assembler_ppc.hpp revision 9751:4a24de859a87
1/*
2 * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright 2012, 2015 SAP AG. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#ifndef CPU_PPC_VM_ASSEMBLER_PPC_HPP
27#define CPU_PPC_VM_ASSEMBLER_PPC_HPP
28
29#include "asm/register.hpp"
30
31// Address is an abstraction used to represent a memory location
32// as used in assembler instructions.
33// PPC instructions grok either baseReg + indexReg or baseReg + disp.
34class Address VALUE_OBJ_CLASS_SPEC {
35 private:
36  Register _base;         // Base register.
37  Register _index;        // Index register.
38  intptr_t _disp;         // Displacement.
39
40 public:
41  Address(Register b, Register i, address d = 0)
42    : _base(b), _index(i), _disp((intptr_t)d) {
43    assert(i == noreg || d == 0, "can't have both");
44  }
45
46  Address(Register b, address d = 0)
47    : _base(b), _index(noreg), _disp((intptr_t)d) {}
48
49  Address(Register b, intptr_t d)
50    : _base(b), _index(noreg), _disp(d) {}
51
52  Address(Register b, RegisterOrConstant roc)
53    : _base(b), _index(noreg), _disp(0) {
54    if (roc.is_constant()) _disp = roc.as_constant(); else _index = roc.as_register();
55  }
56
57  Address()
58    : _base(noreg), _index(noreg), _disp(0) {}
59
60  // accessors
61  Register base()  const { return _base; }
62  Register index() const { return _index; }
63  int      disp()  const { return (int)_disp; }
64  bool     is_const() const { return _base == noreg && _index == noreg; }
65};
66
67class AddressLiteral VALUE_OBJ_CLASS_SPEC {
68 private:
69  address          _address;
70  RelocationHolder _rspec;
71
72  RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
73    switch (rtype) {
74    case relocInfo::external_word_type:
75      return external_word_Relocation::spec(addr);
76    case relocInfo::internal_word_type:
77      return internal_word_Relocation::spec(addr);
78    case relocInfo::opt_virtual_call_type:
79      return opt_virtual_call_Relocation::spec();
80    case relocInfo::static_call_type:
81      return static_call_Relocation::spec();
82    case relocInfo::runtime_call_type:
83      return runtime_call_Relocation::spec();
84    case relocInfo::none:
85      return RelocationHolder();
86    default:
87      ShouldNotReachHere();
88      return RelocationHolder();
89    }
90  }
91
92 protected:
93  // creation
94  AddressLiteral() : _address(NULL), _rspec(NULL) {}
95
96 public:
97  AddressLiteral(address addr, RelocationHolder const& rspec)
98    : _address(addr),
99      _rspec(rspec) {}
100
101  AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
102    : _address((address) addr),
103      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
104
105  AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
106    : _address((address) addr),
107      _rspec(rspec_from_rtype(rtype, (address) addr)) {}
108
109  intptr_t value() const { return (intptr_t) _address; }
110
111  const RelocationHolder& rspec() const { return _rspec; }
112};
113
114// Argument is an abstraction used to represent an outgoing
115// actual argument or an incoming formal parameter, whether
116// it resides in memory or in a register, in a manner consistent
117// with the PPC Application Binary Interface, or ABI. This is
118// often referred to as the native or C calling convention.
119
120class Argument VALUE_OBJ_CLASS_SPEC {
121 private:
122  int _number;  // The number of the argument.
123 public:
124  enum {
125    // Only 8 registers may contain integer parameters.
126    n_register_parameters = 8,
127    // Can have up to 8 floating registers.
128    n_float_register_parameters = 8,
129
130    // PPC C calling conventions.
131    // The first eight arguments are passed in int regs if they are int.
132    n_int_register_parameters_c = 8,
133    // The first thirteen float arguments are passed in float regs.
134    n_float_register_parameters_c = 13,
135    // Only the first 8 parameters are not placed on the stack. Aix disassembly
136    // shows that xlC places all float args after argument 8 on the stack AND
137    // in a register. This is not documented, but we follow this convention, too.
138    n_regs_not_on_stack_c = 8,
139  };
140  // creation
141  Argument(int number) : _number(number) {}
142
143  int  number() const { return _number; }
144
145  // Locating register-based arguments:
146  bool is_register() const { return _number < n_register_parameters; }
147
148  Register as_register() const {
149    assert(is_register(), "must be a register argument");
150    return as_Register(number() + R3_ARG1->encoding());
151  }
152};
153
154#if !defined(ABI_ELFv2)
155// A ppc64 function descriptor.
156struct FunctionDescriptor VALUE_OBJ_CLASS_SPEC {
157 private:
158  address _entry;
159  address _toc;
160  address _env;
161
162 public:
163  inline address entry() const { return _entry; }
164  inline address toc()   const { return _toc; }
165  inline address env()   const { return _env; }
166
167  inline void set_entry(address entry) { _entry = entry; }
168  inline void set_toc(  address toc)   { _toc   = toc; }
169  inline void set_env(  address env)   { _env   = env; }
170
171  inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
172  inline static ByteSize toc_offset()   { return byte_offset_of(FunctionDescriptor, _toc); }
173  inline static ByteSize env_offset()   { return byte_offset_of(FunctionDescriptor, _env); }
174
175  // Friend functions can be called without loading toc and env.
176  enum {
177    friend_toc = 0xcafe,
178    friend_env = 0xc0de
179  };
180
181  inline bool is_friend_function() const {
182    return (toc() == (address) friend_toc) && (env() == (address) friend_env);
183  }
184
185  // Constructor for stack-allocated instances.
186  FunctionDescriptor() {
187    _entry = (address) 0xbad;
188    _toc   = (address) 0xbad;
189    _env   = (address) 0xbad;
190  }
191};
192#endif
193
194
195// The PPC Assembler: Pure assembler doing NO optimizations on the
196// instruction level; i.e., what you write is what you get. The
197// Assembler is generating code into a CodeBuffer.
198
199class Assembler : public AbstractAssembler {
200 protected:
201  // Displacement routines
202  static int  patched_branch(int dest_pos, int inst, int inst_pos);
203  static int  branch_destination(int inst, int pos);
204
205  friend class AbstractAssembler;
206
207  // Code patchers need various routines like inv_wdisp()
208  friend class NativeInstruction;
209  friend class NativeGeneralJump;
210  friend class Relocation;
211
212 public:
213
214  enum shifts {
215    XO_21_29_SHIFT = 2,
216    XO_21_30_SHIFT = 1,
217    XO_27_29_SHIFT = 2,
218    XO_30_31_SHIFT = 0,
219    SPR_5_9_SHIFT  = 11u, // SPR_5_9 field in bits 11 -- 15
220    SPR_0_4_SHIFT  = 16u, // SPR_0_4 field in bits 16 -- 20
221    RS_SHIFT       = 21u, // RS field in bits 21 -- 25
222    OPCODE_SHIFT   = 26u, // opcode in bits 26 -- 31
223  };
224
225  enum opcdxos_masks {
226    XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
227    ADDI_OPCODE_MASK    = (63u << OPCODE_SHIFT),
228    ADDIS_OPCODE_MASK   = (63u << OPCODE_SHIFT),
229    BXX_OPCODE_MASK     = (63u << OPCODE_SHIFT),
230    BCXX_OPCODE_MASK    = (63u << OPCODE_SHIFT),
231    // trap instructions
232    TDI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
233    TWI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
234    TD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
235    TW_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (1023u << 1),
236    LD_OPCODE_MASK      = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
237    STD_OPCODE_MASK     = LD_OPCODE_MASK,
238    STDU_OPCODE_MASK    = STD_OPCODE_MASK,
239    STDX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
240    STDUX_OPCODE_MASK   = STDX_OPCODE_MASK,
241    STW_OPCODE_MASK     = (63u << OPCODE_SHIFT),
242    STWU_OPCODE_MASK    = STW_OPCODE_MASK,
243    STWX_OPCODE_MASK    = (63u << OPCODE_SHIFT) | (1023u << 1),
244    STWUX_OPCODE_MASK   = STWX_OPCODE_MASK,
245    MTCTR_OPCODE_MASK   = ~(31u << RS_SHIFT),
246    ORI_OPCODE_MASK     = (63u << OPCODE_SHIFT),
247    ORIS_OPCODE_MASK    = (63u << OPCODE_SHIFT),
248    RLDICR_OPCODE_MASK  = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
249  };
250
251  enum opcdxos {
252    ADD_OPCODE    = (31u << OPCODE_SHIFT | 266u << 1),
253    ADDC_OPCODE   = (31u << OPCODE_SHIFT |  10u << 1),
254    ADDI_OPCODE   = (14u << OPCODE_SHIFT),
255    ADDIS_OPCODE  = (15u << OPCODE_SHIFT),
256    ADDIC__OPCODE = (13u << OPCODE_SHIFT),
257    ADDE_OPCODE   = (31u << OPCODE_SHIFT | 138u << 1),
258    ADDME_OPCODE  = (31u << OPCODE_SHIFT | 234u << 1),
259    ADDZE_OPCODE  = (31u << OPCODE_SHIFT | 202u << 1),
260    SUBF_OPCODE   = (31u << OPCODE_SHIFT |  40u << 1),
261    SUBFC_OPCODE  = (31u << OPCODE_SHIFT |   8u << 1),
262    SUBFE_OPCODE  = (31u << OPCODE_SHIFT | 136u << 1),
263    SUBFIC_OPCODE = (8u  << OPCODE_SHIFT),
264    SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
265    SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
266    DIVW_OPCODE   = (31u << OPCODE_SHIFT | 491u << 1),
267    MULLW_OPCODE  = (31u << OPCODE_SHIFT | 235u << 1),
268    MULHW_OPCODE  = (31u << OPCODE_SHIFT |  75u << 1),
269    MULHWU_OPCODE = (31u << OPCODE_SHIFT |  11u << 1),
270    MULLI_OPCODE  = (7u  << OPCODE_SHIFT),
271    AND_OPCODE    = (31u << OPCODE_SHIFT |  28u << 1),
272    ANDI_OPCODE   = (28u << OPCODE_SHIFT),
273    ANDIS_OPCODE  = (29u << OPCODE_SHIFT),
274    ANDC_OPCODE   = (31u << OPCODE_SHIFT |  60u << 1),
275    ORC_OPCODE    = (31u << OPCODE_SHIFT | 412u << 1),
276    OR_OPCODE     = (31u << OPCODE_SHIFT | 444u << 1),
277    ORI_OPCODE    = (24u << OPCODE_SHIFT),
278    ORIS_OPCODE   = (25u << OPCODE_SHIFT),
279    XOR_OPCODE    = (31u << OPCODE_SHIFT | 316u << 1),
280    XORI_OPCODE   = (26u << OPCODE_SHIFT),
281    XORIS_OPCODE  = (27u << OPCODE_SHIFT),
282
283    NEG_OPCODE    = (31u << OPCODE_SHIFT | 104u << 1),
284
285    RLWINM_OPCODE = (21u << OPCODE_SHIFT),
286    CLRRWI_OPCODE = RLWINM_OPCODE,
287    CLRLWI_OPCODE = RLWINM_OPCODE,
288
289    RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
290
291    SLW_OPCODE    = (31u << OPCODE_SHIFT |  24u << 1),
292    SLWI_OPCODE   = RLWINM_OPCODE,
293    SRW_OPCODE    = (31u << OPCODE_SHIFT | 536u << 1),
294    SRWI_OPCODE   = RLWINM_OPCODE,
295    SRAW_OPCODE   = (31u << OPCODE_SHIFT | 792u << 1),
296    SRAWI_OPCODE  = (31u << OPCODE_SHIFT | 824u << 1),
297
298    CMP_OPCODE    = (31u << OPCODE_SHIFT |   0u << 1),
299    CMPI_OPCODE   = (11u << OPCODE_SHIFT),
300    CMPL_OPCODE   = (31u << OPCODE_SHIFT |  32u << 1),
301    CMPLI_OPCODE  = (10u << OPCODE_SHIFT),
302
303    ISEL_OPCODE   = (31u << OPCODE_SHIFT |  15u << 1),
304
305    // Special purpose registers
306    MTSPR_OPCODE  = (31u << OPCODE_SHIFT | 467u << 1),
307    MFSPR_OPCODE  = (31u << OPCODE_SHIFT | 339u << 1),
308
309    MTXER_OPCODE  = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
310    MFXER_OPCODE  = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
311
312    MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
313    MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
314
315    MTLR_OPCODE   = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
316    MFLR_OPCODE   = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
317
318    MTCTR_OPCODE  = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
319    MFCTR_OPCODE  = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
320
321    // Attention: Higher and lower half are inserted in reversed order.
