interp_masm_arm.cpp revision 12993:a8503d22944f
1/*
2 * Copyright (c) 2008, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "gc/shared/barrierSet.inline.hpp"
27#include "gc/shared/cardTableModRefBS.inline.hpp"
28#include "gc/shared/collectedHeap.hpp"
29#include "interp_masm_arm.hpp"
30#include "interpreter/interpreter.hpp"
31#include "interpreter/interpreterRuntime.hpp"
32#include "logging/log.hpp"
33#include "oops/arrayOop.hpp"
34#include "oops/markOop.hpp"
35#include "oops/method.hpp"
36#include "oops/methodData.hpp"
37#include "prims/jvmtiExport.hpp"
38#include "prims/jvmtiThreadState.hpp"
39#include "runtime/basicLock.hpp"
40#include "runtime/biasedLocking.hpp"
41#include "runtime/sharedRuntime.hpp"
42
43#if INCLUDE_ALL_GCS
44#include "gc/g1/g1CollectedHeap.inline.hpp"
45#include "gc/g1/g1SATBCardTableModRefBS.hpp"
46#include "gc/g1/heapRegion.hpp"
47#endif // INCLUDE_ALL_GCS
48
49//--------------------------------------------------------------------
50// Implementation of InterpreterMacroAssembler
51
52
53
54
55InterpreterMacroAssembler::InterpreterMacroAssembler(CodeBuffer* code) : MacroAssembler(code) {
56}
57
58void InterpreterMacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
59#if defined(ASSERT) && !defined(AARCH64)
60  // Ensure that last_sp is not filled.
61  { Label L;
62    ldr(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
63    cbz(Rtemp, L);
64    stop("InterpreterMacroAssembler::call_VM_helper: last_sp != NULL");
65    bind(L);
66  }
67#endif // ASSERT && !AARCH64
68
69  // Rbcp must be saved/restored since it may change due to GC.
70  save_bcp();
71
72#ifdef AARCH64
73  check_no_cached_stack_top(Rtemp);
74  save_stack_top();
75  check_extended_sp(Rtemp);
76  cut_sp_before_call();
77#endif // AARCH64
78
79  // super call
80  MacroAssembler::call_VM_helper(oop_result, entry_point, number_of_arguments, check_exceptions);
81
82#ifdef AARCH64
83  // Restore SP to extended SP
84  restore_sp_after_call(Rtemp);
85  check_stack_top();
86  clear_cached_stack_top();
87#endif // AARCH64
88
89  // Restore interpreter specific registers.
90  restore_bcp();
91  restore_method();
92}
93
94void InterpreterMacroAssembler::jump_to_entry(address entry) {
95  assert(entry, "Entry must have been generated by now");
96  b(entry);
97}
98
99void InterpreterMacroAssembler::check_and_handle_popframe() {
100  if (can_pop_frame()) {
101    Label L;
102    const Register popframe_cond = R2_tmp;
103
104    // Initiate popframe handling only if it is not already being processed.  If the flag
105    // has the popframe_processing bit set, it means that this code is called *during* popframe
106    // handling - we don't want to reenter.
107
108    ldr_s32(popframe_cond, Address(Rthread, JavaThread::popframe_condition_offset()));
109    tbz(popframe_cond, exact_log2(JavaThread::popframe_pending_bit), L);
110    tbnz(popframe_cond, exact_log2(JavaThread::popframe_processing_bit), L);
111
112    // Call Interpreter::remove_activation_preserving_args_entry() to get the
113    // address of the same-named entrypoint in the generated interpreter code.
114    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
115
116    // Call indirectly to avoid generation ordering problem.
117    jump(R0);
118
119    bind(L);
120  }
121}
122
123
124// Blows R2, Rtemp. Sets TOS cached value.
125void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
126  const Register thread_state = R2_tmp;
127
128  ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
129
130  const Address tos_addr(thread_state, JvmtiThreadState::earlyret_tos_offset());
131  const Address oop_addr(thread_state, JvmtiThreadState::earlyret_oop_offset());
132  const Address val_addr(thread_state, JvmtiThreadState::earlyret_value_offset());
133#ifndef AARCH64
134  const Address val_addr_hi(thread_state, JvmtiThreadState::earlyret_value_offset()
135                             + in_ByteSize(wordSize));
136#endif // !AARCH64
137
138  Register zero = zero_register(Rtemp);
139
140  switch (state) {
141    case atos: ldr(R0_tos, oop_addr);
142               str(zero, oop_addr);
143               interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
144               break;
145
146#ifdef AARCH64
147    case ltos: ldr(R0_tos, val_addr);              break;
148#else
149    case ltos: ldr(R1_tos_hi, val_addr_hi);        // fall through
150#endif // AARCH64
151    case btos:                                     // fall through
152    case ztos:                                     // fall through
153    case ctos:                                     // fall through
154    case stos:                                     // fall through
155    case itos: ldr_s32(R0_tos, val_addr);          break;
156#ifdef __SOFTFP__
157    case dtos: ldr(R1_tos_hi, val_addr_hi);        // fall through
158    case ftos: ldr(R0_tos, val_addr);              break;
159#else
160    case ftos: ldr_float (S0_tos, val_addr);       break;
161    case dtos: ldr_double(D0_tos, val_addr);       break;
162#endif // __SOFTFP__
163    case vtos: /* nothing to do */                 break;
164    default  : ShouldNotReachHere();
165  }
166  // Clean up tos value in the thread object
167  str(zero, val_addr);
168#ifndef AARCH64
169  str(zero, val_addr_hi);
170#endif // !AARCH64
171
172  mov(Rtemp, (int) ilgl);
173  str_32(Rtemp, tos_addr);
174}
175
176
177// Blows R2, Rtemp.
178void InterpreterMacroAssembler::check_and_handle_earlyret() {
179  if (can_force_early_return()) {
180    Label L;
181    const Register thread_state = R2_tmp;
182
183    ldr(thread_state, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
184    cbz(thread_state, L); // if (thread->jvmti_thread_state() == NULL) exit;
185
186    // Initiate earlyret handling only if it is not already being processed.
187    // If the flag has the earlyret_processing bit set, it means that this code
188    // is called *during* earlyret handling - we don't want to reenter.
189
190    ldr_s32(Rtemp, Address(thread_state, JvmtiThreadState::earlyret_state_offset()));
191    cmp(Rtemp, JvmtiThreadState::earlyret_pending);
192    b(L, ne);
193
194    // Call Interpreter::remove_activation_early_entry() to get the address of the
195    // same-named entrypoint in the generated interpreter code.
196
197    ldr_s32(R0, Address(thread_state, JvmtiThreadState::earlyret_tos_offset()));
198    call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), R0);
199
200    jump(R0);
201
202    bind(L);
203  }
204}
205
206
207// Sets reg. Blows Rtemp.
208void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
209  assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
210  assert(reg != Rtemp, "should be different registers");
211
212  ldrb(Rtemp, Address(Rbcp, bcp_offset));
213  ldrb(reg, Address(Rbcp, bcp_offset+1));
214  orr(reg, reg, AsmOperand(Rtemp, lsl, BitsPerByte));
215}
216
217void InterpreterMacroAssembler::get_index_at_bcp(Register index, int bcp_offset, Register tmp_reg, size_t index_size) {
218  assert_different_registers(index, tmp_reg);
219  if (index_size == sizeof(u2)) {
220    // load bytes of index separately to avoid unaligned access
221    ldrb(index, Address(Rbcp, bcp_offset+1));
222    ldrb(tmp_reg, Address(Rbcp, bcp_offset));
223    orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
224  } else if (index_size == sizeof(u4)) {
225    // TODO-AARCH64: consider using unaligned access here
226    ldrb(index, Address(Rbcp, bcp_offset+3));
227    ldrb(tmp_reg, Address(Rbcp, bcp_offset+2));
228    orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
229    ldrb(tmp_reg, Address(Rbcp, bcp_offset+1));
230    orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
231    ldrb(tmp_reg, Address(Rbcp, bcp_offset));
232    orr(index, tmp_reg, AsmOperand(index, lsl, BitsPerByte));
233    // Check if the secondary index definition is still ~x, otherwise
234    // we have to change the following assembler code to calculate the
235    // plain index.
236    assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
237    mvn_32(index, index);  // convert to plain index
238  } else if (index_size == sizeof(u1)) {
239    ldrb(index, Address(Rbcp, bcp_offset));
240  } else {
241    ShouldNotReachHere();
242  }
243}
244
245// Sets cache, index.
246void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size) {
247  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
248  assert_different_registers(cache, index);
249
250  get_index_at_bcp(index, bcp_offset, cache, index_size);
251
252  // load constant pool cache pointer
253  ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
254
255  // convert from field index to ConstantPoolCacheEntry index
256  assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
257  // TODO-AARCH64 merge this shift with shift "add(..., Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord))" after this method is called
258  logical_shift_left(index, index, 2);
259}
260
261// Sets cache, index, bytecode.
