
1299}
1300
1301// Update the method data pointer by a simple constant displacement.
1302void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1303  assert(ProfileInterpreter, "must be profiling interpreter");
1304  addi(R28_mdx, R28_mdx, constant);
1305}
1306
1307// Update the method data pointer for a _ret bytecode whose target
1308// was not among our cached targets.
1309void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1310                                                   Register return_bci) {
1311  assert(ProfileInterpreter, "must be profiling interpreter");
1312
1313  push(state);
1314  assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1315  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1316  pop(state);
1317}
1318
1319// Increments the backedge counter.
1320// Returns backedge counter + invocation counter in Rdst.
1321void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1322                                                           const Register Rtmp1, Register Rscratch) {
1323  assert(UseCompiler, "incrementing must be useful");
1324  assert_different_registers(Rdst, Rtmp1);
1325  const Register invocation_counter = Rtmp1;
1326  const Register counter = Rdst;
1327  // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1328
1329  // Load backedge counter.
1330  lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1331               in_bytes(InvocationCounter::counter_offset()), Rcounters);
1332  // Load invocation counter.
1333  lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1334                          in_bytes(InvocationCounter::counter_offset()), Rcounters);
1335
1336  // Add the delta to the backedge counter.
1337  addi(counter, counter, InvocationCounter::count_increment);
1338
1339  // Mask the invocation counter.
1340  li(Rscratch, InvocationCounter::count_mask_value);
1341  andr(invocation_counter, invocation_counter, Rscratch);
1342
1343  // Store new counter value.
1344  stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1345               in_bytes(InvocationCounter::counter_offset()), Rcounters);
1346  // Return invocation counter + backedge counter.
1347  add(counter, counter, invocation_counter);
1348}
1349
1350// Count a taken branch in the bytecodes.
1351void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1352  if (ProfileInterpreter) {
1353    Label profile_continue;
1354
1355    // If no method data exists, go to profile_continue.
1356    test_method_data_pointer(profile_continue);
1357
1358    // We are taking a branch. Increment the taken count.
1359    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1360
1361    // The method data pointer needs to be updated to reflect the new target.
1362    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1363    bind (profile_continue);
1364  }
1365}
1366
1367// Count a not-taken branch in the bytecodes.
1368void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1369  if (ProfileInterpreter) {
1370    Label profile_continue;
1371
1372    // If no method data exists, go to profile_continue.
1373    test_method_data_pointer(profile_continue);
1374
1375    // We are taking a branch. Increment the not taken count.
1376    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1377
1378    // The method data pointer needs to be updated to correspond to the
1379    // next bytecode.
1380    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1381    bind (profile_continue);
1382  }
1383}
1384
1385// Count a non-virtual call in the bytecodes.
1386void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1387  if (ProfileInterpreter) {
1388    Label profile_continue;
1389
1390    // If no method data exists, go to profile_continue.
1391    test_method_data_pointer(profile_continue);
1392
1393    // We are making a call. Increment the count.
1394    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1395
1396    // The method data pointer needs to be updated to reflect the new target.
1397    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1398    bind (profile_continue);
1399  }
1400}
1401
1402// Count a final call in the bytecodes.
1403void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1404  if (ProfileInterpreter) {
1405    Label profile_continue;
1406
1407    // If no method data exists, go to profile_continue.
1408    test_method_data_pointer(profile_continue);
1409
1410    // We are making a call. Increment the count.
1411    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1412
1413    // The method data pointer needs to be updated to reflect the new target.
1414    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1415    bind (profile_continue);
1416  }
1417}
1418
1419// Count a virtual call in the bytecodes.
1420void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1421                                                     Register Rscratch1,
1422                                                     Register Rscratch2,
1423                                                     bool receiver_can_be_null) {
1424  if (!ProfileInterpreter) { return; }
1425  Label profile_continue;
1426
1427  // If no method data exists, go to profile_continue.
1428  test_method_data_pointer(profile_continue);
1429
1430  Label skip_receiver_profile;
1431  if (receiver_can_be_null) {
1432    Label not_null;
1433    cmpdi(CCR0, Rreceiver, 0);
1434    bne(CCR0, not_null);
1435    // We are making a call. Increment the count for null receiver.
1436    increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1437    b(skip_receiver_profile);
1438    bind(not_null);
1439  }
1440
1441  // Record the receiver type.
1442  record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1443  bind(skip_receiver_profile);
1444
1445  // The method data pointer needs to be updated to reflect the new target.
1446  update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1447  bind (profile_continue);
1448}
1449
1450void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1451  if (ProfileInterpreter) {
1452    Label profile_continue;
1453
1454    // If no method data exists, go to profile_continue.
1455    test_method_data_pointer(profile_continue);
1456
1457    int mdp_delta = in_bytes(BitData::bit_data_size());
1458    if (TypeProfileCasts) {
1459      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1460
1461      // Record the object type.