322    MTTFHAR_OPCODE   = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
323    MFTFHAR_OPCODE   = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
324    MTTFIAR_OPCODE   = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
325    MFTFIAR_OPCODE   = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
326    MTTEXASR_OPCODE  = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
327    MFTEXASR_OPCODE  = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
328    MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
329    MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
330
331    MTVRSAVE_OPCODE  = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
332    MFVRSAVE_OPCODE  = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
333
334    MFTB_OPCODE   = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
335
336    MTCRF_OPCODE  = (31u << OPCODE_SHIFT | 144u << 1),
337    MFCR_OPCODE   = (31u << OPCODE_SHIFT | 19u << 1),
338    MCRF_OPCODE   = (19u << OPCODE_SHIFT | 0u << 1),
339
340    // condition register logic instructions
341    CRAND_OPCODE  = (19u << OPCODE_SHIFT | 257u << 1),
342    CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
343    CROR_OPCODE   = (19u << OPCODE_SHIFT | 449u << 1),
344    CRXOR_OPCODE  = (19u << OPCODE_SHIFT | 193u << 1),
345    CRNOR_OPCODE  = (19u << OPCODE_SHIFT |  33u << 1),
346    CREQV_OPCODE  = (19u << OPCODE_SHIFT | 289u << 1),
347    CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
348    CRORC_OPCODE  = (19u << OPCODE_SHIFT | 417u << 1),
349
350    BCLR_OPCODE   = (19u << OPCODE_SHIFT | 16u << 1),
351    BXX_OPCODE      = (18u << OPCODE_SHIFT),
352    BCXX_OPCODE     = (16u << OPCODE_SHIFT),
353
354    // CTR-related opcodes
355    BCCTR_OPCODE  = (19u << OPCODE_SHIFT | 528u << 1),
356
357    LWZ_OPCODE   = (32u << OPCODE_SHIFT),
358    LWZX_OPCODE  = (31u << OPCODE_SHIFT |  23u << 1),
359    LWZU_OPCODE  = (33u << OPCODE_SHIFT),
360    LWBRX_OPCODE = (31u << OPCODE_SHIFT |  534 << 1),
361
362    LHA_OPCODE   = (42u << OPCODE_SHIFT),
363    LHAX_OPCODE  = (31u << OPCODE_SHIFT | 343u << 1),
364    LHAU_OPCODE  = (43u << OPCODE_SHIFT),
365
366    LHZ_OPCODE   = (40u << OPCODE_SHIFT),
367    LHZX_OPCODE  = (31u << OPCODE_SHIFT | 279u << 1),
368    LHZU_OPCODE  = (41u << OPCODE_SHIFT),
369    LHBRX_OPCODE = (31u << OPCODE_SHIFT |  790 << 1),
370
371    LBZ_OPCODE   = (34u << OPCODE_SHIFT),
372    LBZX_OPCODE  = (31u << OPCODE_SHIFT |  87u << 1),
373    LBZU_OPCODE  = (35u << OPCODE_SHIFT),
374
375    STW_OPCODE   = (36u << OPCODE_SHIFT),
376    STWX_OPCODE  = (31u << OPCODE_SHIFT | 151u << 1),
377    STWU_OPCODE  = (37u << OPCODE_SHIFT),
378    STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
379
380    STH_OPCODE   = (44u << OPCODE_SHIFT),
381    STHX_OPCODE  = (31u << OPCODE_SHIFT | 407u << 1),
382    STHU_OPCODE  = (45u << OPCODE_SHIFT),
383
384    STB_OPCODE   = (38u << OPCODE_SHIFT),
385    STBX_OPCODE  = (31u << OPCODE_SHIFT | 215u << 1),
386    STBU_OPCODE  = (39u << OPCODE_SHIFT),
387
388    EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
389    EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
390    EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1),               // X-FORM
391
392    // 32 bit opcode encodings
393
394    LWA_OPCODE    = (58u << OPCODE_SHIFT |   2u << XO_30_31_SHIFT), // DS-FORM
395    LWAX_OPCODE   = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
396
397    CNTLZW_OPCODE = (31u << OPCODE_SHIFT |  26u << XO_21_30_SHIFT), // X-FORM
398
399    // 64 bit opcode encodings
400
401    LD_OPCODE     = (58u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
402    LDU_OPCODE    = (58u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
403    LDX_OPCODE    = (31u << OPCODE_SHIFT |  21u << XO_21_30_SHIFT), // X-FORM
404
405    STD_OPCODE    = (62u << OPCODE_SHIFT |   0u << XO_30_31_SHIFT), // DS-FORM
406    STDU_OPCODE   = (62u << OPCODE_SHIFT |   1u << XO_30_31_SHIFT), // DS-FORM
407    STDUX_OPCODE  = (31u << OPCODE_SHIFT | 181u << 1),                  // X-FORM
408    STDX_OPCODE   = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
409
410    RLDICR_OPCODE = (30u << OPCODE_SHIFT |   1u << XO_27_29_SHIFT), // MD-FORM
411    RLDICL_OPCODE = (30u << OPCODE_SHIFT |   0u << XO_27_29_SHIFT), // MD-FORM
412    RLDIC_OPCODE  = (30u << OPCODE_SHIFT |   2u << XO_27_29_SHIFT), // MD-FORM
413    RLDIMI_OPCODE = (30u << OPCODE_SHIFT |   3u << XO_27_29_SHIFT), // MD-FORM
414
415    SRADI_OPCODE  = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
416
417    SLD_OPCODE    = (31u << OPCODE_SHIFT |  27u << 1),              // X-FORM
418    SRD_OPCODE    = (31u << OPCODE_SHIFT | 539u << 1),              // X-FORM
419    SRAD_OPCODE   = (31u << OPCODE_SHIFT | 794u << 1),              // X-FORM
420
421    MULLD_OPCODE  = (31u << OPCODE_SHIFT | 233u << 1),              // XO-FORM
422    MULHD_OPCODE  = (31u << OPCODE_SHIFT |  73u << 1),              // XO-FORM
423    MULHDU_OPCODE = (31u << OPCODE_SHIFT |   9u << 1),              // XO-FORM
424    DIVD_OPCODE   = (31u << OPCODE_SHIFT | 489u << 1),              // XO-FORM
425
426    CNTLZD_OPCODE = (31u << OPCODE_SHIFT |  58u << XO_21_30_SHIFT), // X-FORM
427    NAND_OPCODE   = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
428    NOR_OPCODE    = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
429
430
431    // opcodes only used for floating arithmetic
432    FADD_OPCODE   = (63u << OPCODE_SHIFT |  21u << 1),
433    FADDS_OPCODE  = (59u << OPCODE_SHIFT |  21u << 1),
434    FCMPU_OPCODE  = (63u << OPCODE_SHIFT |  00u << 1),
435    FDIV_OPCODE   = (63u << OPCODE_SHIFT |  18u << 1),
436    FDIVS_OPCODE  = (59u << OPCODE_SHIFT |  18u << 1),
437    FMR_OPCODE    = (63u << OPCODE_SHIFT |  72u << 1),
438    // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
439    // on Power7.  Do not use.
440    // MFFGPR_OPCODE  = (31u << OPCODE_SHIFT | 607u << 1),
441    // MFTGPR_OPCODE  = (31u << OPCODE_SHIFT | 735u << 1),
442    CMPB_OPCODE    = (31u << OPCODE_SHIFT |  508  << 1),
443    POPCNTB_OPCODE = (31u << OPCODE_SHIFT |  122  << 1),
444    POPCNTW_OPCODE = (31u << OPCODE_SHIFT |  378  << 1),
445    POPCNTD_OPCODE = (31u << OPCODE_SHIFT |  506  << 1),
446    FABS_OPCODE    = (63u << OPCODE_SHIFT |  264u << 1),
447    FNABS_OPCODE   = (63u << OPCODE_SHIFT |  136u << 1),
448    FMUL_OPCODE    = (63u << OPCODE_SHIFT |   25u << 1),
449    FMULS_OPCODE   = (59u << OPCODE_SHIFT |   25u << 1),
450    FNEG_OPCODE    = (63u << OPCODE_SHIFT |   40u << 1),
451    FSUB_OPCODE    = (63u << OPCODE_SHIFT |   20u << 1),
452    FSUBS_OPCODE   = (59u << OPCODE_SHIFT |   20u << 1),
453
454    // PPC64-internal FPU conversion opcodes
455    FCFID_OPCODE   = (63u << OPCODE_SHIFT |  846u << 1),
456    FCFIDS_OPCODE  = (59u << OPCODE_SHIFT |  846u << 1),
457    FCTID_OPCODE   = (63u << OPCODE_SHIFT |  814u << 1),
458    FCTIDZ_OPCODE  = (63u << OPCODE_SHIFT |  815u << 1),
459    FCTIW_OPCODE   = (63u << OPCODE_SHIFT |   14u << 1),
460    FCTIWZ_OPCODE  = (63u << OPCODE_SHIFT |   15u << 1),
461    FRSP_OPCODE    = (63u << OPCODE_SHIFT |   12u << 1),
462
463    // WARNING: using fmadd results in a non-compliant vm. Some floating
464    // point tck tests will fail.
465    FMADD_OPCODE   = (59u << OPCODE_SHIFT |   29u << 1),
466    DMADD_OPCODE   = (63u << OPCODE_SHIFT |   29u << 1),
467    FMSUB_OPCODE   = (59u << OPCODE_SHIFT |   28u << 1),
468    DMSUB_OPCODE   = (63u << OPCODE_SHIFT |   28u << 1),
469    FNMADD_OPCODE  = (59u << OPCODE_SHIFT |   31u << 1),
470    DNMADD_OPCODE  = (63u << OPCODE_SHIFT |   31u << 1),
471    FNMSUB_OPCODE  = (59u << OPCODE_SHIFT |   30u << 1),
472    DNMSUB_OPCODE  = (63u << OPCODE_SHIFT |   30u << 1),
473
474    LFD_OPCODE     = (50u << OPCODE_SHIFT |   00u << 1),
475    LFDU_OPCODE    = (51u << OPCODE_SHIFT |   00u << 1),
476    LFDX_OPCODE    = (31u << OPCODE_SHIFT |  599u << 1),
477    LFS_OPCODE     = (48u << OPCODE_SHIFT |   00u << 1),
478    LFSU_OPCODE    = (49u << OPCODE_SHIFT |   00u << 1),
479    LFSX_OPCODE    = (31u << OPCODE_SHIFT |  535u << 1),
480
481    STFD_OPCODE    = (54u << OPCODE_SHIFT |   00u << 1),
482    STFDU_OPCODE   = (55u << OPCODE_SHIFT |   00u << 1),
483    STFDX_OPCODE   = (31u << OPCODE_SHIFT |  727u << 1),
484    STFS_OPCODE    = (52u << OPCODE_SHIFT |   00u << 1),
485    STFSU_OPCODE   = (53u << OPCODE_SHIFT |   00u << 1),
486    STFSX_OPCODE   = (31u << OPCODE_SHIFT |  663u << 1),
487
488    FSQRT_OPCODE   = (63u << OPCODE_SHIFT |   22u << 1),            // A-FORM
489    FSQRTS_OPCODE  = (59u << OPCODE_SHIFT |   22u << 1),            // A-FORM
490
491    // Vector instruction support for >= Power6
492    // Vector Storage Access
493    LVEBX_OPCODE   = (31u << OPCODE_SHIFT |    7u << 1),
494    LVEHX_OPCODE   = (31u << OPCODE_SHIFT |   39u << 1),
495    LVEWX_OPCODE   = (31u << OPCODE_SHIFT |   71u << 1),
496    LVX_OPCODE     = (31u << OPCODE_SHIFT |  103u << 1),
497    LVXL_OPCODE    = (31u << OPCODE_SHIFT |  359u << 1),
498    STVEBX_OPCODE  = (31u << OPCODE_SHIFT |  135u << 1),
499    STVEHX_OPCODE  = (31u << OPCODE_SHIFT |  167u << 1),
500    STVEWX_OPCODE  = (31u << OPCODE_SHIFT |  199u << 1),
501    STVX_OPCODE    = (31u << OPCODE_SHIFT |  231u << 1),
502    STVXL_OPCODE   = (31u << OPCODE_SHIFT |  487u << 1),
503    LVSL_OPCODE    = (31u << OPCODE_SHIFT |    6u << 1),
504    LVSR_OPCODE    = (31u << OPCODE_SHIFT |   38u << 1),
505
506    // Vector Permute and Formatting
507    VPKPX_OPCODE   = (4u  << OPCODE_SHIFT |  782u     ),
508    VPKSHSS_OPCODE = (4u  << OPCODE_SHIFT |  398u     ),
509    VPKSWSS_OPCODE = (4u  << OPCODE_SHIFT |  462u     ),
510    VPKSHUS_OPCODE = (4u  << OPCODE_SHIFT |  270u     ),
511    VPKSWUS_OPCODE = (4u  << OPCODE_SHIFT |  334u     ),
512    VPKUHUM_OPCODE = (4u  << OPCODE_SHIFT |   14u     ),
513    VPKUWUM_OPCODE = (4u  << OPCODE_SHIFT |   78u     ),
514    VPKUHUS_OPCODE = (4u  << OPCODE_SHIFT |  142u     ),
515    VPKUWUS_OPCODE = (4u  << OPCODE_SHIFT |  206u     ),
516    VUPKHPX_OPCODE = (4u  << OPCODE_SHIFT |  846u     ),
517    VUPKHSB_OPCODE = (4u  << OPCODE_SHIFT |  526u     ),
518    VUPKHSH_OPCODE = (4u  << OPCODE_SHIFT |  590u     ),
519    VUPKLPX_OPCODE = (4u  << OPCODE_SHIFT |  974u     ),
520    VUPKLSB_OPCODE = (4u  << OPCODE_SHIFT |  654u     ),
521    VUPKLSH_OPCODE = (4u  << OPCODE_SHIFT |  718u     ),
522
523    VMRGHB_OPCODE  = (4u  << OPCODE_SHIFT |   12u     ),
524    VMRGHW_OPCODE  = (4u  << OPCODE_SHIFT |  140u     ),
525    VMRGHH_OPCODE  = (4u  << OPCODE_SHIFT |   76u     ),
526    VMRGLB_OPCODE  = (4u  << OPCODE_SHIFT |  268u     ),
527    VMRGLW_OPCODE  = (4u  << OPCODE_SHIFT |  396u     ),