262void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size) {
263  get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
264  // caution index and bytecode can be the same
265  add(bytecode, cache, AsmOperand(index, lsl, LogBytesPerWord));
266#ifdef AARCH64
267  add(bytecode, bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
268  ldarb(bytecode, bytecode);
269#else
270  ldrb(bytecode, Address(bytecode, (1 + byte_no) + in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())));
271  TemplateTable::volatile_barrier(MacroAssembler::LoadLoad, noreg, true);
272#endif // AARCH64
273}
274
275// Sets cache. Blows reg_tmp.
276void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register reg_tmp, int bcp_offset, size_t index_size) {
277  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
278  assert_different_registers(cache, reg_tmp);
279
280  get_index_at_bcp(reg_tmp, bcp_offset, cache, index_size);
281
282  // load constant pool cache pointer
283  ldr(cache, Address(FP, frame::interpreter_frame_cache_offset * wordSize));
284
285  // skip past the header
286  add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
287  // convert from field index to ConstantPoolCacheEntry index
288  // and from word offset to byte offset
289  assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
290  add(cache, cache, AsmOperand(reg_tmp, lsl, 2 + LogBytesPerWord));
291}
292
293// Load object from cpool->resolved_references(index)
294void InterpreterMacroAssembler::load_resolved_reference_at_index(
295                                           Register result, Register index) {
296  assert_different_registers(result, index);
297  get_constant_pool(result);
298
299  Register cache = result;
300  // load pointer for resolved_references[] objArray
301  ldr(cache, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
302  // JNIHandles::resolve(result)
303  ldr(cache, Address(cache, 0));
304  // Add in the index
305  // convert from field index to resolved_references() index and from
306  // word index to byte offset. Since this is a java object, it can be compressed
307  add(cache, cache, AsmOperand(index, lsl, LogBytesPerHeapOop));
308  load_heap_oop(result, Address(cache, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
309}
310
311// Generate a subtype check: branch to not_subtype if sub_klass is
312// not a subtype of super_klass.
313// Profiling code for the subtype check failure (profile_typecheck_failed)
314// should be explicitly generated by the caller in the not_subtype case.
315// Blows Rtemp, tmp1, tmp2.
316void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
317                                                  Register Rsuper_klass,
318                                                  Label &not_subtype,
319                                                  Register tmp1,
320                                                  Register tmp2) {
321
322  assert_different_registers(Rsub_klass, Rsuper_klass, tmp1, tmp2, Rtemp);
323  Label ok_is_subtype, loop, update_cache;
324
325  const Register super_check_offset = tmp1;
326  const Register cached_super = tmp2;
327
328  // Profile the not-null value's klass.
329  profile_typecheck(tmp1, Rsub_klass);
330
331  // Load the super-klass's check offset into
332  ldr_u32(super_check_offset, Address(Rsuper_klass, Klass::super_check_offset_offset()));
333
334  // Check for self
335  cmp(Rsub_klass, Rsuper_klass);
336
337  // Load from the sub-klass's super-class display list, or a 1-word cache of
338  // the secondary superclass list, or a failing value with a sentinel offset
339  // if the super-klass is an interface or exceptionally deep in the Java
340  // hierarchy and we have to scan the secondary superclass list the hard way.
341  // See if we get an immediate positive hit
342  ldr(cached_super, Address(Rsub_klass, super_check_offset));
343
344  cond_cmp(Rsuper_klass, cached_super, ne);
345  b(ok_is_subtype, eq);
346
347  // Check for immediate negative hit
348  cmp(super_check_offset, in_bytes(Klass::secondary_super_cache_offset()));
349  b(not_subtype, ne);
350
351  // Now do a linear scan of the secondary super-klass chain.
352  const Register supers_arr = tmp1;
353  const Register supers_cnt = tmp2;
354  const Register cur_super  = Rtemp;
355
356  // Load objArrayOop of secondary supers.
357  ldr(supers_arr, Address(Rsub_klass, Klass::secondary_supers_offset()));
358
359  ldr_u32(supers_cnt, Address(supers_arr, Array<Klass*>::length_offset_in_bytes())); // Load the array length
360#ifdef AARCH64
361  cbz(supers_cnt, not_subtype);
362  add(supers_arr, supers_arr, Array<Klass*>::base_offset_in_bytes());
363#else
364  cmp(supers_cnt, 0);
365
366  // Skip to the start of array elements and prefetch the first super-klass.
367  ldr(cur_super, Address(supers_arr, Array<Klass*>::base_offset_in_bytes(), pre_indexed), ne);
368  b(not_subtype, eq);
369#endif // AARCH64
370
371  bind(loop);
372
373#ifdef AARCH64
374  ldr(cur_super, Address(supers_arr, wordSize, post_indexed));
375#endif // AARCH64
376
377  cmp(cur_super, Rsuper_klass);
378  b(update_cache, eq);
379
380  subs(supers_cnt, supers_cnt, 1);
381
382#ifndef AARCH64
383  ldr(cur_super, Address(supers_arr, wordSize, pre_indexed), ne);
384#endif // !AARCH64
385
386  b(loop, ne);
387
388  b(not_subtype);
389
390  bind(update_cache);
391  // Must be equal but missed in cache.  Update cache.
392  str(Rsuper_klass, Address(Rsub_klass, Klass::secondary_super_cache_offset()));
393
394  bind(ok_is_subtype);
395}
396
397
398// The 1st part of the store check.
399// Sets card_table_base register.
400void InterpreterMacroAssembler::store_check_part1(Register card_table_base) {
401  // Check barrier set type (should be card table) and element size
402  BarrierSet* bs = Universe::heap()->barrier_set();
403  assert(bs->kind() == BarrierSet::CardTableForRS ||
404         bs->kind() == BarrierSet::CardTableExtension,
405         "Wrong barrier set kind");
406
407  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
408  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "Adjust store check code");
409
410  // Load card table base address.
411
412  /* Performance note.
413
414     There is an alternative way of loading card table base address
415     from thread descriptor, which may look more efficient:
416
417     ldr(card_table_base, Address(Rthread, JavaThread::card_table_base_offset()));
418
419     However, performance measurements of micro benchmarks and specJVM98
420     showed that loading of card table base from thread descriptor is
421     7-18% slower compared to loading of literal embedded into the code.
422     Possible cause is a cache miss (card table base address resides in a
423     rarely accessed area of thread descriptor).
424  */
425  // TODO-AARCH64 Investigate if mov_slow is faster than ldr from Rthread on AArch64
426  mov_address(card_table_base, (address)ct->byte_map_base, symbolic_Relocation::card_table_reference);
427}
428
429// The 2nd part of the store check.
430void InterpreterMacroAssembler::store_check_part2(Register obj, Register card_table_base, Register tmp) {
431  assert_different_registers(obj, card_table_base, tmp);
432
433  assert(CardTableModRefBS::dirty_card_val() == 0, "Dirty card value must be 0 due to optimizations.");
434#ifdef AARCH64
435  add(card_table_base, card_table_base, AsmOperand(obj, lsr, CardTableModRefBS::card_shift));
436  Address card_table_addr(card_table_base);
437#else
438  Address card_table_addr(card_table_base, obj, lsr, CardTableModRefBS::card_shift);
439#endif
440
441  if (UseCondCardMark) {
442    if (UseConcMarkSweepGC) {
443      membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad), noreg);
444    }
445    Label already_dirty;
446
447    ldrb(tmp, card_table_addr);
448    cbz(tmp, already_dirty);
449
450    set_card(card_table_base, card_table_addr, tmp);
451    bind(already_dirty);
452
453  } else {
454    if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
455      membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore), noreg);
456    }
457    set_card(card_table_base, card_table_addr, tmp);
458  }
459}
460
461void InterpreterMacroAssembler::set_card(Register card_table_base, Address card_table_addr, Register tmp) {
462#ifdef AARCH64
463  strb(ZR, card_table_addr);
464#else
465  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
466  if ((((uintptr_t)ct->byte_map_base & 0xff) == 0)) {
467    // Card table is aligned so the lowest byte of the table address base is zero.
468    // This works only if the code is not saved for later use, possibly
469    // in a context where the base would no longer be aligned.
