c1_LIRGenerator_ppc.cpp revision 9751:4a24de859a87
1/*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2015 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "c1/c1_Compilation.hpp"
28#include "c1/c1_FrameMap.hpp"
29#include "c1/c1_Instruction.hpp"
30#include "c1/c1_LIRAssembler.hpp"
31#include "c1/c1_LIRGenerator.hpp"
32#include "c1/c1_Runtime1.hpp"
33#include "c1/c1_ValueStack.hpp"
34#include "ci/ciArray.hpp"
35#include "ci/ciObjArrayKlass.hpp"
36#include "ci/ciTypeArrayKlass.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/stubRoutines.hpp"
39#include "vmreg_ppc.inline.hpp"
40
41#ifdef ASSERT
42#define __ gen()->lir(__FILE__, __LINE__)->
43#else
44#define __ gen()->lir()->
45#endif
46
47void LIRItem::load_byte_item() {
48  // Byte loads use same registers as other loads.
49  load_item();
50}
51
52
53void LIRItem::load_nonconstant() {
54  LIR_Opr r = value()->operand();
55  if (_gen->can_inline_as_constant(value())) {
56    if (!r->is_constant()) {
57      r = LIR_OprFact::value_type(value()->type());
58    }
59    _result = r;
60  } else {
61    load_item();
62  }
63}
64
65
66inline void load_int_as_long(LIR_List *ll, LIRItem &li, LIR_Opr dst) {
67  LIR_Opr r = li.value()->operand();
68  if (r->is_register()) {
69    LIR_Opr dst_l = FrameMap::as_long_opr(dst->as_register());
70    ll->convert(Bytecodes::_i2l, li.result(), dst_l); // Convert.
71  } else {
72    // Constants or memory get loaded with sign extend on this platform.
73    ll->move(li.result(), dst);
74  }
75}
76
77
78//--------------------------------------------------------------
79//               LIRGenerator
80//--------------------------------------------------------------
81
82LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::R3_oop_opr; }
83LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::R4_opr; }
84LIR_Opr LIRGenerator::syncLockOpr()                  { return FrameMap::R5_opr; }     // Need temp effect for MonitorEnterStub.
85LIR_Opr LIRGenerator::syncTempOpr()                  { return FrameMap::R4_oop_opr; } // Need temp effect for MonitorEnterStub.
86LIR_Opr LIRGenerator::getThreadTemp()                { return LIR_OprFact::illegalOpr; } // not needed
87
88LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
89  LIR_Opr opr;
90  switch (type->tag()) {
91  case intTag:     opr = FrameMap::R3_opr;         break;
92  case objectTag:  opr = FrameMap::R3_oop_opr;     break;
93  case longTag:    opr = FrameMap::R3_long_opr;    break;
94  case floatTag:   opr = FrameMap::F1_opr;         break;
95  case doubleTag:  opr = FrameMap::F1_double_opr;  break;
96
97  case addressTag:
98  default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
99  }
100
101  assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
102  return opr;
103}
104
105LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
106  ShouldNotReachHere();
107  return LIR_OprFact::illegalOpr;
108}
109
110
111LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
112  return new_register(T_INT);
113}
114
115
116//--------- loading items into registers --------------------------------
117
118// PPC cannot inline all constants.
119bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
120  if (v->type()->as_IntConstant() != NULL) {
121    return Assembler::is_simm16(v->type()->as_IntConstant()->value());
122  } else if (v->type()->as_LongConstant() != NULL) {
123    return Assembler::is_simm16(v->type()->as_LongConstant()->value());
124  } else if (v->type()->as_ObjectConstant() != NULL) {
125    return v->type()->as_ObjectConstant()->value()->is_null_object();
126  } else {
127    return false;
128  }
129}
130
131
132// Only simm16 constants can be inlined.
133bool LIRGenerator::can_inline_as_constant(Value i) const {
134  return can_store_as_constant(i, as_BasicType(i->type()));
135}
136
137
138bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
139  if (c->type() == T_INT) {
140    return Assembler::is_simm16(c->as_jint());
141  }
142  if (c->type() == T_LONG) {
143    return Assembler::is_simm16(c->as_jlong());
144  }
145  if (c->type() == T_OBJECT) {
146    return c->as_jobject() == NULL;
147  }
148  return false;
149}
150
151
152LIR_Opr LIRGenerator::safepoint_poll_register() {
153  return new_register(T_INT);
154}
155
156
157LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
158                                            int shift, int disp, BasicType type) {
159  assert(base->is_register(), "must be");
160
161  // Accumulate fixed displacements.
162  if (index->is_constant()) {
163    disp += index->as_constant_ptr()->as_jint() << shift;
164    index = LIR_OprFact::illegalOpr;
165  }
166
167  if (index->is_register()) {
168    // Apply the shift and accumulate the displacement.
169    if (shift > 0) {
170      LIR_Opr tmp = new_pointer_register();
171      __ shift_left(index, shift, tmp);
172      index = tmp;
173    }
174    if (disp != 0) {
175      LIR_Opr tmp = new_pointer_register();
176      if (Assembler::is_simm16(disp)) {
177        __ add(index, LIR_OprFact::intptrConst(disp), tmp);
178        index = tmp;
179      } else {
180        __ move(LIR_OprFact::intptrConst(disp), tmp);
181        __ add(tmp, index, tmp);
182        index = tmp;
183      }
184      disp = 0;
185    }
186  } else if (!Assembler::is_simm16(disp)) {
187    // Index is illegal so replace it with the displacement loaded into a register.
188    index = new_pointer_register();
189    __ move(LIR_OprFact::intptrConst(disp), index);
190    disp = 0;
191  }
192
193  // At this point we either have base + index or base + displacement.