528    VMRGLH_OPCODE  = (4u  << OPCODE_SHIFT |  332u     ),
529
530    VSPLT_OPCODE   = (4u  << OPCODE_SHIFT |  524u     ),
531    VSPLTH_OPCODE  = (4u  << OPCODE_SHIFT |  588u     ),
532    VSPLTW_OPCODE  = (4u  << OPCODE_SHIFT |  652u     ),
533    VSPLTISB_OPCODE= (4u  << OPCODE_SHIFT |  780u     ),
534    VSPLTISH_OPCODE= (4u  << OPCODE_SHIFT |  844u     ),
535    VSPLTISW_OPCODE= (4u  << OPCODE_SHIFT |  908u     ),
536
537    VPERM_OPCODE   = (4u  << OPCODE_SHIFT |   43u     ),
538    VSEL_OPCODE    = (4u  << OPCODE_SHIFT |   42u     ),
539
540    VSL_OPCODE     = (4u  << OPCODE_SHIFT |  452u     ),
541    VSLDOI_OPCODE  = (4u  << OPCODE_SHIFT |   44u     ),
542    VSLO_OPCODE    = (4u  << OPCODE_SHIFT | 1036u     ),
543    VSR_OPCODE     = (4u  << OPCODE_SHIFT |  708u     ),
544    VSRO_OPCODE    = (4u  << OPCODE_SHIFT | 1100u     ),
545
546    // Vector Integer
547    VADDCUW_OPCODE = (4u  << OPCODE_SHIFT |  384u     ),
548    VADDSHS_OPCODE = (4u  << OPCODE_SHIFT |  832u     ),
549    VADDSBS_OPCODE = (4u  << OPCODE_SHIFT |  768u     ),
550    VADDSWS_OPCODE = (4u  << OPCODE_SHIFT |  896u     ),
551    VADDUBM_OPCODE = (4u  << OPCODE_SHIFT |    0u     ),
552    VADDUWM_OPCODE = (4u  << OPCODE_SHIFT |  128u     ),
553    VADDUHM_OPCODE = (4u  << OPCODE_SHIFT |   64u     ),
554    VADDUBS_OPCODE = (4u  << OPCODE_SHIFT |  512u     ),
555    VADDUWS_OPCODE = (4u  << OPCODE_SHIFT |  640u     ),
556    VADDUHS_OPCODE = (4u  << OPCODE_SHIFT |  576u     ),
557    VSUBCUW_OPCODE = (4u  << OPCODE_SHIFT | 1408u     ),
558    VSUBSHS_OPCODE = (4u  << OPCODE_SHIFT | 1856u     ),
559    VSUBSBS_OPCODE = (4u  << OPCODE_SHIFT | 1792u     ),
560    VSUBSWS_OPCODE = (4u  << OPCODE_SHIFT | 1920u     ),
561    VSUBUBM_OPCODE = (4u  << OPCODE_SHIFT | 1024u     ),
562    VSUBUWM_OPCODE = (4u  << OPCODE_SHIFT | 1152u     ),
563    VSUBUHM_OPCODE = (4u  << OPCODE_SHIFT | 1088u     ),
564    VSUBUBS_OPCODE = (4u  << OPCODE_SHIFT | 1536u     ),
565    VSUBUWS_OPCODE = (4u  << OPCODE_SHIFT | 1664u     ),
566    VSUBUHS_OPCODE = (4u  << OPCODE_SHIFT | 1600u     ),
567
568    VMULESB_OPCODE = (4u  << OPCODE_SHIFT |  776u     ),
569    VMULEUB_OPCODE = (4u  << OPCODE_SHIFT |  520u     ),
570    VMULESH_OPCODE = (4u  << OPCODE_SHIFT |  840u     ),
571    VMULEUH_OPCODE = (4u  << OPCODE_SHIFT |  584u     ),
572    VMULOSB_OPCODE = (4u  << OPCODE_SHIFT |  264u     ),
573    VMULOUB_OPCODE = (4u  << OPCODE_SHIFT |    8u     ),
574    VMULOSH_OPCODE = (4u  << OPCODE_SHIFT |  328u     ),
575    VMULOUH_OPCODE = (4u  << OPCODE_SHIFT |   72u     ),
576    VMHADDSHS_OPCODE=(4u  << OPCODE_SHIFT |   32u     ),
577    VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT |   33u     ),
578    VMLADDUHM_OPCODE=(4u  << OPCODE_SHIFT |   34u     ),
579    VMSUBUHM_OPCODE= (4u  << OPCODE_SHIFT |   36u     ),
580    VMSUMMBM_OPCODE= (4u  << OPCODE_SHIFT |   37u     ),
581    VMSUMSHM_OPCODE= (4u  << OPCODE_SHIFT |   40u     ),
582    VMSUMSHS_OPCODE= (4u  << OPCODE_SHIFT |   41u     ),
583    VMSUMUHM_OPCODE= (4u  << OPCODE_SHIFT |   38u     ),
584    VMSUMUHS_OPCODE= (4u  << OPCODE_SHIFT |   39u     ),
585
586    VSUMSWS_OPCODE = (4u  << OPCODE_SHIFT | 1928u     ),
587    VSUM2SWS_OPCODE= (4u  << OPCODE_SHIFT | 1672u     ),
588    VSUM4SBS_OPCODE= (4u  << OPCODE_SHIFT | 1800u     ),
589    VSUM4UBS_OPCODE= (4u  << OPCODE_SHIFT | 1544u     ),
590    VSUM4SHS_OPCODE= (4u  << OPCODE_SHIFT | 1608u     ),
591
592    VAVGSB_OPCODE  = (4u  << OPCODE_SHIFT | 1282u     ),
593    VAVGSW_OPCODE  = (4u  << OPCODE_SHIFT | 1410u     ),
594    VAVGSH_OPCODE  = (4u  << OPCODE_SHIFT | 1346u     ),
595    VAVGUB_OPCODE  = (4u  << OPCODE_SHIFT | 1026u     ),
596    VAVGUW_OPCODE  = (4u  << OPCODE_SHIFT | 1154u     ),
597    VAVGUH_OPCODE  = (4u  << OPCODE_SHIFT | 1090u     ),
598
599    VMAXSB_OPCODE  = (4u  << OPCODE_SHIFT |  258u     ),
600    VMAXSW_OPCODE  = (4u  << OPCODE_SHIFT |  386u     ),
601    VMAXSH_OPCODE  = (4u  << OPCODE_SHIFT |  322u     ),
602    VMAXUB_OPCODE  = (4u  << OPCODE_SHIFT |    2u     ),
603    VMAXUW_OPCODE  = (4u  << OPCODE_SHIFT |  130u     ),
604    VMAXUH_OPCODE  = (4u  << OPCODE_SHIFT |   66u     ),
605    VMINSB_OPCODE  = (4u  << OPCODE_SHIFT |  770u     ),
606    VMINSW_OPCODE  = (4u  << OPCODE_SHIFT |  898u     ),
607    VMINSH_OPCODE  = (4u  << OPCODE_SHIFT |  834u     ),
608    VMINUB_OPCODE  = (4u  << OPCODE_SHIFT |  514u     ),
609    VMINUW_OPCODE  = (4u  << OPCODE_SHIFT |  642u     ),
610    VMINUH_OPCODE  = (4u  << OPCODE_SHIFT |  578u     ),
611
612    VCMPEQUB_OPCODE= (4u  << OPCODE_SHIFT |    6u     ),
613    VCMPEQUH_OPCODE= (4u  << OPCODE_SHIFT |   70u     ),
614    VCMPEQUW_OPCODE= (4u  << OPCODE_SHIFT |  134u     ),
615    VCMPGTSH_OPCODE= (4u  << OPCODE_SHIFT |  838u     ),
616    VCMPGTSB_OPCODE= (4u  << OPCODE_SHIFT |  774u     ),
617    VCMPGTSW_OPCODE= (4u  << OPCODE_SHIFT |  902u     ),
618    VCMPGTUB_OPCODE= (4u  << OPCODE_SHIFT |  518u     ),
619    VCMPGTUH_OPCODE= (4u  << OPCODE_SHIFT |  582u     ),
620    VCMPGTUW_OPCODE= (4u  << OPCODE_SHIFT |  646u     ),
621
622    VAND_OPCODE    = (4u  << OPCODE_SHIFT | 1028u     ),
623    VANDC_OPCODE   = (4u  << OPCODE_SHIFT | 1092u     ),
624    VNOR_OPCODE    = (4u  << OPCODE_SHIFT | 1284u     ),
625    VOR_OPCODE     = (4u  << OPCODE_SHIFT | 1156u     ),
626    VXOR_OPCODE    = (4u  << OPCODE_SHIFT | 1220u     ),
627    VRLB_OPCODE    = (4u  << OPCODE_SHIFT |    4u     ),
628    VRLW_OPCODE    = (4u  << OPCODE_SHIFT |  132u     ),
629    VRLH_OPCODE    = (4u  << OPCODE_SHIFT |   68u     ),
630    VSLB_OPCODE    = (4u  << OPCODE_SHIFT |  260u     ),
631    VSKW_OPCODE    = (4u  << OPCODE_SHIFT |  388u     ),
632    VSLH_OPCODE    = (4u  << OPCODE_SHIFT |  324u     ),
633    VSRB_OPCODE    = (4u  << OPCODE_SHIFT |  516u     ),
634    VSRW_OPCODE    = (4u  << OPCODE_SHIFT |  644u     ),
635    VSRH_OPCODE    = (4u  << OPCODE_SHIFT |  580u     ),
636    VSRAB_OPCODE   = (4u  << OPCODE_SHIFT |  772u     ),
637    VSRAW_OPCODE   = (4u  << OPCODE_SHIFT |  900u     ),
638    VSRAH_OPCODE   = (4u  << OPCODE_SHIFT |  836u     ),
639
640    // Vector Floating-Point
641    // not implemented yet
642
643    // Vector Status and Control
644    MTVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1604u     ),
645    MFVSCR_OPCODE  = (4u  << OPCODE_SHIFT | 1540u     ),
646
647    // AES (introduced with Power 8)
648    VCIPHER_OPCODE      = (4u  << OPCODE_SHIFT | 1288u),
649    VCIPHERLAST_OPCODE  = (4u  << OPCODE_SHIFT | 1289u),
650    VNCIPHER_OPCODE     = (4u  << OPCODE_SHIFT | 1352u),
651    VNCIPHERLAST_OPCODE = (4u  << OPCODE_SHIFT | 1353u),
652    VSBOX_OPCODE        = (4u  << OPCODE_SHIFT | 1480u),
653
654    // SHA (introduced with Power 8)
655    VSHASIGMAD_OPCODE   = (4u  << OPCODE_SHIFT | 1730u),
656    VSHASIGMAW_OPCODE   = (4u  << OPCODE_SHIFT | 1666u),
657
658    // Vector Binary Polynomial Multiplication (introduced with Power 8)
659    VPMSUMB_OPCODE      = (4u  << OPCODE_SHIFT | 1032u),
660    VPMSUMD_OPCODE      = (4u  << OPCODE_SHIFT | 1224u),
661    VPMSUMH_OPCODE      = (4u  << OPCODE_SHIFT | 1096u),
662    VPMSUMW_OPCODE      = (4u  << OPCODE_SHIFT | 1160u),
663
664    // Vector Permute and Xor (introduced with Power 8)
665    VPERMXOR_OPCODE     = (4u  << OPCODE_SHIFT |   45u),
666
667    // Transactional Memory instructions (introduced with Power 8)
668    TBEGIN_OPCODE    = (31u << OPCODE_SHIFT |  654u << 1),
669    TEND_OPCODE      = (31u << OPCODE_SHIFT |  686u << 1),
670    TABORT_OPCODE    = (31u << OPCODE_SHIFT |  910u << 1),
671    TABORTWC_OPCODE  = (31u << OPCODE_SHIFT |  782u << 1),
672    TABORTWCI_OPCODE = (31u << OPCODE_SHIFT |  846u << 1),
673    TABORTDC_OPCODE  = (31u << OPCODE_SHIFT |  814u << 1),
674    TABORTDCI_OPCODE = (31u << OPCODE_SHIFT |  878u << 1),
675    TSR_OPCODE       = (31u << OPCODE_SHIFT |  750u << 1),
676    TCHECK_OPCODE    = (31u << OPCODE_SHIFT |  718u << 1),
677
678    // Icache and dcache related instructions
679    DCBA_OPCODE    = (31u << OPCODE_SHIFT |  758u << 1),
680    DCBZ_OPCODE    = (31u << OPCODE_SHIFT | 1014u << 1),
681    DCBST_OPCODE   = (31u << OPCODE_SHIFT |   54u << 1),
682    DCBF_OPCODE    = (31u << OPCODE_SHIFT |   86u << 1),
683
684    DCBT_OPCODE    = (31u << OPCODE_SHIFT |  278u << 1),
685    DCBTST_OPCODE  = (31u << OPCODE_SHIFT |  246u << 1),
686    ICBI_OPCODE    = (31u << OPCODE_SHIFT |  982u << 1),
687
688    // Instruction synchronization
689    ISYNC_OPCODE   = (19u << OPCODE_SHIFT |  150u << 1),
690    // Memory barriers
691    SYNC_OPCODE    = (31u << OPCODE_SHIFT |  598u << 1),
692    EIEIO_OPCODE   = (31u << OPCODE_SHIFT |  854u << 1),
693
694    // Wait instructions for polling.
695    WAIT_OPCODE    = (31u << OPCODE_SHIFT |   62u << 1),
696
697    // Trap instructions
698    TDI_OPCODE     = (2u  << OPCODE_SHIFT),
699    TWI_OPCODE     = (3u  << OPCODE_SHIFT),
700    TD_OPCODE      = (31u << OPCODE_SHIFT |   68u << 1),
701    TW_OPCODE      = (31u << OPCODE_SHIFT |    4u << 1),
702
703    // Atomics.
704    LWARX_OPCODE   = (31u << OPCODE_SHIFT |   20u << 1),
705    LDARX_OPCODE   = (31u << OPCODE_SHIFT |   84u << 1),
706    LQARX_OPCODE   = (31u << OPCODE_SHIFT |  276u << 1),
707    STWCX_OPCODE   = (31u << OPCODE_SHIFT |  150u << 1),
708    STDCX_OPCODE   = (31u << OPCODE_SHIFT |  214u << 1),
709    STQCX_OPCODE   = (31u << OPCODE_SHIFT |  182u << 1)
710
711  };
712
713  // Trap instructions TO bits
714  enum trap_to_bits {
715    // single bits
716    traptoLessThanSigned      = 1 << 4, // 0, left end
717    traptoGreaterThanSigned   = 1 << 3,
718    traptoEqual               = 1 << 2,
719    traptoLessThanUnsigned    = 1 << 1,
720    traptoGreaterThanUnsigned = 1 << 0, // 4, right end
721
722    // compound ones
723    traptoUnconditional       = (traptoLessThanSigned |
724                                 traptoGreaterThanSigned |
725                                 traptoEqual |
726                                 traptoLessThanUnsigned |
727                                 traptoGreaterThanUnsigned)
728  };
729
730  // Branch hints BH field
731  enum branch_hint_bh {
732    // bclr cases:
733    bhintbhBCLRisReturn            = 0,
734    bhintbhBCLRisNotReturnButSame  = 1,
735    bhintbhBCLRisNotPredictable    = 3,
736
737    // bcctr cases:
738    bhintbhBCCTRisNotReturnButSame = 0,
739    bhintbhBCCTRisNotPredictable   = 3
740  };
741
742  // Branch prediction hints AT field
743  enum branch_hint_at {
744    bhintatNoHint     = 0,  // at=00
745    bhintatIsNotTaken = 2,  // at=10
746    bhintatIsTaken    = 3   // at=11
747  };
748
749  // Branch prediction hints
750  enum branch_hint_concept {
751    // Use the same encoding as branch_hint_at to simply code.