1462      record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1463    }
1464
1465    // The method data pointer needs to be updated.
1466    update_mdp_by_constant(mdp_delta);
1467
1468    bind (profile_continue);
1469  }
1470}
1471
1472void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1473  if (ProfileInterpreter && TypeProfileCasts) {
1474    Label profile_continue;
1475
1476    // If no method data exists, go to profile_continue.
1477    test_method_data_pointer(profile_continue);
1478
1479    int count_offset = in_bytes(CounterData::count_offset());
1480    // Back up the address, since we have already bumped the mdp.
1481    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1482
1483    // *Decrement* the counter. We expect to see zero or small negatives.
1484    increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1485
1486    bind (profile_continue);
1487  }
1488}
1489
1490// Count a ret in the bytecodes.
1491void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
1492  if (ProfileInterpreter) {
1493    Label profile_continue;
1494    uint row;
1495
1496    // If no method data exists, go to profile_continue.
1497    test_method_data_pointer(profile_continue);
1498
1499    // Update the total ret count.
1500    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1501
1502    for (row = 0; row < RetData::row_limit(); row++) {
1503      Label next_test;
1504
1505      // See if return_bci is equal to bci[n]:
1506      test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1507
1508      // return_bci is equal to bci[n]. Increment the count.
1509      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1510
1511      // The method data pointer needs to be updated to reflect the new target.
1512      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1513      b(profile_continue);
1514      bind(next_test);
1515    }
1516
1517    update_mdp_for_ret(state, return_bci);
1518
1519    bind (profile_continue);
1520  }
1521}
1522
1523// Count the default case of a switch construct.
1524void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1525  if (ProfileInterpreter) {
1526    Label profile_continue;
1527
1528    // If no method data exists, go to profile_continue.
1529    test_method_data_pointer(profile_continue);
1530
1531    // Update the default case count
1532    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1533                          scratch1, scratch2);
1534
1535    // The method data pointer needs to be updated.
1536    update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1537                         scratch1);
1538
1539    bind (profile_continue);
1540  }
1541}
1542
1543// Count the index'th case of a switch construct.
1544void InterpreterMacroAssembler::profile_switch_case(Register index,
1545                                                    Register scratch1,
1546                                                    Register scratch2,
1547                                                    Register scratch3) {
1548  if (ProfileInterpreter) {
1549    assert_different_registers(index, scratch1, scratch2, scratch3);
1550    Label profile_continue;
1551
1552    // If no method data exists, go to profile_continue.
1553    test_method_data_pointer(profile_continue);
1554
1555    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1556    li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1557
1558    assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1559    sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1560    add(scratch1, scratch1, scratch3);
1561
1562    // Update the case count.
1563    increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1564
1565    // The method data pointer needs to be updated.
1566    update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1567
1568    bind (profile_continue);
1569  }
1570}
1571
1572void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1573  if (ProfileInterpreter) {
1574    assert_different_registers(Rscratch1, Rscratch2);
1575    Label profile_continue;
1576
1577    // If no method data exists, go to profile_continue.
1578    test_method_data_pointer(profile_continue);
1579
1580    set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1581
1582    // The method data pointer needs to be updated.
1583    int mdp_delta = in_bytes(BitData::bit_data_size());
1584    if (TypeProfileCasts) {
1585      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1586    }
1587    update_mdp_by_constant(mdp_delta);
1588
1589    bind (profile_continue);
1590  }
1591}
1592
1593void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1594                                                        Register Rscratch1, Register Rscratch2,
1595                                                        bool is_virtual_call) {
1596  assert(ProfileInterpreter, "must be profiling");
1597  assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1598
1599  Label done;
1600  record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1601  bind (done);
1602}
1603
1604void InterpreterMacroAssembler::record_klass_in_profile_helper(
1605                                        Register receiver, Register scratch1, Register scratch2,
1606                                        int start_row, Label& done, bool is_virtual_call) {
1607  if (TypeProfileWidth == 0) {
1608    if (is_virtual_call) {
1609      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1610    }
1611    return;
1612  }
1613
1614  int last_row = VirtualCallData::row_limit() - 1;
1615  assert(start_row <= last_row, "must be work left to do");
1616  // Test this row for both the receiver and for null.
1617  // Take any of three different outcomes:
1618  //   1. found receiver => increment count and goto done
1619  //   2. found null => keep looking for case 1, maybe allocate this cell
1620  //   3. found something else => keep looking for cases 1 and 2
1621  // Case 3 is handled by a recursive call.
1622  for (int row = start_row; row <= last_row; row++) {
1623    Label next_test;
1624    bool test_for_null_also = (row == start_row);
1625
1626    // See if the receiver is receiver[n].
1627    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1628    test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1629    // delayed()->tst(scratch);
1630
1631    // The receiver is receiver[n]. Increment count[n].