194  if (disp == 0) {
195    return new LIR_Address(base, index, type);
196  } else {
197    assert(Assembler::is_simm16(disp), "must be");
198    return new LIR_Address(base, disp, type);
199  }
200}
201
202
203LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
204                                              BasicType type, bool needs_card_mark) {
205  int elem_size = type2aelembytes(type);
206  int shift = exact_log2(elem_size);
207
208  LIR_Opr base_opr;
209  int offset = arrayOopDesc::base_offset_in_bytes(type);
210
211  if (index_opr->is_constant()) {
212    int i = index_opr->as_constant_ptr()->as_jint();
213    int array_offset = i * elem_size;
214    if (Assembler::is_simm16(array_offset + offset)) {
215      base_opr = array_opr;
216      offset = array_offset + offset;
217    } else {
218      base_opr = new_pointer_register();
219      if (Assembler::is_simm16(array_offset)) {
220        __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
221      } else {
222        __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
223        __ add(base_opr, array_opr, base_opr);
224      }
225    }
226  } else {
227#ifdef _LP64
228    if (index_opr->type() == T_INT) {
229      LIR_Opr tmp = new_register(T_LONG);
230      __ convert(Bytecodes::_i2l, index_opr, tmp);
231      index_opr = tmp;
232    }
233#endif
234
235    base_opr = new_pointer_register();
236    assert (index_opr->is_register(), "Must be register");
237    if (shift > 0) {
238      __ shift_left(index_opr, shift, base_opr);
239      __ add(base_opr, array_opr, base_opr);
240    } else {
241      __ add(index_opr, array_opr, base_opr);
242    }
243  }
244  if (needs_card_mark) {
245    LIR_Opr ptr = new_pointer_register();
246    __ add(base_opr, LIR_OprFact::intptrConst(offset), ptr);
247    return new LIR_Address(ptr, type);
248  } else {
249    return new LIR_Address(base_opr, offset, type);
250  }
251}
252
253
254LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
255  LIR_Opr r = NULL;
256  if (type == T_LONG) {
257    r = LIR_OprFact::longConst(x);
258  } else if (type == T_INT) {
259    r = LIR_OprFact::intConst(x);
260  } else {
261    ShouldNotReachHere();
262  }
263  if (!Assembler::is_simm16(x)) {
264    LIR_Opr tmp = new_register(type);
265    __ move(r, tmp);
266    return tmp;
267  }
268  return r;
269}
270
271
272void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
273  LIR_Opr pointer = new_pointer_register();
274  __ move(LIR_OprFact::intptrConst(counter), pointer);
275  LIR_Address* addr = new LIR_Address(pointer, type);
276  increment_counter(addr, step);
277}
278
279
280void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
281  LIR_Opr temp = new_register(addr->type());
282  __ move(addr, temp);
283  __ add(temp, load_immediate(step, addr->type()), temp);
284  __ move(temp, addr);
285}
286
287
288void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
289  LIR_Opr tmp = FrameMap::R0_opr;
290  __ load(new LIR_Address(base, disp, T_INT), tmp, info);
291  __ cmp(condition, tmp, c);
292}
293
294
295void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base,
296                               int disp, BasicType type, CodeEmitInfo* info) {
297  LIR_Opr tmp = FrameMap::R0_opr;
298  __ load(new LIR_Address(base, disp, type), tmp, info);
299  __ cmp(condition, reg, tmp);
300}
301
302
303void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base,
304                               LIR_Opr disp, BasicType type, CodeEmitInfo* info) {
305  LIR_Opr tmp = FrameMap::R0_opr;
306  __ load(new LIR_Address(base, disp, type), tmp, info);
307  __ cmp(condition, reg, tmp);
308}
309
310
311bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
312  assert(left != result, "should be different registers");
313  if (is_power_of_2(c + 1)) {
314    __ shift_left(left, log2_intptr(c + 1), result);
315    __ sub(result, left, result);
316    return true;
317  } else if (is_power_of_2(c - 1)) {
318    __ shift_left(left, log2_intptr(c - 1), result);
319    __ add(result, left, result);
320    return true;
321  }
322  return false;
323}
324
325
326void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp) {
327  BasicType t = item->type();
328  LIR_Opr sp_opr = FrameMap::SP_opr;
329  if ((t == T_LONG || t == T_DOUBLE) &&
330      ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
331    __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
332  } else {
333    __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
334  }
335}
336
337
338//----------------------------------------------------------------------
339//             visitor functions
340//----------------------------------------------------------------------
341
342void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
343  assert(x->is_pinned(),"");
344  bool needs_range_check = x->compute_needs_range_check();
345  bool use_length = x->length() != NULL;
346  bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
347  bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
348                                         !get_jobject_constant(x->value())->is_null_object() ||
349                                         x->should_profile());
350
351  LIRItem array(x->array(), this);
352  LIRItem index(x->index(), this);
353  LIRItem value(x->value(), this);
354  LIRItem length(this);
355
356  array.load_item();
357  index.load_nonconstant();
358
359  if (use_length && needs_range_check) {
360    length.set_instruction(x->length());
361    length.load_item();
362  }
363  if (needs_store_check) {
364    value.load_item();
365  } else {
366    value.load_for_store(x->elt_type());
367  }
368
369  set_no_result(x);
370
371  // The CodeEmitInfo must be duplicated for each different
372  // LIR-instruction because spilling can occur anywhere between two
373  // instructions and so the debug information must be different.
374  CodeEmitInfo* range_check_info = state_for(x);
375  CodeEmitInfo* null_check_info = NULL;
376  if (x->needs_null_check()) {
377    null_check_info = new CodeEmitInfo(range_check_info);
378  }
379
380  // Emit array address setup early so it schedules better.
381  LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), obj_store);
382
383  if (GenerateRangeChecks && needs_range_check) {
384    if (use_length) {
385      __ cmp(lir_cond_belowEqual, length.result(), index.result());
386      __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
387    } else {
388      array_range_check(array.result(), index.result(), null_check_info, range_check_info);
389      // Range_check also does the null check.
390      null_check_info = NULL;
391    }
392  }
393
394  if (GenerateArrayStoreCheck && needs_store_check) {
395    // Following registers are used by slow_subtype_check:
396    LIR_Opr tmp1 = FrameMap::R4_opr; // super_klass
397    LIR_Opr tmp2 = FrameMap::R5_opr; // sub_klass
398    LIR_Opr tmp3 = FrameMap::R6_opr; // temp
399
400    CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
401    __ store_check(value.result(), array.result(), tmp1, tmp2, tmp3,
402                   store_check_info, x->profiled_method(), x->profiled_bci());
403  }
404
405  if (obj_store) {
406    // Needs GC write barriers.