470    strb(card_table_base, card_table_addr);
471  } else {
472    mov(tmp, 0);
473    strb(tmp, card_table_addr);
474  }
475#endif // AARCH64
476}
477
478//////////////////////////////////////////////////////////////////////////////////
479
480
481// Java Expression Stack
482
483void InterpreterMacroAssembler::pop_ptr(Register r) {
484  assert(r != Rstack_top, "unpredictable instruction");
485  ldr(r, Address(Rstack_top, wordSize, post_indexed));
486}
487
488void InterpreterMacroAssembler::pop_i(Register r) {
489  assert(r != Rstack_top, "unpredictable instruction");
490  ldr_s32(r, Address(Rstack_top, wordSize, post_indexed));
491  zap_high_non_significant_bits(r);
492}
493
494#ifdef AARCH64
495void InterpreterMacroAssembler::pop_l(Register r) {
496  assert(r != Rstack_top, "unpredictable instruction");
497  ldr(r, Address(Rstack_top, 2*wordSize, post_indexed));
498}
499#else
500void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
501  assert_different_registers(lo, hi);
502  assert(lo < hi, "lo must be < hi");
503  pop(RegisterSet(lo) | RegisterSet(hi));
504}
505#endif // AARCH64
506
507void InterpreterMacroAssembler::pop_f(FloatRegister fd) {
508#ifdef AARCH64
509  ldr_s(fd, Address(Rstack_top, wordSize, post_indexed));
510#else
511  fpops(fd);
512#endif // AARCH64
513}
514
515void InterpreterMacroAssembler::pop_d(FloatRegister fd) {
516#ifdef AARCH64
517  ldr_d(fd, Address(Rstack_top, 2*wordSize, post_indexed));
518#else
519  fpopd(fd);
520#endif // AARCH64
521}
522
523
524// Transition vtos -> state. Blows R0, R1. Sets TOS cached value.
525void InterpreterMacroAssembler::pop(TosState state) {
526  switch (state) {
527    case atos: pop_ptr(R0_tos);                              break;
528    case btos:                                               // fall through
529    case ztos:                                               // fall through
530    case ctos:                                               // fall through
531    case stos:                                               // fall through
532    case itos: pop_i(R0_tos);                                break;
533#ifdef AARCH64
534    case ltos: pop_l(R0_tos);                                break;
535#else
536    case ltos: pop_l(R0_tos_lo, R1_tos_hi);                  break;
537#endif // AARCH64
538#ifdef __SOFTFP__
539    case ftos: pop_i(R0_tos);                                break;
540    case dtos: pop_l(R0_tos_lo, R1_tos_hi);                  break;
541#else
542    case ftos: pop_f(S0_tos);                                break;
543    case dtos: pop_d(D0_tos);                                break;
544#endif // __SOFTFP__
545    case vtos: /* nothing to do */                           break;
546    default  : ShouldNotReachHere();
547  }
548  interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
549}
550
551void InterpreterMacroAssembler::push_ptr(Register r) {
552  assert(r != Rstack_top, "unpredictable instruction");
553  str(r, Address(Rstack_top, -wordSize, pre_indexed));
554  check_stack_top_on_expansion();
555}
556
557void InterpreterMacroAssembler::push_i(Register r) {
558  assert(r != Rstack_top, "unpredictable instruction");
559  str_32(r, Address(Rstack_top, -wordSize, pre_indexed));
560  check_stack_top_on_expansion();
561}
562
563#ifdef AARCH64
564void InterpreterMacroAssembler::push_l(Register r) {
565  assert(r != Rstack_top, "unpredictable instruction");
566  stp(r, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
567  check_stack_top_on_expansion();
568}
569#else
570void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
571  assert_different_registers(lo, hi);
572  assert(lo < hi, "lo must be < hi");
573  push(RegisterSet(lo) | RegisterSet(hi));
574}
575#endif // AARCH64
576
577void InterpreterMacroAssembler::push_f() {
578#ifdef AARCH64
579  str_s(S0_tos, Address(Rstack_top, -wordSize, pre_indexed));
580  check_stack_top_on_expansion();
581#else
582  fpushs(S0_tos);
583#endif // AARCH64
584}
585
586void InterpreterMacroAssembler::push_d() {
587#ifdef AARCH64
588  str_d(D0_tos, Address(Rstack_top, -2*wordSize, pre_indexed));
589  check_stack_top_on_expansion();
590#else
591  fpushd(D0_tos);
592#endif // AARCH64
593}
594
595// Transition state -> vtos. Blows Rtemp.
596void InterpreterMacroAssembler::push(TosState state) {
597  interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
598  switch (state) {
599    case atos: push_ptr(R0_tos);                              break;
600    case btos:                                                // fall through
601    case ztos:                                                // fall through
602    case ctos:                                                // fall through
603    case stos:                                                // fall through
604    case itos: push_i(R0_tos);                                break;
605#ifdef AARCH64
606    case ltos: push_l(R0_tos);                                break;
607#else
608    case ltos: push_l(R0_tos_lo, R1_tos_hi);                  break;
609#endif // AARCH64
610#ifdef __SOFTFP__
611    case ftos: push_i(R0_tos);                                break;
612    case dtos: push_l(R0_tos_lo, R1_tos_hi);                  break;
613#else
614    case ftos: push_f();                                      break;
615    case dtos: push_d();                                      break;
616#endif // __SOFTFP__
617    case vtos: /* nothing to do */                            break;
618    default  : ShouldNotReachHere();
619  }
620}
621
622
623#ifndef AARCH64
624
625// Converts return value in R0/R1 (interpreter calling conventions) to TOS cached value.
626void InterpreterMacroAssembler::convert_retval_to_tos(TosState state) {
627#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
628  // According to interpreter calling conventions, result is returned in R0/R1,
629  // but templates expect ftos in S0, and dtos in D0.
630  if (state == ftos) {
631    fmsr(S0_tos, R0);
632  } else if (state == dtos) {
633    fmdrr(D0_tos, R0, R1);
634  }
635#endif // !__SOFTFP__ && !__ABI_HARD__
636}
637
638// Converts TOS cached value to return value in R0/R1 (according to interpreter calling conventions).
639void InterpreterMacroAssembler::convert_tos_to_retval(TosState state) {
640#if (!defined __SOFTFP__ && !defined __ABI_HARD__)
641  // According to interpreter calling conventions, result is returned in R0/R1,
642  // so ftos (S0) and dtos (D0) are moved to R0/R1.
643  if (state == ftos) {
644    fmrs(R0, S0_tos);
645  } else if (state == dtos) {
646    fmrrd(R0, R1, D0_tos);
647  }
648#endif // !__SOFTFP__ && !__ABI_HARD__
649}
650
651#endif // !AARCH64
652
653
654// Helpers for swap and dup
655void InterpreterMacroAssembler::load_ptr(int n, Register val) {
656  ldr(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
657}
658
659void InterpreterMacroAssembler::store_ptr(int n, Register val) {
660  str(val, Address(Rstack_top, Interpreter::expr_offset_in_bytes(n)));
661}
662
663
664void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
665#ifdef AARCH64
666  check_no_cached_stack_top(Rtemp);
667  save_stack_top();
668  cut_sp_before_call();
669  mov(Rparams, Rstack_top);
670#endif // AARCH64
671
672  // set sender sp
673  mov(Rsender_sp, SP);
674
675#ifndef AARCH64
676  // record last_sp
677  str(Rsender_sp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
678#endif // !AARCH64
679}
680
681// Jump to from_interpreted entry of a call unless single stepping is possible
682// in this thread in which case we must call the i2i entry
683void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
684  assert_different_registers(method, Rtemp);
685
686  prepare_to_jump_from_interpreted();
687
688  if (can_post_interpreter_events()) {
689    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
690    // compiled code in threads for which the event is enabled.  Check here for
691    // interp_only_mode if these events CAN be enabled.
692
693    ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
694#ifdef AARCH64
695    {
696      Label not_interp_only_mode;
697
698      cbz(Rtemp, not_interp_only_mode);
699      indirect_jump(Address(method, Method::interpreter_entry_offset()), Rtemp);
700
701      bind(not_interp_only_mode);
702    }
703#else
704    cmp(Rtemp, 0);
705    ldr(PC, Address(method, Method::interpreter_entry_offset()), ne);
706#endif // AARCH64
707  }
708
709  indirect_jump(Address(method, Method::from_interpreted_offset()), Rtemp);
710}
711
712
713void InterpreterMacroAssembler::restore_dispatch() {
714  mov_slow(RdispatchTable, (address)Interpreter::dispatch_table(vtos));
715}
716
717
718// The following two routines provide a hook so that an implementation
719// can schedule the dispatch in two parts.
720void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
721  // Nothing ARM-specific to be done here.
722}
723
724void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
725  dispatch_next(state, step);
726}
727
728void InterpreterMacroAssembler::dispatch_base(TosState state,
729                                              DispatchTableMode table_mode,
730                                              bool verifyoop) {
731  if (VerifyActivationFrameSize) {
732    Label L;
733#ifdef AARCH64
734    mov(Rtemp, SP);
735    sub(Rtemp, FP, Rtemp);
736#else
737    sub(Rtemp, FP, SP);
738#endif // AARCH64
739    int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
740    cmp(Rtemp, min_frame_size);
741    b(L, ge);
742    stop("broken stack frame");
743    bind(L);
744  }
745
746  if (verifyoop) {
747    interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
748  }
749
750  if((state == itos) || (state == btos) || (state == ztos) || (state == ctos) || (state == stos)) {
751    zap_high_non_significant_bits(R0_tos);
752  }
753
754#ifdef ASSERT
755  Label L;
756  mov_slow(Rtemp, (address)Interpreter::dispatch_table(vtos));
757  cmp(Rtemp, RdispatchTable);
758  b(L, eq);
759  stop("invalid RdispatchTable");
760  bind(L);
761#endif
762
763  if (table_mode == DispatchDefault) {
764    if (state == vtos) {
765      indirect_jump(Address::indexed_ptr(RdispatchTable, R3_bytecode), Rtemp);
766    } else {
767#ifdef AARCH64
768      sub(Rtemp, R3_bytecode, (Interpreter::distance_from_dispatch_table(vtos) -
769                           Interpreter::distance_from_dispatch_table(state)));
770      indirect_jump(Address::indexed_ptr(RdispatchTable, Rtemp), Rtemp);
771#else
772      // on 32-bit ARM this method is faster than the one above.