752    bhintNoHint       = bhintatNoHint,
753    bhintIsNotTaken   = bhintatIsNotTaken,
754    bhintIsTaken      = bhintatIsTaken
755  };
756
757  // Used in BO field of branch instruction.
758  enum branch_condition {
759    bcondCRbiIs0      =  4, // bo=001at
760    bcondCRbiIs1      = 12, // bo=011at
761    bcondAlways       = 20  // bo=10100
762  };
763
764  // Branch condition with combined prediction hints.
765  enum branch_condition_with_hint {
766    bcondCRbiIs0_bhintNoHint     = bcondCRbiIs0 | bhintatNoHint,
767    bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
768    bcondCRbiIs0_bhintIsTaken    = bcondCRbiIs0 | bhintatIsTaken,
769    bcondCRbiIs1_bhintNoHint     = bcondCRbiIs1 | bhintatNoHint,
770    bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
771    bcondCRbiIs1_bhintIsTaken    = bcondCRbiIs1 | bhintatIsTaken,
772  };
773
774  // Elemental Memory Barriers (>=Power 8)
775  enum Elemental_Membar_mask_bits {
776    StoreStore = 1 << 0,
777    StoreLoad  = 1 << 1,
778    LoadStore  = 1 << 2,
779    LoadLoad   = 1 << 3
780  };
781
782  // Branch prediction hints.
783  inline static int add_bhint_to_boint(const int bhint, const int boint) {
784    switch (boint) {
785      case bcondCRbiIs0:
786      case bcondCRbiIs1:
787        // branch_hint and branch_hint_at have same encodings
788        assert(   (int)bhintNoHint     == (int)bhintatNoHint
789               && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
790               && (int)bhintIsTaken    == (int)bhintatIsTaken,
791               "wrong encodings");
792        assert((bhint & 0x03) == bhint, "wrong encodings");
793        return (boint & ~0x03) | bhint;
794      case bcondAlways:
795        // no branch_hint
796        return boint;
797      default:
798        ShouldNotReachHere();
799        return 0;
800    }
801  }
802
803  // Extract bcond from boint.
804  inline static int inv_boint_bcond(const int boint) {
805    int r_bcond = boint & ~0x03;
806    assert(r_bcond == bcondCRbiIs0 ||
807           r_bcond == bcondCRbiIs1 ||
808           r_bcond == bcondAlways,
809           "bad branch condition");
810    return r_bcond;
811  }
812
813  // Extract bhint from boint.
814  inline static int inv_boint_bhint(const int boint) {
815    int r_bhint = boint & 0x03;
816    assert(r_bhint == bhintatNoHint ||
817           r_bhint == bhintatIsNotTaken ||
818           r_bhint == bhintatIsTaken,
819           "bad branch hint");
820    return r_bhint;
821  }
822
823  // Calculate opposite of given bcond.
824  inline static int opposite_bcond(const int bcond) {
825    switch (bcond) {
826      case bcondCRbiIs0:
827        return bcondCRbiIs1;
828      case bcondCRbiIs1:
829        return bcondCRbiIs0;
830      default:
831        ShouldNotReachHere();
832        return 0;
833    }
834  }
835
836  // Calculate opposite of given bhint.
837  inline static int opposite_bhint(const int bhint) {
838    switch (bhint) {
839      case bhintatNoHint:
840        return bhintatNoHint;
841      case bhintatIsNotTaken:
842        return bhintatIsTaken;
843      case bhintatIsTaken:
844        return bhintatIsNotTaken;
845      default:
846        ShouldNotReachHere();
847        return 0;
848    }
849  }
850
851  // PPC branch instructions
852  enum ppcops {
853    b_op    = 18,
854    bc_op   = 16,
855    bcr_op  = 19
856  };
857
858  enum Condition {
859    negative         = 0,
860    less             = 0,
861    positive         = 1,
862    greater          = 1,
863    zero             = 2,
864    equal            = 2,
865    summary_overflow = 3,
866  };
867
868 public:
869  // Helper functions for groups of instructions
870
871  enum Predict { pt = 1, pn = 0 }; // pt = predict taken
872
873  // Instruction must start at passed address.
874  static int instr_len(unsigned char *instr) { return BytesPerInstWord; }
875
876  // longest instructions
877  static int instr_maxlen() { return BytesPerInstWord; }
878
879  // Test if x is within signed immediate range for nbits.
880  static bool is_simm(int x, unsigned int nbits) {
881    assert(0 < nbits && nbits < 32, "out of bounds");
882    const int   min      = -(((int)1) << nbits-1);
883    const int   maxplus1 =  (((int)1) << nbits-1);
884    return min <= x && x < maxplus1;
885  }
886
887  static bool is_simm(jlong x, unsigned int nbits) {
888    assert(0 < nbits && nbits < 64, "out of bounds");
889    const jlong min      = -(((jlong)1) << nbits-1);
890    const jlong maxplus1 =  (((jlong)1) << nbits-1);
891    return min <= x && x < maxplus1;
892  }
893
894  // Test if x is within unsigned immediate range for nbits.
895  static bool is_uimm(int x, unsigned int nbits) {
896    assert(0 < nbits && nbits < 32, "out of bounds");
897    const unsigned int maxplus1 = (((unsigned int)1) << nbits);
898    return (unsigned int)x < maxplus1;
899  }
900
901  static bool is_uimm(jlong x, unsigned int nbits) {
902    assert(0 < nbits && nbits < 64, "out of bounds");
903    const julong maxplus1 = (((julong)1) << nbits);
904    return (julong)x < maxplus1;
905  }
906
907 protected:
908  // helpers
909
910  // X is supposed to fit in a field "nbits" wide
911  // and be sign-extended. Check the range.
912  static void assert_signed_range(intptr_t x, int nbits) {
913    assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
914           "value out of range");
915  }
916
917  static void assert_signed_word_disp_range(intptr_t x, int nbits) {
918    assert((x & 3) == 0, "not word aligned");
919    assert_signed_range(x, nbits + 2);
920  }
921
922  static void assert_unsigned_const(int x, int nbits) {
923    assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
924  }
925
926  static int fmask(juint hi_bit, juint lo_bit) {
927    assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
928    return (1 << ( hi_bit-lo_bit + 1 )) - 1;
929  }
930
931  // inverse of u_field
932  static int inv_u_field(int x, int hi_bit, int lo_bit) {
933    juint r = juint(x) >> lo_bit;
934    r &= fmask(hi_bit, lo_bit);
935    return int(r);
936  }
937
938  // signed version: extract from field and sign-extend
939  static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
940    x = x << (31-hi_bit);
941    x = x >> (31-hi_bit+lo_bit);
942    return x;
943  }
944
945  static int u_field(int x, int hi_bit, int lo_bit) {
946    assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
947    int r = x << lo_bit;
948    assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
949    return r;
950  }
951
952  // Same as u_field for signed values
953  static int s_field(int x, int hi_bit, int lo_bit) {
954    int nbits = hi_bit - lo_bit + 1;
955    assert(nbits == 32 || (-(1 << nbits-1) <= x && x < (1 << nbits-1)),
956      "value out of range");
957    x &= fmask(hi_bit, lo_bit);
958    int r = x << lo_bit;
959    return r;
960  }
961
962  // inv_op for ppc instructions
963  static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
964
965  // Determine target address from li, bd field of branch instruction.
966  static intptr_t inv_li_field(int x) {
967    intptr_t r = inv_s_field_ppc(x, 25, 2);
968    r = (r << 2);
969    return r;
970  }
971  static intptr_t inv_bd_field(int x, intptr_t pos) {
972    intptr_t r = inv_s_field_ppc(x, 15, 2);
973    r = (r << 2) + pos;
974    return r;
975  }
976
977  #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
978  #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
979  // Extract instruction fields from instruction words.
980 public:
981  static int inv_ra_field(int x)  { return inv_opp_u_field(x, 15, 11); }
982  static int inv_rb_field(int x)  { return inv_opp_u_field(x, 20, 16); }
983  static int inv_rt_field(int x)  { return inv_opp_u_field(x, 10,  6); }
984  static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
985  static int inv_rs_field(int x)  { return inv_opp_u_field(x, 10,  6); }
986  // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
987  // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
988  static int inv_ds_field(int x)  { return inv_opp_s_field(x, 29, 16) << 2; }
989  static int inv_d1_field(int x)  { return inv_opp_s_field(x, 31, 16); }
990  static int inv_si_field(int x)  { return inv_opp_s_field(x, 31, 16); }
991  static int inv_to_field(int x)  { return inv_opp_u_field(x, 10, 6);  }
992  static int inv_lk_field(int x)  { return inv_opp_u_field(x, 31, 31); }
993  static int inv_bo_field(int x)  { return inv_opp_u_field(x, 10,  6); }
994  static int inv_bi_field(int x)  { return inv_opp_u_field(x, 15, 11); }
995
996  #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
997  #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
998
999  // instruction fields
1000  static int aa(       int         x)  { return  opp_u_field(x,             30, 30); }
1001  static int ba(       int         x)  { return  opp_u_field(x,             15, 11); }
1002  static int bb(       int         x)  { return  opp_u_field(x,             20, 16); }
1003  static int bc(       int         x)  { return  opp_u_field(x,             25, 21); }
1004  static int bd(       int         x)  { return  opp_s_field(x,             29, 16); }
1005  static int bf( ConditionRegister cr) { return  bf(cr->encoding()); }
1006  static int bf(       int         x)  { return  opp_u_field(x,              8,  6); }
1007  static int bfa(ConditionRegister cr) { return  bfa(cr->encoding()); }
1008  static int bfa(      int         x)  { return  opp_u_field(x,             13, 11); }
1009  static int bh(       int         x)  { return  opp_u_field(x,             20, 19); }
1010  static int bi(       int         x)  { return  opp_u_field(x,             15, 11); }
1011  static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
1012  static int bo(       int         x)  { return  opp_u_field(x,             10,  6); }
1013  static int bt(       int         x)  { return  opp_u_field(x,             10,  6); }
1014  static int d1(       int         x)  { return  opp_s_field(x,             31, 16); }
1015  static int ds(       int         x)  { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
1016  static int eh(       int         x)  { return  opp_u_field(x,             31, 31); }
1017  static int flm(      int         x)  { return  opp_u_field(x,             14,  7); }
1018  static int fra(    FloatRegister r)  { return  fra(r->encoding());}
1019  static int frb(    FloatRegister r)  { return  frb(r->encoding());}
1020  static int frc(    FloatRegister r)  { return  frc(r->encoding());}
1021  static int frs(    FloatRegister r)  { return  frs(r->encoding());}
1022  static int frt(    FloatRegister r)  { return  frt(r->encoding());}
1023  static int fra(      int         x)  { return  opp_u_field(x,             15, 11); }
1024  static int frb(      int         x)  { return  opp_u_field(x,             20, 16); }
1025  static int frc(      int         x)  { return  opp_u_field(x,             25, 21); }
1026  static int frs(      int         x)  { return  opp_u_field(x,             10,  6); }
1027  static int frt(      int         x)  { return  opp_u_field(x,             10,  6); }
1028  static int fxm(      int         x)  { return  opp_u_field(x,             19, 12); }
1029  static int l10(      int         x)  { return  opp_u_field(x,             10, 10); }
1030  static int l15(      int         x)  { return  opp_u_field(x,             15, 15); }
1031  static int l910(     int         x)  { return  opp_u_field(x,             10,  9); }
1032  static int e1215(    int         x)  { return  opp_u_field(x,             15, 12); }
1033  static int lev(      int         x)  { return  opp_u_field(x,             26, 20); }
1034  static int li(       int         x)  { return  opp_s_field(x,             29,  6); }
1035  static int lk(       int         x)  { return  opp_u_field(x,             31, 31); }
1036  static int mb2125(   int         x)  { return  opp_u_field(x,             25, 21); }
1037  static int me2630(   int         x)  { return  opp_u_field(x,             30, 26); }
1038  static int mb2126(   int         x)  { return  opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
1039  static int me2126(   int         x)  { return  mb2126(x); }
1040  static int nb(       int         x)  { return  opp_u_field(x,             20, 16); }
1041  //static int opcd(   int         x)  { return  opp_u_field(x,              5,  0); } // is contained in our opcodes
1042  static int oe(       int         x)  { return  opp_u_field(x,             21, 21); }
1043  static int ra(       Register    r)  { return  ra(r->encoding()); }
1044  static int ra(       int         x)  { return  opp_u_field(x,             15, 11); }
1045  static int rb(       Register    r)  { return  rb(r->encoding()); }
1046  static int rb(       int         x)  { return  opp_u_field(x,             20, 16); }
1047  static int rc(       int         x)  { return  opp_u_field(x,             31, 31); }
1048  static int rs(       Register    r)  { return  rs(r->encoding()); }
1049  static int rs(       int         x)  { return  opp_u_field(x,             10,  6); }
1050  // we don't want to use R0 in memory accesses, because it has value `0' then
1051  static int ra0mem(   Register    r)  { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
1052  static int ra0mem(   int         x)  { assert(x != 0,  "cannot use register 0 in memory access");  return ra(x); }
1053
1054  // register r is target
1055  static int rt(       Register    r)  { return rs(r); }
1056  static int rt(       int         x)  { return rs(x); }
1057  static int rta(      Register    r)  { return ra(r); }
1058  static int rta0mem(  Register    r)  { rta(r); return ra0mem(r); }
1059
1060  static int sh1620(   int         x)  { return  opp_u_field(x,             20, 16); }
1061  static int sh30(     int         x)  { return  opp_u_field(x,             30, 30); }
1062  static int sh162030( int         x)  { return  sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
1063  static int si(       int         x)  { return  opp_s_field(x,             31, 16); }
1064  static int spr(      int         x)  { return  opp_u_field(x,             20, 11); }
1065  static int sr(       int         x)  { return  opp_u_field(x,             15, 12); }
1066  static int tbr(      int         x)  { return  opp_u_field(x,             20, 11); }
1067  static int th(       int         x)  { return  opp_u_field(x,             10,  7); }
1068  static int thct(     int         x)  { assert((x&8) == 0, "must be valid cache specification");  return th(x); }
1069  static int thds(     int         x)  { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
1070  static int to(       int         x)  { return  opp_u_field(x,             10,  6); }
1071  static int u(        int         x)  { return  opp_u_field(x,             19, 16); }
1072  static int ui(       int         x)  { return  opp_u_field(x,             31, 16); }
1073
1074  // Support vector instructions for >= Power6.