1632    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1633    increment_mdp_data_at(count_offset, scratch1, scratch2);
1634    b(done);
1635    bind(next_test);
1636
1637    if (test_for_null_also) {
1638      Label found_null;
1639      // Failed the equality check on receiver[n]... Test for null.
1640      if (start_row == last_row) {
1641        // The only thing left to do is handle the null case.
1642        if (is_virtual_call) {
1643          // Scratch1 contains test_out from test_mdp_data_at.
1644          cmpdi(CCR0, scratch1, 0);
1645          beq(CCR0, found_null);
1646          // Receiver did not match any saved receiver and there is no empty row for it.
1647          // Increment total counter to indicate polymorphic case.
1648          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1649          b(done);
1650          bind(found_null);
1651        } else {
1652          cmpdi(CCR0, scratch1, 0);
1653          bne(CCR0, done);
1654        }
1655        break;
1656      }
1657      // Since null is rare, make it be the branch-taken case.
1658      cmpdi(CCR0, scratch1, 0);
1659      beq(CCR0, found_null);
1660
1661      // Put all the "Case 3" tests here.
1662      record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1663
1664      // Found a null. Keep searching for a matching receiver,
1665      // but remember that this is an empty (unused) slot.
1666      bind(found_null);
1667    }
1668  }
1669
1670  // In the fall-through case, we found no matching receiver, but we
1671  // observed the receiver[start_row] is NULL.
1672
1673  // Fill in the receiver field and increment the count.
1674  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1675  set_mdp_data_at(recvr_offset, receiver);
1676  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1677  li(scratch1, DataLayout::counter_increment);
1678  set_mdp_data_at(count_offset, scratch1);
1679  if (start_row > 0) {
1680    b(done);
1681  }
1682}
1683
1684// Argument and return type profilig.
1685// kills: tmp, tmp2, R0, CR0, CR1
1686void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
1687                                                 RegisterOrConstant mdo_addr_offs, Register tmp, Register tmp2) {
1688  Label do_nothing, do_update;
1689
1690  // tmp2 = obj is allowed
1691  assert_different_registers(obj, mdo_addr_base, tmp, R0);
1692  assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
1693  const Register klass = tmp2;
1694
1695  verify_oop(obj);
1696
1697  ld(tmp, mdo_addr_offs, mdo_addr_base);
1698
1699  // Set null_seen if obj is 0.
1700  cmpdi(CCR0, obj, 0);
1701  ori(R0, tmp, TypeEntries::null_seen);
1702  beq(CCR0, do_update);
1703
1704  load_klass(klass, obj);
1705
1706  clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
1707  // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
1708  cmpd(CCR1, R0, klass);
1709  // Klass seen before, nothing to do (regardless of unknown bit).
1710  //beq(CCR1, do_nothing);
1711
1712  andi_(R0, klass, TypeEntries::type_unknown);
1713  // Already unknown. Nothing to do anymore.
1714  //bne(CCR0, do_nothing);
1715  crorc(/*CCR0 eq*/2, /*CCR1 eq*/4+2, /*CCR0 eq*/2); // cr0 eq = cr1 eq or cr0 ne
1716  beq(CCR0, do_nothing);
1717
1718  clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
1719  orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1720  beq(CCR0, do_update); // First time here. Set profile type.
1721
1722  // Different than before. Cannot keep accurate profile.
1723  ori(R0, tmp, TypeEntries::type_unknown);
1724
1725  bind(do_update);
1726  // update profile
1727  std(R0, mdo_addr_offs, mdo_addr_base);
1728
1729  align(32, 12);
1730  bind(do_nothing);
1731}
1732
1733void InterpreterMacroAssembler::profile_arguments_type(Register callee, Register tmp1, Register tmp2, bool is_virtual) {
1734  if (!ProfileInterpreter) {
1735    return;
1736  }
1737
1738  assert_different_registers(callee, tmp1, tmp2, R28_mdx);
1739
1740  if (MethodData::profile_arguments() || MethodData::profile_return()) {
1741    Label profile_continue;
1742
1743    test_method_data_pointer(profile_continue);
1744
1745    int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1746
1747    lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
1748    cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1749    bne(CCR0, profile_continue);
1750
1751    if (MethodData::profile_arguments()) {
1752      Label done;
1753      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1754      add(R28_mdx, off_to_args, R28_mdx);
1755
1756      for (int i = 0; i < TypeProfileArgsLimit; i++) {
1757        if (i > 0 || MethodData::profile_return()) {
1758          // If return value type is profiled we may have no argument to profile.
1759          ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1760          cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
1761          addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
1762          blt(CCR0, done);
1763        }
1764        ld(tmp1, in_bytes(Method::const_offset()), callee);
1765        lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
1766        // Stack offset o (zero based) from the start of the argument
1767        // list, for n arguments translates into offset n - o - 1 from
1768        // the end of the argument list. But there's an extra slot at
1769        // the top of the stack. So the offset is n - o from Lesp.