773      sub(Rtemp, RdispatchTable, (Interpreter::distance_from_dispatch_table(vtos) -
774                           Interpreter::distance_from_dispatch_table(state)) * wordSize);
775      indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
776#endif
777    }
778  } else {
779    assert(table_mode == DispatchNormal, "invalid dispatch table mode");
780    address table = (address) Interpreter::normal_table(state);
781    mov_slow(Rtemp, table);
782    indirect_jump(Address::indexed_ptr(Rtemp, R3_bytecode), Rtemp);
783  }
784
785  nop(); // to avoid filling CPU pipeline with invalid instructions
786  nop();
787}
788
789void InterpreterMacroAssembler::dispatch_only(TosState state) {
790  dispatch_base(state, DispatchDefault);
791}
792
793
794void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
795  dispatch_base(state, DispatchNormal);
796}
797
798void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
799  dispatch_base(state, DispatchNormal, false);
800}
801
802void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
803  // load next bytecode and advance Rbcp
804  ldrb(R3_bytecode, Address(Rbcp, step, pre_indexed));
805  dispatch_base(state, DispatchDefault);
806}
807
808void InterpreterMacroAssembler::narrow(Register result) {
809  // mask integer result to narrower return type.
810  const Register Rtmp = R2;
811
812  // get method type
813  ldr(Rtmp, Address(Rmethod, Method::const_offset()));
814  ldrb(Rtmp, Address(Rtmp, ConstMethod::result_type_offset()));
815
816  Label notBool, notByte, notChar, done;
817  cmp(Rtmp, T_INT);
818  b(done, eq);
819
820  cmp(Rtmp, T_BOOLEAN);
821  b(notBool, ne);
822  and_32(result, result, 1);
823  b(done);
824
825  bind(notBool);
826  cmp(Rtmp, T_BYTE);
827  b(notByte, ne);
828  sign_extend(result, result, 8);
829  b(done);
830
831  bind(notByte);
832  cmp(Rtmp, T_CHAR);
833  b(notChar, ne);
834  zero_extend(result, result, 16);
835  b(done);
836
837  bind(notChar);
838  // cmp(Rtmp, T_SHORT);
839  // b(done, ne);
840  sign_extend(result, result, 16);
841
842  // Nothing to do
843  bind(done);
844}
845
846// remove activation
847//
848// Unlock the receiver if this is a synchronized method.
849// Unlock any Java monitors from syncronized blocks.
850// Remove the activation from the stack.
851//
852// If there are locked Java monitors
853//    If throw_monitor_exception
854//       throws IllegalMonitorStateException
855//    Else if install_monitor_exception
856//       installs IllegalMonitorStateException
857//    Else
858//       no error processing
859void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
860                                                  bool throw_monitor_exception,
861                                                  bool install_monitor_exception,
862                                                  bool notify_jvmdi) {
863  Label unlock, unlocked, no_unlock;
864
865  // Note: Registers R0, R1, S0 and D0 (TOS cached value) may be in use for the result.
866
867  const Address do_not_unlock_if_synchronized(Rthread,
868                         JavaThread::do_not_unlock_if_synchronized_offset());
869
870  const Register Rflag = R2;
871  const Register Raccess_flags = R3;
872
873  restore_method();
874
875  ldrb(Rflag, do_not_unlock_if_synchronized);
876
877  // get method access flags
878  ldr_u32(Raccess_flags, Address(Rmethod, Method::access_flags_offset()));
879
880  strb(zero_register(Rtemp), do_not_unlock_if_synchronized); // reset the flag
881
882  // check if method is synchronized
883
884  tbz(Raccess_flags, JVM_ACC_SYNCHRONIZED_BIT, unlocked);
885
886  // Don't unlock anything if the _do_not_unlock_if_synchronized flag is set.
887  cbnz(Rflag, no_unlock);
888
889  // unlock monitor
890  push(state);                                   // save result
891
892  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
893  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
894
895  const Register Rmonitor = R1;                  // fixed in unlock_object()
896  const Register Robj = R2;
897
898  // address of first monitor
899  sub(Rmonitor, FP, - frame::interpreter_frame_monitor_block_bottom_offset * wordSize + (int)sizeof(BasicObjectLock));
900
901  ldr(Robj, Address(Rmonitor, BasicObjectLock::obj_offset_in_bytes()));
902  cbnz(Robj, unlock);
903
904  pop(state);
905
906  if (throw_monitor_exception) {
907    // Entry already unlocked, need to throw exception
908    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
909    should_not_reach_here();
910  } else {
911    // Monitor already unlocked during a stack unroll.
912    // If requested, install an illegal_monitor_state_exception.
913    // Continue with stack unrolling.
914    if (install_monitor_exception) {
915      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
916    }
917    b(unlocked);
918  }
919
920
921  // Exception case for the check that all monitors are unlocked.
922  const Register Rcur = R2;
923  Label restart_check_monitors_unlocked, exception_monitor_is_still_locked;
924
925  bind(exception_monitor_is_still_locked);
926  // Monitor entry is still locked, need to throw exception.
927  // Rcur: monitor entry.
928
929  if (throw_monitor_exception) {
930    // Throw exception
931    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
932    should_not_reach_here();
933  } else {
934    // Stack unrolling. Unlock object and install illegal_monitor_exception
935    // Unlock does not block, so don't have to worry about the frame
936
937    push(state);
938    mov(R1, Rcur);
939    unlock_object(R1);
940
941    if (install_monitor_exception) {
942      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
943    }
944
945    pop(state);
946    b(restart_check_monitors_unlocked);
947  }
948
949  bind(unlock);
950  unlock_object(Rmonitor);
951  pop(state);
952
953  // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
954  bind(unlocked);
955
956  // Check that all monitors are unlocked
957  {
958    Label loop;
959
960    const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
961    const Register Rbottom = R3;
962    const Register Rcur_obj = Rtemp;
963
964    bind(restart_check_monitors_unlocked);
965
966    ldr(Rcur, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
967                                 // points to current entry, starting with top-most entry
968    sub(Rbottom, FP, -frame::interpreter_frame_monitor_block_bottom_offset * wordSize);
969                                 // points to word before bottom of monitor block
970
971    cmp(Rcur, Rbottom);          // check if there are no monitors
972#ifndef AARCH64
973    ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
974                                 // prefetch monitor's object
975#endif // !AARCH64
976    b(no_unlock, eq);
977
978    bind(loop);
979#ifdef AARCH64
980    ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()));
981#endif // AARCH64
982    // check if current entry is used
983    cbnz(Rcur_obj, exception_monitor_is_still_locked);
984
985    add(Rcur, Rcur, entry_size);      // otherwise advance to next entry
986    cmp(Rcur, Rbottom);               // check if bottom reached
987#ifndef AARCH64
988    ldr(Rcur_obj, Address(Rcur, BasicObjectLock::obj_offset_in_bytes()), ne);
989                                      // prefetch monitor's object
990#endif // !AARCH64
991    b(loop, ne);                      // if not at bottom then check this entry
992  }
993
994  bind(no_unlock);
995
996  // jvmti support
997  if (notify_jvmdi) {
998    notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
999  } else {
1000    notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1001  }
1002
1003  // remove activation
1004#ifdef AARCH64
1005  ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
1006  ldp(FP, LR, Address(FP));
1007  mov(SP, Rtemp);
1008#else
1009  mov(Rtemp, FP);
1010  ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
1011  ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
1012#endif
1013
1014  if (ret_addr != LR) {
1015    mov(ret_addr, LR);
1016  }
1017}
1018
1019
1020// At certain points in the method invocation the monitor of
1021// synchronized methods hasn't been entered yet.
1022// To correctly handle exceptions at these points, we set the thread local
1023// variable _do_not_unlock_if_synchronized to true. The remove_activation will
1024// check this flag.
1025void InterpreterMacroAssembler::set_do_not_unlock_if_synchronized(bool flag, Register tmp) {
1026  const Address do_not_unlock_if_synchronized(Rthread,
1027                         JavaThread::do_not_unlock_if_synchronized_offset());
1028  if (flag) {
1029    mov(tmp, 1);
1030    strb(tmp, do_not_unlock_if_synchronized);
1031  } else {
1032    strb(zero_register(tmp), do_not_unlock_if_synchronized);
1033  }
1034}
1035
1036// Lock object
1037//
1038// Argument: R1 : Points to BasicObjectLock to be used for locking.
1039// Must be initialized with object to lock.
