interp_masm_ppc_64.cpp revision 11486:3950d1713ffa
1/*
2 * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26
27#include "precompiled.hpp"
28#include "asm/macroAssembler.inline.hpp"
29#include "interp_masm_ppc_64.hpp"
30#include "interpreter/interpreterRuntime.hpp"
31#include "prims/jvmtiThreadState.hpp"
32#include "runtime/sharedRuntime.hpp"
33
34#ifdef PRODUCT
35#define BLOCK_COMMENT(str) // nothing
36#else
37#define BLOCK_COMMENT(str) block_comment(str)
38#endif
39
40void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
41  address exception_entry = Interpreter::throw_NullPointerException_entry();
42  MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
43}
44
45void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
46  assert(entry, "Entry must have been generated by now");
47  if (is_within_range_of_b(entry, pc())) {
48    b(entry);
49  } else {
50    load_const_optimized(Rscratch, entry, R0);
51    mtctr(Rscratch);
52    bctr();
53  }
54}
55
56void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
57  Register bytecode = R12_scratch2;
58  if (bcp_incr != 0) {
59    lbzu(bytecode, bcp_incr, R14_bcp);
60  } else {
61    lbz(bytecode, 0, R14_bcp);
62  }
63
64  dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
65}
66
67void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
68  // Load current bytecode.
69  Register bytecode = R12_scratch2;
70  lbz(bytecode, 0, R14_bcp);
71  dispatch_Lbyte_code(state, bytecode, table);
72}
73
74// Dispatch code executed in the prolog of a bytecode which does not do it's
75// own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
76void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
77  Register bytecode = R12_scratch2;
78  lbz(bytecode, bcp_incr, R14_bcp);
79
80  load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
81
82  sldi(bytecode, bytecode, LogBytesPerWord);
83  ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
84}
85
86// Dispatch code executed in the epilog of a bytecode which does not do it's
87// own dispatch. The dispatch address in R24_dispatch_addr is used for the
88// dispatch.
89void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
90  if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); }
91  mtctr(R24_dispatch_addr);
92  bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
93}
94
95void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
96  assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
97  if (JvmtiExport::can_pop_frame()) {
98    Label L;
99
100    // Check the "pending popframe condition" flag in the current thread.
101    lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
102
103    // Initiate popframe handling only if it is not already being
104    // processed. If the flag has the popframe_processing bit set, it
105    // means that this code is called *during* popframe handling - we
106    // don't want to reenter.
107    andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
108    beq(CCR0, L);
109
110    andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
111    bne(CCR0, L);
112
113    // Call the Interpreter::remove_activation_preserving_args_entry()
114    // func to get the address of the same-named entrypoint in the
115    // generated interpreter code.
116#if defined(ABI_ELFv2)
117    call_c(CAST_FROM_FN_PTR(address,
118                            Interpreter::remove_activation_preserving_args_entry),
119           relocInfo::none);
120#else
121    call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
122                            Interpreter::remove_activation_preserving_args_entry),
123           relocInfo::none);
124#endif
125
126    // Jump to Interpreter::_remove_activation_preserving_args_entry.
127    mtctr(R3_RET);
128    bctr();
129
130    align(32, 12);
131    bind(L);
132  }
133}
134
135void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
136  const Register Rthr_state_addr = scratch_reg;
137  if (JvmtiExport::can_force_early_return()) {
138    Label Lno_early_ret;
139    ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
140    cmpdi(CCR0, Rthr_state_addr, 0);
141    beq(CCR0, Lno_early_ret);
142
143    lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
144    cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
145    bne(CCR0, Lno_early_ret);
146
147    // Jump to Interpreter::_earlyret_entry.
148    lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
149    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
150    mtlr(R3_RET);
151    blr();
152
153    align(32, 12);
154    bind(Lno_early_ret);
155  }
156}
157
158void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
159  const Register RjvmtiState = Rscratch1;
160  const Register Rscratch2   = R0;
161
162  ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
163  li(Rscratch2, 0);
164
165  switch (state) {
166    case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
167               std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
168               break;
169    case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
170               break;
171    case btos: // fall through
172    case ztos: // fall through
173    case ctos: // fall through
174    case stos: // fall through
175    case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
176               break;
177    case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
178               break;
179    case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
180               break;
181    case vtos: break;
182    default  : ShouldNotReachHere();
183  }
184
185  // Clean up tos value in the jvmti thread state.
186  std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
187  // Set tos state field to illegal value.
188  li(Rscratch2, ilgl);
189  stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
190}
191
192// Common code to dispatch and dispatch_only.
193// Dispatch value in Lbyte_code and increment Lbcp.
194
195void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
196  address table_base = (address)Interpreter::dispatch_table((TosState)0);
197  intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
198  if (is_simm16(table_offs)) {
199    addi(dst, R25_templateTableBase, (int)table_offs);
200  } else {
201    load_const_optimized(dst, table, R0);
202  }
203}
204
205void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode,
206                                                    address* table, bool verify) {
207  if (verify) {
208    unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
209  }
210
211  assert_different_registers(bytecode, R11_scratch1);
212
213  // Calc dispatch table address.
214  load_dispatch_table(R11_scratch1, table);
215
216  sldi(R12_scratch2, bytecode, LogBytesPerWord);
217  ldx(R11_scratch1, R11_scratch1, R12_scratch2);
218
219  // Jump off!
220  mtctr(R11_scratch1);
221  bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
222}
223
224void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
225  sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
226  ldx(Rrecv_dst, Rrecv_dst, R15_esp);
227}
228
229// helpers for expression stack
230
231void InterpreterMacroAssembler::pop_i(Register r) {
232  lwzu(r, Interpreter::stackElementSize, R15_esp);
233}
234
235void InterpreterMacroAssembler::pop_ptr(Register r) {
236  ldu(r, Interpreter::stackElementSize, R15_esp);
237}
238
239void InterpreterMacroAssembler::pop_l(Register r) {
240  ld(r, Interpreter::stackElementSize, R15_esp);
241  addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
242}
243
244void InterpreterMacroAssembler::pop_f(FloatRegister f) {
245  lfsu(f, Interpreter::stackElementSize, R15_esp);
246}
247
248void InterpreterMacroAssembler::pop_d(FloatRegister f) {
249  lfd(f, Interpreter::stackElementSize, R15_esp);
250  addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
251}
252
253void InterpreterMacroAssembler::push_i(Register r) {
254  stw(r, 0, R15_esp);
255  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
256}
257
258void InterpreterMacroAssembler::push_ptr(Register r) {
259  std(r, 0, R15_esp);
260  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
261}
262
263void InterpreterMacroAssembler::push_l(Register r) {
264  std(r, - Interpreter::stackElementSize, R15_esp);
265  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
266}
267
268void InterpreterMacroAssembler::push_f(FloatRegister f) {
269  stfs(f, 0, R15_esp);
270  addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
271}
272
273void InterpreterMacroAssembler::push_d(FloatRegister f)   {
274  stfd(f, - Interpreter::stackElementSize, R15_esp);
275  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
276}
277
278void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
279  std(first, 0, R15_esp);
280  std(second, -Interpreter::stackElementSize, R15_esp);
281  addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
282}
283
284void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
285  std(l, 0, R15_esp);
286  lfd(d, 0, R15_esp);
287}
288
289void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
290  stfd(d, 0, R15_esp);
291  ld(l, 0, R15_esp);
292}
293
294void InterpreterMacroAssembler::push(TosState state) {
295  switch (state) {
296    case atos: push_ptr();                break;
297    case btos:
298    case ztos:
299    case ctos:
300    case stos:
301    case itos: push_i();                  break;
302    case ltos: push_l();                  break;
303    case ftos: push_f();                  break;
304    case dtos: push_d();                  break;
305    case vtos: /* nothing to do */        break;
306    default  : ShouldNotReachHere();
307  }
308}
309
310void InterpreterMacroAssembler::pop(TosState state) {
311  switch (state) {
312    case atos: pop_ptr();            break;
313    case btos:
314    case ztos:
315    case ctos:
316    case stos:
317    case itos: pop_i();              break;
318    case ltos: pop_l();              break;
319    case ftos: pop_f();              break;
320    case dtos: pop_d();              break;
321    case vtos: /* nothing to do */   break;
322    default  : ShouldNotReachHere();
323  }
324  verify_oop(R17_tos, state);
325}
326
327void InterpreterMacroAssembler::empty_expression_stack() {
328  addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
329}
330
331void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
332                                                          Register    Rdst,
333                                                          signedOrNot is_signed) {
334#if defined(VM_LITTLE_ENDIAN)
335  if (bcp_offset) {
336    load_const_optimized(Rdst, bcp_offset);
337    lhbrx(Rdst, R14_bcp, Rdst);
338  } else {
339    lhbrx(Rdst, R14_bcp);
340  }
341  if (is_signed == Signed) {
342    extsh(Rdst, Rdst);
343  }
344#else
345  // Read Java big endian format.