407    pre_barrier(LIR_OprFact::address(array_addr), LIR_OprFact::illegalOpr /* pre_val */,
408                true /* do_load */, false /* patch */, NULL);
409  }
410  __ move(value.result(), array_addr, null_check_info);
411  if (obj_store) {
412    // Precise card mark.
413    post_barrier(LIR_OprFact::address(array_addr), value.result());
414  }
415}
416
417
418void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
419  assert(x->is_pinned(),"");
420  LIRItem obj(x->obj(), this);
421  obj.load_item();
422
423  set_no_result(x);
424
425  // We use R4+R5 in order to get a temp effect. These regs are used in slow path (MonitorEnterStub).
426  LIR_Opr lock    = FrameMap::R5_opr;
427  LIR_Opr scratch = FrameMap::R4_opr;
428  LIR_Opr hdr     = FrameMap::R6_opr;
429
430  CodeEmitInfo* info_for_exception = NULL;
431  if (x->needs_null_check()) {
432    info_for_exception = state_for(x);
433  }
434
435  // This CodeEmitInfo must not have the xhandlers because here the
436  // object is already locked (xhandlers expects object to be unlocked).
437  CodeEmitInfo* info = state_for(x, x->state(), true);
438  monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
439}
440
441
442void LIRGenerator::do_MonitorExit(MonitorExit* x) {
443  assert(x->is_pinned(),"");
444  LIRItem obj(x->obj(), this);
445  obj.dont_load_item();
446
447  set_no_result(x);
448  LIR_Opr lock     = FrameMap::R5_opr;
449  LIR_Opr hdr      = FrameMap::R4_opr; // Used for slow path (MonitorExitStub).
450  LIR_Opr obj_temp = FrameMap::R6_opr;
451  monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
452}
453
454
455// _ineg, _lneg, _fneg, _dneg
456void LIRGenerator::do_NegateOp(NegateOp* x) {
457  LIRItem value(x->x(), this);
458  value.load_item();
459  LIR_Opr reg = rlock_result(x);
460  __ negate(value.result(), reg);
461}
462
463
464// for  _fadd, _fmul, _fsub, _fdiv, _frem
465//      _dadd, _dmul, _dsub, _ddiv, _drem
466void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
467  switch (x->op()) {
468  case Bytecodes::_fadd:
469  case Bytecodes::_fmul:
470  case Bytecodes::_fsub:
471  case Bytecodes::_fdiv:
472  case Bytecodes::_dadd:
473  case Bytecodes::_dmul:
474  case Bytecodes::_dsub:
475  case Bytecodes::_ddiv: {
476    LIRItem left(x->x(), this);
477    LIRItem right(x->y(), this);
478    left.load_item();
479    right.load_item();
480    rlock_result(x);
481    arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
482  }
483  break;
484
485  case Bytecodes::_frem:
486  case Bytecodes::_drem: {
487    address entry = NULL;
488    switch (x->op()) {
489    case Bytecodes::_frem:
490      entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
491      break;
492    case Bytecodes::_drem:
493      entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
494      break;
495    default:
496      ShouldNotReachHere();
497    }
498    LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
499    set_result(x, result);
500  }
501  break;
502
503  default: ShouldNotReachHere();
504  }
505}
506
507
508// for  _ladd, _lmul, _lsub, _ldiv, _lrem
509void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
510  bool is_div_rem = x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem;
511
512  LIRItem right(x->y(), this);
513  // Missing test if instr is commutative and if we should swap.
514  if (right.value()->type()->as_LongConstant() &&
515      (x->op() == Bytecodes::_lsub && right.value()->type()->as_LongConstant()->value() == ((-1)<<15)) ) {
516    // Sub is implemented by addi and can't support min_simm16 as constant..
517    right.load_item();
518  } else {
519    right.load_nonconstant();
520  }
521  assert(right.is_constant() || right.is_register(), "wrong state of right");
522
523  if (is_div_rem) {
524    LIR_Opr divisor = right.result();
525    if (divisor->is_register()) {
526      CodeEmitInfo* null_check_info = state_for(x);
527      __ cmp(lir_cond_equal, divisor, LIR_OprFact::longConst(0));
528      __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(null_check_info));
529    } else {
530      jlong const_divisor = divisor->as_constant_ptr()->as_jlong();
531      if (const_divisor == 0) {
532        CodeEmitInfo* null_check_info = state_for(x);
533        __ jump(new DivByZeroStub(null_check_info));
534        rlock_result(x);
535        __ move(LIR_OprFact::longConst(0), x->operand()); // dummy
536        return;
537      }
538      if (x->op() == Bytecodes::_lrem && !is_power_of_2(const_divisor) && const_divisor != -1) {
539        // Remainder computation would need additional tmp != R0.
540        right.load_item();
541      }
542    }
543  }
544
545  LIRItem left(x->x(), this);
546  left.load_item();
547  rlock_result(x);
548  if (is_div_rem) {
549    CodeEmitInfo* info = NULL; // Null check already done above.
550    LIR_Opr tmp = FrameMap::R0_opr;
551    if (x->op() == Bytecodes::_lrem) {
552      __ irem(left.result(), right.result(), x->operand(), tmp, info);
553    } else if (x->op() == Bytecodes::_ldiv) {
554      __ idiv(left.result(), right.result(), x->operand(), tmp, info);
555    }
556  } else {
557    arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
558  }
559}
560
561
562// for: _iadd, _imul, _isub, _idiv, _irem
563void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
564  bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
565
566  LIRItem right(x->y(), this);
567  // Missing test if instr is commutative and if we should swap.
568  if (right.value()->type()->as_IntConstant() &&
569      (x->op() == Bytecodes::_isub && right.value()->type()->as_IntConstant()->value() == ((-1)<<15)) ) {
570    // Sub is implemented by addi and can't support min_simm16 as constant.
571    right.load_item();
572  } else {
573    right.load_nonconstant();
574  }
575  assert(right.is_constant() || right.is_register(), "wrong state of right");
576
577  if (is_div_rem) {
578    LIR_Opr divisor = right.result();
579    if (divisor->is_register()) {
580      CodeEmitInfo* null_check_info = state_for(x);
581      __ cmp(lir_cond_equal, divisor, LIR_OprFact::intConst(0));
582      __ branch(lir_cond_equal, T_INT, new DivByZeroStub(null_check_info));
583    } else {
584      jint const_divisor = divisor->as_constant_ptr()->as_jint();
585      if (const_divisor == 0) {
586        CodeEmitInfo* null_check_info = state_for(x);
587        __ jump(new DivByZeroStub(null_check_info));
588        rlock_result(x);
589        __ move(LIR_OprFact::intConst(0), x->operand()); // dummy
590        return;
591      }
592      if (x->op() == Bytecodes::_irem && !is_power_of_2(const_divisor) && const_divisor != -1) {
593        // Remainder computation would need additional tmp != R0.