1040// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
1041void InterpreterMacroAssembler::lock_object(Register Rlock) {
1042  assert(Rlock == R1, "the second argument");
1043
1044  if (UseHeavyMonitors) {
1045    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
1046  } else {
1047    Label done;
1048
1049    const Register Robj = R2;
1050    const Register Rmark = R3;
1051    assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
1052
1053    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1054    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1055    const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1056
1057    Label already_locked, slow_case;
1058
1059    // Load object pointer
1060    ldr(Robj, Address(Rlock, obj_offset));
1061
1062    if (UseBiasedLocking) {
1063      biased_locking_enter(Robj, Rmark/*scratched*/, R0, false, Rtemp, done, slow_case);
1064    }
1065
1066#ifdef AARCH64
1067    assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
1068    ldr(Rmark, Robj);
1069
1070    // Test if object is already locked
1071    assert(markOopDesc::unlocked_value == 1, "adjust this code");
1072    tbz(Rmark, exact_log2(markOopDesc::unlocked_value), already_locked);
1073
1074#else // AARCH64
1075
1076    // On MP platforms the next load could return a 'stale' value if the memory location has been modified by another thread.
1077    // That would be acceptable as ether CAS or slow case path is taken in that case.
1078    // Exception to that is if the object is locked by the calling thread, then the recursive test will pass (guaranteed as
1079    // loads are satisfied from a store queue if performed on the same processor).
1080
1081    assert(oopDesc::mark_offset_in_bytes() == 0, "must be");
1082    ldr(Rmark, Address(Robj, oopDesc::mark_offset_in_bytes()));
1083
1084    // Test if object is already locked
1085    tst(Rmark, markOopDesc::unlocked_value);
1086    b(already_locked, eq);
1087
1088#endif // !AARCH64
1089    // Save old object->mark() into BasicLock's displaced header
1090    str(Rmark, Address(Rlock, mark_offset));
1091
1092    cas_for_lock_acquire(Rmark, Rlock, Robj, Rtemp, slow_case);
1093
1094#ifndef PRODUCT
1095    if (PrintBiasedLockingStatistics) {
1096      cond_atomic_inc32(al, BiasedLocking::fast_path_entry_count_addr());
1097    }
1098#endif //!PRODUCT
1099
1100    b(done);
1101
1102    // If we got here that means the object is locked by ether calling thread or another thread.
1103    bind(already_locked);
1104    // Handling of locked objects: recursive locks and slow case.
1105
1106    // Fast check for recursive lock.
1107    //
1108    // Can apply the optimization only if this is a stack lock
1109    // allocated in this thread. For efficiency, we can focus on
1110    // recently allocated stack locks (instead of reading the stack
1111    // base and checking whether 'mark' points inside the current
1112    // thread stack):
1113    //  1) (mark & 3) == 0
1114    //  2) SP <= mark < SP + os::pagesize()
1115    //
1116    // Warning: SP + os::pagesize can overflow the stack base. We must
1117    // neither apply the optimization for an inflated lock allocated
1118    // just above the thread stack (this is why condition 1 matters)
1119    // nor apply the optimization if the stack lock is inside the stack
1120    // of another thread. The latter is avoided even in case of overflow
1121    // because we have guard pages at the end of all stacks. Hence, if
1122    // we go over the stack base and hit the stack of another thread,
1123    // this should not be in a writeable area that could contain a
1124    // stack lock allocated by that thread. As a consequence, a stack
1125    // lock less than page size away from SP is guaranteed to be
1126    // owned by the current thread.
1127    //
1128    // Note: assuming SP is aligned, we can check the low bits of
1129    // (mark-SP) instead of the low bits of mark. In that case,
1130    // assuming page size is a power of 2, we can merge the two
1131    // conditions into a single test:
1132    // => ((mark - SP) & (3 - os::pagesize())) == 0
1133
1134#ifdef AARCH64
1135    // Use the single check since the immediate is OK for AARCH64
1136    sub(R0, Rmark, Rstack_top);
1137    intptr_t mask = ((intptr_t)3) - ((intptr_t)os::vm_page_size());
1138    Assembler::LogicalImmediate imm(mask, false);
1139    ands(R0, R0, imm);
1140
1141    // For recursive case store 0 into lock record.
1142    // It is harmless to store it unconditionally as lock record contains some garbage
1143    // value in its _displaced_header field by this moment.
1144    str(ZR, Address(Rlock, mark_offset));
1145
1146#else // AARCH64
1147    // (3 - os::pagesize()) cannot be encoded as an ARM immediate operand.
1148    // Check independently the low bits and the distance to SP.
1149    // -1- test low 2 bits
1150    movs(R0, AsmOperand(Rmark, lsl, 30));
1151    // -2- test (mark - SP) if the low two bits are 0
1152    sub(R0, Rmark, SP, eq);
1153    movs(R0, AsmOperand(R0, lsr, exact_log2(os::vm_page_size())), eq);
1154    // If still 'eq' then recursive locking OK: store 0 into lock record
1155    str(R0, Address(Rlock, mark_offset), eq);
1156
1157#endif // AARCH64
1158
1159#ifndef PRODUCT
1160    if (PrintBiasedLockingStatistics) {
1161      cond_atomic_inc32(eq, BiasedLocking::fast_path_entry_count_addr());
1162    }
1163#endif // !PRODUCT
1164
1165    b(done, eq);
1166
1167    bind(slow_case);
1168
1169    // Call the runtime routine for slow case
1170    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), Rlock);
1171
1172    bind(done);
1173  }
1174}
1175
1176
1177// Unlocks an object. Used in monitorexit bytecode and remove_activation.
1178//
1179// Argument: R1: Points to BasicObjectLock structure for lock
1180// Throw an IllegalMonitorException if object is not locked by current thread
1181// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR. Calls VM.
1182void InterpreterMacroAssembler::unlock_object(Register Rlock) {
1183  assert(Rlock == R1, "the second argument");
1184
1185  if (UseHeavyMonitors) {
1186    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
1187  } else {
1188    Label done, slow_case;
1189
1190    const Register Robj = R2;
1191    const Register Rmark = R3;
1192    const Register Rresult = R0;
1193    assert_different_registers(Robj, Rmark, Rlock, R0, Rtemp);
1194
1195    const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
1196    const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
1197    const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
1198
1199    const Register Rzero = zero_register(Rtemp);
1200
1201    // Load oop into Robj
1202    ldr(Robj, Address(Rlock, obj_offset));
1203
1204    // Free entry
1205    str(Rzero, Address(Rlock, obj_offset));
1206
1207    if (UseBiasedLocking) {
1208      biased_locking_exit(Robj, Rmark, done);
1209    }
1210
1211    // Load the old header from BasicLock structure
1212    ldr(Rmark, Address(Rlock, mark_offset));
1213
1214    // Test for recursion (zero mark in BasicLock)
1215    cbz(Rmark, done);
1216
1217    bool allow_fallthrough_on_failure = true;
1218
1219    cas_for_lock_release(Rlock, Rmark, Robj, Rtemp, slow_case, allow_fallthrough_on_failure);
1220
1221    b(done, eq);
1222
1223    bind(slow_case);
1224
1225    // Call the runtime routine for slow case.
1226    str(Robj, Address(Rlock, obj_offset)); // restore obj
1227    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), Rlock);
1228
1229    bind(done);
1230  }
1231}
1232
1233
1234// Test ImethodDataPtr.  If it is null, continue at the specified label
1235void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
1236  assert(ProfileInterpreter, "must be profiling interpreter");
1237  ldr(mdp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1238  cbz(mdp, zero_continue);
1239}
1240
1241
1242// Set the method data pointer for the current bcp.
1243// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64), Rtemp, LR.
1244void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1245  assert(ProfileInterpreter, "must be profiling interpreter");
1246  Label set_mdp;
1247
1248  // Test MDO to avoid the call if it is NULL.
1249  ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
1250  cbz(Rtemp, set_mdp);
1251
1252  mov(R0, Rmethod);
1253  mov(R1, Rbcp);
1254  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R0, R1);
1255  // R0/W0: mdi
1256
1257  // mdo is guaranteed to be non-zero here, we checked for it before the call.
1258  ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
1259  add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
1260  add_ptr_scaled_int32(Rtemp, Rtemp, R0, 0);
1261
1262  bind(set_mdp);
1263  str(Rtemp, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1264}
1265
1266
1267void InterpreterMacroAssembler::verify_method_data_pointer() {
1268  assert(ProfileInterpreter, "must be profiling interpreter");
1269#ifdef ASSERT
1270  Label verify_continue;
1271  save_caller_save_registers();
1272
1273  const Register Rmdp = R2;
1274  test_method_data_pointer(Rmdp, verify_continue); // If mdp is zero, continue
1275
1276  // If the mdp is valid, it will point to a DataLayout header which is
1277  // consistent with the bcp.  The converse is highly probable also.