346  if (is_signed == Signed) {
347    lha(Rdst, bcp_offset, R14_bcp);
348  } else {
349    lhz(Rdst, bcp_offset, R14_bcp);
350  }
351#endif
352}
353
354void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
355                                                          Register    Rdst,
356                                                          signedOrNot is_signed) {
357#if defined(VM_LITTLE_ENDIAN)
358  if (bcp_offset) {
359    load_const_optimized(Rdst, bcp_offset);
360    lwbrx(Rdst, R14_bcp, Rdst);
361  } else {
362    lwbrx(Rdst, R14_bcp);
363  }
364  if (is_signed == Signed) {
365    extsw(Rdst, Rdst);
366  }
367#else
368  // Read Java big endian format.
369  if (bcp_offset & 3) { // Offset unaligned?
370    load_const_optimized(Rdst, bcp_offset);
371    if (is_signed == Signed) {
372      lwax(Rdst, R14_bcp, Rdst);
373    } else {
374      lwzx(Rdst, R14_bcp, Rdst);
375    }
376  } else {
377    if (is_signed == Signed) {
378      lwa(Rdst, bcp_offset, R14_bcp);
379    } else {
380      lwz(Rdst, bcp_offset, R14_bcp);
381    }
382  }
383#endif
384}
385
386
387// Load the constant pool cache index from the bytecode stream.
388//
389// Kills / writes:
390//   - Rdst, Rscratch
391void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset,
392                                                       size_t index_size) {
393  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
394  // Cache index is always in the native format, courtesy of Rewriter.
395  if (index_size == sizeof(u2)) {
396    lhz(Rdst, bcp_offset, R14_bcp);
397  } else if (index_size == sizeof(u4)) {
398    if (bcp_offset & 3) {
399      load_const_optimized(Rdst, bcp_offset);
400      lwax(Rdst, R14_bcp, Rdst);
401    } else {
402      lwa(Rdst, bcp_offset, R14_bcp);
403    }
404    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
405    nand(Rdst, Rdst, Rdst); // convert to plain index
406  } else if (index_size == sizeof(u1)) {
407    lbz(Rdst, bcp_offset, R14_bcp);
408  } else {
409    ShouldNotReachHere();
410  }
411  // Rdst now contains cp cache index.
412}
413
414void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset,
415                                                           size_t index_size) {
416  get_cache_index_at_bcp(cache, bcp_offset, index_size);
417  sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
418  add(cache, R27_constPoolCache, cache);
419}
420
421// Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
422// from (Rsrc)+offset.
423void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
424                                       signedOrNot is_signed) {
425#if defined(VM_LITTLE_ENDIAN)
426  if (offset) {
427    load_const_optimized(Rdst, offset);
428    lwbrx(Rdst, Rdst, Rsrc);
429  } else {
430    lwbrx(Rdst, Rsrc);
431  }
432  if (is_signed == Signed) {
433    extsw(Rdst, Rdst);
434  }
435#else
436  if (is_signed == Signed) {
437    lwa(Rdst, offset, Rsrc);
438  } else {
439    lwz(Rdst, offset, Rsrc);
440  }
441#endif
442}
443
444// Load object from cpool->resolved_references(index).
445void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *is_null) {
446  assert_different_registers(result, index);
447  get_constant_pool(result);
448
449  // Convert from field index to resolved_references() index and from
450  // word index to byte offset. Since this is a java object, it can be compressed.
451  Register tmp = index;  // reuse
452  sldi(tmp, index, LogBytesPerHeapOop);
453  // Load pointer for resolved_references[] objArray.
454  ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
455  // JNIHandles::resolve(result)
456  ld(result, 0, result);
457#ifdef ASSERT
458  Label index_ok;
459  lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
460  sldi(R0, R0, LogBytesPerHeapOop);
461  cmpd(CCR0, tmp, R0);
462  blt(CCR0, index_ok);
463  stop("resolved reference index out of bounds", 0x09256);
464  bind(index_ok);
465#endif
466  // Add in the index.
467  add(result, tmp, result);
468  load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, is_null);
469}
470
471// Generate a subtype check: branch to ok_is_subtype if sub_klass is
472// a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
473void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
474                                                  Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
475  // Profile the not-null value's klass.
476  profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
477  check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
478  profile_typecheck_failed(Rtmp1, Rtmp2);
479}
480
481// Separate these two to allow for delay slot in middle.
482// These are used to do a test and full jump to exception-throwing code.
483
484// Check that index is in range for array, then shift index by index_shift,
485// and put arrayOop + shifted_index into res.
486// Note: res is still shy of address by array offset into object.
487
488void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex,
489                                                        int index_shift, Register Rtmp, Register Rres) {
490  // Check that index is in range for array, then shift index by index_shift,
491  // and put arrayOop + shifted_index into res.
492  // Note: res is still shy of address by array offset into object.
493  // Kills:
494  //   - Rindex
495  // Writes:
496  //   - Rres: Address that corresponds to the array index if check was successful.
497  verify_oop(Rarray);
498  const Register Rlength   = R0;
499  const Register RsxtIndex = Rtmp;
500  Label LisNull, LnotOOR;
501
502  // Array nullcheck
503  if (!ImplicitNullChecks) {
504    cmpdi(CCR0, Rarray, 0);
505    beq(CCR0, LisNull);
506  } else {
507    null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
508  }
509
510  // Rindex might contain garbage in upper bits (remember that we don't sign extend
511  // during integer arithmetic operations). So kill them and put value into same register
512  // where ArrayIndexOutOfBounds would expect the index in.
513  rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
514
515  // Index check
516  lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
517  cmplw(CCR0, Rindex, Rlength);
518  sldi(RsxtIndex, RsxtIndex, index_shift);
519  blt(CCR0, LnotOOR);
520  // Index should be in R17_tos, array should be in R4_ARG2.
521  mr_if_needed(R17_tos, Rindex);
522  mr_if_needed(R4_ARG2, Rarray);
523  load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
524  mtctr(Rtmp);
525  bctr();
526
527  if (!ImplicitNullChecks) {
528    bind(LisNull);
529    load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
530    mtctr(Rtmp);
531    bctr();
532  }
533
534  align(32, 16);
535  bind(LnotOOR);
536
537  // Calc address
538  add(Rres, RsxtIndex, Rarray);
539}
540
541void InterpreterMacroAssembler::index_check(Register array, Register index,
542                                            int index_shift, Register tmp, Register res) {
543  // pop array
544  pop_ptr(array);
545
546  // check array
547  index_check_without_pop(array, index, index_shift, tmp, res);
548}
549
550void InterpreterMacroAssembler::get_const(Register Rdst) {
551  ld(Rdst, in_bytes(Method::const_offset()), R19_method);
552}
553
554void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
555  get_const(Rdst);
556  ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
557}
558
559void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
560  get_constant_pool(Rdst);
561  ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
562}
563
564void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
565  get_constant_pool(Rcpool);
566  ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
567}
568
569// Unlock if synchronized method.
570//
571// Unlock the receiver if this is a synchronized method.
572// Unlock any Java monitors from synchronized blocks.
573//
574// If there are locked Java monitors
575//   If throw_monitor_exception
576//     throws IllegalMonitorStateException
577//   Else if install_monitor_exception
578//     installs IllegalMonitorStateException
579//   Else
580//     no error processing
581void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
582                                                              bool throw_monitor_exception,
583                                                              bool install_monitor_exception) {
584  Label Lunlocked, Lno_unlock;
585  {
586    Register Rdo_not_unlock_flag = R11_scratch1;
587    Register Raccess_flags       = R12_scratch2;
588
589    // Check if synchronized method or unlocking prevented by
590    // JavaThread::do_not_unlock_if_synchronized flag.
591    lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
592    lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
593    li(R0, 0);
594    stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
595
596    push(state);
597
598    // Skip if we don't have to unlock.
599    rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
600    beq(CCR0, Lunlocked);
601
602    cmpwi(CCR0, Rdo_not_unlock_flag, 0);
603    bne(CCR0, Lno_unlock);
604  }
605
606  // Unlock
607  {
608    Register Rmonitor_base = R11_scratch1;
609
610    Label Lunlock;
611    // If it's still locked, everything is ok, unlock it.
612    ld(Rmonitor_base, 0, R1_SP);
613    addi(Rmonitor_base, Rmonitor_base,
614         -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
615
616    ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
617    cmpdi(CCR0, R0, 0);
618    bne(CCR0, Lunlock);
619
620    // If it's already unlocked, throw exception.
621    if (throw_monitor_exception) {
622      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
623      should_not_reach_here();
624    } else {
625      if (install_monitor_exception) {
626        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
627        b(Lunlocked);
628      }
629    }
630
631    bind(Lunlock);
632    unlock_object(Rmonitor_base);
633  }
634
635  // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
636  bind(Lunlocked);
637  {
638    Label Lexception, Lrestart;
639    Register Rcurrent_obj_addr = R11_scratch1;
640    const int delta = frame::interpreter_frame_monitor_size_in_bytes();
641    assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
642
643    bind(Lrestart);
644    // Set up search loop: Calc num of iterations.
645    {
646      Register Riterations = R12_scratch2;
647      Register Rmonitor_base = Rcurrent_obj_addr;
648      ld(Rmonitor_base, 0, R1_SP);
649      addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
650
651      subf_(Riterations, R26_monitor, Rmonitor_base);
652      ble(CCR0, Lno_unlock);
653
654      addi(Rcurrent_obj_addr, Rmonitor_base,
655           BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
656      // Check if any monitor is on stack, bail out if not
657      srdi(Riterations, Riterations, exact_log2(delta));
658      mtctr(Riterations);
659    }
660
661    // The search loop: Look for locked monitors.