594        right.load_item();
595      }
596    }
597  }
598
599  LIRItem left(x->x(), this);
600  left.load_item();
601  rlock_result(x);
602  if (is_div_rem) {
603    CodeEmitInfo* info = NULL; // Null check already done above.
604    LIR_Opr tmp = FrameMap::R0_opr;
605    if (x->op() == Bytecodes::_irem) {
606      __ irem(left.result(), right.result(), x->operand(), tmp, info);
607    } else if (x->op() == Bytecodes::_idiv) {
608      __ idiv(left.result(), right.result(), x->operand(), tmp, info);
609    }
610  } else {
611    arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::R0_opr);
612  }
613}
614
615
616void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
617  ValueTag tag = x->type()->tag();
618  assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
619  switch (tag) {
620    case floatTag:
621    case doubleTag: do_ArithmeticOp_FPU(x);  return;
622    case longTag:   do_ArithmeticOp_Long(x); return;
623    case intTag:    do_ArithmeticOp_Int(x);  return;
624  }
625  ShouldNotReachHere();
626}
627
628
629// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
630void LIRGenerator::do_ShiftOp(ShiftOp* x) {
631  LIRItem value(x->x(), this);
632  LIRItem count(x->y(), this);
633  value.load_item();
634  LIR_Opr reg = rlock_result(x);
635  LIR_Opr mcount;
636  if (count.result()->is_register()) {
637    mcount = FrameMap::R0_opr;
638  } else {
639    mcount = LIR_OprFact::illegalOpr;
640  }
641  shift_op(x->op(), reg, value.result(), count.result(), mcount);
642}
643
644
645inline bool can_handle_logic_op_as_uimm(ValueType *type, Bytecodes::Code bc) {
646  jlong int_or_long_const;
647  if (type->as_IntConstant()) {
648    int_or_long_const = type->as_IntConstant()->value();
649  } else if (type->as_LongConstant()) {
650    int_or_long_const = type->as_LongConstant()->value();
651  } else if (type->as_ObjectConstant()) {
652    return type->as_ObjectConstant()->value()->is_null_object();
653  } else {
654    return false;
655  }
656
657  if (Assembler::is_uimm(int_or_long_const, 16)) return true;
658  if ((int_or_long_const & 0xFFFF) == 0 &&
659      Assembler::is_uimm((jlong)((julong)int_or_long_const >> 16), 16)) return true;
660
661  // see Assembler::andi
662  if (bc == Bytecodes::_iand &&
663      (is_power_of_2_long(int_or_long_const+1) ||
664       is_power_of_2_long(int_or_long_const) ||
665       is_power_of_2_long(-int_or_long_const))) return true;
666  if (bc == Bytecodes::_land &&
667      (is_power_of_2_long(int_or_long_const+1) ||
668       (Assembler::is_uimm(int_or_long_const, 32) && is_power_of_2_long(int_or_long_const)) ||
669       (int_or_long_const != min_jlong && is_power_of_2_long(-int_or_long_const)))) return true;
670
671  // special case: xor -1
672  if ((bc == Bytecodes::_ixor || bc == Bytecodes::_lxor) &&
673      int_or_long_const == -1) return true;
674  return false;
675}
676
677
678// _iand, _land, _ior, _lor, _ixor, _lxor
679void LIRGenerator::do_LogicOp(LogicOp* x) {
680  LIRItem left(x->x(), this);
681  LIRItem right(x->y(), this);
682
683  left.load_item();
684
685  Value rval = right.value();
686  LIR_Opr r = rval->operand();
687  ValueType *type = rval->type();
688  // Logic instructions use unsigned immediate values.
689  if (can_handle_logic_op_as_uimm(type, x->op())) {
690    if (!r->is_constant()) {
691      r = LIR_OprFact::value_type(type);
692      rval->set_operand(r);
693    }
694    right.set_result(r);
695  } else {
696    right.load_item();
697  }
698
699  LIR_Opr reg = rlock_result(x);
700
701  logic_op(x->op(), reg, left.result(), right.result());
702}
703
704
705// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
706void LIRGenerator::do_CompareOp(CompareOp* x) {
707  LIRItem left(x->x(), this);
708  LIRItem right(x->y(), this);
709  left.load_item();
710  right.load_item();
711  LIR_Opr reg = rlock_result(x);
712  if (x->x()->type()->is_float_kind()) {
713    Bytecodes::Code code = x->op();
714    __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
715  } else if (x->x()->type()->tag() == longTag) {
716    __ lcmp2int(left.result(), right.result(), reg);
717  } else {
718    Unimplemented();
719  }
720}
721
722
723void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
724  assert(x->number_of_arguments() == 4, "wrong type");
725  LIRItem obj   (x->argument_at(0), this);  // object
726  LIRItem offset(x->argument_at(1), this);  // offset of field
727  LIRItem cmp   (x->argument_at(2), this);  // Value to compare with field.
728  LIRItem val   (x->argument_at(3), this);  // Replace field with val if matches cmp.
729
730  LIR_Opr t1 = LIR_OprFact::illegalOpr;
731  LIR_Opr t2 = LIR_OprFact::illegalOpr;
732  LIR_Opr addr = new_pointer_register();
733
734  // Get address of field.
735  obj.load_item();
736  offset.load_item();
737  cmp.load_item();
738  val.load_item();
739
740  __ add(obj.result(), offset.result(), addr);
741
742  // Volatile load may be followed by Unsafe CAS.
743  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
744    __ membar(); // To be safe. Unsafe semantics are unclear.
745  } else {
746    __ membar_release();
747  }
748
749  if (type == objectType) {  // Write-barrier needed for Object fields.
750    // Only cmp value can get overwritten, no do_load required.