1278
1279  ldrh(R3, Address(Rmdp, DataLayout::bci_offset()));
1280  ldr(Rtemp, Address(Rmethod, Method::const_offset()));
1281  add(R3, R3, Rtemp);
1282  add(R3, R3, in_bytes(ConstMethod::codes_offset()));
1283  cmp(R3, Rbcp);
1284  b(verify_continue, eq);
1285
1286  mov(R0, Rmethod);
1287  mov(R1, Rbcp);
1288  call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), R0, R1, Rmdp);
1289
1290  bind(verify_continue);
1291  restore_caller_save_registers();
1292#endif // ASSERT
1293}
1294
1295
1296void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int offset, Register value) {
1297  assert(ProfileInterpreter, "must be profiling interpreter");
1298  assert_different_registers(mdp_in, value);
1299  str(value, Address(mdp_in, offset));
1300}
1301
1302
1303// Increments mdp data. Sets bumped_count register to adjusted counter.
1304void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1305                                                      int offset,
1306                                                      Register bumped_count,
1307                                                      bool decrement) {
1308  assert(ProfileInterpreter, "must be profiling interpreter");
1309
1310  // Counter address
1311  Address data(mdp_in, offset);
1312  assert_different_registers(mdp_in, bumped_count);
1313
1314  increment_mdp_data_at(data, bumped_count, decrement);
1315}
1316
1317void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
1318  assert_different_registers(mdp_in, Rtemp);
1319  assert(ProfileInterpreter, "must be profiling interpreter");
1320  assert((0 < flag_byte_constant) && (flag_byte_constant < (1 << BitsPerByte)), "flag mask is out of range");
1321
1322  // Set the flag
1323  ldrb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
1324  orr(Rtemp, Rtemp, (unsigned)flag_byte_constant);
1325  strb(Rtemp, Address(mdp_in, in_bytes(DataLayout::flags_offset())));
1326}
1327
1328
1329// Increments mdp data. Sets bumped_count register to adjusted counter.
1330void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1331                                                      Register bumped_count,
1332                                                      bool decrement) {
1333  assert(ProfileInterpreter, "must be profiling interpreter");
1334
1335  ldr(bumped_count, data);
1336  if (decrement) {
1337    // Decrement the register. Set condition codes.
1338    subs(bumped_count, bumped_count, DataLayout::counter_increment);
1339    // Avoid overflow.
1340#ifdef AARCH64
1341    assert(DataLayout::counter_increment == 1, "required for cinc");
1342    cinc(bumped_count, bumped_count, pl);
1343#else
1344    add(bumped_count, bumped_count, DataLayout::counter_increment, pl);
1345#endif // AARCH64
1346  } else {
1347    // Increment the register. Set condition codes.
1348    adds(bumped_count, bumped_count, DataLayout::counter_increment);
1349    // Avoid overflow.
1350#ifdef AARCH64
1351    assert(DataLayout::counter_increment == 1, "required for cinv");
1352    cinv(bumped_count, bumped_count, mi); // inverts 0x80..00 back to 0x7f..ff
1353#else
1354    sub(bumped_count, bumped_count, DataLayout::counter_increment, mi);
1355#endif // AARCH64
1356  }
1357  str(bumped_count, data);
1358}
1359
1360
1361void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1362                                                 int offset,
1363                                                 Register value,
1364                                                 Register test_value_out,
1365                                                 Label& not_equal_continue) {
1366  assert(ProfileInterpreter, "must be profiling interpreter");
1367  assert_different_registers(mdp_in, test_value_out, value);
1368
1369  ldr(test_value_out, Address(mdp_in, offset));
1370  cmp(test_value_out, value);
1371
1372  b(not_equal_continue, ne);
1373}
1374
1375
1376void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp, Register reg_temp) {
1377  assert(ProfileInterpreter, "must be profiling interpreter");
1378  assert_different_registers(mdp_in, reg_temp);
1379
1380  ldr(reg_temp, Address(mdp_in, offset_of_disp));
1381  add(mdp_in, mdp_in, reg_temp);
1382  str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1383}
1384
1385
1386void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg_offset, Register reg_tmp) {
1387  assert(ProfileInterpreter, "must be profiling interpreter");
1388  assert_different_registers(mdp_in, reg_offset, reg_tmp);
1389
1390  ldr(reg_tmp, Address(mdp_in, reg_offset));
1391  add(mdp_in, mdp_in, reg_tmp);
1392  str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1393}
1394
1395
1396void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
1397  assert(ProfileInterpreter, "must be profiling interpreter");
1398  add(mdp_in, mdp_in, constant);
1399  str(mdp_in, Address(FP, frame::interpreter_frame_mdp_offset * wordSize));
1400}
1401
1402
1403// Blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
1404void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1405  assert(ProfileInterpreter, "must be profiling interpreter");
1406  assert_different_registers(return_bci, R0, R1, R2, R3, Rtemp);
1407
1408  mov(R1, return_bci);
1409  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), R1);
1410}
1411
1412
1413// Sets mdp, bumped_count registers, blows Rtemp.
1414void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
1415  assert_different_registers(mdp, bumped_count);
1416
1417  if (ProfileInterpreter) {
1418    Label profile_continue;
1419
1420    // If no method data exists, go to profile_continue.
1421    // Otherwise, assign to mdp
1422    test_method_data_pointer(mdp, profile_continue);
1423
1424    // We are taking a branch. Increment the taken count.
1425    increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()), bumped_count);
1426
1427    // The method data pointer needs to be updated to reflect the new target.
1428    update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()), Rtemp);
1429
1430    bind (profile_continue);
1431  }
1432}
1433
1434
1435// Sets mdp, blows Rtemp.
1436void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1437  assert_different_registers(mdp, Rtemp);
1438
1439  if (ProfileInterpreter) {
1440    Label profile_continue;
1441
1442    // If no method data exists, go to profile_continue.
1443    test_method_data_pointer(mdp, profile_continue);
1444
1445    // We are taking a branch.  Increment the not taken count.
1446    increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Rtemp);
1447
1448    // The method data pointer needs to be updated to correspond to the next bytecode
1449    update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1450
1451    bind (profile_continue);
1452  }
1453}
1454
1455
1456// Sets mdp, blows Rtemp.
1457void InterpreterMacroAssembler::profile_call(Register mdp) {
1458  assert_different_registers(mdp, Rtemp);
1459
1460  if (ProfileInterpreter) {
1461    Label profile_continue;
1462
1463    // If no method data exists, go to profile_continue.
1464    test_method_data_pointer(mdp, profile_continue);
1465
1466    // We are making a call.  Increment the count.
1467    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1468
1469    // The method data pointer needs to be updated to reflect the new target.
1470    update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1471
1472    bind (profile_continue);
1473  }
1474}
1475
1476
1477// Sets mdp, blows Rtemp.
1478void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1479  if (ProfileInterpreter) {
1480    Label profile_continue;
1481
1482    // If no method data exists, go to profile_continue.
1483    test_method_data_pointer(mdp, profile_continue);
1484
1485    // We are making a call.  Increment the count.
1486    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1487
1488    // The method data pointer needs to be updated to reflect the new target.
1489    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1490
1491    bind (profile_continue);
1492  }
1493}
1494
1495
1496// Sets mdp, blows Rtemp.
1497void InterpreterMacroAssembler::profile_virtual_call(Register mdp, Register receiver, bool receiver_can_be_null) {
1498  assert_different_registers(mdp, receiver, Rtemp);
1499
1500  if (ProfileInterpreter) {
1501    Label profile_continue;
1502
1503    // If no method data exists, go to profile_continue.
1504    test_method_data_pointer(mdp, profile_continue);
1505
1506    Label skip_receiver_profile;
1507    if (receiver_can_be_null) {
1508      Label not_null;
1509      cbnz(receiver, not_null);
1510      // We are making a call.  Increment the count for null receiver.
1511      increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1512      b(skip_receiver_profile);
1513      bind(not_null);
1514    }
1515
1516    // Record the receiver type.
1517    record_klass_in_profile(receiver, mdp, Rtemp, true);
1518    bind(skip_receiver_profile);
1519
1520    // The method data pointer needs to be updated to reflect the new target.
1521    update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1522    bind(profile_continue);
1523  }
1524}
1525
1526
1527void InterpreterMacroAssembler::record_klass_in_profile_helper(
1528                                        Register receiver, Register mdp,
1529                                        Register reg_tmp,
1530                                        int start_row, Label& done, bool is_virtual_call) {
1531  if (TypeProfileWidth == 0)
1532    return;
1533
1534  assert_different_registers(receiver, mdp, reg_tmp);
1535
1536  int last_row = VirtualCallData::row_limit() - 1;
1537  assert(start_row <= last_row, "must be work left to do");
1538  // Test this row for both the receiver and for null.
1539  // Take any of three different outcomes:
1540  //   1. found receiver => increment count and goto done
1541  //   2. found null => keep looking for case 1, maybe allocate this cell
1542  //   3. found something else => keep looking for cases 1 and 2
1543  // Case 3 is handled by a recursive call.
1544  for (int row = start_row; row <= last_row; row++) {
1545    Label next_test;
1546
1547    // See if the receiver is receiver[n].