662    {
663      const Register Rcurrent_obj = R0;
664      Label Lloop;
665
666      ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
667      addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
668      bind(Lloop);
669
670      // Check if current entry is used.
671      cmpdi(CCR0, Rcurrent_obj, 0);
672      bne(CCR0, Lexception);
673      // Preload next iteration's compare value.
674      ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
675      addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
676      bdnz(Lloop);
677    }
678    // Fell through: Everything's unlocked => finish.
679    b(Lno_unlock);
680
681    // An object is still locked => need to throw exception.
682    bind(Lexception);
683    if (throw_monitor_exception) {
684      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
685      should_not_reach_here();
686    } else {
687      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
688      // Unlock does not block, so don't have to worry about the frame.
689      Register Rmonitor_addr = R11_scratch1;
690      addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
691      unlock_object(Rmonitor_addr);
692      if (install_monitor_exception) {
693        call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
694      }
695      b(Lrestart);
696    }
697  }
698
699  align(32, 12);
700  bind(Lno_unlock);
701  pop(state);
702}
703
704// Support function for remove_activation & Co.
705void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc,
706                                             Register Rscratch1, Register Rscratch2) {
707  // Pop interpreter frame.
708  ld(Rscratch1, 0, R1_SP); // *SP
709  ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
710  ld(Rscratch2, 0, Rscratch1); // **SP
711#ifdef ASSERT
712  {
713    Label Lok;
714    ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
715    cmpdi(CCR0, R0, 0x5afe);
716    beq(CCR0, Lok);
717    stop("frame corrupted (remove activation)", 0x5afe);
718    bind(Lok);
719  }
720#endif
721  if (return_pc!=noreg) {
722    ld(return_pc, _abi(lr), Rscratch1); // LR
723  }
724
725  // Merge top frames.
726  subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
727  stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
728}
729
730void InterpreterMacroAssembler::narrow(Register result) {
731  Register ret_type = R11_scratch1;
732  ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
733  lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
734
735  Label notBool, notByte, notChar, done;
736
737  // common case first
738  cmpwi(CCR0, ret_type, T_INT);
739  beq(CCR0, done);
740
741  cmpwi(CCR0, ret_type, T_BOOLEAN);
742  bne(CCR0, notBool);
743  andi(result, result, 0x1);
744  b(done);
745
746  bind(notBool);
747  cmpwi(CCR0, ret_type, T_BYTE);
748  bne(CCR0, notByte);
749  extsb(result, result);
750  b(done);
751
752  bind(notByte);
753  cmpwi(CCR0, ret_type, T_CHAR);
754  bne(CCR0, notChar);
755  andi(result, result, 0xffff);
756  b(done);
757
758  bind(notChar);
759  // cmpwi(CCR0, ret_type, T_SHORT);  // all that's left
760  // bne(CCR0, done);
761  extsh(result, result);
762
763  // Nothing to do for T_INT
764  bind(done);
765}
766
767// Remove activation.
768//
769// Unlock the receiver if this is a synchronized method.
770// Unlock any Java monitors from synchronized blocks.
771// Remove the activation from the stack.
772//
773// If there are locked Java monitors
774//    If throw_monitor_exception
775//       throws IllegalMonitorStateException
776//    Else if install_monitor_exception
777//       installs IllegalMonitorStateException
778//    Else
779//       no error processing
780void InterpreterMacroAssembler::remove_activation(TosState state,
781                                                  bool throw_monitor_exception,
782                                                  bool install_monitor_exception) {
783  BLOCK_COMMENT("remove_activation {");
784  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
785
786  // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
787  notify_method_exit(false, state, NotifyJVMTI, true);
788
789  BLOCK_COMMENT("reserved_stack_check:");
790  if (StackReservedPages > 0) {
791    // Test if reserved zone needs to be enabled.
792    Label no_reserved_zone_enabling;
793
794    // Compare frame pointers. There is no good stack pointer, as with stack
795    // frame compression we can get different SPs when we do calls. A subsequent
796    // call could have a smaller SP, so that this compare succeeds for an
797    // inner call of the method annotated with ReservedStack.
798    ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
799    ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer.
800    cmpld(CCR0, R11_scratch1, R0);
801    blt_predict_taken(CCR0, no_reserved_zone_enabling);
802
803    // Enable reserved zone again, throw stack overflow exception.
804    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
805    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
806
807    should_not_reach_here();
808
809    bind(no_reserved_zone_enabling);
810  }
811
812  verify_oop(R17_tos, state);
813  verify_thread();
814
815  merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
816  mtlr(R0);
817  BLOCK_COMMENT("} remove_activation");
818}
819
820// Lock object
821//
822// Registers alive
823//   monitor - Address of the BasicObjectLock to be used for locking,
824//             which must be initialized with the object to lock.
825//   object  - Address of the object to be locked.
826//
827void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
828  if (UseHeavyMonitors) {
829    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
830            monitor, /*check_for_exceptions=*/true);
831  } else {
832    // template code:
833    //
834    // markOop displaced_header = obj->mark().set_unlocked();
835    // monitor->lock()->set_displaced_header(displaced_header);
836    // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
837    //   // We stored the monitor address into the object's mark word.
838    // } else if (THREAD->is_lock_owned((address)displaced_header))
839    //   // Simple recursive case.
840    //   monitor->lock()->set_displaced_header(NULL);
841    // } else {
842    //   // Slow path.
843    //   InterpreterRuntime::monitorenter(THREAD, monitor);
844    // }
845
846    const Register displaced_header = R7_ARG5;
847    const Register object_mark_addr = R8_ARG6;
848    const Register current_header   = R9_ARG7;
849    const Register tmp              = R10_ARG8;
850
851    Label done;
852    Label cas_failed, slow_case;
853
854    assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
855
856    // markOop displaced_header = obj->mark().set_unlocked();
857
858    // Load markOop from object into displaced_header.
859    ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
860
861    if (UseBiasedLocking) {
862      biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
863    }
864
865    // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
866    ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
867
868    // monitor->lock()->set_displaced_header(displaced_header);
869
870    // Initialize the box (Must happen before we update the object mark!).
871    std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
872        BasicLock::displaced_header_offset_in_bytes(), monitor);
873
874    // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
875
876    // Store stack address of the BasicObjectLock (this is monitor) into object.
877    addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
878
879    // Must fence, otherwise, preceding store(s) may float below cmpxchg.
880    // CmpxchgX sets CCR0 to cmpX(current, displaced).
881    cmpxchgd(/*flag=*/CCR0,
882             /*current_value=*/current_header,
883             /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
884             /*where=*/object_mark_addr,
885             MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
886             MacroAssembler::cmpxchgx_hint_acquire_lock(),
887             noreg,
888             &cas_failed,
889             /*check without membar and ldarx first*/true);
890
891    // If the compare-and-exchange succeeded, then we found an unlocked
892    // object and we have now locked it.
893    b(done);
894    bind(cas_failed);
895
896    // } else if (THREAD->is_lock_owned((address)displaced_header))
897    //   // Simple recursive case.
898    //   monitor->lock()->set_displaced_header(NULL);
899
900    // We did not see an unlocked object so try the fast recursive case.
901
902    // Check if owner is self by comparing the value in the markOop of object
903    // (current_header) with the stack pointer.
904    sub(current_header, current_header, R1_SP);
905
906    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
907    load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
908
909    and_(R0/*==0?*/, current_header, tmp);
910    // If condition is true we are done and hence we can store 0 in the displaced
911    // header indicating it is a recursive lock.
912    bne(CCR0, slow_case);
913    std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
914        BasicLock::displaced_header_offset_in_bytes(), monitor);
915    b(done);
916
917    // } else {
918    //   // Slow path.
919    //   InterpreterRuntime::monitorenter(THREAD, monitor);
920
921    // None of the above fast optimizations worked so we have to get into the
922    // slow case of monitor enter.
923    bind(slow_case);
924    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
925            monitor, /*check_for_exceptions=*/true);
926    // }
927    align(32, 12);
928    bind(done);
929  }
930}
931
932// Unlocks an object. Used in monitorexit bytecode and remove_activation.
933//
934// Registers alive
935//   monitor - Address of the BasicObjectLock to be used for locking,
936//             which must be initialized with the object to lock.
937//
938// Throw IllegalMonitorException if object is not locked by current thread.
939void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
940  if (UseHeavyMonitors) {
941    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
942            monitor, check_for_exceptions);
943  } else {
944
945    // template code:
946    //
947    // if ((displaced_header = monitor->displaced_header()) == NULL) {
948    //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
949    //   monitor->set_obj(NULL);
950    // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
951    //   // We swapped the unlocked mark in displaced_header into the object's mark word.
952    //   monitor->set_obj(NULL);
953    // } else {
954    //   // Slow path.
955    //   InterpreterRuntime::monitorexit(THREAD, monitor);
956    // }
957
958    const Register object           = R7_ARG5;
959    const Register displaced_header = R8_ARG6;
960    const Register object_mark_addr = R9_ARG7;
961    const Register current_header   = R10_ARG8;
962
963    Label free_slot;
964    Label slow_case;
965
966    assert_different_registers(object, displaced_header, object_mark_addr, current_header);
967
968    if (UseBiasedLocking) {
969      // The object address from the monitor is in object.