751    pre_barrier(LIR_OprFact::illegalOpr /* addr */, cmp.result() /* pre_val */,
752                false /* do_load */, false /* patch */, NULL);
753  }
754
755  if (type == objectType) {
756    if (UseCompressedOops) {
757      t1 = new_register(T_OBJECT);
758      t2 = new_register(T_OBJECT);
759    }
760    __ cas_obj(addr, cmp.result(), val.result(), t1, t2);
761  } else if (type == intType) {
762    __ cas_int(addr, cmp.result(), val.result(), t1, t2);
763  } else if (type == longType) {
764    __ cas_long(addr, cmp.result(), val.result(), t1, t2);
765  } else {
766    ShouldNotReachHere();
767  }
768  // Benerate conditional move of boolean result.
769  LIR_Opr result = rlock_result(x);
770  __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
771           result, as_BasicType(type));
772  if (type == objectType) {  // Write-barrier needed for Object fields.
773    // Precise card mark since could either be object or array.
774    post_barrier(addr, val.result());
775  }
776}
777
778
779void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
780  switch (x->id()) {
781    case vmIntrinsics::_dabs: {
782      assert(x->number_of_arguments() == 1, "wrong type");
783      LIRItem value(x->argument_at(0), this);
784      value.load_item();
785      LIR_Opr dst = rlock_result(x);
786      __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
787      break;
788    }
789    case vmIntrinsics::_dsqrt: {
790      if (VM_Version::has_fsqrt()) {
791        assert(x->number_of_arguments() == 1, "wrong type");
792        LIRItem value(x->argument_at(0), this);
793        value.load_item();
794        LIR_Opr dst = rlock_result(x);
795        __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
796        break;
797      } // else fallthru
798    }
799    case vmIntrinsics::_dlog10: // fall through
800    case vmIntrinsics::_dlog: // fall through
801    case vmIntrinsics::_dsin: // fall through
802    case vmIntrinsics::_dtan: // fall through
803    case vmIntrinsics::_dcos: // fall through
804    case vmIntrinsics::_dexp: {
805      assert(x->number_of_arguments() == 1, "wrong type");
806
807      address runtime_entry = NULL;
808      switch (x->id()) {
809      case vmIntrinsics::_dsqrt:
810        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
811        break;
812      case vmIntrinsics::_dsin:
813        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
814        break;
815      case vmIntrinsics::_dcos:
816        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
817        break;
818      case vmIntrinsics::_dtan:
819        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
820        break;
821      case vmIntrinsics::_dlog:
822        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
823        break;
824      case vmIntrinsics::_dlog10:
825        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
826        break;
827      case vmIntrinsics::_dexp:
828        runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
829        break;
830      default:
831        ShouldNotReachHere();
832      }
833
834      LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
835      set_result(x, result);
836      break;
837    }
838    case vmIntrinsics::_dpow: {
839      assert(x->number_of_arguments() == 2, "wrong type");
840      address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
841      LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
842      set_result(x, result);
843      break;
844    }
845  }
846}
847
848
849void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
850  assert(x->number_of_arguments() == 5, "wrong type");
851
852  // Make all state_for calls early since they can emit code.
853  CodeEmitInfo* info = state_for(x, x->state());
854
855  LIRItem src     (x->argument_at(0), this);
856  LIRItem src_pos (x->argument_at(1), this);
857  LIRItem dst     (x->argument_at(2), this);
858  LIRItem dst_pos (x->argument_at(3), this);
859  LIRItem length  (x->argument_at(4), this);
860
861  // Load all values in callee_save_registers (C calling convention),
862  // as this makes the parameter passing to the fast case simpler.
863  src.load_item_force     (FrameMap::R14_oop_opr);
864  src_pos.load_item_force (FrameMap::R15_opr);
865  dst.load_item_force     (FrameMap::R17_oop_opr);
866  dst_pos.load_item_force (FrameMap::R18_opr);
867  length.load_item_force  (FrameMap::R19_opr);
868  LIR_Opr tmp =            FrameMap::R20_opr;
869
870  int flags;
871  ciArrayKlass* expected_type;
872  arraycopy_helper(x, &flags, &expected_type);
873
874  __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
875               length.result(), tmp,
876               expected_type, flags, info);
877  set_no_result(x);
878}
879
880
881// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
882// _i2b, _i2c, _i2s
883void LIRGenerator::do_Convert(Convert* x) {
884  switch (x->op()) {
885
886    // int -> float: force spill
887    case Bytecodes::_l2f: {
888      if (!VM_Version::has_fcfids()) { // fcfids is >= Power7 only
889        // fcfid+frsp needs fixup code to avoid rounding incompatibility.
890        address entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
891        LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
892        set_result(x, result);
893        break;
894      } // else fallthru
895    }
896    case Bytecodes::_l2d: {
897      LIRItem value(x->value(), this);
898      LIR_Opr reg = rlock_result(x);
899      value.load_item();
900      LIR_Opr tmp = force_to_spill(value.result(), T_DOUBLE);
901      __ convert(x->op(), tmp, reg);
902      break;
903    }
904    case Bytecodes::_i2f:
905    case Bytecodes::_i2d: {
906      LIRItem value(x->value(), this);
907      LIR_Opr reg = rlock_result(x);
908      value.load_item();
909      // Convert i2l first.
910      LIR_Opr tmp1 = new_register(T_LONG);
911      __ convert(Bytecodes::_i2l, value.result(), tmp1);
912      LIR_Opr tmp2 = force_to_spill(tmp1, T_DOUBLE);
913      __ convert(x->op(), tmp2, reg);
914      break;
915    }
916
917    // float -> int: result will be stored
918    case Bytecodes::_f2l:
919    case Bytecodes::_d2l: {
920      LIRItem value(x->value(), this);
921      LIR_Opr reg = rlock_result(x);
922      value.set_destroys_register(); // USE_KILL
923      value.load_item();
924      set_vreg_flag(reg, must_start_in_memory);
925      __ convert(x->op(), value.result(), reg);
926      break;
927    }
928    case Bytecodes::_f2i:
929    case Bytecodes::_d2i: {
930      LIRItem value(x->value(), this);
931      LIR_Opr reg = rlock_result(x);
932      value.set_destroys_register(); // USE_KILL
933      value.load_item();
934      // Convert l2i afterwards.