1075  static int vra(      int         x)  { return  opp_u_field(x,             15, 11); }
1076  static int vrb(      int         x)  { return  opp_u_field(x,             20, 16); }
1077  static int vrc(      int         x)  { return  opp_u_field(x,             25, 21); }
1078  static int vrs(      int         x)  { return  opp_u_field(x,             10,  6); }
1079  static int vrt(      int         x)  { return  opp_u_field(x,             10,  6); }
1080
1081  static int vra(   VectorRegister r)  { return  vra(r->encoding());}
1082  static int vrb(   VectorRegister r)  { return  vrb(r->encoding());}
1083  static int vrc(   VectorRegister r)  { return  vrc(r->encoding());}
1084  static int vrs(   VectorRegister r)  { return  vrs(r->encoding());}
1085  static int vrt(   VectorRegister r)  { return  vrt(r->encoding());}
1086
1087  static int vsplt_uim( int        x)  { return  opp_u_field(x,             15, 12); } // for vsplt* instructions
1088  static int vsplti_sim(int        x)  { return  opp_u_field(x,             15, 11); } // for vsplti* instructions
1089  static int vsldoi_shb(int        x)  { return  opp_u_field(x,             25, 22); } // for vsldoi instruction
1090  static int vcmp_rc(   int        x)  { return  opp_u_field(x,             21, 21); } // for vcmp* instructions
1091
1092  //static int xo1(     int        x)  { return  opp_u_field(x,             29, 21); }// is contained in our opcodes
1093  //static int xo2(     int        x)  { return  opp_u_field(x,             30, 21); }// is contained in our opcodes
1094  //static int xo3(     int        x)  { return  opp_u_field(x,             30, 22); }// is contained in our opcodes
1095  //static int xo4(     int        x)  { return  opp_u_field(x,             30, 26); }// is contained in our opcodes
1096  //static int xo5(     int        x)  { return  opp_u_field(x,             29, 27); }// is contained in our opcodes
1097  //static int xo6(     int        x)  { return  opp_u_field(x,             30, 27); }// is contained in our opcodes
1098  //static int xo7(     int        x)  { return  opp_u_field(x,             31, 30); }// is contained in our opcodes
1099
1100 protected:
1101  // Compute relative address for branch.
1102  static intptr_t disp(intptr_t x, intptr_t off) {
1103    int xx = x - off;
1104    xx = xx >> 2;
1105    return xx;
1106  }
1107
1108 public:
1109  // signed immediate, in low bits, nbits long
1110  static int simm(int x, int nbits) {
1111    assert_signed_range(x, nbits);
1112    return x & ((1 << nbits) - 1);
1113  }
1114
1115  // unsigned immediate, in low bits, nbits long
1116  static int uimm(int x, int nbits) {
1117    assert_unsigned_const(x, nbits);
1118    return x & ((1 << nbits) - 1);
1119  }
1120
1121  static void set_imm(int* instr, short s) {
1122    // imm is always in the lower 16 bits of the instruction,
1123    // so this is endian-neutral. Same for the get_imm below.
1124    uint32_t w = *(uint32_t *)instr;
1125    *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1126  }
1127
1128  static int get_imm(address a, int instruction_number) {
1129    return (short)((int *)a)[instruction_number];
1130  }
1131
1132  static inline int hi16_signed(  int x) { return (int)(int16_t)(x >> 16); }
1133  static inline int lo16_unsigned(int x) { return x & 0xffff; }
1134
1135 protected:
1136
1137  // Extract the top 32 bits in a 64 bit word.
1138  static int32_t hi32(int64_t x) {
1139    int32_t r = int32_t((uint64_t)x >> 32);
1140    return r;
1141  }
1142
1143 public:
1144
1145  static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1146    return ((addr + (a - 1)) & ~(a - 1));
1147  }
1148
1149  static inline bool is_aligned(unsigned int addr, unsigned int a) {
1150    return (0 == addr % a);
1151  }
1152
1153  void flush() {
1154    AbstractAssembler::flush();
1155  }
1156
1157  inline void emit_int32(int);  // shadows AbstractAssembler::emit_int32
1158  inline void emit_data(int);
1159  inline void emit_data(int, RelocationHolder const&);
1160  inline void emit_data(int, relocInfo::relocType rtype);
1161
1162  // Emit an address.
1163  inline address emit_addr(const address addr = NULL);
1164
1165#if !defined(ABI_ELFv2)
1166  // Emit a function descriptor with the specified entry point, TOC,
1167  // and ENV. If the entry point is NULL, the descriptor will point
1168  // just past the descriptor.
1169  // Use values from friend functions as defaults.
1170  inline address emit_fd(address entry = NULL,
1171                         address toc = (address) FunctionDescriptor::friend_toc,
1172                         address env = (address) FunctionDescriptor::friend_env);
1173#endif
1174
1175  /////////////////////////////////////////////////////////////////////////////////////
1176  // PPC instructions
1177  /////////////////////////////////////////////////////////////////////////////////////
1178
1179  // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1180  // immediates. The normal instruction encoders enforce that r0 is not
1181  // passed to them. Use either extended mnemonics encoders or the special ra0
1182  // versions.
1183
1184  // Issue an illegal instruction.
1185  inline void illtrap();
1186  static inline bool is_illtrap(int x);
1187
1188  // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1189  inline void addi( Register d, Register a, int si16);
1190  inline void addis(Register d, Register a, int si16);
1191 private:
1192  inline void addi_r0ok( Register d, Register a, int si16);
1193  inline void addis_r0ok(Register d, Register a, int si16);
1194 public:
1195  inline void addic_( Register d, Register a, int si16);
1196  inline void subfic( Register d, Register a, int si16);
1197  inline void add(    Register d, Register a, Register b);
1198  inline void add_(   Register d, Register a, Register b);
1199  inline void subf(   Register d, Register a, Register b);  // d = b - a    "Sub_from", as in ppc spec.
1200  inline void sub(    Register d, Register a, Register b);  // d = a - b    Swap operands of subf for readability.
1201  inline void subf_(  Register d, Register a, Register b);
1202  inline void addc(   Register d, Register a, Register b);
1203  inline void addc_(  Register d, Register a, Register b);
1204  inline void subfc(  Register d, Register a, Register b);
1205  inline void subfc_( Register d, Register a, Register b);
1206  inline void adde(   Register d, Register a, Register b);
1207  inline void adde_(  Register d, Register a, Register b);
1208  inline void subfe(  Register d, Register a, Register b);
1209  inline void subfe_( Register d, Register a, Register b);
1210  inline void addme(  Register d, Register a);
1211  inline void addme_( Register d, Register a);
1212  inline void subfme( Register d, Register a);
1213  inline void subfme_(Register d, Register a);
1214  inline void addze(  Register d, Register a);
1215  inline void addze_( Register d, Register a);
1216  inline void subfze( Register d, Register a);
1217  inline void subfze_(Register d, Register a);
1218  inline void neg(    Register d, Register a);
1219  inline void neg_(   Register d, Register a);
1220  inline void mulli(  Register d, Register a, int si16);
1221  inline void mulld(  Register d, Register a, Register b);
1222  inline void mulld_( Register d, Register a, Register b);
1223  inline void mullw(  Register d, Register a, Register b);
1224  inline void mullw_( Register d, Register a, Register b);
1225  inline void mulhw(  Register d, Register a, Register b);
1226  inline void mulhw_( Register d, Register a, Register b);
1227  inline void mulhd(  Register d, Register a, Register b);
1228  inline void mulhd_( Register d, Register a, Register b);
1229  inline void mulhdu( Register d, Register a, Register b);
1230  inline void mulhdu_(Register d, Register a, Register b);
1231  inline void divd(   Register d, Register a, Register b);
1232  inline void divd_(  Register d, Register a, Register b);
1233  inline void divw(   Register d, Register a, Register b);
1234  inline void divw_(  Register d, Register a, Register b);
1235
1236  // Fixed-Point Arithmetic Instructions with Overflow detection
1237  inline void addo(    Register d, Register a, Register b);
1238  inline void addo_(   Register d, Register a, Register b);
1239  inline void subfo(   Register d, Register a, Register b);
1240  inline void subfo_(  Register d, Register a, Register b);
1241  inline void addco(   Register d, Register a, Register b);
1242  inline void addco_(  Register d, Register a, Register b);
1243  inline void subfco(  Register d, Register a, Register b);
1244  inline void subfco_( Register d, Register a, Register b);
1245  inline void addeo(   Register d, Register a, Register b);
1246  inline void addeo_(  Register d, Register a, Register b);
1247  inline void subfeo(  Register d, Register a, Register b);
1248  inline void subfeo_( Register d, Register a, Register b);
1249  inline void addmeo(  Register d, Register a);
1250  inline void addmeo_( Register d, Register a);
1251  inline void subfmeo( Register d, Register a);
1252  inline void subfmeo_(Register d, Register a);
1253  inline void addzeo(  Register d, Register a);
1254  inline void addzeo_( Register d, Register a);
1255  inline void subfzeo( Register d, Register a);
1256  inline void subfzeo_(Register d, Register a);
1257  inline void nego(    Register d, Register a);
1258  inline void nego_(   Register d, Register a);
1259  inline void mulldo(  Register d, Register a, Register b);
1260  inline void mulldo_( Register d, Register a, Register b);
1261  inline void mullwo(  Register d, Register a, Register b);
1262  inline void mullwo_( Register d, Register a, Register b);
1263  inline void divdo(   Register d, Register a, Register b);
1264  inline void divdo_(  Register d, Register a, Register b);
1265  inline void divwo(   Register d, Register a, Register b);
1266  inline void divwo_(  Register d, Register a, Register b);
1267
1268  // extended mnemonics
1269  inline void li(   Register d, int si16);
1270  inline void lis(  Register d, int si16);
1271  inline void addir(Register d, int si16, Register a);
1272
1273  static bool is_addi(int x) {
1274     return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1275  }
1276  static bool is_addis(int x) {
1277     return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1278  }
1279  static bool is_bxx(int x) {
1280     return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1281  }
1282  static bool is_b(int x) {
1283     return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1284  }
1285  static bool is_bl(int x) {
1286     return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1287  }
1288  static bool is_bcxx(int x) {
1289     return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1290  }
1291  static bool is_bxx_or_bcxx(int x) {
1292     return is_bxx(x) || is_bcxx(x);
1293  }
1294  static bool is_bctrl(int x) {
1295     return x == 0x4e800421;
1296  }
1297  static bool is_bctr(int x) {
1298     return x == 0x4e800420;
1299  }
1300  static bool is_bclr(int x) {
1301     return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1302  }
1303  static bool is_li(int x) {
1304     return is_addi(x) && inv_ra_field(x)==0;
1305  }
1306  static bool is_lis(int x) {
1307     return is_addis(x) && inv_ra_field(x)==0;
1308  }
1309  static bool is_mtctr(int x) {
1310     return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1311  }
1312  static bool is_ld(int x) {
1313     return LD_OPCODE == (x & LD_OPCODE_MASK);
1314  }
1315  static bool is_std(int x) {
1316     return STD_OPCODE == (x & STD_OPCODE_MASK);
1317  }
1318  static bool is_stdu(int x) {
1319     return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1320  }
1321  static bool is_stdx(int x) {
1322     return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1323  }
1324  static bool is_stdux(int x) {
1325     return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1326  }
1327  static bool is_stwx(int x) {
1328     return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1329  }
1330  static bool is_stwux(int x) {
1331     return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1332  }
1333  static bool is_stw(int x) {
1334     return STW_OPCODE == (x & STW_OPCODE_MASK);
1335  }
1336  static bool is_stwu(int x) {
1337     return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1338  }
1339  static bool is_ori(int x) {
1340     return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1341  };
1342  static bool is_oris(int x) {
1343     return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1344  };
1345  static bool is_rldicr(int x) {
1346     return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1347  };
1348  static bool is_nop(int x) {
1349    return x == 0x60000000;
1350  }
1351  // endgroup opcode for Power6
1352  static bool is_endgroup(int x) {
1353    return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1354  }
1355
1356
1357 private:
1358  // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1359  inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1360  inline void cmp(  ConditionRegister bf, int l, Register a, Register b);
1361  inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1362  inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1363
1364 public:
1365  // extended mnemonics of Compare Instructions
1366  inline void cmpwi( ConditionRegister crx, Register a, int si16);
1367  inline void cmpdi( ConditionRegister crx, Register a, int si16);
1368  inline void cmpw(  ConditionRegister crx, Register a, Register b);
1369  inline void cmpd(  ConditionRegister crx, Register a, Register b);
1370  inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1371  inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1372  inline void cmplw( ConditionRegister crx, Register a, Register b);
1373  inline void cmpld( ConditionRegister crx, Register a, Register b);
1374
1375  inline void isel(   Register d, Register a, Register b, int bc);
1376  // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
1377  inline void isel(   Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
1378  // Set d = 0 if (cr.cc) equals 1, otherwise b.