970      ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
971      assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
972      biased_locking_exit(CCR0, object, displaced_header, free_slot);
973    }
974
975    // Test first if we are in the fast recursive case.
976    ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
977           BasicLock::displaced_header_offset_in_bytes(), monitor);
978
979    // If the displaced header is zero, we have a recursive unlock.
980    cmpdi(CCR0, displaced_header, 0);
981    beq(CCR0, free_slot); // recursive unlock
982
983    // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
984    //   // We swapped the unlocked mark in displaced_header into the object's mark word.
985    //   monitor->set_obj(NULL);
986
987    // If we still have a lightweight lock, unlock the object and be done.
988
989    // The object address from the monitor is in object.
990    if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
991    addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
992
993    // We have the displaced header in displaced_header. If the lock is still
994    // lightweight, it will contain the monitor address and we'll store the
995    // displaced header back into the object's mark word.
996    // CmpxchgX sets CCR0 to cmpX(current, monitor).
997    cmpxchgd(/*flag=*/CCR0,
998             /*current_value=*/current_header,
999             /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
1000             /*where=*/object_mark_addr,
1001             MacroAssembler::MemBarRel,
1002             MacroAssembler::cmpxchgx_hint_release_lock(),
1003             noreg,
1004             &slow_case);
1005    b(free_slot);
1006
1007    // } else {
1008    //   // Slow path.
1009    //   InterpreterRuntime::monitorexit(THREAD, monitor);
1010
1011    // The lock has been converted into a heavy lock and hence
1012    // we need to get into the slow case.
1013    bind(slow_case);
1014    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
1015            monitor, check_for_exceptions);
1016    // }
1017
1018    Label done;
1019    b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
1020
1021    // Exchange worked, do monitor->set_obj(NULL);
1022    align(32, 12);
1023    bind(free_slot);
1024    li(R0, 0);
1025    std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
1026    bind(done);
1027  }
1028}
1029
1030// Load compiled (i2c) or interpreter entry when calling from interpreted and
1031// do the call. Centralized so that all interpreter calls will do the same actions.
1032// If jvmti single stepping is on for a thread we must not call compiled code.
1033//
1034// Input:
1035//   - Rtarget_method: method to call
1036//   - Rret_addr:      return address
1037//   - 2 scratch regs
1038//
1039void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr,
1040                                                      Register Rscratch1, Register Rscratch2) {
1041  assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1042  // Assume we want to go compiled if available.
1043  const Register Rtarget_addr = Rscratch1;
1044  const Register Rinterp_only = Rscratch2;
1045
1046  ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1047
1048  if (JvmtiExport::can_post_interpreter_events()) {
1049    lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1050
1051    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1052    // compiled code in threads for which the event is enabled. Check here for
1053    // interp_only_mode if these events CAN be enabled.
1054    Label done;
1055    verify_thread();
1056    cmpwi(CCR0, Rinterp_only, 0);
1057    beq(CCR0, done);
1058    ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1059    align(32, 12);
1060    bind(done);
1061  }
1062
1063#ifdef ASSERT
1064  {
1065    Label Lok;
1066    cmpdi(CCR0, Rtarget_addr, 0);
1067    bne(CCR0, Lok);
1068    stop("null entry point");
1069    bind(Lok);
1070  }
1071#endif // ASSERT
1072
1073  mr(R21_sender_SP, R1_SP);
1074
1075  // Calc a precise SP for the call. The SP value we calculated in
1076  // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1077  // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1078  // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1079  // Since esp already points to an empty slot, we just have to sub 1 additional slot
1080  // to meet the abi scratch requirements.
1081  // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1082  // the return entry of the interpreter.
1083  addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1084  clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1085  resize_frame_absolute(Rscratch2, Rscratch2, R0);
1086
1087  mr_if_needed(R19_method, Rtarget_method);
1088  mtctr(Rtarget_addr);
1089  mtlr(Rret_addr);
1090
1091  save_interpreter_state(Rscratch2);
1092#ifdef ASSERT
1093  ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1094  cmpd(CCR0, R21_sender_SP, Rscratch1);
1095  asm_assert_eq("top_frame_sp incorrect", 0x951);
1096#endif
1097
1098  bctr();
1099}
1100
1101// Set the method data pointer for the current bcp.
1102void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1103  assert(ProfileInterpreter, "must be profiling interpreter");
1104  Label get_continue;
1105  ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1106  test_method_data_pointer(get_continue);
1107  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1108
1109  addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1110  add(R28_mdx, R28_mdx, R3_RET);
1111  bind(get_continue);
1112}
1113
1114// Test ImethodDataPtr. If it is null, continue at the specified label.
1115void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1116  assert(ProfileInterpreter, "must be profiling interpreter");
1117  cmpdi(CCR0, R28_mdx, 0);
1118  beq(CCR0, zero_continue);
1119}
1120
1121void InterpreterMacroAssembler::verify_method_data_pointer() {
1122  assert(ProfileInterpreter, "must be profiling interpreter");
1123#ifdef ASSERT
1124  Label verify_continue;
1125  test_method_data_pointer(verify_continue);
1126
1127  // If the mdp is valid, it will point to a DataLayout header which is
1128  // consistent with the bcp. The converse is highly probable also.
1129  lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1130  ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1131  addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1132  add(R11_scratch1, R12_scratch2, R12_scratch2);
1133  cmpd(CCR0, R11_scratch1, R14_bcp);
1134  beq(CCR0, verify_continue);
1135
1136  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1137
1138  bind(verify_continue);
1139#endif
1140}
1141
1142void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1143                                                                Register method_counters,
1144                                                                Register Rscratch,
1145                                                                Label &profile_continue) {
1146  assert(ProfileInterpreter, "must be profiling interpreter");
1147  // Control will flow to "profile_continue" if the counter is less than the
1148  // limit or if we call profile_method().
1149  Label done;
1150
1151  // If no method data exists, and the counter is high enough, make one.
1152  lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters);
1153
1154  cmpdi(CCR0, R28_mdx, 0);
1155  // Test to see if we should create a method data oop.
1156  cmpd(CCR1, Rscratch, invocation_count);
1157  bne(CCR0, done);
1158  bge(CCR1, profile_continue);
1159
1160  // Build it now.
1161  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1162  set_method_data_pointer_for_bcp();
1163  b(profile_continue);
1164
1165  align(32, 12);
1166  bind(done);
1167}
1168
1169void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters,
1170                                                            Register target_bcp, Register disp, Register Rtmp) {
1171  assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2);
1172  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1173
1174  Label did_not_overflow;
1175  Label overflow_with_error;
1176
1177  lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters);
1178  cmpw(CCR0, backedge_count, Rtmp);
1179
1180  blt(CCR0, did_not_overflow);
1181
1182  // When ProfileInterpreter is on, the backedge_count comes from the
1183  // methodDataOop, which value does not get reset on the call to
1184  // frequency_counter_overflow(). To avoid excessive calls to the overflow
1185  // routine while the method is being compiled, add a second test to make sure
1186  // the overflow function is called only once every overflow_frequency.
1187  if (ProfileInterpreter) {
1188    const int overflow_frequency = 1024;
1189    andi_(Rtmp, backedge_count, overflow_frequency-1);
1190    bne(CCR0, did_not_overflow);
1191  }
1192
1193  // Overflow in loop, pass branch bytecode.
1194  subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp).
1195  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
1196
1197  // Was an OSR adapter generated?
1198  cmpdi(CCR0, R3_RET, 0);
1199  beq(CCR0, overflow_with_error);
1200
1201  // Has the nmethod been invalidated already?
1202  lbz(Rtmp, nmethod::state_offset(), R3_RET);
1203  cmpwi(CCR0, Rtmp, nmethod::in_use);
1204  bne(CCR0, overflow_with_error);
1205
1206  // Migrate the interpreter frame off of the stack.
1207  // We can use all registers because we will not return to interpreter from this point.
1208
1209  // Save nmethod.
1210  const Register osr_nmethod = R31;
1211  mr(osr_nmethod, R3_RET);
1212  set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1213  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1214  reset_last_Java_frame();
1215  // OSR buffer is in ARG1
1216
1217  // Remove the interpreter frame.
1218  merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1219
1220  // Jump to the osr code.
1221  ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1222  mtlr(R0);
1223  mtctr(R11_scratch1);
1224  bctr();
1225
1226  align(32, 12);
1227  bind(overflow_with_error);
1228  bind(did_not_overflow);
1229}
1230
1231// Store a value at some constant offset from the method data pointer.
1232void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1233  assert(ProfileInterpreter, "must be profiling interpreter");
1234
1235  std(value, constant, R28_mdx);
1236}
1237
1238// Increment the value at some constant offset from the method data pointer.
1239void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1240                                                      Register counter_addr,
1241                                                      Register Rbumped_count,
1242                                                      bool decrement) {
1243  // Locate the counter at a fixed offset from the mdp:
1244  addi(counter_addr, R28_mdx, constant);
1245  increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1246}
1247
1248// Increment the value at some non-fixed (reg + constant) offset from
1249// the method data pointer.