935      LIR_Opr tmp1 = new_register(T_LONG);
936      set_vreg_flag(tmp1, must_start_in_memory);
937      __ convert(x->op(), value.result(), tmp1);
938      __ convert(Bytecodes::_l2i, tmp1, reg);
939      break;
940    }
941
942    // Within same category: just register conversions.
943    case Bytecodes::_i2b:
944    case Bytecodes::_i2c:
945    case Bytecodes::_i2s:
946    case Bytecodes::_i2l:
947    case Bytecodes::_l2i:
948    case Bytecodes::_f2d:
949    case Bytecodes::_d2f: {
950      LIRItem value(x->value(), this);
951      LIR_Opr reg = rlock_result(x);
952      value.load_item();
953      __ convert(x->op(), value.result(), reg);
954      break;
955    }
956
957    default: ShouldNotReachHere();
958  }
959}
960
961
962void LIRGenerator::do_NewInstance(NewInstance* x) {
963  // This instruction can be deoptimized in the slow path.
964  const LIR_Opr reg = result_register_for(x->type());
965#ifndef PRODUCT
966  if (PrintNotLoaded && !x->klass()->is_loaded()) {
967    tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
968  }
969#endif
970  CodeEmitInfo* info = state_for(x, x->state());
971  LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path (NewInstanceStub).
972  LIR_Opr tmp1 = FrameMap::R5_oop_opr;
973  LIR_Opr tmp2 = FrameMap::R6_oop_opr;
974  LIR_Opr tmp3 = FrameMap::R7_oop_opr;
975  LIR_Opr tmp4 = FrameMap::R8_oop_opr;
976  new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
977
978  // Must prevent reordering of stores for object initialization
979  // with stores that publish the new object.
980  __ membar_storestore();
981  LIR_Opr result = rlock_result(x);
982  __ move(reg, result);
983}
984
985
986void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
987  // Evaluate state_for early since it may emit code.
988  CodeEmitInfo* info = state_for(x, x->state());
989
990  LIRItem length(x->length(), this);
991  length.load_item();
992
993  LIR_Opr reg = result_register_for(x->type());
994  LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path (NewTypeArrayStub).
995  // We use R5 in order to get a temp effect. This reg is used in slow path (NewTypeArrayStub).
996  LIR_Opr tmp1 = FrameMap::R5_oop_opr;
997  LIR_Opr tmp2 = FrameMap::R6_oop_opr;
998  LIR_Opr tmp3 = FrameMap::R7_oop_opr;
999  LIR_Opr tmp4 = FrameMap::R8_oop_opr;
1000  LIR_Opr len = length.result();
1001  BasicType elem_type = x->elt_type();
1002
1003  __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1004
1005  CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1006  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1007
1008  // Must prevent reordering of stores for object initialization
1009  // with stores that publish the new object.
1010  __ membar_storestore();
1011  LIR_Opr result = rlock_result(x);
1012  __ move(reg, result);
1013}
1014
1015
1016void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1017  // Evaluate state_for early since it may emit code.
1018  CodeEmitInfo* info = state_for(x, x->state());
1019  // In case of patching (i.e., object class is not yet loaded),
1020  // we need to reexecute the instruction and therefore provide
1021  // the state before the parameters have been consumed.
1022  CodeEmitInfo* patching_info = NULL;
1023  if (!x->klass()->is_loaded() || PatchALot) {
1024    patching_info = state_for(x, x->state_before());
1025  }
1026
1027  LIRItem length(x->length(), this);
1028  length.load_item();
1029
1030  const LIR_Opr reg = result_register_for(x->type());
1031  LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path (NewObjectArrayStub).
1032  // We use R5 in order to get a temp effect. This reg is used in slow path (NewObjectArrayStub).
1033  LIR_Opr tmp1 = FrameMap::R5_oop_opr;
1034  LIR_Opr tmp2 = FrameMap::R6_oop_opr;
1035  LIR_Opr tmp3 = FrameMap::R7_oop_opr;
1036  LIR_Opr tmp4 = FrameMap::R8_oop_opr;
1037  LIR_Opr len = length.result();
1038
1039  CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1040  ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1041  if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1042    BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1043  }
1044  klass2reg_with_patching(klass_reg, obj, patching_info);
1045  __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1046
1047  // Must prevent reordering of stores for object initialization
1048  // with stores that publish the new object.
1049  __ membar_storestore();
1050  LIR_Opr result = rlock_result(x);
1051  __ move(reg, result);
1052}
1053
1054
1055void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1056  Values* dims = x->dims();
1057  int i = dims->length();
1058  LIRItemList* items = new LIRItemList(dims->length(), NULL);
1059  while (i-- > 0) {
1060    LIRItem* size = new LIRItem(dims->at(i), this);
1061    items->at_put(i, size);
1062  }
1063
1064  // Evaluate state_for early since it may emit code.
1065  CodeEmitInfo* patching_info = NULL;
1066  if (!x->klass()->is_loaded() || PatchALot) {
1067    patching_info = state_for(x, x->state_before());
1068
1069    // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1070    // clone all handlers (NOTE: Usually this is handled transparently
1071    // by the CodeEmitInfo cloning logic in CodeStub constructors but
1072    // is done explicitly here because a stub isn't being used).
1073    x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1074  }
1075  CodeEmitInfo* info = state_for(x, x->state());
1076
1077  i = dims->length();
1078  while (i-- > 0) {
1079    LIRItem* size = items->at(i);
1080    size->load_nonconstant();
1081    // FrameMap::_reserved_argument_area_size includes the dimensions
1082    // varargs, because it's initialized to hir()->max_stack() when the
1083    // FrameMap is created.
1084    store_stack_parameter(size->result(), in_ByteSize(i*sizeof(jint) + FrameMap::first_available_sp_in_frame));
1085  }
1086
1087  const LIR_Opr klass_reg = FrameMap::R4_metadata_opr; // Used by slow path.
1088  klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1089
1090  LIR_Opr rank = FrameMap::R5_opr; // Used by slow path.
1091  __ move(LIR_OprFact::intConst(x->rank()), rank);
1092
1093  LIR_Opr varargs = FrameMap::as_pointer_opr(R6); // Used by slow path.
1094  __ leal(LIR_OprFact::address(new LIR_Address(FrameMap::SP_opr, FrameMap::first_available_sp_in_frame, T_INT)),
1095          varargs);
1096
1097  // Note: This instruction can be deoptimized in the slow path.