1379  inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1380
1381  // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1382         void andi(   Register a, Register s, long ui16);   // optimized version
1383  inline void andi_(  Register a, Register s, int ui16);
1384  inline void andis_( Register a, Register s, int ui16);
1385  inline void ori(    Register a, Register s, int ui16);
1386  inline void oris(   Register a, Register s, int ui16);
1387  inline void xori(   Register a, Register s, int ui16);
1388  inline void xoris(  Register a, Register s, int ui16);
1389  inline void andr(   Register a, Register s, Register b);  // suffixed by 'r' as 'and' is C++ keyword
1390  inline void and_(   Register a, Register s, Register b);
1391  // Turn or0(rx,rx,rx) into a nop and avoid that we accidently emit a
1392  // SMT-priority change instruction (see SMT instructions below).
1393  inline void or_unchecked(Register a, Register s, Register b);
1394  inline void orr(    Register a, Register s, Register b);  // suffixed by 'r' as 'or' is C++ keyword
1395  inline void or_(    Register a, Register s, Register b);
1396  inline void xorr(   Register a, Register s, Register b);  // suffixed by 'r' as 'xor' is C++ keyword
1397  inline void xor_(   Register a, Register s, Register b);
1398  inline void nand(   Register a, Register s, Register b);
1399  inline void nand_(  Register a, Register s, Register b);
1400  inline void nor(    Register a, Register s, Register b);
1401  inline void nor_(   Register a, Register s, Register b);
1402  inline void andc(   Register a, Register s, Register b);
1403  inline void andc_(  Register a, Register s, Register b);
1404  inline void orc(    Register a, Register s, Register b);
1405  inline void orc_(   Register a, Register s, Register b);
1406  inline void extsb(  Register a, Register s);
1407  inline void extsb_( Register a, Register s);
1408  inline void extsh(  Register a, Register s);
1409  inline void extsh_( Register a, Register s);
1410  inline void extsw(  Register a, Register s);
1411  inline void extsw_( Register a, Register s);
1412
1413  // extended mnemonics
1414  inline void nop();
1415  // NOP for FP and BR units (different versions to allow them to be in one group)
1416  inline void fpnop0();
1417  inline void fpnop1();
1418  inline void brnop0();
1419  inline void brnop1();
1420  inline void brnop2();
1421
1422  inline void mr(      Register d, Register s);
1423  inline void ori_opt( Register d, int ui16);
1424  inline void oris_opt(Register d, int ui16);
1425
1426  // endgroup opcode for Power6
1427  inline void endgroup();
1428
1429  // count instructions
1430  inline void cntlzw(  Register a, Register s);
1431  inline void cntlzw_( Register a, Register s);
1432  inline void cntlzd(  Register a, Register s);
1433  inline void cntlzd_( Register a, Register s);
1434
1435  // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1436  inline void sld(     Register a, Register s, Register b);
1437  inline void sld_(    Register a, Register s, Register b);
1438  inline void slw(     Register a, Register s, Register b);
1439  inline void slw_(    Register a, Register s, Register b);
1440  inline void srd(     Register a, Register s, Register b);
1441  inline void srd_(    Register a, Register s, Register b);
1442  inline void srw(     Register a, Register s, Register b);
1443  inline void srw_(    Register a, Register s, Register b);
1444  inline void srad(    Register a, Register s, Register b);
1445  inline void srad_(   Register a, Register s, Register b);
1446  inline void sraw(    Register a, Register s, Register b);
1447  inline void sraw_(   Register a, Register s, Register b);
1448  inline void sradi(   Register a, Register s, int sh6);
1449  inline void sradi_(  Register a, Register s, int sh6);
1450  inline void srawi(   Register a, Register s, int sh5);
1451  inline void srawi_(  Register a, Register s, int sh5);
1452
1453  // extended mnemonics for Shift Instructions
1454  inline void sldi(    Register a, Register s, int sh6);
1455  inline void sldi_(   Register a, Register s, int sh6);
1456  inline void slwi(    Register a, Register s, int sh5);
1457  inline void slwi_(   Register a, Register s, int sh5);
1458  inline void srdi(    Register a, Register s, int sh6);
1459  inline void srdi_(   Register a, Register s, int sh6);
1460  inline void srwi(    Register a, Register s, int sh5);
1461  inline void srwi_(   Register a, Register s, int sh5);
1462
1463  inline void clrrdi(  Register a, Register s, int ui6);
1464  inline void clrrdi_( Register a, Register s, int ui6);
1465  inline void clrldi(  Register a, Register s, int ui6);
1466  inline void clrldi_( Register a, Register s, int ui6);
1467  inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1468  inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1469  inline void extrdi(  Register a, Register s, int n, int b);
1470  // testbit with condition register
1471  inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1472
1473  // rotate instructions
1474  inline void rotldi(  Register a, Register s, int n);
1475  inline void rotrdi(  Register a, Register s, int n);
1476  inline void rotlwi(  Register a, Register s, int n);
1477  inline void rotrwi(  Register a, Register s, int n);
1478
1479  // Rotate Instructions
1480  inline void rldic(   Register a, Register s, int sh6, int mb6);
1481  inline void rldic_(  Register a, Register s, int sh6, int mb6);
1482  inline void rldicr(  Register a, Register s, int sh6, int mb6);
1483  inline void rldicr_( Register a, Register s, int sh6, int mb6);
1484  inline void rldicl(  Register a, Register s, int sh6, int mb6);
1485  inline void rldicl_( Register a, Register s, int sh6, int mb6);
1486  inline void rlwinm(  Register a, Register s, int sh5, int mb5, int me5);
1487  inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1488  inline void rldimi(  Register a, Register s, int sh6, int mb6);
1489  inline void rldimi_( Register a, Register s, int sh6, int mb6);
1490  inline void rlwimi(  Register a, Register s, int sh5, int mb5, int me5);
1491  inline void insrdi(  Register a, Register s, int n,   int b);
1492  inline void insrwi(  Register a, Register s, int n,   int b);
1493
1494  // PPC 1, section 3.3.2 Fixed-Point Load Instructions
1495  // 4 bytes
1496  inline void lwzx( Register d, Register s1, Register s2);
1497  inline void lwz(  Register d, int si16,    Register s1);
1498  inline void lwzu( Register d, int si16,    Register s1);
1499
1500  // 4 bytes
1501  inline void lwax( Register d, Register s1, Register s2);
1502  inline void lwa(  Register d, int si16,    Register s1);
1503
1504  // 4 bytes reversed
1505  inline void lwbrx( Register d, Register s1, Register s2);
1506
1507  // 2 bytes
1508  inline void lhzx( Register d, Register s1, Register s2);
1509  inline void lhz(  Register d, int si16,    Register s1);
1510  inline void lhzu( Register d, int si16,    Register s1);
1511
1512  // 2 bytes reversed
1513  inline void lhbrx( Register d, Register s1, Register s2);
1514
1515  // 2 bytes
1516  inline void lhax( Register d, Register s1, Register s2);
1517  inline void lha(  Register d, int si16,    Register s1);
1518  inline void lhau( Register d, int si16,    Register s1);
1519
1520  // 1 byte
1521  inline void lbzx( Register d, Register s1, Register s2);
1522  inline void lbz(  Register d, int si16,    Register s1);
1523  inline void lbzu( Register d, int si16,    Register s1);
1524
1525  // 8 bytes
1526  inline void ldx(  Register d, Register s1, Register s2);
1527  inline void ld(   Register d, int si16,    Register s1);
1528  inline void ldu(  Register d, int si16,    Register s1);
1529
1530  //  PPC 1, section 3.3.3 Fixed-Point Store Instructions
1531  inline void stwx( Register d, Register s1, Register s2);
1532  inline void stw(  Register d, int si16,    Register s1);
1533  inline void stwu( Register d, int si16,    Register s1);
1534
1535  inline void sthx( Register d, Register s1, Register s2);
1536  inline void sth(  Register d, int si16,    Register s1);
1537  inline void sthu( Register d, int si16,    Register s1);
1538
1539  inline void stbx( Register d, Register s1, Register s2);
1540  inline void stb(  Register d, int si16,    Register s1);
1541  inline void stbu( Register d, int si16,    Register s1);
1542
1543  inline void stdx( Register d, Register s1, Register s2);
1544  inline void std(  Register d, int si16,    Register s1);
1545  inline void stdu( Register d, int si16,    Register s1);
1546  inline void stdux(Register s, Register a,  Register b);
1547
1548  // PPC 1, section 3.3.13 Move To/From System Register Instructions
1549  inline void mtlr( Register s1);
1550  inline void mflr( Register d);
1551  inline void mtctr(Register s1);
1552  inline void mfctr(Register d);
1553  inline void mtcrf(int fxm, Register s);
1554  inline void mfcr( Register d);
1555  inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1556  inline void mtcr( Register s);
1557
1558  // Special purpose registers
1559  // Exception Register
1560  inline void mtxer(Register s1);
1561  inline void mfxer(Register d);
1562  // Vector Register Save Register
1563  inline void mtvrsave(Register s1);
1564  inline void mfvrsave(Register d);
1565  // Timebase
1566  inline void mftb(Register d);
1567  // Introduced with Power 8:
1568  // Data Stream Control Register
1569  inline void mtdscr(Register s1);
1570  inline void mfdscr(Register d );
1571  // Transactional Memory Registers
1572  inline void mftfhar(Register d);
1573  inline void mftfiar(Register d);
1574  inline void mftexasr(Register d);
1575  inline void mftexasru(Register d);
1576
1577  // TEXASR bit description
1578  enum transaction_failure_reason {
1579    // Upper half (TEXASRU):
1580    tm_failure_persistent =  7, // The failure is likely to recur on each execution.
1581    tm_disallowed         =  8, // The instruction is not permitted.
1582    tm_nesting_of         =  9, // The maximum transaction level was exceeded.
1583    tm_footprint_of       = 10, // The tracking limit for transactional storage accesses was exceeded.
1584    tm_self_induced_cf    = 11, // A self-induced conflict occurred in Suspended state.
1585    tm_non_trans_cf       = 12, // A conflict occurred with a non-transactional access by another processor.
1586    tm_trans_cf           = 13, // A conflict occurred with another transaction.
1587    tm_translation_cf     = 14, // A conflict occurred with a TLB invalidation.
1588    tm_inst_fetch_cf      = 16, // An instruction fetch was performed from a block that was previously written transactionally.
1589    tm_tabort             = 31, // Termination was caused by the execution of an abort instruction.
1590    // Lower half:
1591    tm_suspended          = 32, // Failure was recorded in Suspended state.
1592    tm_failure_summary    = 36, // Failure has been detected and recorded.
1593    tm_tfiar_exact        = 37, // Value in the TFIAR is exact.
1594    tm_rot                = 38, // Rollback-only transaction.
1595  };
1596
1597  // PPC 1, section 2.4.1 Branch Instructions
1598  inline void b(  address a, relocInfo::relocType rt = relocInfo::none);
1599  inline void b(  Label& L);
1600  inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1601  inline void bl( Label& L);
1602  inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1603  inline void bc( int boint, int biint, Label& L);
1604  inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1605  inline void bcl(int boint, int biint, Label& L);
1606
1607  inline void bclr(  int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1608  inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1609  inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1610                         relocInfo::relocType rt = relocInfo::none);
1611  inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1612                         relocInfo::relocType rt = relocInfo::none);
1613
1614  // helper function for b, bcxx
1615  inline bool is_within_range_of_b(address a, address pc);
1616  inline bool is_within_range_of_bcxx(address a, address pc);
1617
1618  // get the destination of a bxx branch (b, bl, ba, bla)
1619  static inline address  bxx_destination(address baddr);
1620  static inline address  bxx_destination(int instr, address pc);
1621  static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1622
1623  // extended mnemonics for branch instructions
1624  inline void blt(ConditionRegister crx, Label& L);
1625  inline void bgt(ConditionRegister crx, Label& L);
1626  inline void beq(ConditionRegister crx, Label& L);
1627  inline void bso(ConditionRegister crx, Label& L);
1628  inline void bge(ConditionRegister crx, Label& L);
1629  inline void ble(ConditionRegister crx, Label& L);
1630  inline void bne(ConditionRegister crx, Label& L);
1631  inline void bns(ConditionRegister crx, Label& L);
1632
1633  // Branch instructions with static prediction hints.
1634  inline void blt_predict_taken(    ConditionRegister crx, Label& L);
1635  inline void bgt_predict_taken(    ConditionRegister crx, Label& L);
1636  inline void beq_predict_taken(    ConditionRegister crx, Label& L);
1637  inline void bso_predict_taken(    ConditionRegister crx, Label& L);
1638  inline void bge_predict_taken(    ConditionRegister crx, Label& L);
1639  inline void ble_predict_taken(    ConditionRegister crx, Label& L);
1640  inline void bne_predict_taken(    ConditionRegister crx, Label& L);
1641  inline void bns_predict_taken(    ConditionRegister crx, Label& L);
1642  inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1643  inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1644  inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1645  inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1646  inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1647  inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1648  inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1649  inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1650
1651  // for use in conjunction with testbitdi:
1652  inline void btrue( ConditionRegister crx, Label& L);
1653  inline void bfalse(ConditionRegister crx, Label& L);
1654
1655  inline void bltl(ConditionRegister crx, Label& L);
1656  inline void bgtl(ConditionRegister crx, Label& L);
1657  inline void beql(ConditionRegister crx, Label& L);
1658  inline void bsol(ConditionRegister crx, Label& L);
1659  inline void bgel(ConditionRegister crx, Label& L);
1660  inline void blel(ConditionRegister crx, Label& L);
1661  inline void bnel(ConditionRegister crx, Label& L);
1662  inline void bnsl(ConditionRegister crx, Label& L);
1663
1664  // extended mnemonics for Branch Instructions via LR
1665  // We use `blr' for returns.