1250void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1251                                                      int constant,
1252                                                      Register scratch,
1253                                                      Register Rbumped_count,
1254                                                      bool decrement) {
1255  // Add the constant to reg to get the offset.
1256  add(scratch, R28_mdx, reg);
1257  // Then calculate the counter address.
1258  addi(scratch, scratch, constant);
1259  increment_mdp_data_at(scratch, Rbumped_count, decrement);
1260}
1261
1262void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1263                                                      Register Rbumped_count,
1264                                                      bool decrement) {
1265  assert(ProfileInterpreter, "must be profiling interpreter");
1266
1267  // Load the counter.
1268  ld(Rbumped_count, 0, counter_addr);
1269
1270  if (decrement) {
1271    // Decrement the register. Set condition codes.
1272    addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1273    // Store the decremented counter, if it is still negative.
1274    std(Rbumped_count, 0, counter_addr);
1275    // Note: add/sub overflow check are not ported, since 64 bit
1276    // calculation should never overflow.
1277  } else {
1278    // Increment the register. Set carry flag.
1279    addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1280    // Store the incremented counter.
1281    std(Rbumped_count, 0, counter_addr);
1282  }
1283}
1284
1285// Set a flag value at the current method data pointer position.
1286void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1287                                                Register scratch) {
1288  assert(ProfileInterpreter, "must be profiling interpreter");
1289  // Load the data header.
1290  lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1291  // Set the flag.
1292  ori(scratch, scratch, flag_constant);
1293  // Store the modified header.
1294  stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1295}
1296
1297// Test the location at some offset from the method data pointer.
1298// If it is not equal to value, branch to the not_equal_continue Label.
1299void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1300                                                 Register value,
1301                                                 Label& not_equal_continue,
1302                                                 Register test_out) {
1303  assert(ProfileInterpreter, "must be profiling interpreter");
1304
1305  ld(test_out, offset, R28_mdx);
1306  cmpd(CCR0,  value, test_out);
1307  bne(CCR0, not_equal_continue);
1308}
1309
1310// Update the method data pointer by the displacement located at some fixed
1311// offset from the method data pointer.
1312void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1313                                                     Register scratch) {
1314  assert(ProfileInterpreter, "must be profiling interpreter");
1315
1316  ld(scratch, offset_of_disp, R28_mdx);
1317  add(R28_mdx, scratch, R28_mdx);
1318}
1319
1320// Update the method data pointer by the displacement located at the
1321// offset (reg + offset_of_disp).
1322void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1323                                                     int offset_of_disp,
1324                                                     Register scratch) {
1325  assert(ProfileInterpreter, "must be profiling interpreter");
1326
1327  add(scratch, reg, R28_mdx);
1328  ld(scratch, offset_of_disp, scratch);
1329  add(R28_mdx, scratch, R28_mdx);
1330}
1331
1332// Update the method data pointer by a simple constant displacement.
1333void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1334  assert(ProfileInterpreter, "must be profiling interpreter");
1335  addi(R28_mdx, R28_mdx, constant);
1336}
1337
1338// Update the method data pointer for a _ret bytecode whose target
1339// was not among our cached targets.
1340void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1341                                                   Register return_bci) {
1342  assert(ProfileInterpreter, "must be profiling interpreter");
1343
1344  push(state);
1345  assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1346  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1347  pop(state);
1348}
1349
1350// Increments the backedge counter.
1351// Returns backedge counter + invocation counter in Rdst.
1352void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1353                                                           const Register Rtmp1, Register Rscratch) {
1354  assert(UseCompiler, "incrementing must be useful");
1355  assert_different_registers(Rdst, Rtmp1);
1356  const Register invocation_counter = Rtmp1;
1357  const Register counter = Rdst;
1358  // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1359
1360  // Load backedge counter.
1361  lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1362               in_bytes(InvocationCounter::counter_offset()), Rcounters);
1363  // Load invocation counter.
1364  lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1365                          in_bytes(InvocationCounter::counter_offset()), Rcounters);
1366
1367  // Add the delta to the backedge counter.
1368  addi(counter, counter, InvocationCounter::count_increment);
1369
1370  // Mask the invocation counter.
1371  andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value);
1372
1373  // Store new counter value.
1374  stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1375               in_bytes(InvocationCounter::counter_offset()), Rcounters);
1376  // Return invocation counter + backedge counter.
1377  add(counter, counter, invocation_counter);
1378}
1379
1380// Count a taken branch in the bytecodes.
1381void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1382  if (ProfileInterpreter) {
1383    Label profile_continue;
1384
1385    // If no method data exists, go to profile_continue.
1386    test_method_data_pointer(profile_continue);
1387
1388    // We are taking a branch. Increment the taken count.
1389    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1390
1391    // The method data pointer needs to be updated to reflect the new target.
1392    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1393    bind (profile_continue);
1394  }
1395}
1396
1397// Count a not-taken branch in the bytecodes.
1398void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1399  if (ProfileInterpreter) {
1400    Label profile_continue;
1401
1402    // If no method data exists, go to profile_continue.
1403    test_method_data_pointer(profile_continue);
1404
1405    // We are taking a branch. Increment the not taken count.
1406    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1407
1408    // The method data pointer needs to be updated to correspond to the
1409    // next bytecode.
1410    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1411    bind (profile_continue);
1412  }
1413}
1414
1415// Count a non-virtual call in the bytecodes.
1416void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1417  if (ProfileInterpreter) {
1418    Label profile_continue;
1419
1420    // If no method data exists, go to profile_continue.
1421    test_method_data_pointer(profile_continue);
1422
1423    // We are making a call. Increment the count.
1424    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1425
1426    // The method data pointer needs to be updated to reflect the new target.
1427    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1428    bind (profile_continue);
1429  }
1430}
1431
1432// Count a final call in the bytecodes.
1433void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1434  if (ProfileInterpreter) {
1435    Label profile_continue;
1436
1437    // If no method data exists, go to profile_continue.
1438    test_method_data_pointer(profile_continue);
1439
1440    // We are making a call. Increment the count.
1441    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1442
1443    // The method data pointer needs to be updated to reflect the new target.
1444    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1445    bind (profile_continue);
1446  }
1447}
1448
1449// Count a virtual call in the bytecodes.
1450void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1451                                                     Register Rscratch1,
1452                                                     Register Rscratch2,
1453                                                     bool receiver_can_be_null) {
1454  if (!ProfileInterpreter) { return; }
1455  Label profile_continue;
1456
1457  // If no method data exists, go to profile_continue.
1458  test_method_data_pointer(profile_continue);
1459
1460  Label skip_receiver_profile;
1461  if (receiver_can_be_null) {
1462    Label not_null;
1463    cmpdi(CCR0, Rreceiver, 0);
1464    bne(CCR0, not_null);
1465    // We are making a call. Increment the count for null receiver.
1466    increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1467    b(skip_receiver_profile);
1468    bind(not_null);
1469  }
1470
1471  // Record the receiver type.
1472  record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1473  bind(skip_receiver_profile);
1474
1475  // The method data pointer needs to be updated to reflect the new target.
1476  update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1477  bind (profile_continue);
1478}
1479
1480void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1481  if (ProfileInterpreter) {
1482    Label profile_continue;
1483
1484    // If no method data exists, go to profile_continue.
1485    test_method_data_pointer(profile_continue);
1486
1487    int mdp_delta = in_bytes(BitData::bit_data_size());
1488    if (TypeProfileCasts) {
1489      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1490
1491      // Record the object type.
1492      record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1493    }
1494
1495    // The method data pointer needs to be updated.
1496    update_mdp_by_constant(mdp_delta);
1497
1498    bind (profile_continue);
1499  }
1500}
1501
1502void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1503  if (ProfileInterpreter && TypeProfileCasts) {
1504    Label profile_continue;
1505
1506    // If no method data exists, go to profile_continue.
1507    test_method_data_pointer(profile_continue);
1508
1509    int count_offset = in_bytes(CounterData::count_offset());
1510    // Back up the address, since we have already bumped the mdp.
1511    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1512
1513    // *Decrement* the counter. We expect to see zero or small negatives.
1514    increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1515
1516    bind (profile_continue);
1517  }
1518}
1519
1520// Count a ret in the bytecodes.
1521void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci,
1522                                            Register scratch1, Register scratch2) {
1523  if (ProfileInterpreter) {
1524    Label profile_continue;
1525    uint row;
1526
1527    // If no method data exists, go to profile_continue.
1528    test_method_data_pointer(profile_continue);
1529
1530    // Update the total ret count.
1531    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1532
1533    for (row = 0; row < RetData::row_limit(); row++) {
1534      Label next_test;
1535
1536      // See if return_bci is equal to bci[n]:
1537      test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1538
1539      // return_bci is equal to bci[n]. Increment the count.
1540      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1541
1542      // The method data pointer needs to be updated to reflect the new target.
1543      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1544      b(profile_continue);
1545      bind(next_test);
1546    }
1547
1548    update_mdp_for_ret(state, return_bci);
1549
1550    bind (profile_continue);
1551  }
1552}
1553
1554// Count the default case of a switch construct.
1555void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1556  if (ProfileInterpreter) {
1557    Label profile_continue;
1558
1559    // If no method data exists, go to profile_continue.