1098  LIR_OprList* args = new LIR_OprList(3);
1099  args->append(klass_reg);
1100  args->append(rank);
1101  args->append(varargs);
1102  const LIR_Opr reg = result_register_for(x->type());
1103  __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1104                  LIR_OprFact::illegalOpr,
1105                  reg, args, info);
1106
1107  // Must prevent reordering of stores for object initialization
1108  // with stores that publish the new object.
1109  __ membar_storestore();
1110  LIR_Opr result = rlock_result(x);
1111  __ move(reg, result);
1112}
1113
1114
1115void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1116  // nothing to do for now
1117}
1118
1119
1120void LIRGenerator::do_CheckCast(CheckCast* x) {
1121  LIRItem obj(x->obj(), this);
1122  CodeEmitInfo* patching_info = NULL;
1123  if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1124    // Must do this before locking the destination register as
1125    // an oop register, and before the obj is loaded (so x->obj()->item()
1126    // is valid for creating a debug info location).
1127    patching_info = state_for(x, x->state_before());
1128  }
1129  obj.load_item();
1130  LIR_Opr out_reg = rlock_result(x);
1131  CodeStub* stub;
1132  CodeEmitInfo* info_for_exception = state_for(x);
1133
1134  if (x->is_incompatible_class_change_check()) {
1135    assert(patching_info == NULL, "can't patch this");
1136    stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id,
1137                                   LIR_OprFact::illegalOpr, info_for_exception);
1138  } else {
1139    stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1140  }
1141  // Following registers are used by slow_subtype_check:
1142  LIR_Opr tmp1 = FrameMap::R4_oop_opr; // super_klass
1143  LIR_Opr tmp2 = FrameMap::R5_oop_opr; // sub_klass
1144  LIR_Opr tmp3 = FrameMap::R6_oop_opr; // temp
1145  __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1146               x->direct_compare(), info_for_exception, patching_info, stub,
1147               x->profiled_method(), x->profiled_bci());
1148}
1149
1150
1151void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1152  LIRItem obj(x->obj(), this);
1153  CodeEmitInfo* patching_info = NULL;
1154  if (!x->klass()->is_loaded() || PatchALot) {
1155    patching_info = state_for(x, x->state_before());
1156  }
1157  // Ensure the result register is not the input register because the
1158  // result is initialized before the patching safepoint.
1159  obj.load_item();
1160  LIR_Opr out_reg = rlock_result(x);
1161  // Following registers are used by slow_subtype_check:
1162  LIR_Opr tmp1 = FrameMap::R4_oop_opr; // super_klass
1163  LIR_Opr tmp2 = FrameMap::R5_oop_opr; // sub_klass
1164  LIR_Opr tmp3 = FrameMap::R6_oop_opr; // temp
1165  __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1166                x->direct_compare(), patching_info,
1167                x->profiled_method(), x->profiled_bci());
1168}
1169
1170
1171void LIRGenerator::do_If(If* x) {
1172  assert(x->number_of_sux() == 2, "inconsistency");
1173  ValueTag tag = x->x()->type()->tag();
1174  LIRItem xitem(x->x(), this);
1175  LIRItem yitem(x->y(), this);
1176  LIRItem* xin = &xitem;
1177  LIRItem* yin = &yitem;
1178  If::Condition cond = x->cond();
1179
1180  LIR_Opr left = LIR_OprFact::illegalOpr;
1181  LIR_Opr right = LIR_OprFact::illegalOpr;
1182
1183  xin->load_item();
1184  left = xin->result();
1185
1186  if (yin->result()->is_constant() && yin->result()->type() == T_INT &&
1187      Assembler::is_simm16(yin->result()->as_constant_ptr()->as_jint())) {
1188    // Inline int constants which are small enough to be immediate operands.
1189    right = LIR_OprFact::value_type(yin->value()->type());
1190  } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1191             (cond == If::eql || cond == If::neq)) {
1192    // Inline long zero.
1193    right = LIR_OprFact::value_type(yin->value()->type());
1194  } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1195    right = LIR_OprFact::value_type(yin->value()->type());
1196  } else {
1197    yin->load_item();
1198    right = yin->result();
1199  }
1200  set_no_result(x);
1201
1202  // Add safepoint before generating condition code so it can be recomputed.
1203  if (x->is_safepoint()) {
1204    // Increment backedge counter if needed.
1205    increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1206    __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1207  }
1208
1209  __ cmp(lir_cond(cond), left, right);
1210  // Generate branch profiling. Profiling code doesn't kill flags.
1211  profile_branch(x, cond);
1212  move_to_phi(x->state());
1213  if (x->x()->type()->is_float_kind()) {
1214    __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1215  } else {
1216    __ branch(lir_cond(cond), right->type(), x->tsux());
1217  }
1218  assert(x->default_sux() == x->fsux(), "wrong destination above");
1219  __ jump(x->default_sux());
1220}
1221
1222
1223LIR_Opr LIRGenerator::getThreadPointer() {
1224  return FrameMap::as_pointer_opr(R16_thread);
1225}
1226
1227
1228void LIRGenerator::trace_block_entry(BlockBegin* block) {
1229  LIR_Opr arg1 = FrameMap::R3_opr; // ARG1
1230  __ move(LIR_OprFact::intConst(block->block_id()), arg1);
1231  LIR_OprList* args = new LIR_OprList(1);
1232  args->append(arg1);
1233  address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1234  __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1235}
1236
1237
1238void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1239                                        CodeEmitInfo* info) {
1240#ifdef _LP64
1241  __ store(value, address, info);
1242#else
1243  Unimplemented();
1244//  __ volatile_store_mem_reg(value, address, info);
1245#endif
1246}
1247
1248void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1249                                       CodeEmitInfo* info) {
1250#ifdef _LP64
1251  __ load(address, result, info);
1252#else
1253  Unimplemented();
1254//  __ volatile_load_mem_reg(address, result, info);
1255#endif
1256}
1257
1258
1259void LIRGenerator::put_Object_unsafe(LIR_Opr src, LIR_Opr offset, LIR_Opr data,
1260                                     BasicType type, bool is_volatile) {
1261  LIR_Opr base_op = src;
1262  LIR_Opr index_op = offset;
1263
1264  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1265#ifndef _LP64
1266  if (is_volatile && type == T_LONG) {
1267    __ volatile_store_unsafe_reg(data, src, offset, type, NULL, lir_patch_none);
1268  } else
1269#endif
1270  {
1271    if (type == T_BOOLEAN) {
1272      type = T_BYTE;
1273    }
1274    LIR_Address* addr;
1275    if (type == T_ARRAY || type == T_OBJECT) {
1276      LIR_Opr tmp = new_pointer_register();
1277      __ add(base_op, index_op, tmp);
1278      addr = new LIR_Address(tmp, type);
1279    } else {
1280      addr = new LIR_Address(base_op, index_op, type);
1281    }
1282
1283    if (is_obj) {
1284      pre_barrier(LIR_OprFact::address(addr), LIR_OprFact::illegalOpr /* pre_val */,
1285          true /* do_load */, false /* patch */, NULL);
1286      // _bs->c1_write_barrier_pre(this, LIR_OprFact::address(addr));
1287    }
1288    __ move(data, addr);
1289    if (is_obj) {
1290      // This address is precise.