1770        ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
1771        subf(tmp1, tmp2, tmp1);
1772
1773        sldi(tmp1, tmp1, Interpreter::logStackElementSize);
1774        ldx(tmp1, tmp1, R15_esp);
1775
1776        profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
1777
1778        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1779        addi(R28_mdx, R28_mdx, to_add);
1780        off_to_args += to_add;
1781      }
1782
1783      if (MethodData::profile_return()) {
1784        ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1785        addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1786      }
1787
1788      bind(done);
1789
1790      if (MethodData::profile_return()) {
1791        // We're right after the type profile for the last
1792        // argument. tmp1 is the number of cells left in the
1793        // CallTypeData/VirtualCallTypeData to reach its end. Non null
1794        // if there's a return to profile.
1795        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1796        sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
1797        add(R28_mdx, tmp1, R28_mdx);
1798      }
1799    } else {
1800      assert(MethodData::profile_return(), "either profile call args or call ret");
1801      update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
1802    }
1803
1804    // Mdp points right after the end of the
1805    // CallTypeData/VirtualCallTypeData, right after the cells for the
1806    // return value type if there's one.
1807    align(32, 12);
1808    bind(profile_continue);
1809  }
1810}
1811
1812void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
1813  assert_different_registers(ret, tmp1, tmp2);
1814  if (ProfileInterpreter && MethodData::profile_return()) {
1815    Label profile_continue;
1816
1817    test_method_data_pointer(profile_continue);
1818
1819    if (MethodData::profile_return_jsr292_only()) {
1820      // If we don't profile all invoke bytecodes we must make sure
1821      // it's a bytecode we indeed profile. We can't go back to the
1822      // begining of the ProfileData we intend to update to check its
1823      // type because we're right after it and we don't known its
1824      // length.
1825      lbz(tmp1, 0, R14_bcp);
1826      lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
1827      cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
1828      cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
1829      cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
1830      cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
1831      cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
1832      bne(CCR0, profile_continue);
1833    }
1834
1835    profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
1836
1837    align(32, 12);
1838    bind(profile_continue);
1839  }
1840}
1841
1842void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
1843  if (ProfileInterpreter && MethodData::profile_parameters()) {
1844    Label profile_continue, done;
1845
1846    test_method_data_pointer(profile_continue);
1847
1848    // Load the offset of the area within the MDO used for
1849    // parameters. If it's negative we're not profiling any parameters.
1850    lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
1851    cmpwi(CCR0, tmp1, 0);
1852    blt(CCR0, profile_continue);
1853
1854    // Compute a pointer to the area for parameters from the offset
1855    // and move the pointer to the slot for the last
1856    // parameters. Collect profiling from last parameter down.
1857    // mdo start + parameters offset + array length - 1
1858
1859    // Pointer to the parameter area in the MDO.
1860    const Register mdp = tmp1;
1861    add(mdp, tmp1, R28_mdx);
1862
1863    // Pffset of the current profile entry to update.
1864    const Register entry_offset = tmp2;
1865    // entry_offset = array len in number of cells
1866    ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
1867
1868    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1869    assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
1870
1871    // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
1872    addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
1873    // entry_offset in bytes
1874    sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1875
1876    Label loop;
1877    align(32, 12);
1878    bind(loop);
1879
1880    // Load offset on the stack from the slot for this parameter.
1881    ld(tmp3, entry_offset, mdp);
1882    sldi(tmp3, tmp3, Interpreter::logStackElementSize);
1883    neg(tmp3, tmp3);
1884    // Read the parameter from the local area.
1885    ldx(tmp3, tmp3, R18_locals);
1886
1887    // Make entry_offset now point to the type field for this parameter.
1888    int type_base = in_bytes(ParametersTypeData::type_offset(0));
1889    assert(type_base > off_base, "unexpected");
1890    addi(entry_offset, entry_offset, type_base - off_base);
1891
1892    // Profile the parameter.
1893    profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
1894
1895    // Go to next parameter.
1896    int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
1897    cmpdi(CCR0, entry_offset, off_base + delta);
1898    addi(entry_offset, entry_offset, -delta);
1899    bge(CCR0, loop);
1900
1901    align(32, 12);
1902    bind(profile_continue);
1903  }
1904}
1905
1906// Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1907void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1908
1909  // Very-local scratch registers.
1910  const Register esp  = Rtemp1;
1911  const Register slot = Rtemp2;
1912
1913  // Extracted monitor_size.
1914  int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1915  assert(Assembler::is_aligned((unsigned int)monitor_size,
1916                               (unsigned int)frame::alignment_in_bytes),
1917         "size of a monitor must respect alignment of SP");
1918
1919  resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1920  std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1921
1922  // Shuffle expression stack down. Recall that stack_base points
1923  // just above the new expression stack bottom. Old_tos and new_tos
1924  // are used to scan thru the old and new expression stacks.