1560    test_method_data_pointer(profile_continue);
1561
1562    // Update the default case count
1563    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1564                          scratch1, scratch2);
1565
1566    // The method data pointer needs to be updated.
1567    update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1568                         scratch1);
1569
1570    bind (profile_continue);
1571  }
1572}
1573
1574// Count the index'th case of a switch construct.
1575void InterpreterMacroAssembler::profile_switch_case(Register index,
1576                                                    Register scratch1,
1577                                                    Register scratch2,
1578                                                    Register scratch3) {
1579  if (ProfileInterpreter) {
1580    assert_different_registers(index, scratch1, scratch2, scratch3);
1581    Label profile_continue;
1582
1583    // If no method data exists, go to profile_continue.
1584    test_method_data_pointer(profile_continue);
1585
1586    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1587    li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1588
1589    assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1590    sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1591    add(scratch1, scratch1, scratch3);
1592
1593    // Update the case count.
1594    increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1595
1596    // The method data pointer needs to be updated.
1597    update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1598
1599    bind (profile_continue);
1600  }
1601}
1602
1603void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1604  if (ProfileInterpreter) {
1605    assert_different_registers(Rscratch1, Rscratch2);
1606    Label profile_continue;
1607
1608    // If no method data exists, go to profile_continue.
1609    test_method_data_pointer(profile_continue);
1610
1611    set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1612
1613    // The method data pointer needs to be updated.
1614    int mdp_delta = in_bytes(BitData::bit_data_size());
1615    if (TypeProfileCasts) {
1616      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1617    }
1618    update_mdp_by_constant(mdp_delta);
1619
1620    bind (profile_continue);
1621  }
1622}
1623
1624void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1625                                                        Register Rscratch1, Register Rscratch2,
1626                                                        bool is_virtual_call) {
1627  assert(ProfileInterpreter, "must be profiling");
1628  assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1629
1630  Label done;
1631  record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1632  bind (done);
1633}
1634
1635void InterpreterMacroAssembler::record_klass_in_profile_helper(
1636                                        Register receiver, Register scratch1, Register scratch2,
1637                                        int start_row, Label& done, bool is_virtual_call) {
1638  if (TypeProfileWidth == 0) {
1639    if (is_virtual_call) {
1640      increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1641    }
1642    return;
1643  }
1644
1645  int last_row = VirtualCallData::row_limit() - 1;
1646  assert(start_row <= last_row, "must be work left to do");
1647  // Test this row for both the receiver and for null.
1648  // Take any of three different outcomes:
1649  //   1. found receiver => increment count and goto done
1650  //   2. found null => keep looking for case 1, maybe allocate this cell
1651  //   3. found something else => keep looking for cases 1 and 2
1652  // Case 3 is handled by a recursive call.
1653  for (int row = start_row; row <= last_row; row++) {
1654    Label next_test;
1655    bool test_for_null_also = (row == start_row);
1656
1657    // See if the receiver is receiver[n].
1658    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1659    test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1660    // delayed()->tst(scratch);
1661
1662    // The receiver is receiver[n]. Increment count[n].
1663    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1664    increment_mdp_data_at(count_offset, scratch1, scratch2);
1665    b(done);
1666    bind(next_test);
1667
1668    if (test_for_null_also) {
1669      Label found_null;
1670      // Failed the equality check on receiver[n]... Test for null.
1671      if (start_row == last_row) {
1672        // The only thing left to do is handle the null case.
1673        if (is_virtual_call) {
1674          // Scratch1 contains test_out from test_mdp_data_at.
1675          cmpdi(CCR0, scratch1, 0);
1676          beq(CCR0, found_null);
1677          // Receiver did not match any saved receiver and there is no empty row for it.
1678          // Increment total counter to indicate polymorphic case.
1679          increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1680          b(done);
1681          bind(found_null);
1682        } else {
1683          cmpdi(CCR0, scratch1, 0);
1684          bne(CCR0, done);
1685        }
1686        break;
1687      }
1688      // Since null is rare, make it be the branch-taken case.
1689      cmpdi(CCR0, scratch1, 0);
1690      beq(CCR0, found_null);
1691
1692      // Put all the "Case 3" tests here.
1693      record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1694
1695      // Found a null. Keep searching for a matching receiver,
1696      // but remember that this is an empty (unused) slot.
1697      bind(found_null);
1698    }
1699  }
1700
1701  // In the fall-through case, we found no matching receiver, but we
1702  // observed the receiver[start_row] is NULL.
1703
1704  // Fill in the receiver field and increment the count.
1705  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1706  set_mdp_data_at(recvr_offset, receiver);
1707  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1708  li(scratch1, DataLayout::counter_increment);
1709  set_mdp_data_at(count_offset, scratch1);
1710  if (start_row > 0) {
1711    b(done);
1712  }
1713}
1714
1715// Argument and return type profilig.
1716// kills: tmp, tmp2, R0, CR0, CR1
1717void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
1718                                                 RegisterOrConstant mdo_addr_offs,
1719                                                 Register tmp, Register tmp2) {
1720  Label do_nothing, do_update;
1721
1722  // tmp2 = obj is allowed
1723  assert_different_registers(obj, mdo_addr_base, tmp, R0);
1724  assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
1725  const Register klass = tmp2;
1726
1727  verify_oop(obj);
1728
1729  ld(tmp, mdo_addr_offs, mdo_addr_base);
1730
1731  // Set null_seen if obj is 0.
1732  cmpdi(CCR0, obj, 0);
1733  ori(R0, tmp, TypeEntries::null_seen);
1734  beq(CCR0, do_update);
1735
1736  load_klass(klass, obj);
1737
1738  clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
1739  // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
1740  cmpd(CCR1, R0, klass);
1741  // Klass seen before, nothing to do (regardless of unknown bit).
1742  //beq(CCR1, do_nothing);
1743
1744  andi_(R0, klass, TypeEntries::type_unknown);
1745  // Already unknown. Nothing to do anymore.
1746  //bne(CCR0, do_nothing);
1747  crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
1748  beq(CCR0, do_nothing);
1749
1750  clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
1751  orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
1752  beq(CCR0, do_update); // First time here. Set profile type.
1753
1754  // Different than before. Cannot keep accurate profile.
1755  ori(R0, tmp, TypeEntries::type_unknown);
1756
1757  bind(do_update);
1758  // update profile
1759  std(R0, mdo_addr_offs, mdo_addr_base);
1760
1761  align(32, 12);
1762  bind(do_nothing);
1763}
1764
1765void InterpreterMacroAssembler::profile_arguments_type(Register callee,
1766                                                       Register tmp1, Register tmp2,
1767                                                       bool is_virtual) {
1768  if (!ProfileInterpreter) {
1769    return;
1770  }
1771
1772  assert_different_registers(callee, tmp1, tmp2, R28_mdx);
1773
1774  if (MethodData::profile_arguments() || MethodData::profile_return()) {
1775    Label profile_continue;
1776
1777    test_method_data_pointer(profile_continue);
1778
1779    int off_to_start = is_virtual ?
1780      in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1781
1782    lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
1783    cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
1784    bne(CCR0, profile_continue);
1785
1786    if (MethodData::profile_arguments()) {
1787      Label done;
1788      int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1789      add(R28_mdx, off_to_args, R28_mdx);
1790
1791      for (int i = 0; i < TypeProfileArgsLimit; i++) {
1792        if (i > 0 || MethodData::profile_return()) {
1793          // If return value type is profiled we may have no argument to profile.
1794          ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1795          cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
1796          addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
1797          blt(CCR0, done);
1798        }
1799        ld(tmp1, in_bytes(Method::const_offset()), callee);
1800        lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
1801        // Stack offset o (zero based) from the start of the argument
1802        // list, for n arguments translates into offset n - o - 1 from
1803        // the end of the argument list. But there's an extra slot at
1804        // the top of the stack. So the offset is n - o from Lesp.
1805        ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
1806        subf(tmp1, tmp2, tmp1);
1807
1808        sldi(tmp1, tmp1, Interpreter::logStackElementSize);
1809        ldx(tmp1, tmp1, R15_esp);
1810
1811        profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
1812
1813        int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1814        addi(R28_mdx, R28_mdx, to_add);
1815        off_to_args += to_add;
1816      }
1817
1818      if (MethodData::profile_return()) {
1819        ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
1820        addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1821      }
1822
1823      bind(done);
1824
1825      if (MethodData::profile_return()) {
1826        // We're right after the type profile for the last
1827        // argument. tmp1 is the number of cells left in the
1828        // CallTypeData/VirtualCallTypeData to reach its end. Non null
1829        // if there's a return to profile.
1830        assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(),
1831               "can't move past ret type");
1832        sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
1833        add(R28_mdx, tmp1, R28_mdx);
1834      }
1835    } else {
1836      assert(MethodData::profile_return(), "either profile call args or call ret");
1837      update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
1838    }
1839
1840    // Mdp points right after the end of the
1841    // CallTypeData/VirtualCallTypeData, right after the cells for the
1842    // return value type if there's one.