1666  inline void blr(relocInfo::relocType rt = relocInfo::none);
1667
1668  // extended mnemonics for Branch Instructions with CTR
1669  // bdnz means `decrement CTR and jump to L if CTR is not zero'
1670  inline void bdnz(Label& L);
1671  // Decrement and branch if result is zero.
1672  inline void bdz(Label& L);
1673  // we use `bctr[l]' for jumps/calls in function descriptor glue
1674  // code, e.g. calls to runtime functions
1675  inline void bctr( relocInfo::relocType rt = relocInfo::none);
1676  inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1677  // conditional jumps/branches via CTR
1678  inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1679  inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1680  inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1681  inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1682
1683  // condition register logic instructions
1684  // NOTE: There's a preferred form: d and s2 should point into the same condition register.
1685  inline void crand( int d, int s1, int s2);
1686  inline void crnand(int d, int s1, int s2);
1687  inline void cror(  int d, int s1, int s2);
1688  inline void crxor( int d, int s1, int s2);
1689  inline void crnor( int d, int s1, int s2);
1690  inline void creqv( int d, int s1, int s2);
1691  inline void crandc(int d, int s1, int s2);
1692  inline void crorc( int d, int s1, int s2);
1693
1694  // More convenient version.
1695  int condition_register_bit(ConditionRegister cr, Condition c) {
1696    return 4 * (int)(intptr_t)cr + c;
1697  }
1698  void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1699  void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1700  void cror(  ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1701  void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1702  void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1703  void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1704  void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1705  void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1706
1707  // icache and dcache related instructions
1708  inline void icbi(  Register s1, Register s2);
1709  //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1710  inline void dcbz(  Register s1, Register s2);
1711  inline void dcbst( Register s1, Register s2);
1712  inline void dcbf(  Register s1, Register s2);
1713
1714  enum ct_cache_specification {
1715    ct_primary_cache   = 0,
1716    ct_secondary_cache = 2
1717  };
1718  // dcache read hint
1719  inline void dcbt(    Register s1, Register s2);
1720  inline void dcbtct(  Register s1, Register s2, int ct);
1721  inline void dcbtds(  Register s1, Register s2, int ds);
1722  // dcache write hint
1723  inline void dcbtst(  Register s1, Register s2);
1724  inline void dcbtstct(Register s1, Register s2, int ct);
1725
1726  //  machine barrier instructions:
1727  //
1728  //  - sync    two-way memory barrier, aka fence
1729  //  - lwsync  orders  Store|Store,
1730  //                     Load|Store,
1731  //                     Load|Load,
1732  //            but not Store|Load
1733  //  - eieio   orders memory accesses for device memory (only)
1734  //  - isync   invalidates speculatively executed instructions
1735  //            From the Power ISA 2.06 documentation:
1736  //             "[...] an isync instruction prevents the execution of
1737  //            instructions following the isync until instructions
1738  //            preceding the isync have completed, [...]"
1739  //            From IBM's AIX assembler reference:
1740  //             "The isync [...] instructions causes the processor to
1741  //            refetch any instructions that might have been fetched
1742  //            prior to the isync instruction. The instruction isync
1743  //            causes the processor to wait for all previous instructions
1744  //            to complete. Then any instructions already fetched are
1745  //            discarded and instruction processing continues in the
1746  //            environment established by the previous instructions."
1747  //
1748  //  semantic barrier instructions:
1749  //  (as defined in orderAccess.hpp)
1750  //
1751  //  - release  orders Store|Store,       (maps to lwsync)
1752  //                     Load|Store
1753  //  - acquire  orders  Load|Store,       (maps to lwsync)
1754  //                     Load|Load
1755  //  - fence    orders Store|Store,       (maps to sync)
1756  //                     Load|Store,
1757  //                     Load|Load,
1758  //                    Store|Load
1759  //
1760 private:
1761  inline void sync(int l);
1762 public:
1763  inline void sync();
1764  inline void lwsync();
1765  inline void ptesync();
1766  inline void eieio();
1767  inline void isync();
1768  inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
1769
1770  // Wait instructions for polling. Attention: May result in SIGILL.
1771  inline void wait();
1772  inline void waitrsv(); // >=Power7
1773
1774  // atomics
1775  inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1776  inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1777  inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
1778  inline bool lxarx_hint_exclusive_access();
1779  inline void lwarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1780  inline void ldarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1781  inline void lqarx(  Register d, Register a, Register b, bool hint_exclusive_access = false);
1782  inline void stwcx_( Register s, Register a, Register b);
1783  inline void stdcx_( Register s, Register a, Register b);
1784  inline void stqcx_( Register s, Register a, Register b);
1785
1786  // Instructions for adjusting thread priority for simultaneous
1787  // multithreading (SMT) on Power5.
1788 private:
1789  inline void smt_prio_very_low();
1790  inline void smt_prio_medium_high();
1791  inline void smt_prio_high();
1792
1793 public:
1794  inline void smt_prio_low();
1795  inline void smt_prio_medium_low();
1796  inline void smt_prio_medium();
1797  // >= Power7
1798  inline void smt_yield();
1799  inline void smt_mdoio();
1800  inline void smt_mdoom();
1801  // >= Power8
1802  inline void smt_miso();
1803
1804  // trap instructions
1805  inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
1806  // NOT FOR DIRECT USE!!
1807 protected:
1808  inline void tdi_unchecked(int tobits, Register a, int si16);
1809  inline void twi_unchecked(int tobits, Register a, int si16);
1810  inline void tdi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
1811  inline void twi(          int tobits, Register a, int si16);   // asserts UseSIGTRAP
1812  inline void td(           int tobits, Register a, Register b); // asserts UseSIGTRAP
1813  inline void tw(           int tobits, Register a, Register b); // asserts UseSIGTRAP
1814
1815  static bool is_tdi(int x, int tobits, int ra, int si16) {
1816     return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
1817         && (tobits == inv_to_field(x))
1818         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1819         && (si16 == inv_si_field(x));
1820  }
1821
1822  static bool is_twi(int x, int tobits, int ra, int si16) {
1823     return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1824         && (tobits == inv_to_field(x))
1825         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1826         && (si16 == inv_si_field(x));
1827  }
1828
1829  static bool is_twi(int x, int tobits, int ra) {
1830     return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
1831         && (tobits == inv_to_field(x))
1832         && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
1833  }
1834
1835  static bool is_td(int x, int tobits, int ra, int rb) {
1836     return (TD_OPCODE == (x & TD_OPCODE_MASK))
1837         && (tobits == inv_to_field(x))
1838         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1839         && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1840  }
1841
1842  static bool is_tw(int x, int tobits, int ra, int rb) {
1843     return (TW_OPCODE == (x & TW_OPCODE_MASK))
1844         && (tobits == inv_to_field(x))
1845         && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
1846         && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
1847  }
1848
1849 public:
1850  // PPC floating point instructions
1851  // PPC 1, section 4.6.2 Floating-Point Load Instructions
1852  inline void lfs(  FloatRegister d, int si16,   Register a);
1853  inline void lfsu( FloatRegister d, int si16,   Register a);
1854  inline void lfsx( FloatRegister d, Register a, Register b);
1855  inline void lfd(  FloatRegister d, int si16,   Register a);
1856  inline void lfdu( FloatRegister d, int si16,   Register a);
1857  inline void lfdx( FloatRegister d, Register a, Register b);
1858
1859  // PPC 1, section 4.6.3 Floating-Point Store Instructions
1860  inline void stfs(  FloatRegister s, int si16,   Register a);
1861  inline void stfsu( FloatRegister s, int si16,   Register a);
1862  inline void stfsx( FloatRegister s, Register a, Register b);
1863  inline void stfd(  FloatRegister s, int si16,   Register a);
1864  inline void stfdu( FloatRegister s, int si16,   Register a);
1865  inline void stfdx( FloatRegister s, Register a, Register b);
1866
1867  // PPC 1, section 4.6.4 Floating-Point Move Instructions
1868  inline void fmr(  FloatRegister d, FloatRegister b);
1869  inline void fmr_( FloatRegister d, FloatRegister b);
1870
1871  //  inline void mffgpr( FloatRegister d, Register b);
1872  //  inline void mftgpr( Register d, FloatRegister b);
1873  inline void cmpb(   Register a, Register s, Register b);
1874  inline void popcntb(Register a, Register s);
1875  inline void popcntw(Register a, Register s);
1876  inline void popcntd(Register a, Register s);
1877
1878  inline void fneg(  FloatRegister d, FloatRegister b);
1879  inline void fneg_( FloatRegister d, FloatRegister b);
1880  inline void fabs(  FloatRegister d, FloatRegister b);
1881  inline void fabs_( FloatRegister d, FloatRegister b);
1882  inline void fnabs( FloatRegister d, FloatRegister b);
1883  inline void fnabs_(FloatRegister d, FloatRegister b);
1884
1885  // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
1886  inline void fadd(  FloatRegister d, FloatRegister a, FloatRegister b);
1887  inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
1888  inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
1889  inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
1890  inline void fsub(  FloatRegister d, FloatRegister a, FloatRegister b);
1891  inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
1892  inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
1893  inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
1894  inline void fmul(  FloatRegister d, FloatRegister a, FloatRegister c);
1895  inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
1896  inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
1897  inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
1898  inline void fdiv(  FloatRegister d, FloatRegister a, FloatRegister b);
1899  inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
1900  inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
1901  inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
1902
1903  // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
1904  inline void frsp(  FloatRegister d, FloatRegister b);
1905  inline void fctid( FloatRegister d, FloatRegister b);
1906  inline void fctidz(FloatRegister d, FloatRegister b);
1907  inline void fctiw( FloatRegister d, FloatRegister b);
1908  inline void fctiwz(FloatRegister d, FloatRegister b);
1909  inline void fcfid( FloatRegister d, FloatRegister b);
1910  inline void fcfids(FloatRegister d, FloatRegister b);
1911
1912  // PPC 1, section 4.6.7 Floating-Point Compare Instructions
1913  inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
1914
1915  inline void fsqrt( FloatRegister d, FloatRegister b);
1916  inline void fsqrts(FloatRegister d, FloatRegister b);
1917
1918  // Vector instructions for >= Power6.