1925  if (!stack_is_empty) {
1926    Label copy_slot, copy_slot_finished;
1927    const Register n_slots = slot;
1928
1929    addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1930    subf(n_slots, esp, R26_monitor);
1931    srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1932    assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1933    beq(CCR0, copy_slot_finished);                     // Nothing to copy.
1934
1935    mtctr(n_slots);
1936
1937    // loop
1938    bind(copy_slot);
1939    ld(slot, 0, esp);              // Move expression stack down.
1940    std(slot, -monitor_size, esp); // distance = monitor_size
1941    addi(esp, esp, BytesPerWord);
1942    bdnz(copy_slot);
1943
1944    bind(copy_slot_finished);
1945  }
1946
1947  addi(R15_esp, R15_esp, -monitor_size);
1948  addi(R26_monitor, R26_monitor, -monitor_size);
1949
1950  // Restart interpreter
1951}
1952
1953// ============================================================================
1954// Java locals access
1955
1956// Load a local variable at index in Rindex into register Rdst_value.
1957// Also puts address of local into Rdst_address as a service.
1958// Kills:
1959//   - Rdst_value
1960//   - Rdst_address
1961void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
1962  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1963  subf(Rdst_address, Rdst_address, R18_locals);
1964  lwz(Rdst_value, 0, Rdst_address);
1965}
1966
1967// Load a local variable at index in Rindex into register Rdst_value.
1968// Also puts address of local into Rdst_address as a service.
1969// Kills:
1970//   - Rdst_value
1971//   - Rdst_address
1972void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
1973  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1974  subf(Rdst_address, Rdst_address, R18_locals);
1975  ld(Rdst_value, -8, Rdst_address);
1976}
1977
1978// Load a local variable at index in Rindex into register Rdst_value.
1979// Also puts address of local into Rdst_address as a service.
1980// Input:
1981//   - Rindex:      slot nr of local variable
1982// Kills:
1983//   - Rdst_value
1984//   - Rdst_address
1985void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
1986  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1987  subf(Rdst_address, Rdst_address, R18_locals);
1988  ld(Rdst_value, 0, Rdst_address);
1989}
1990
1991// Load a local variable at index in Rindex into register Rdst_value.
1992// Also puts address of local into Rdst_address as a service.
1993// Kills:
1994//   - Rdst_value
1995//   - Rdst_address
1996void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
1997  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1998  subf(Rdst_address, Rdst_address, R18_locals);
1999  lfs(Rdst_value, 0, Rdst_address);
2000}
2001
2002// Load a local variable at index in Rindex into register Rdst_value.
2003// Also puts address of local into Rdst_address as a service.
2004// Kills:
2005//   - Rdst_value
2006//   - Rdst_address
2007void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
2008  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2009  subf(Rdst_address, Rdst_address, R18_locals);
2010  lfd(Rdst_value, -8, Rdst_address);
2011}
2012
2013// Store an int value at local variable slot Rindex.
2014// Kills:
2015//   - Rindex
2016void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
2017  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2018  subf(Rindex, Rindex, R18_locals);
2019  stw(Rvalue, 0, Rindex);
2020}
2021
2022// Store a long value at local variable slot Rindex.
2023// Kills:
2024//   - Rindex
2025void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
2026  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2027  subf(Rindex, Rindex, R18_locals);
2028  std(Rvalue, -8, Rindex);
2029}
2030
2031// Store an oop value at local variable slot Rindex.
2032// Kills:
2033//   - Rindex
2034void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
2035  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2036  subf(Rindex, Rindex, R18_locals);
2037  std(Rvalue, 0, Rindex);
2038}
2039
2040// Store an int value at local variable slot Rindex.
2041// Kills:
2042//   - Rindex
2043void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
2044  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2045  subf(Rindex, Rindex, R18_locals);
2046  stfs(Rvalue, 0, Rindex);
2047}
2048
2049// Store an int value at local variable slot Rindex.
2050// Kills:
2051//   - Rindex
2052void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
2053  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2054  subf(Rindex, Rindex, R18_locals);
2055  stfd(Rvalue, -8, Rindex);
2056}
2057
2058// Read pending exception from thread and jump to interpreter.
2059// Throw exception entry if one if pending. Fall through otherwise.
2060void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
2061  assert_different_registers(Rscratch1, Rscratch2, R3);
2062  Register Rexception = Rscratch1;
2063  Register Rtmp       = Rscratch2;
2064  Label Ldone;
2065  // Get pending exception oop.
2066  ld(Rexception, thread_(pending_exception));
2067  cmpdi(CCR0, Rexception, 0);
2068  beq(CCR0, Ldone);
2069  li(Rtmp, 0);
2070  mr_if_needed(R3, Rexception);
2071  std(Rtmp, thread_(pending_exception)); // Clear exception in thread
2072  if (Interpreter::rethrow_exception_entry() != NULL) {
2073    // Already got entry address.