1843    align(32, 12);
1844    bind(profile_continue);
1845  }
1846}
1847
1848void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
1849  assert_different_registers(ret, tmp1, tmp2);
1850  if (ProfileInterpreter && MethodData::profile_return()) {
1851    Label profile_continue;
1852
1853    test_method_data_pointer(profile_continue);
1854
1855    if (MethodData::profile_return_jsr292_only()) {
1856      // If we don't profile all invoke bytecodes we must make sure
1857      // it's a bytecode we indeed profile. We can't go back to the
1858      // begining of the ProfileData we intend to update to check its
1859      // type because we're right after it and we don't known its
1860      // length.
1861      lbz(tmp1, 0, R14_bcp);
1862      lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
1863      cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
1864      cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
1865      cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1866      cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
1867      cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
1868      bne(CCR0, profile_continue);
1869    }
1870
1871    profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
1872
1873    align(32, 12);
1874    bind(profile_continue);
1875  }
1876}
1877
1878void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2,
1879                                                        Register tmp3, Register tmp4) {
1880  if (ProfileInterpreter && MethodData::profile_parameters()) {
1881    Label profile_continue, done;
1882
1883    test_method_data_pointer(profile_continue);
1884
1885    // Load the offset of the area within the MDO used for
1886    // parameters. If it's negative we're not profiling any parameters.
1887    lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
1888    cmpwi(CCR0, tmp1, 0);
1889    blt(CCR0, profile_continue);
1890
1891    // Compute a pointer to the area for parameters from the offset
1892    // and move the pointer to the slot for the last
1893    // parameters. Collect profiling from last parameter down.
1894    // mdo start + parameters offset + array length - 1
1895
1896    // Pointer to the parameter area in the MDO.
1897    const Register mdp = tmp1;
1898    add(mdp, tmp1, R28_mdx);
1899
1900    // Offset of the current profile entry to update.
1901    const Register entry_offset = tmp2;
1902    // entry_offset = array len in number of cells
1903    ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
1904
1905    int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1906    assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
1907
1908    // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
1909    addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
1910    // entry_offset in bytes
1911    sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
1912
1913    Label loop;
1914    align(32, 12);
1915    bind(loop);
1916
1917    // Load offset on the stack from the slot for this parameter.
1918    ld(tmp3, entry_offset, mdp);
1919    sldi(tmp3, tmp3, Interpreter::logStackElementSize);
1920    neg(tmp3, tmp3);
1921    // Read the parameter from the local area.
1922    ldx(tmp3, tmp3, R18_locals);
1923
1924    // Make entry_offset now point to the type field for this parameter.
1925    int type_base = in_bytes(ParametersTypeData::type_offset(0));
1926    assert(type_base > off_base, "unexpected");
1927    addi(entry_offset, entry_offset, type_base - off_base);
1928
1929    // Profile the parameter.
1930    profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
1931
1932    // Go to next parameter.
1933    int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
1934    cmpdi(CCR0, entry_offset, off_base + delta);
1935    addi(entry_offset, entry_offset, -delta);
1936    bge(CCR0, loop);
1937
1938    align(32, 12);
1939    bind(profile_continue);
1940  }
1941}
1942
1943// Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1944void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1945
1946  // Very-local scratch registers.
1947  const Register esp  = Rtemp1;
1948  const Register slot = Rtemp2;
1949
1950  // Extracted monitor_size.
1951  int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1952  assert(Assembler::is_aligned((unsigned int)monitor_size,
1953                               (unsigned int)frame::alignment_in_bytes),
1954         "size of a monitor must respect alignment of SP");
1955
1956  resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1957  std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1958
1959  // Shuffle expression stack down. Recall that stack_base points
1960  // just above the new expression stack bottom. Old_tos and new_tos
1961  // are used to scan thru the old and new expression stacks.
1962  if (!stack_is_empty) {
1963    Label copy_slot, copy_slot_finished;
1964    const Register n_slots = slot;
1965
1966    addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1967    subf(n_slots, esp, R26_monitor);
1968    srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1969    assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1970    beq(CCR0, copy_slot_finished);                     // Nothing to copy.
1971
1972    mtctr(n_slots);
1973
1974    // loop
1975    bind(copy_slot);
1976    ld(slot, 0, esp);              // Move expression stack down.
1977    std(slot, -monitor_size, esp); // distance = monitor_size
1978    addi(esp, esp, BytesPerWord);
1979    bdnz(copy_slot);
1980
1981    bind(copy_slot_finished);
1982  }
1983
1984  addi(R15_esp, R15_esp, -monitor_size);
1985  addi(R26_monitor, R26_monitor, -monitor_size);
1986
1987  // Restart interpreter
1988}
1989
1990// ============================================================================
1991// Java locals access
1992
1993// Load a local variable at index in Rindex into register Rdst_value.
1994// Also puts address of local into Rdst_address as a service.
1995// Kills:
1996//   - Rdst_value
1997//   - Rdst_address
1998void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
1999  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2000  subf(Rdst_address, Rdst_address, R18_locals);
2001  lwz(Rdst_value, 0, Rdst_address);
2002}
2003
2004// Load a local variable at index in Rindex into register Rdst_value.
2005// Also puts address of local into Rdst_address as a service.
2006// Kills:
2007//   - Rdst_value
2008//   - Rdst_address
2009void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
2010  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2011  subf(Rdst_address, Rdst_address, R18_locals);
2012  ld(Rdst_value, -8, Rdst_address);
2013}
2014
2015// Load a local variable at index in Rindex into register Rdst_value.
2016// Also puts address of local into Rdst_address as a service.
2017// Input:
2018//   - Rindex:      slot nr of local variable
2019// Kills:
2020//   - Rdst_value
2021//   - Rdst_address
2022void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value,
2023                                               Register Rdst_address,
2024                                               Register Rindex) {
2025  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2026  subf(Rdst_address, Rdst_address, R18_locals);
2027  ld(Rdst_value, 0, Rdst_address);
2028}
2029
2030// Load a local variable at index in Rindex into register Rdst_value.
2031// Also puts address of local into Rdst_address as a service.
2032// Kills:
2033//   - Rdst_value
2034//   - Rdst_address
2035void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value,
2036                                                 Register Rdst_address,
2037                                                 Register Rindex) {
2038  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2039  subf(Rdst_address, Rdst_address, R18_locals);
2040  lfs(Rdst_value, 0, Rdst_address);
2041}
2042
2043// Load a local variable at index in Rindex into register Rdst_value.
2044// Also puts address of local into Rdst_address as a service.
2045// Kills:
2046//   - Rdst_value
2047//   - Rdst_address
2048void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value,
2049                                                  Register Rdst_address,
2050                                                  Register Rindex) {
2051  sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
2052  subf(Rdst_address, Rdst_address, R18_locals);
2053  lfd(Rdst_value, -8, Rdst_address);
2054}
2055
2056// Store an int value at local variable slot Rindex.
2057// Kills:
2058//   - Rindex
2059void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
2060  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2061  subf(Rindex, Rindex, R18_locals);
2062  stw(Rvalue, 0, Rindex);
2063}
2064
2065// Store a long value at local variable slot Rindex.
2066// Kills:
2067//   - Rindex
2068void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
2069  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2070  subf(Rindex, Rindex, R18_locals);
2071  std(Rvalue, -8, Rindex);
2072}
2073
2074// Store an oop value at local variable slot Rindex.
2075// Kills:
2076//   - Rindex
2077void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
2078  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2079  subf(Rindex, Rindex, R18_locals);
2080  std(Rvalue, 0, Rindex);
2081}
2082
2083// Store an int value at local variable slot Rindex.
2084// Kills:
2085//   - Rindex
2086void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
2087  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2088  subf(Rindex, Rindex, R18_locals);
2089  stfs(Rvalue, 0, Rindex);
2090}
2091
2092// Store an int value at local variable slot Rindex.
2093// Kills:
2094//   - Rindex
2095void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
2096  sldi(Rindex, Rindex, Interpreter::logStackElementSize);
2097  subf(Rindex, Rindex, R18_locals);
2098  stfd(Rvalue, -8, Rindex);
2099}
2100
2101// Read pending exception from thread and jump to interpreter.
2102// Throw exception entry if one if pending. Fall through otherwise.
2103void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
2104  assert_different_registers(Rscratch1, Rscratch2, R3);
2105  Register Rexception = Rscratch1;
2106  Register Rtmp       = Rscratch2;
2107  Label Ldone;
2108  // Get pending exception oop.
2109  ld(Rexception, thread_(pending_exception));
2110  cmpdi(CCR0, Rexception, 0);
2111  beq(CCR0, Ldone);
2112  li(Rtmp, 0);
2113  mr_if_needed(R3, Rexception);
2114  std(Rtmp, thread_(pending_exception)); // Clear exception in thread
2115  if (Interpreter::rethrow_exception_entry() != NULL) {
2116    // Already got entry address.
2117    load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
2118  } else {
2119    // Dynamically load entry address.
2120    int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
2121    ld(Rtmp, simm16_rest, Rtmp);
2122  }
2123  mtctr(Rtmp);
2124  save_interpreter_state(Rtmp);
2125  bctr();
2126
2127  align(32, 12);
2128  bind(Ldone);
2129}
2130
2131void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
2132  save_interpreter_state(R11_scratch1);
2133
2134  MacroAssembler::call_VM(oop_result, entry_point, false);
2135
2136  restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2137
2138  check_and_handle_popframe(R11_scratch1);
2139  check_and_handle_earlyret(R11_scratch1);
2140  // Now check exceptions manually.