1548    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1549
1550    test_mdp_data_at(mdp, recvr_offset, receiver, reg_tmp, next_test);
1551
1552    // The receiver is receiver[n].  Increment count[n].
1553    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1554    increment_mdp_data_at(mdp, count_offset, reg_tmp);
1555    b(done);
1556
1557    bind(next_test);
1558    // reg_tmp now contains the receiver from the CallData.
1559
1560    if (row == start_row) {
1561      Label found_null;
1562      // Failed the equality check on receiver[n]...  Test for null.
1563      if (start_row == last_row) {
1564        // The only thing left to do is handle the null case.
1565        if (is_virtual_call) {
1566          cbz(reg_tmp, found_null);
1567          // Receiver did not match any saved receiver and there is no empty row for it.
1568          // Increment total counter to indicate polymorphic case.
1569          increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), reg_tmp);
1570          b(done);
1571          bind(found_null);
1572        } else {
1573          cbnz(reg_tmp, done);
1574        }
1575        break;
1576      }
1577      // Since null is rare, make it be the branch-taken case.
1578      cbz(reg_tmp, found_null);
1579
1580      // Put all the "Case 3" tests here.
1581      record_klass_in_profile_helper(receiver, mdp, reg_tmp, start_row + 1, done, is_virtual_call);
1582
1583      // Found a null.  Keep searching for a matching receiver,
1584      // but remember that this is an empty (unused) slot.
1585      bind(found_null);
1586    }
1587  }
1588
1589  // In the fall-through case, we found no matching receiver, but we
1590  // observed the receiver[start_row] is NULL.
1591
1592  // Fill in the receiver field and increment the count.
1593  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1594  set_mdp_data_at(mdp, recvr_offset, receiver);
1595  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1596  mov(reg_tmp, DataLayout::counter_increment);
1597  set_mdp_data_at(mdp, count_offset, reg_tmp);
1598  if (start_row > 0) {
1599    b(done);
1600  }
1601}
1602
1603void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1604                                                        Register mdp,
1605                                                        Register reg_tmp,
1606                                                        bool is_virtual_call) {
1607  assert(ProfileInterpreter, "must be profiling");
1608  assert_different_registers(receiver, mdp, reg_tmp);
1609
1610  Label done;
1611
1612  record_klass_in_profile_helper(receiver, mdp, reg_tmp, 0, done, is_virtual_call);
1613
1614  bind (done);
1615}
1616
1617// Sets mdp, blows volatile registers (R0-R3 on 32-bit ARM, R0-R18 on AArch64, Rtemp, LR).
1618void InterpreterMacroAssembler::profile_ret(Register mdp, Register return_bci) {
1619  assert_different_registers(mdp, return_bci, Rtemp, R0, R1, R2, R3);
1620
1621  if (ProfileInterpreter) {
1622    Label profile_continue;
1623    uint row;
1624
1625    // If no method data exists, go to profile_continue.
1626    test_method_data_pointer(mdp, profile_continue);
1627
1628    // Update the total ret count.
1629    increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()), Rtemp);
1630
1631    for (row = 0; row < RetData::row_limit(); row++) {
1632      Label next_test;
1633
1634      // See if return_bci is equal to bci[n]:
1635      test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1636                       Rtemp, next_test);
1637
1638      // return_bci is equal to bci[n].  Increment the count.
1639      increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)), Rtemp);
1640
1641      // The method data pointer needs to be updated to reflect the new target.
1642      update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)), Rtemp);
1643      b(profile_continue);
1644      bind(next_test);
1645    }
1646
1647    update_mdp_for_ret(return_bci);
1648
1649    bind(profile_continue);
1650  }
1651}
1652
1653
1654// Sets mdp.
1655void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1656  if (ProfileInterpreter) {
1657    Label profile_continue;
1658
1659    // If no method data exists, go to profile_continue.
1660    test_method_data_pointer(mdp, profile_continue);
1661
1662    set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1663
1664    // The method data pointer needs to be updated.
1665    int mdp_delta = in_bytes(BitData::bit_data_size());
1666    if (TypeProfileCasts) {
1667      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1668    }
1669    update_mdp_by_constant(mdp, mdp_delta);
1670
1671    bind (profile_continue);
1672  }
1673}
1674
1675
1676// Sets mdp, blows Rtemp.
1677void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1678  assert_different_registers(mdp, Rtemp);
1679
1680  if (ProfileInterpreter && TypeProfileCasts) {
1681    Label profile_continue;
1682
1683    // If no method data exists, go to profile_continue.
1684    test_method_data_pointer(mdp, profile_continue);
1685
1686    int count_offset = in_bytes(CounterData::count_offset());
1687    // Back up the address, since we have already bumped the mdp.
1688    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1689
1690    // *Decrement* the counter.  We expect to see zero or small negatives.
1691    increment_mdp_data_at(mdp, count_offset, Rtemp, true);
1692
1693    bind (profile_continue);
1694  }
1695}
1696
1697
1698// Sets mdp, blows Rtemp.
1699void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass)
1700{
1701  assert_different_registers(mdp, klass, Rtemp);
1702
1703  if (ProfileInterpreter) {
1704    Label profile_continue;
1705
1706    // If no method data exists, go to profile_continue.
1707    test_method_data_pointer(mdp, profile_continue);
1708
1709    // The method data pointer needs to be updated.
1710    int mdp_delta = in_bytes(BitData::bit_data_size());
1711    if (TypeProfileCasts) {
1712      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1713
1714      // Record the object type.
1715      record_klass_in_profile(klass, mdp, Rtemp, false);
1716    }
1717    update_mdp_by_constant(mdp, mdp_delta);
1718
1719    bind(profile_continue);
1720  }
1721}
1722
1723
1724// Sets mdp, blows Rtemp.
1725void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1726  assert_different_registers(mdp, Rtemp);
1727
1728  if (ProfileInterpreter) {
1729    Label profile_continue;
1730
1731    // If no method data exists, go to profile_continue.
1732    test_method_data_pointer(mdp, profile_continue);
1733
1734    // Update the default case count
1735    increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()), Rtemp);
1736
1737    // The method data pointer needs to be updated.
1738    update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()), Rtemp);
1739
1740    bind(profile_continue);
1741  }
1742}
1743
1744
1745// Sets mdp. Blows reg_tmp1, reg_tmp2. Index could be the same as reg_tmp2.
1746void InterpreterMacroAssembler::profile_switch_case(Register mdp, Register index, Register reg_tmp1, Register reg_tmp2) {
1747  assert_different_registers(mdp, reg_tmp1, reg_tmp2);
1748  assert_different_registers(mdp, reg_tmp1, index);
1749
1750  if (ProfileInterpreter) {
1751    Label profile_continue;
1752
1753    const int count_offset = in_bytes(MultiBranchData::case_array_offset()) +
1754                              in_bytes(MultiBranchData::relative_count_offset());
1755
1756    const int displacement_offset = in_bytes(MultiBranchData::case_array_offset()) +
1757                              in_bytes(MultiBranchData::relative_displacement_offset());
1758
1759    // If no method data exists, go to profile_continue.
1760    test_method_data_pointer(mdp, profile_continue);
1761
1762    // Build the base (index * per_case_size_in_bytes())
1763    logical_shift_left(reg_tmp1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1764
1765    // Update the case count
1766    add(reg_tmp1, reg_tmp1, count_offset);
1767    increment_mdp_data_at(Address(mdp, reg_tmp1), reg_tmp2);
1768
1769    // The method data pointer needs to be updated.
1770    add(reg_tmp1, reg_tmp1, displacement_offset - count_offset);
1771    update_mdp_by_offset(mdp, reg_tmp1, reg_tmp2);
1772
1773    bind (profile_continue);
1774  }
1775}
1776
1777
1778void InterpreterMacroAssembler::byteswap_u32(Register r, Register rtmp1, Register rtmp2) {
1779#ifdef AARCH64
1780  rev_w(r, r);
1781#else
1782  if (VM_Version::supports_rev()) {
1783    rev(r, r);
1784  } else {
1785    eor(rtmp1, r, AsmOperand(r, ror, 16));
1786    mvn(rtmp2, 0x0000ff00);
1787    andr(rtmp1, rtmp2, AsmOperand(rtmp1, lsr, 8));
1788    eor(r, rtmp1, AsmOperand(r, ror, 8));
1789  }
1790#endif // AARCH64
1791}
1792
1793
1794void InterpreterMacroAssembler::inc_global_counter(address address_of_counter, int offset, Register tmp1, Register tmp2, bool avoid_overflow) {
1795  const intx addr = (intx) (address_of_counter + offset);
1796
1797  assert ((addr & 0x3) == 0, "address of counter should be aligned");
1798  const intx offset_mask = right_n_bits(AARCH64_ONLY(12 + 2) NOT_AARCH64(12));
1799
1800  const address base = (address) (addr & ~offset_mask);
1801  const int offs = (int) (addr & offset_mask);
1802
1803  const Register addr_base = tmp1;
1804  const Register val = tmp2;
1805
1806  mov_slow(addr_base, base);
1807  ldr_s32(val, Address(addr_base, offs));
1808
1809  if (avoid_overflow) {
1810    adds_32(val, val, 1);
1811#ifdef AARCH64
1812    Label L;
1813    b(L, mi);
1814    str_32(val, Address(addr_base, offs));
1815    bind(L);
1816#else
1817    str(val, Address(addr_base, offs), pl);
1818#endif // AARCH64
1819  } else {
1820    add_32(val, val, 1);
1821    str_32(val, Address(addr_base, offs));
1822  }
1823}
1824
1825void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char *file, int line) {
1826  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop", file, line); }
1827}
1828
1829// Inline assembly for:
1830//
1831// if (thread is in interp_only_mode) {
1832//   InterpreterRuntime::post_method_entry();
1833// }
1834// if (DTraceMethodProbes) {
1835//   SharedRuntime::dtrace_method_entry(method, receiver);
1836// }
1837// if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1838//   SharedRuntime::rc_trace_method_entry(method, receiver);
1839// }
1840
1841void InterpreterMacroAssembler::notify_method_entry() {
1842  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1843  // track stack depth.  If it is possible to enter interp_only_mode we add
1844  // the code to check if the event should be sent.