2074    load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
2075  } else {
2076    // Dynamically load entry address.
2077    int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
2078    ld(Rtmp, simm16_rest, Rtmp);
2079  }
2080  mtctr(Rtmp);
2081  save_interpreter_state(Rtmp);
2082  bctr();
2083
2084  align(32, 12);
2085  bind(Ldone);
2086}
2087
2088void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2089  save_interpreter_state(R11_scratch1);
2090
2091  MacroAssembler::call_VM(oop_result, entry_point, false);
2092
2093  restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2094
2095  check_and_handle_popframe(R11_scratch1);
2096  check_and_handle_earlyret(R11_scratch1);
2097  // Now check exceptions manually.
2098  if (check_exceptions) {
2099    check_and_forward_exception(R11_scratch1, R12_scratch2);
2100  }
2101}
2102
2103void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
2104  // ARG1 is reserved for the thread.
2105  mr_if_needed(R4_ARG2, arg_1);
2106  call_VM(oop_result, entry_point, check_exceptions);
2107}
2108
2109void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
2110  // ARG1 is reserved for the thread.
2111  mr_if_needed(R4_ARG2, arg_1);
2112  assert(arg_2 != R4_ARG2, "smashed argument");
2113  mr_if_needed(R5_ARG3, arg_2);
2114  call_VM(oop_result, entry_point, check_exceptions);
2115}
2116
2117void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
2118  // ARG1 is reserved for the thread.
2119  mr_if_needed(R4_ARG2, arg_1);
2120  assert(arg_2 != R4_ARG2, "smashed argument");
2121  mr_if_needed(R5_ARG3, arg_2);
2122  assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
2123  mr_if_needed(R6_ARG4, arg_3);
2124  call_VM(oop_result, entry_point, check_exceptions);
2125}
2126
2127void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
2128  ld(scratch, 0, R1_SP);
2129  std(R15_esp, _ijava_state_neg(esp), scratch);
2130  std(R14_bcp, _ijava_state_neg(bcp), scratch);
2131  std(R26_monitor, _ijava_state_neg(monitors), scratch);
2132  if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
2133  // Other entries should be unchanged.
2134}
2135
2136void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
2137  ld(scratch, 0, R1_SP);
2138  ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
2139  if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
2140  if (!bcp_and_mdx_only) {
2141    // Following ones are Metadata.
2142    ld(R19_method, _ijava_state_neg(method), scratch);
2143    ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
2144    // Following ones are stack addresses and don't require reload.
2145    ld(R15_esp, _ijava_state_neg(esp), scratch);
2146    ld(R18_locals, _ijava_state_neg(locals), scratch);
2147    ld(R26_monitor, _ijava_state_neg(monitors), scratch);
2148  }
2149#ifdef ASSERT
2150  {
2151    Label Lok;
2152    subf(R0, R1_SP, scratch);
2153    cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
2154    bge(CCR0, Lok);
2155    stop("frame too small (restore istate)", 0x5432);
2156    bind(Lok);
2157  }
2158  {
2159    Label Lok;
2160    ld(R0, _ijava_state_neg(ijava_reserved), scratch);
2161    cmpdi(CCR0, R0, 0x5afe);
2162    beq(CCR0, Lok);
2163    stop("frame corrupted (restore istate)", 0x5afe);
2164    bind(Lok);
2165  }
2166#endif
2167}
2168
2169#endif // !CC_INTERP
2170
2171void InterpreterMacroAssembler::get_method_counters(Register method,
2172                                                    Register Rcounters,
2173                                                    Label& skip) {
2174  BLOCK_COMMENT("Load and ev. allocate counter object {");
2175  Label has_counters;
2176  ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2177  cmpdi(CCR0, Rcounters, 0);
2178  bne(CCR0, has_counters);
2179  call_VM(noreg, CAST_FROM_FN_PTR(address,
2180                                  InterpreterRuntime::build_method_counters), method, false);
2181  ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2182  cmpdi(CCR0, Rcounters, 0);
2183  beq(CCR0, skip); // No MethodCounters, OutOfMemory.
2184  BLOCK_COMMENT("} Load and ev. allocate counter object");
2185
2186  bind(has_counters);
2187}
2188
2189void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) {
2190  assert(UseCompiler, "incrementing must be useful");
2191  Register invocation_count = iv_be_count;
2192  Register backedge_count   = Rtmp_r0;
2193  int delta = InvocationCounter::count_increment;
2194
2195  // Load each counter in a register.
2196  //  ld(inv_counter, Rtmp);
2197  //  ld(be_counter, Rtmp2);
2198  int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
2199                                    InvocationCounter::counter_offset());
2200  int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
2201                                    InvocationCounter::counter_offset());
2202
2203  BLOCK_COMMENT("Increment profiling counters {");
2204
2205  // Load the backedge counter.
