sharedRuntime_aarch64.cpp revision 9898:2794bc7859f5
1/*
2 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "asm/macroAssembler.hpp"
28#include "asm/macroAssembler.inline.hpp"
29#include "code/debugInfoRec.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/interp_masm.hpp"
34#include "oops/compiledICHolder.hpp"
35#include "prims/jvmtiRedefineClassesTrace.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/vframeArray.hpp"
38#include "vmreg_aarch64.inline.hpp"
39#ifdef COMPILER1
40#include "c1/c1_Runtime1.hpp"
41#endif
42#if defined(COMPILER2) || INCLUDE_JVMCI
43#include "adfiles/ad_aarch64.hpp"
44#include "opto/runtime.hpp"
45#endif
46#if INCLUDE_JVMCI
47#include "jvmci/jvmciJavaClasses.hpp"
48#endif
49
50#ifdef BUILTIN_SIM
51#include "../../../../../../simulator/simulator.hpp"
52#endif
53
54#define __ masm->
55
56const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
57
58class SimpleRuntimeFrame {
59
60  public:
61
62  // Most of the runtime stubs have this simple frame layout.
63  // This class exists to make the layout shared in one place.
64  // Offsets are for compiler stack slots, which are jints.
65  enum layout {
66    // The frame sender code expects that rbp will be in the "natural" place and
67    // will override any oopMap setting for it. We must therefore force the layout
68    // so that it agrees with the frame sender code.
69    // we don't expect any arg reg save area so aarch64 asserts that
70    // frame::arg_reg_save_area_bytes == 0
71    rbp_off = 0,
72    rbp_off2,
73    return_off, return_off2,
74    framesize
75  };
76};
77
78// FIXME -- this is used by C1
79class RegisterSaver {
80 public:
81  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
82  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
83
84  // Offsets into the register save area
85  // Used by deoptimization when it is managing result register
86  // values on its own
87
88  static int r0_offset_in_bytes(void)    { return (32 + r0->encoding()) * wordSize; }
89  static int reg_offset_in_bytes(Register r)    { return r0_offset_in_bytes() + r->encoding() * wordSize; }
90  static int rmethod_offset_in_bytes(void)    { return reg_offset_in_bytes(rmethod); }
91  static int rscratch1_offset_in_bytes(void)    { return (32 + rscratch1->encoding()) * wordSize; }
92  static int v0_offset_in_bytes(void)   { return 0; }
93  static int return_offset_in_bytes(void) { return (32 /* floats*/ + 31 /* gregs*/) * wordSize; }
94
95  // During deoptimization only the result registers need to be restored,
96  // all the other values have already been extracted.
97  static void restore_result_registers(MacroAssembler* masm);
98
99    // Capture info about frame layout
100  enum layout {
101                fpu_state_off = 0,
102                fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
103                // The frame sender code expects that rfp will be in
104                // the "natural" place and will override any oopMap
105                // setting for it. We must therefore force the layout
106                // so that it agrees with the frame sender code.
107                r0_off = fpu_state_off+FPUStateSizeInWords,
108                rfp_off = r0_off + 30 * 2,
109                return_off = rfp_off + 2,      // slot for return address
110                reg_save_size = return_off + 2};
111
112};
113
114OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
115#if defined(COMPILER2) || INCLUDE_JVMCI
116  if (save_vectors) {
117    // Save upper half of vector registers
118    int vect_words = 32 * 8 / wordSize;
119    additional_frame_words += vect_words;
120  }
121#else
122  assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
123#endif
124
125  int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
126                                     reg_save_size*BytesPerInt, 16);
127  // OopMap frame size is in compiler stack slots (jint's) not bytes or words
128  int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
129  // The caller will allocate additional_frame_words
130  int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
131  // CodeBlob frame size is in words.
132  int frame_size_in_words = frame_size_in_bytes / wordSize;
133  *total_frame_words = frame_size_in_words;
134
135  // Save registers, fpu state, and flags.
136
137  __ enter();
138  __ push_CPU_state(save_vectors);
139
140  // Set an oopmap for the call site.  This oopmap will map all
141  // oop-registers and debug-info registers as callee-saved.  This
142  // will allow deoptimization at this safepoint to find all possible
143  // debug-info recordings, as well as let GC find all oops.