1291      post_barrier(LIR_OprFact::address(addr), data);
1292    }
1293  }
1294}
1295
1296
1297void LIRGenerator::get_Object_unsafe(LIR_Opr dst, LIR_Opr src, LIR_Opr offset,
1298                                     BasicType type, bool is_volatile) {
1299#ifndef _LP64
1300  if (is_volatile && type == T_LONG) {
1301    __ volatile_load_unsafe_reg(src, offset, dst, type, NULL, lir_patch_none);
1302  } else
1303#endif
1304    {
1305    LIR_Address* addr = new LIR_Address(src, offset, type);
1306    __ load(addr, dst);
1307  }
1308}
1309
1310
1311void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
1312  BasicType type = x->basic_type();
1313  LIRItem src(x->object(), this);
1314  LIRItem off(x->offset(), this);
1315  LIRItem value(x->value(), this);
1316
1317  src.load_item();
1318  value.load_item();
1319  off.load_nonconstant();
1320
1321  LIR_Opr dst = rlock_result(x, type);
1322  LIR_Opr data = value.result();
1323  bool is_obj = (type == T_ARRAY || type == T_OBJECT);
1324
1325  LIR_Opr tmp = FrameMap::R0_opr;
1326  LIR_Opr ptr = new_pointer_register();
1327  __ add(src.result(), off.result(), ptr);
1328
1329  if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1330    __ membar();
1331  } else {
1332    __ membar_release();
1333  }
1334
1335  if (x->is_add()) {
1336    __ xadd(ptr, data, dst, tmp);
1337  } else {
1338    const bool can_move_barrier = true; // TODO: port GraphKit::can_move_pre_barrier() from C2
1339    if (!can_move_barrier && is_obj) {
1340      // Do the pre-write barrier, if any.
1341      pre_barrier(ptr, LIR_OprFact::illegalOpr /* pre_val */,
1342                  true /* do_load */, false /* patch */, NULL);
1343    }
1344    __ xchg(ptr, data, dst, tmp);
1345    if (is_obj) {
1346      // Seems to be a precise address.
1347      post_barrier(ptr, data);
1348      if (can_move_barrier) {
1349        pre_barrier(LIR_OprFact::illegalOpr, dst /* pre_val */,
1350                    false /* do_load */, false /* patch */, NULL);
1351      }
1352    }
1353  }
1354
1355  __ membar();
1356}
1357
1358
1359void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1360  assert(UseCRC32Intrinsics, "or should not be here");
1361  LIR_Opr result = rlock_result(x);
1362
1363  switch (x->id()) {
1364    case vmIntrinsics::_updateCRC32: {
1365      LIRItem crc(x->argument_at(0), this);
1366      LIRItem val(x->argument_at(1), this);
1367      // Registers destroyed by update_crc32.
1368      crc.set_destroys_register();
1369      val.set_destroys_register();
1370      crc.load_item();
1371      val.load_item();
1372      __ update_crc32(crc.result(), val.result(), result);
1373      break;
1374    }
1375    case vmIntrinsics::_updateBytesCRC32:
1376    case vmIntrinsics::_updateByteBufferCRC32: {
1377      bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
1378
1379      LIRItem crc(x->argument_at(0), this);
1380      LIRItem buf(x->argument_at(1), this);
1381      LIRItem off(x->argument_at(2), this);
1382      LIRItem len(x->argument_at(3), this);
1383      buf.load_item();
1384      off.load_nonconstant();
1385
1386      LIR_Opr index = off.result();
1387      int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1388      if (off.result()->is_constant()) {
1389        index = LIR_OprFact::illegalOpr;
1390        offset += off.result()->as_jint();
1391      }
1392      LIR_Opr base_op = buf.result();
1393      LIR_Address* a = NULL;
1394
1395      if (index->is_valid()) {
1396        LIR_Opr tmp = new_register(T_LONG);
1397        __ convert(Bytecodes::_i2l, index, tmp);
1398        index = tmp;
1399        __ add(index, LIR_OprFact::intptrConst(offset), index);
1400        a = new LIR_Address(base_op, index, T_BYTE);
1401      } else {
1402        a = new LIR_Address(base_op, offset, T_BYTE);
1403      }
1404
1405      BasicTypeList signature(3);
1406      signature.append(T_INT);
1407      signature.append(T_ADDRESS);
1408      signature.append(T_INT);
1409      CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1410      const LIR_Opr result_reg = result_register_for(x->type());
1411
1412      LIR_Opr arg1 = cc->at(0),
1413              arg2 = cc->at(1),
1414              arg3 = cc->at(2);
1415
1416      // CCallingConventionRequiresIntsAsLongs
1417      crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32 stub doesn't care about high bits.
1418      __ leal(LIR_OprFact::address(a), arg2);
1419      load_int_as_long(gen()->lir(), len, arg3);
1420
1421      __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), LIR_OprFact::illegalOpr, result_reg, cc->args());
1422      __ move(result_reg, result);
1423      break;
1424    }
1425    default: {
1426      ShouldNotReachHere();
1427    }
1428  }
1429}
1430