1845  if (can_post_interpreter_events()) {
1846    Label L;
1847
1848    ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
1849    cbz(Rtemp, L);
1850
1851    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1852
1853    bind(L);
1854  }
1855
1856  // Note: Disable DTrace runtime check for now to eliminate overhead on each method entry
1857  if (DTraceMethodProbes) {
1858    Label Lcontinue;
1859
1860    ldrb_global(Rtemp, (address)&DTraceMethodProbes);
1861    cbz(Rtemp, Lcontinue);
1862
1863    mov(R0, Rthread);
1864    mov(R1, Rmethod);
1865    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), R0, R1);
1866
1867    bind(Lcontinue);
1868  }
1869  // RedefineClasses() tracing support for obsolete method entry
1870  if (log_is_enabled(Trace, redefine, class, obsolete)) {
1871    mov(R0, Rthread);
1872    mov(R1, Rmethod);
1873    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1874                 R0, R1);
1875  }
1876}
1877
1878
1879void InterpreterMacroAssembler::notify_method_exit(
1880                 TosState state, NotifyMethodExitMode mode,
1881                 bool native, Register result_lo, Register result_hi, FloatRegister result_fp) {
1882  // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1883  // track stack depth.  If it is possible to enter interp_only_mode we add
1884  // the code to check if the event should be sent.
1885  if (mode == NotifyJVMTI && can_post_interpreter_events()) {
1886    Label L;
1887    // Note: frame::interpreter_frame_result has a dependency on how the
1888    // method result is saved across the call to post_method_exit. If this
1889    // is changed then the interpreter_frame_result implementation will
1890    // need to be updated too.
1891
1892    ldr_s32(Rtemp, Address(Rthread, JavaThread::interp_only_mode_offset()));
1893    cbz(Rtemp, L);
1894
1895    if (native) {
1896      // For c++ and template interpreter push both result registers on the
1897      // stack in native, we don't know the state.
1898      // On AArch64 result registers are stored into the frame at known locations.
1899      // See frame::interpreter_frame_result for code that gets the result values from here.
1900      assert(result_lo != noreg, "result registers should be defined");
1901
1902#ifdef AARCH64
1903      assert(result_hi == noreg, "result_hi is not used on AArch64");
1904      assert(result_fp != fnoreg, "FP result register must be defined");
1905
1906      str_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
1907      str(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
1908#else
1909      assert(result_hi != noreg, "result registers should be defined");
1910
1911#ifdef __ABI_HARD__
1912      assert(result_fp != fnoreg, "FP result register must be defined");
1913      sub(SP, SP, 2 * wordSize);
1914      fstd(result_fp, Address(SP));
1915#endif // __ABI_HARD__
1916
1917      push(RegisterSet(result_lo) | RegisterSet(result_hi));
1918#endif // AARCH64
1919
1920      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1921
1922#ifdef AARCH64
1923      ldr_d(result_fp, Address(FP, frame::interpreter_frame_fp_saved_result_offset * wordSize));
1924      ldr(result_lo, Address(FP, frame::interpreter_frame_gp_saved_result_offset * wordSize));
1925#else
1926      pop(RegisterSet(result_lo) | RegisterSet(result_hi));
1927#ifdef __ABI_HARD__
1928      fldd(result_fp, Address(SP));
1929      add(SP, SP, 2 * wordSize);
1930#endif // __ABI_HARD__
1931#endif // AARCH64
1932
1933    } else {
1934      // For the template interpreter, the value on tos is the size of the
1935      // state. (c++ interpreter calls jvmti somewhere else).
1936      push(state);
1937      call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1938      pop(state);
1939    }
1940
1941    bind(L);
1942  }
1943
1944  // Note: Disable DTrace runtime check for now to eliminate overhead on each method exit
1945  if (DTraceMethodProbes) {
1946    Label Lcontinue;
1947
1948    ldrb_global(Rtemp, (address)&DTraceMethodProbes);
1949    cbz(Rtemp, Lcontinue);
1950
1951    push(state);
1952
1953    mov(R0, Rthread);
1954    mov(R1, Rmethod);
1955
1956    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), R0, R1);
1957
1958    pop(state);
1959
1960    bind(Lcontinue);
1961  }
1962}
1963
1964
1965#ifndef PRODUCT
1966
1967void InterpreterMacroAssembler::trace_state(const char* msg) {
1968  int push_size = save_caller_save_registers();
1969
1970  Label Lcontinue;
1971  InlinedString Lmsg0("%s: FP=" INTPTR_FORMAT ", SP=" INTPTR_FORMAT "\n");
1972  InlinedString Lmsg(msg);
1973  InlinedAddress Lprintf((address)printf);
1974
1975  ldr_literal(R0, Lmsg0);
1976  ldr_literal(R1, Lmsg);
1977  mov(R2, FP);
1978  add(R3, SP, push_size);  // original SP (without saved registers)
1979  ldr_literal(Rtemp, Lprintf);
1980  call(Rtemp);
1981
1982  b(Lcontinue);
1983
1984  bind_literal(Lmsg0);
1985  bind_literal(Lmsg);
1986  bind_literal(Lprintf);
1987
1988
1989  bind(Lcontinue);
1990
1991  restore_caller_save_registers();
1992}
1993
1994#endif
1995
1996// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1997void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1998                                                        int increment, Address mask_addr,
1999                                                        Register scratch, Register scratch2,
2000                                                        AsmCondition cond, Label* where) {
2001  // caution: scratch2 and base address of counter_addr can be the same
2002  assert_different_registers(scratch, scratch2);
2003  ldr_u32(scratch, counter_addr);
2004  add(scratch, scratch, increment);
2005  str_32(scratch, counter_addr);
2006
2007#ifdef AARCH64
2008  ldr_u32(scratch2, mask_addr);
2009  ands_w(ZR, scratch, scratch2);
2010#else
2011  ldr(scratch2, mask_addr);
2012  andrs(scratch, scratch, scratch2);
2013#endif // AARCH64
2014  b(*where, cond);
2015}
2016
2017void InterpreterMacroAssembler::get_method_counters(Register method,
2018                                                    Register Rcounters,
2019                                                    Label& skip,
2020                                                    bool saveRegs,
2021                                                    Register reg1,
2022                                                    Register reg2,
2023                                                    Register reg3) {
2024  const Address method_counters(method, Method::method_counters_offset());
2025  Label has_counters;
2026
2027  ldr(Rcounters, method_counters);
2028  cbnz(Rcounters, has_counters);
2029
2030  if (saveRegs) {
2031    // Save and restore in use caller-saved registers since they will be trashed by call_VM
2032    assert(reg1 != noreg, "must specify reg1");
2033    assert(reg2 != noreg, "must specify reg2");
2034#ifdef AARCH64
2035    assert(reg3 != noreg, "must specify reg3");
2036    stp(reg1, reg2, Address(Rstack_top, -2*wordSize, pre_indexed));
2037    stp(reg3, ZR, Address(Rstack_top, -2*wordSize, pre_indexed));
2038#else
2039    assert(reg3 == noreg, "must not specify reg3");
2040    push(RegisterSet(reg1) | RegisterSet(reg2));
2041#endif
2042  }
2043
2044  mov(R1, method);
2045  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), R1);
2046
2047  if (saveRegs) {
2048#ifdef AARCH64
2049    ldp(reg3, ZR, Address(Rstack_top, 2*wordSize, post_indexed));
2050    ldp(reg1, reg2, Address(Rstack_top, 2*wordSize, post_indexed));
2051#else
2052    pop(RegisterSet(reg1) | RegisterSet(reg2));
2053#endif
2054  }
2055
2056  ldr(Rcounters, method_counters);
2057  cbz(Rcounters, skip); // No MethodCounters created, OutOfMemory
2058
2059  bind(has_counters);
2060}
2061