1919  inline void lvebx(    VectorRegister d, Register s1, Register s2);
1920  inline void lvehx(    VectorRegister d, Register s1, Register s2);
1921  inline void lvewx(    VectorRegister d, Register s1, Register s2);
1922  inline void lvx(      VectorRegister d, Register s1, Register s2);
1923  inline void lvxl(     VectorRegister d, Register s1, Register s2);
1924  inline void stvebx(   VectorRegister d, Register s1, Register s2);
1925  inline void stvehx(   VectorRegister d, Register s1, Register s2);
1926  inline void stvewx(   VectorRegister d, Register s1, Register s2);
1927  inline void stvx(     VectorRegister d, Register s1, Register s2);
1928  inline void stvxl(    VectorRegister d, Register s1, Register s2);
1929  inline void lvsl(     VectorRegister d, Register s1, Register s2);
1930  inline void lvsr(     VectorRegister d, Register s1, Register s2);
1931  inline void vpkpx(    VectorRegister d, VectorRegister a, VectorRegister b);
1932  inline void vpkshss(  VectorRegister d, VectorRegister a, VectorRegister b);
1933  inline void vpkswss(  VectorRegister d, VectorRegister a, VectorRegister b);
1934  inline void vpkshus(  VectorRegister d, VectorRegister a, VectorRegister b);
1935  inline void vpkswus(  VectorRegister d, VectorRegister a, VectorRegister b);
1936  inline void vpkuhum(  VectorRegister d, VectorRegister a, VectorRegister b);
1937  inline void vpkuwum(  VectorRegister d, VectorRegister a, VectorRegister b);
1938  inline void vpkuhus(  VectorRegister d, VectorRegister a, VectorRegister b);
1939  inline void vpkuwus(  VectorRegister d, VectorRegister a, VectorRegister b);
1940  inline void vupkhpx(  VectorRegister d, VectorRegister b);
1941  inline void vupkhsb(  VectorRegister d, VectorRegister b);
1942  inline void vupkhsh(  VectorRegister d, VectorRegister b);
1943  inline void vupklpx(  VectorRegister d, VectorRegister b);
1944  inline void vupklsb(  VectorRegister d, VectorRegister b);
1945  inline void vupklsh(  VectorRegister d, VectorRegister b);
1946  inline void vmrghb(   VectorRegister d, VectorRegister a, VectorRegister b);
1947  inline void vmrghw(   VectorRegister d, VectorRegister a, VectorRegister b);
1948  inline void vmrghh(   VectorRegister d, VectorRegister a, VectorRegister b);
1949  inline void vmrglb(   VectorRegister d, VectorRegister a, VectorRegister b);
1950  inline void vmrglw(   VectorRegister d, VectorRegister a, VectorRegister b);
1951  inline void vmrglh(   VectorRegister d, VectorRegister a, VectorRegister b);
1952  inline void vsplt(    VectorRegister d, int ui4,          VectorRegister b);
1953  inline void vsplth(   VectorRegister d, int ui3,          VectorRegister b);
1954  inline void vspltw(   VectorRegister d, int ui2,          VectorRegister b);
1955  inline void vspltisb( VectorRegister d, int si5);
1956  inline void vspltish( VectorRegister d, int si5);
1957  inline void vspltisw( VectorRegister d, int si5);
1958  inline void vperm(    VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1959  inline void vsel(     VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1960  inline void vsl(      VectorRegister d, VectorRegister a, VectorRegister b);
1961  inline void vsldoi(   VectorRegister d, VectorRegister a, VectorRegister b, int si4);
1962  inline void vslo(     VectorRegister d, VectorRegister a, VectorRegister b);
1963  inline void vsr(      VectorRegister d, VectorRegister a, VectorRegister b);
1964  inline void vsro(     VectorRegister d, VectorRegister a, VectorRegister b);
1965  inline void vaddcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
1966  inline void vaddshs(  VectorRegister d, VectorRegister a, VectorRegister b);
1967  inline void vaddsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
1968  inline void vaddsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1969  inline void vaddubm(  VectorRegister d, VectorRegister a, VectorRegister b);
1970  inline void vadduwm(  VectorRegister d, VectorRegister a, VectorRegister b);
1971  inline void vadduhm(  VectorRegister d, VectorRegister a, VectorRegister b);
1972  inline void vaddubs(  VectorRegister d, VectorRegister a, VectorRegister b);
1973  inline void vadduws(  VectorRegister d, VectorRegister a, VectorRegister b);
1974  inline void vadduhs(  VectorRegister d, VectorRegister a, VectorRegister b);
1975  inline void vsubcuw(  VectorRegister d, VectorRegister a, VectorRegister b);
1976  inline void vsubshs(  VectorRegister d, VectorRegister a, VectorRegister b);
1977  inline void vsubsbs(  VectorRegister d, VectorRegister a, VectorRegister b);
1978  inline void vsubsws(  VectorRegister d, VectorRegister a, VectorRegister b);
1979  inline void vsububm(  VectorRegister d, VectorRegister a, VectorRegister b);
1980  inline void vsubuwm(  VectorRegister d, VectorRegister a, VectorRegister b);
1981  inline void vsubuhm(  VectorRegister d, VectorRegister a, VectorRegister b);
1982  inline void vsububs(  VectorRegister d, VectorRegister a, VectorRegister b);
1983  inline void vsubuws(  VectorRegister d, VectorRegister a, VectorRegister b);
1984  inline void vsubuhs(  VectorRegister d, VectorRegister a, VectorRegister b);
1985  inline void vmulesb(  VectorRegister d, VectorRegister a, VectorRegister b);
1986  inline void vmuleub(  VectorRegister d, VectorRegister a, VectorRegister b);
1987  inline void vmulesh(  VectorRegister d, VectorRegister a, VectorRegister b);
1988  inline void vmuleuh(  VectorRegister d, VectorRegister a, VectorRegister b);
1989  inline void vmulosb(  VectorRegister d, VectorRegister a, VectorRegister b);
1990  inline void vmuloub(  VectorRegister d, VectorRegister a, VectorRegister b);
1991  inline void vmulosh(  VectorRegister d, VectorRegister a, VectorRegister b);
1992  inline void vmulouh(  VectorRegister d, VectorRegister a, VectorRegister b);
1993  inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1994  inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
1995  inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1996  inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1997  inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1998  inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
1999  inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2000  inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2001  inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2002  inline void vsumsws(  VectorRegister d, VectorRegister a, VectorRegister b);
2003  inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
2004  inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
2005  inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
2006  inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
2007  inline void vavgsb(   VectorRegister d, VectorRegister a, VectorRegister b);
2008  inline void vavgsw(   VectorRegister d, VectorRegister a, VectorRegister b);
2009  inline void vavgsh(   VectorRegister d, VectorRegister a, VectorRegister b);
2010  inline void vavgub(   VectorRegister d, VectorRegister a, VectorRegister b);
2011  inline void vavguw(   VectorRegister d, VectorRegister a, VectorRegister b);
2012  inline void vavguh(   VectorRegister d, VectorRegister a, VectorRegister b);
2013  inline void vmaxsb(   VectorRegister d, VectorRegister a, VectorRegister b);
2014  inline void vmaxsw(   VectorRegister d, VectorRegister a, VectorRegister b);
2015  inline void vmaxsh(   VectorRegister d, VectorRegister a, VectorRegister b);
2016  inline void vmaxub(   VectorRegister d, VectorRegister a, VectorRegister b);
2017  inline void vmaxuw(   VectorRegister d, VectorRegister a, VectorRegister b);
2018  inline void vmaxuh(   VectorRegister d, VectorRegister a, VectorRegister b);
2019  inline void vminsb(   VectorRegister d, VectorRegister a, VectorRegister b);
2020  inline void vminsw(   VectorRegister d, VectorRegister a, VectorRegister b);
2021  inline void vminsh(   VectorRegister d, VectorRegister a, VectorRegister b);
2022  inline void vminub(   VectorRegister d, VectorRegister a, VectorRegister b);
2023  inline void vminuw(   VectorRegister d, VectorRegister a, VectorRegister b);
2024  inline void vminuh(   VectorRegister d, VectorRegister a, VectorRegister b);
2025  inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
2026  inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
2027  inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
2028  inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
2029  inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
2030  inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
2031  inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
2032  inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
2033  inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
2034  inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
2035  inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
2036  inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
2037  inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
2038  inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
2039  inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
2040  inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
2041  inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
2042  inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
2043  inline void vand(     VectorRegister d, VectorRegister a, VectorRegister b);
2044  inline void vandc(    VectorRegister d, VectorRegister a, VectorRegister b);
2045  inline void vnor(     VectorRegister d, VectorRegister a, VectorRegister b);
2046  inline void vor(      VectorRegister d, VectorRegister a, VectorRegister b);
2047  inline void vxor(     VectorRegister d, VectorRegister a, VectorRegister b);
2048  inline void vrlb(     VectorRegister d, VectorRegister a, VectorRegister b);
2049  inline void vrlw(     VectorRegister d, VectorRegister a, VectorRegister b);
2050  inline void vrlh(     VectorRegister d, VectorRegister a, VectorRegister b);
2051  inline void vslb(     VectorRegister d, VectorRegister a, VectorRegister b);
2052  inline void vskw(     VectorRegister d, VectorRegister a, VectorRegister b);
2053  inline void vslh(     VectorRegister d, VectorRegister a, VectorRegister b);
2054  inline void vsrb(     VectorRegister d, VectorRegister a, VectorRegister b);
2055  inline void vsrw(     VectorRegister d, VectorRegister a, VectorRegister b);
2056  inline void vsrh(     VectorRegister d, VectorRegister a, VectorRegister b);
2057  inline void vsrab(    VectorRegister d, VectorRegister a, VectorRegister b);
2058  inline void vsraw(    VectorRegister d, VectorRegister a, VectorRegister b);
2059  inline void vsrah(    VectorRegister d, VectorRegister a, VectorRegister b);
2060  // Vector Floating-Point not implemented yet
2061  inline void mtvscr(   VectorRegister b);
2062  inline void mfvscr(   VectorRegister d);
2063
2064  // AES (introduced with Power 8)
2065  inline void vcipher(     VectorRegister d, VectorRegister a, VectorRegister b);
2066  inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
2067  inline void vncipher(    VectorRegister d, VectorRegister a, VectorRegister b);
2068  inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
2069  inline void vsbox(       VectorRegister d, VectorRegister a);
2070
2071  // SHA (introduced with Power 8)
2072  // Not yet implemented.
2073
2074  // Vector Binary Polynomial Multiplication (introduced with Power 8)
2075  inline void vpmsumb(  VectorRegister d, VectorRegister a, VectorRegister b);
2076  inline void vpmsumd(  VectorRegister d, VectorRegister a, VectorRegister b);
2077  inline void vpmsumh(  VectorRegister d, VectorRegister a, VectorRegister b);
2078  inline void vpmsumw(  VectorRegister d, VectorRegister a, VectorRegister b);
2079
2080  // Vector Permute and Xor (introduced with Power 8)
2081  inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2082
2083  // Transactional Memory instructions (introduced with Power 8)
2084  inline void tbegin_();    // R=0
2085  inline void tbeginrot_(); // R=1 Rollback-Only Transaction
2086  inline void tend_();    // A=0
2087  inline void tendall_(); // A=1
2088  inline void tabort_();
2089  inline void tabort_(Register a);
2090  inline void tabortwc_(int t, Register a, Register b);
2091  inline void tabortwci_(int t, Register a, int si);
2092  inline void tabortdc_(int t, Register a, Register b);
2093  inline void tabortdci_(int t, Register a, int si);
2094  inline void tsuspend_(); // tsr with L=0
2095  inline void tresume_();  // tsr with L=1
2096  inline void tcheck(int f);
2097
2098  static bool is_tbegin(int x) {
2099    return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
2100  }
2101
2102  // The following encoders use r0 as second operand. These instructions
2103  // read r0 as '0'.
2104  inline void lwzx( Register d, Register s2);
2105  inline void lwz(  Register d, int si16);
2106  inline void lwax( Register d, Register s2);
2107  inline void lwa(  Register d, int si16);
2108  inline void lwbrx(Register d, Register s2);
2109  inline void lhzx( Register d, Register s2);
2110  inline void lhz(  Register d, int si16);
2111  inline void lhax( Register d, Register s2);
2112  inline void lha(  Register d, int si16);
2113  inline void lhbrx(Register d, Register s2);
2114  inline void lbzx( Register d, Register s2);
2115  inline void lbz(  Register d, int si16);
2116  inline void ldx(  Register d, Register s2);
2117  inline void ld(   Register d, int si16);
2118  inline void stwx( Register d, Register s2);
2119  inline void stw(  Register d, int si16);
2120  inline void sthx( Register d, Register s2);
2121  inline void sth(  Register d, int si16);
2122  inline void stbx( Register d, Register s2);
2123  inline void stb(  Register d, int si16);
2124  inline void stdx( Register d, Register s2);
2125  inline void std(  Register d, int si16);
2126
2127  // PPC 2, section 3.2.1 Instruction Cache Instructions
2128  inline void icbi(    Register s2);
2129  // PPC 2, section 3.2.2 Data Cache Instructions
2130  //inlinevoid dcba(   Register s2); // Instruction for embedded processor only.
2131  inline void dcbz(    Register s2);
2132  inline void dcbst(   Register s2);
2133  inline void dcbf(    Register s2);
2134  // dcache read hint
2135  inline void dcbt(    Register s2);
2136  inline void dcbtct(  Register s2, int ct);
2137  inline void dcbtds(  Register s2, int ds);
2138  // dcache write hint
2139  inline void dcbtst(  Register s2);
2140  inline void dcbtstct(Register s2, int ct);
2141
2142  // Atomics: use ra0mem to disallow R0 as base.
2143  inline void lwarx_unchecked(Register d, Register b, int eh1);
2144  inline void ldarx_unchecked(Register d, Register b, int eh1);
2145  inline void lqarx_unchecked(Register d, Register b, int eh1);
2146  inline void lwarx( Register d, Register b, bool hint_exclusive_access);
2147  inline void ldarx( Register d, Register b, bool hint_exclusive_access);
2148  inline void lqarx( Register d, Register b, bool hint_exclusive_access);
2149  inline void stwcx_(Register s, Register b);
2150  inline void stdcx_(Register s, Register b);
2151  inline void stqcx_(Register s, Register b);
2152  inline void lfs(   FloatRegister d, int si16);
2153  inline void lfsx(  FloatRegister d, Register b);
2154  inline void lfd(   FloatRegister d, int si16);
2155  inline void lfdx(  FloatRegister d, Register b);
2156  inline void stfs(  FloatRegister s, int si16);
2157  inline void stfsx( FloatRegister s, Register b);
2158  inline void stfd(  FloatRegister s, int si16);
2159  inline void stfdx( FloatRegister s, Register b);
2160  inline void lvebx( VectorRegister d, Register s2);
2161  inline void lvehx( VectorRegister d, Register s2);
2162  inline void lvewx( VectorRegister d, Register s2);
2163  inline void lvx(   VectorRegister d, Register s2);
2164  inline void lvxl(  VectorRegister d, Register s2);
2165  inline void stvebx(VectorRegister d, Register s2);
2166  inline void stvehx(VectorRegister d, Register s2);
2167  inline void stvewx(VectorRegister d, Register s2);
2168  inline void stvx(  VectorRegister d, Register s2);
2169  inline void stvxl( VectorRegister d, Register s2);
2170  inline void lvsl(  VectorRegister d, Register s2);
2171  inline void lvsr(  VectorRegister d, Register s2);
2172
2173  // RegisterOrConstant versions.
2174  // These emitters choose between the versions using two registers and
2175  // those with register and immediate, depending on the content of roc.
2176  // If the constant is not encodable as immediate, instructions to
2177  // load the constant are emitted beforehand. Store instructions need a
2178  // tmp reg if the constant is not encodable as immediate.
2179  // Size unpredictable.
2180  void ld(  Register d, RegisterOrConstant roc, Register s1 = noreg);
2181  void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
2182  void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2183  void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
2184  void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2185  void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2186  void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2187  void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2188  void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2189  void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2190  void add( Register d, RegisterOrConstant roc, Register s1);
2191  void subf(Register d, RegisterOrConstant roc, Register s1);
2192  void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
2193
2194
2195  // Emit several instructions to load a 64 bit constant. This issues a fixed
2196  // instruction pattern so that the constant can be patched later on.
2197  enum {
2198    load_const_size = 5 * BytesPerInstWord
2199  };
2200         void load_const(Register d, long a,            Register tmp = noreg);
2201  inline void load_const(Register d, void* a,           Register tmp = noreg);
2202  inline void load_const(Register d, Label& L,          Register tmp = noreg);
2203  inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
2204  inline void load_const32(Register d, int i); // load signed int (patchable)
2205
2206  // Load a 64 bit constant, optimized, not identifyable.
2207  // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
2208  // 16 bit immediate offset. This is useful if the offset can be encoded in
2209  // a succeeding instruction.
2210         int load_const_optimized(Register d, long a,  Register tmp = noreg, bool return_simm16_rest = false);
2211  inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
2212    return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
2213  }
2214
2215  // If return_simm16_rest, the return value needs to get added afterwards.
2216         int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
2217  inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2218    return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2219  }
2220
2221  // If return_simm16_rest, the return value needs to get added afterwards.
2222  inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
2223    return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
2224  }
2225  inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2226    return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2227  }
2228
2229  // Creation
2230  Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2231#ifdef CHECK_DELAY
2232    delay_state = no_delay;
2233#endif
2234  }
2235
2236  // Testing
2237#ifndef PRODUCT
2238  void test_asm();
2239#endif
2240};
2241
2242
2243#endif // CPU_PPC_VM_ASSEMBLER_PPC_HPP
2244