2206  lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
2207  // Mask the backedge counter.
2208  Register tmp = invocation_count;
2209  li(tmp, InvocationCounter::count_mask_value);
2210  andr(backedge_count, tmp, backedge_count); // Cannot use andi, need sign extension of count_mask_value.
2211
2212  // Load the invocation counter.
2213  lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
2214  // Add the delta to the invocation counter and store the result.
2215  addi(invocation_count, invocation_count, delta);
2216  // Store value.
2217  stw(invocation_count, inv_counter_offset, Rcounters);
2218
2219  // Add invocation counter + backedge counter.
2220  add(iv_be_count, backedge_count, invocation_count);
2221
2222  // Note that this macro must leave the backedge_count + invocation_count in
2223  // register iv_be_count!
2224  BLOCK_COMMENT("} Increment profiling counters");
2225}
2226
2227void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2228  if (state == atos) { MacroAssembler::verify_oop(reg); }
2229}
2230
2231#ifndef CC_INTERP
2232// Local helper function for the verify_oop_or_return_address macro.
2233static bool verify_return_address(Method* m, int bci) {
2234#ifndef PRODUCT
2235  address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2236  // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2237  if (!m->contains(pc))                                            return false;
2238  address jsr_pc;
2239  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2240  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2241  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2242  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2243#endif // PRODUCT
2244  return false;
2245}
2246
2247void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2248  if (VerifyFPU) {
2249    unimplemented("verfiyFPU");
2250  }
2251}
2252
2253void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2254  if (!VerifyOops) return;
2255
2256  // The VM documentation for the astore[_wide] bytecode allows
2257  // the TOS to be not only an oop but also a return address.
2258  Label test;
2259  Label skip;
2260  // See if it is an address (in the current method):
2261
2262  const int log2_bytecode_size_limit = 16;
2263  srdi_(Rtmp, reg, log2_bytecode_size_limit);
2264  bne(CCR0, test);
2265
2266  address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2267  const int nbytes_save = 11*8; // volatile gprs except R0
2268  save_volatile_gprs(R1_SP, -nbytes_save); // except R0
2269  save_LR_CR(Rtmp); // Save in old frame.
2270  push_frame_reg_args(nbytes_save, Rtmp);
2271
2272  load_const_optimized(Rtmp, fd, R0);
2273  mr_if_needed(R4_ARG2, reg);
2274  mr(R3_ARG1, R19_method);
2275  call_c(Rtmp); // call C
2276
2277  pop_frame();
2278  restore_LR_CR(Rtmp);
2279  restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
2280  b(skip);
2281
2282  // Perform a more elaborate out-of-line call.
2283  // Not an address; verify it:
2284  bind(test);
2285  verify_oop(reg);
2286  bind(skip);
2287}
2288#endif // !CC_INTERP
2289
2290// Inline assembly for:
2291//
2292// if (thread is in interp_only_mode) {
2293//   InterpreterRuntime::post_method_entry();
2294// }
2295// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2296//     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2297//   SharedRuntime::jvmpi_method_entry(method, receiver);
2298// }
2299void InterpreterMacroAssembler::notify_method_entry() {
2300  // JVMTI
2301  // Whenever JVMTI puts a thread in interp_only_mode, method
2302  // entry/exit events are sent for that thread to track stack
2303  // depth. If it is possible to enter interp_only_mode we add
2304  // the code to check if the event should be sent.
2305  if (JvmtiExport::can_post_interpreter_events()) {
2306    Label jvmti_post_done;
2307
2308    lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2309    cmpwi(CCR0, R0, 0);
2310    beq(CCR0, jvmti_post_done);
2311    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2312            /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
2313
2314    bind(jvmti_post_done);
2315  }
2316}
2317
2318// Inline assembly for:
2319//
2320// if (thread is in interp_only_mode) {
2321//   // save result
2322//   InterpreterRuntime::post_method_exit();
2323//   // restore result
2324// }
2325// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2326//   // save result
2327//   SharedRuntime::jvmpi_method_exit();
2328//   // restore result
2329// }
2330//
2331// Native methods have their result stored in d_tmp and l_tmp.
2332// Java methods have their result stored in the expression stack.
2333void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2334                                                   NotifyMethodExitMode mode, bool check_exceptions) {
2335  // JVMTI
2336  // Whenever JVMTI puts a thread in interp_only_mode, method
2337  // entry/exit events are sent for that thread to track stack
2338  // depth. If it is possible to enter interp_only_mode we add
2339  // the code to check if the event should be sent.
2340  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2341    Label jvmti_post_done;
2342
2343    lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2344    cmpwi(CCR0, R0, 0);
2345    beq(CCR0, jvmti_post_done);
2346    CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
2347    if (!is_native_method) push(state); // Expose tos to GC.
2348    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2349            /*check_exceptions=*/check_exceptions);
2350    if (!is_native_method) pop(state);
2351
2352    align(32, 12);
2353    bind(jvmti_post_done);
2354  }
2355
2356  // Dtrace support not implemented.