2141  if (check_exceptions) {
2142    check_and_forward_exception(R11_scratch1, R12_scratch2);
2143  }
2144}
2145
2146void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2147                                        Register arg_1, bool check_exceptions) {
2148  // ARG1 is reserved for the thread.
2149  mr_if_needed(R4_ARG2, arg_1);
2150  call_VM(oop_result, entry_point, check_exceptions);
2151}
2152
2153void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2154                                        Register arg_1, Register arg_2,
2155                                        bool check_exceptions) {
2156  // ARG1 is reserved for the thread.
2157  mr_if_needed(R4_ARG2, arg_1);
2158  assert(arg_2 != R4_ARG2, "smashed argument");
2159  mr_if_needed(R5_ARG3, arg_2);
2160  call_VM(oop_result, entry_point, check_exceptions);
2161}
2162
2163void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
2164                                        Register arg_1, Register arg_2, Register arg_3,
2165                                        bool check_exceptions) {
2166  // ARG1 is reserved for the thread.
2167  mr_if_needed(R4_ARG2, arg_1);
2168  assert(arg_2 != R4_ARG2, "smashed argument");
2169  mr_if_needed(R5_ARG3, arg_2);
2170  assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
2171  mr_if_needed(R6_ARG4, arg_3);
2172  call_VM(oop_result, entry_point, check_exceptions);
2173}
2174
2175void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
2176  ld(scratch, 0, R1_SP);
2177  std(R15_esp, _ijava_state_neg(esp), scratch);
2178  std(R14_bcp, _ijava_state_neg(bcp), scratch);
2179  std(R26_monitor, _ijava_state_neg(monitors), scratch);
2180  if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
2181  // Other entries should be unchanged.
2182}
2183
2184void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
2185  ld(scratch, 0, R1_SP);
2186  ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
2187  if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
2188  if (!bcp_and_mdx_only) {
2189    // Following ones are Metadata.
2190    ld(R19_method, _ijava_state_neg(method), scratch);
2191    ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
2192    // Following ones are stack addresses and don't require reload.
2193    ld(R15_esp, _ijava_state_neg(esp), scratch);
2194    ld(R18_locals, _ijava_state_neg(locals), scratch);
2195    ld(R26_monitor, _ijava_state_neg(monitors), scratch);
2196  }
2197#ifdef ASSERT
2198  {
2199    Label Lok;
2200    subf(R0, R1_SP, scratch);
2201    cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
2202    bge(CCR0, Lok);
2203    stop("frame too small (restore istate)", 0x5432);
2204    bind(Lok);
2205  }
2206  {
2207    Label Lok;
2208    ld(R0, _ijava_state_neg(ijava_reserved), scratch);
2209    cmpdi(CCR0, R0, 0x5afe);
2210    beq(CCR0, Lok);
2211    stop("frame corrupted (restore istate)", 0x5afe);
2212    bind(Lok);
2213  }
2214#endif
2215}
2216
2217void InterpreterMacroAssembler::get_method_counters(Register method,
2218                                                    Register Rcounters,
2219                                                    Label& skip) {
2220  BLOCK_COMMENT("Load and ev. allocate counter object {");
2221  Label has_counters;
2222  ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2223  cmpdi(CCR0, Rcounters, 0);
2224  bne(CCR0, has_counters);
2225  call_VM(noreg, CAST_FROM_FN_PTR(address,
2226                                  InterpreterRuntime::build_method_counters), method, false);
2227  ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
2228  cmpdi(CCR0, Rcounters, 0);
2229  beq(CCR0, skip); // No MethodCounters, OutOfMemory.
2230  BLOCK_COMMENT("} Load and ev. allocate counter object");
2231
2232  bind(has_counters);
2233}
2234
2235void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters,
2236                                                             Register iv_be_count,
2237                                                             Register Rtmp_r0) {
2238  assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
2239  Register invocation_count = iv_be_count;
2240  Register backedge_count   = Rtmp_r0;
2241  int delta = InvocationCounter::count_increment;
2242
2243  // Load each counter in a register.
2244  //  ld(inv_counter, Rtmp);
2245  //  ld(be_counter, Rtmp2);
2246  int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
2247                                    InvocationCounter::counter_offset());
2248  int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
2249                                    InvocationCounter::counter_offset());
2250
2251  BLOCK_COMMENT("Increment profiling counters {");
2252
2253  // Load the backedge counter.
2254  lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
2255  // Mask the backedge counter.
2256  andi(backedge_count, backedge_count, InvocationCounter::count_mask_value);
2257
2258  // Load the invocation counter.
2259  lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
2260  // Add the delta to the invocation counter and store the result.
2261  addi(invocation_count, invocation_count, delta);
2262  // Store value.
2263  stw(invocation_count, inv_counter_offset, Rcounters);
2264
2265  // Add invocation counter + backedge counter.
2266  add(iv_be_count, backedge_count, invocation_count);
2267
2268  // Note that this macro must leave the backedge_count + invocation_count in
2269  // register iv_be_count!
2270  BLOCK_COMMENT("} Increment profiling counters");
2271}
2272
2273void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2274  if (state == atos) { MacroAssembler::verify_oop(reg); }
2275}
2276
2277// Local helper function for the verify_oop_or_return_address macro.
2278static bool verify_return_address(Method* m, int bci) {
2279#ifndef PRODUCT
2280  address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2281  // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2282  if (!m->contains(pc))                                            return false;
2283  address jsr_pc;
2284  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2285  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2286  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2287  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2288#endif // PRODUCT
2289  return false;
2290}
2291
2292void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2293  if (VerifyFPU) {
2294    unimplemented("verfiyFPU");
2295  }
2296}
2297
2298void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2299  if (!VerifyOops) return;
2300
2301  // The VM documentation for the astore[_wide] bytecode allows
2302  // the TOS to be not only an oop but also a return address.
2303  Label test;
2304  Label skip;
2305  // See if it is an address (in the current method):
2306
2307  const int log2_bytecode_size_limit = 16;
2308  srdi_(Rtmp, reg, log2_bytecode_size_limit);
2309  bne(CCR0, test);
2310
2311  address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2312  const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
2313  save_volatile_gprs(R1_SP, -nbytes_save); // except R0
2314  save_LR_CR(Rtmp); // Save in old frame.
2315  push_frame_reg_args(nbytes_save, Rtmp);
2316
2317  load_const_optimized(Rtmp, fd, R0);
2318  mr_if_needed(R4_ARG2, reg);
2319  mr(R3_ARG1, R19_method);
2320  call_c(Rtmp); // call C
2321
2322  pop_frame();
2323  restore_LR_CR(Rtmp);
2324  restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
2325  b(skip);
2326
2327  // Perform a more elaborate out-of-line call.
2328  // Not an address; verify it:
2329  bind(test);
2330  verify_oop(reg);
2331  bind(skip);
2332}
2333
2334// Inline assembly for:
2335//
2336// if (thread is in interp_only_mode) {
2337//   InterpreterRuntime::post_method_entry();
2338// }
2339// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2340//     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2341//   SharedRuntime::jvmpi_method_entry(method, receiver);
2342// }
2343void InterpreterMacroAssembler::notify_method_entry() {
2344  // JVMTI
2345  // Whenever JVMTI puts a thread in interp_only_mode, method
2346  // entry/exit events are sent for that thread to track stack
2347  // depth. If it is possible to enter interp_only_mode we add
2348  // the code to check if the event should be sent.
2349  if (JvmtiExport::can_post_interpreter_events()) {
2350    Label jvmti_post_done;
2351
2352    lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2353    cmpwi(CCR0, R0, 0);
2354    beq(CCR0, jvmti_post_done);
2355    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2356            /*check_exceptions=*/true);
2357
2358    bind(jvmti_post_done);
2359  }
2360}
2361
2362// Inline assembly for:
2363//
2364// if (thread is in interp_only_mode) {
2365//   // save result
2366//   InterpreterRuntime::post_method_exit();
2367//   // restore result
2368// }
2369// if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2370//   // save result
2371//   SharedRuntime::jvmpi_method_exit();
2372//   // restore result
2373// }
2374//
2375// Native methods have their result stored in d_tmp and l_tmp.
2376// Java methods have their result stored in the expression stack.
2377void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2378                                                   NotifyMethodExitMode mode, bool check_exceptions) {
2379  // JVMTI
2380  // Whenever JVMTI puts a thread in interp_only_mode, method
2381  // entry/exit events are sent for that thread to track stack
2382  // depth. If it is possible to enter interp_only_mode we add
2383  // the code to check if the event should be sent.
2384  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2385    Label jvmti_post_done;
2386
2387    lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2388    cmpwi(CCR0, R0, 0);
2389    beq(CCR0, jvmti_post_done);
2390    if (!is_native_method) { push(state); } // Expose tos to GC.
2391    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2392            /*check_exceptions=*/check_exceptions);
2393    if (!is_native_method) { pop(state); }
2394
2395    align(32, 12);
2396    bind(jvmti_post_done);
2397  }
2398
2399  // Dtrace support not implemented.
2400}
2401
2402