2357}
2358
2359#ifdef CC_INTERP
2360// Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
2361// (using parent_frame_resize) and push a new interpreter
2362// TOP_IJAVA_FRAME (using frame_size).
2363void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
2364                                                       Register tmp1, Register tmp2, Register tmp3,
2365                                                       Register tmp4, Register pc) {
2366  assert_different_registers(top_frame_size, parent_frame_resize, tmp1, tmp2, tmp3, tmp4);
2367  ld(tmp1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2368  mr(tmp2/*top_frame_sp*/, R1_SP);
2369  // Move initial_caller_sp.
2370  ld(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2371  neg(parent_frame_resize, parent_frame_resize);
2372  resize_frame(parent_frame_resize/*-parent_frame_resize*/, tmp3);
2373
2374  // Set LR in new parent frame.
2375  std(tmp1, _abi(lr), R1_SP);
2376  // Set top_frame_sp info for new parent frame.
2377  std(tmp2, _parent_ijava_frame_abi(top_frame_sp), R1_SP);
2378  std(tmp4, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2379
2380  // Push new TOP_IJAVA_FRAME.
2381  push_frame(top_frame_size, tmp2);
2382
2383  get_PC_trash_LR(tmp3);
2384  std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2385  // Used for non-initial callers by unextended_sp().
2386  std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2387}
2388
2389// Pop the topmost TOP_IJAVA_FRAME and convert the previous
2390// PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
2391void InterpreterMacroAssembler::pop_interpreter_frame(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2392  assert_different_registers(tmp1, tmp2, tmp3, tmp4);
2393
2394  ld(tmp1/*caller's sp*/, _abi(callers_sp), R1_SP);
2395  ld(tmp3, _abi(lr), tmp1);
2396
2397  ld(tmp4, _parent_ijava_frame_abi(initial_caller_sp), tmp1);
2398
2399  ld(tmp2/*caller's caller's sp*/, _abi(callers_sp), tmp1);
2400  // Merge top frame.
2401  std(tmp2, _abi(callers_sp), R1_SP);
2402
2403  ld(tmp2, _parent_ijava_frame_abi(top_frame_sp), tmp1);
2404
2405  // Update C stack pointer to caller's top_abi.
2406  resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2407
2408  // Update LR in top_frame.
2409  std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2410
2411  std(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2412
2413  // Store the top-frame stack-pointer for c2i adapters.
2414  std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
2415}
2416
2417// Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
2418void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
2419  assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
2420
2421  if (state == R14_state) {
2422    ld(tmp1/*state's fp*/, state_(_last_Java_fp));
2423    ld(tmp2/*state's sp*/, state_(_last_Java_sp));
2424  } else if (state == R15_prev_state) {
2425    ld(tmp1/*state's fp*/, prev_state_(_last_Java_fp));
2426    ld(tmp2/*state's sp*/, prev_state_(_last_Java_sp));
2427  } else {
2428    ShouldNotReachHere();
2429  }
2430
2431  // Merge top frames.
2432  std(tmp1, _abi(callers_sp), R1_SP);
2433
2434  // Tmp2 is new SP.
2435  // Tmp1 is parent's SP.
2436  resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2437
2438  // Update LR in top_frame.
2439  // Must be interpreter frame.
2440  get_PC_trash_LR(tmp3);
2441  std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2442  // Used for non-initial callers by unextended_sp().
2443  std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2444}
2445
2446// Set SP to initial caller's sp, but before fix the back chain.
2447void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
2448  ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2449  ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
2450  std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
2451  mr(R1_SP, tmp1); // ... and resize to initial caller.
2452}
2453
2454// Pop the current interpreter state (without popping the correspoding
2455// frame) and restore R14_state and R15_prev_state accordingly.
2456// Use prev_state_may_be_0 to indicate whether prev_state may be 0
2457// in order to generate an extra check before retrieving prev_state_(_prev_link).
2458void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)
2459{
2460  // Move prev_state to state and restore prev_state from state_(_prev_link).
2461  Label prev_state_is_0;
2462  mr(R14_state, R15_prev_state);
2463
2464  // Don't retrieve /*state==*/prev_state_(_prev_link)
2465  // if /*state==*/prev_state is 0.
2466  if (prev_state_may_be_0) {
2467    cmpdi(CCR0, R15_prev_state, 0);
2468    beq(CCR0, prev_state_is_0);
2469  }
2470
2471  ld(R15_prev_state, /*state==*/prev_state_(_prev_link));
2472  bind(prev_state_is_0);
2473}
2474
2475void InterpreterMacroAssembler::restore_prev_state() {
2476  // _prev_link is private, but cInterpreter is a friend.
2477  ld(R15_prev_state, state_(_prev_link));
2478}
2479#endif // CC_INTERP
2480