144
145  OopMapSet *oop_maps = new OopMapSet();
146  OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
147
148  for (int i = 0; i < RegisterImpl::number_of_registers; i++) {
149    Register r = as_Register(i);
150    if (r < rheapbase && r != rscratch1 && r != rscratch2) {
151      int sp_offset = 2 * (i + 32); // SP offsets are in 4-byte words,
152                                    // register slots are 8 bytes
153                                    // wide, 32 floating-point
154                                    // registers
155      oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots),
156                                r->as_VMReg());
157    }
158  }
159
160  for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) {
161    FloatRegister r = as_FloatRegister(i);
162    int sp_offset = save_vectors ? (4 * i) : (2 * i);
163    oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
164                              r->as_VMReg());
165  }
166
167  return oop_map;
168}
169
170void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
171#ifndef COMPILER2
172  assert(!restore_vectors, "vectors are generated only by C2 and JVMCI");
173#endif
174  __ pop_CPU_state(restore_vectors);
175  __ leave();
176}
177
178void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
179
180  // Just restore result register. Only used by deoptimization. By
181  // now any callee save register that needs to be restored to a c2
182  // caller of the deoptee has been extracted into the vframeArray
183  // and will be stuffed into the c2i adapter we create for later
184  // restoration so only result registers need to be restored here.
185
186  // Restore fp result register
187  __ ldrd(v0, Address(sp, v0_offset_in_bytes()));
188  // Restore integer result register
189  __ ldr(r0, Address(sp, r0_offset_in_bytes()));
190
191  // Pop all of the register save are off the stack
192  __ add(sp, sp, round_to(return_offset_in_bytes(), 16));
193}
194
195// Is vector's size (in bytes) bigger than a size saved by default?
196// 8 bytes vector registers are saved by default on AArch64.
197bool SharedRuntime::is_wide_vector(int size) {
198  return size > 8;
199}
200// The java_calling_convention describes stack locations as ideal slots on
201// a frame with no abi restrictions. Since we must observe abi restrictions
202// (like the placement of the register window) the slots must be biased by
203// the following value.
204static int reg2offset_in(VMReg r) {
205  // Account for saved rfp and lr
206  // This should really be in_preserve_stack_slots
207  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
208}
209
210static int reg2offset_out(VMReg r) {
211  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
212}
213
214template <class T> static const T& min (const T& a, const T& b) {
215  return (a > b) ? b : a;
216}
217
218// ---------------------------------------------------------------------------
219// Read the array of BasicTypes from a signature, and compute where the
220// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
221// quantities.  Values less than VMRegImpl::stack0 are registers, those above
222// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
223// as framesizes are fixed.
224// VMRegImpl::stack0 refers to the first slot 0(sp).
225// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
226// up to RegisterImpl::number_of_registers) are the 64-bit
227// integer registers.
228
229// Note: the INPUTS in sig_bt are in units of Java argument words,
230// which are 64-bit.  The OUTPUTS are in 32-bit units.
231
232// The Java calling convention is a "shifted" version of the C ABI.
233// By skipping the first C ABI register we can call non-static jni
234// methods with small numbers of arguments without having to shuffle
235// the arguments at all. Since we control the java ABI we ought to at
236// least get some advantage out of it.
237
238int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
239                                           VMRegPair *regs,
240                                           int total_args_passed,
241                                           int is_outgoing) {
242
243  // Create the mapping between argument positions and
244  // registers.
245  static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
246    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
247  };
248  static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
249    j_farg0, j_farg1, j_farg2, j_farg3,
250    j_farg4, j_farg5, j_farg6, j_farg7
251  };
252
253
254  uint int_args = 0;
255  uint fp_args = 0;
256  uint stk_args = 0; // inc by 2 each time
257
258  for (int i = 0; i < total_args_passed; i++) {
259    switch (sig_bt[i]) {
260    case T_BOOLEAN:
261    case T_CHAR:
262    case T_BYTE:
263    case T_SHORT:
264    case T_INT:
265      if (int_args < Argument::n_int_register_parameters_j) {
266        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
267      } else {
268        regs[i].set1(VMRegImpl::stack2reg(stk_args));
269        stk_args += 2;
270      }
271      break;
272    case T_VOID:
273      // halves of T_LONG or T_DOUBLE
274      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
275      regs[i].set_bad();
276      break;
277    case T_LONG:
278      assert(sig_bt[i + 1] == T_VOID, "expecting half");
279      // fall through
280    case T_OBJECT:
281    case T_ARRAY:
282    case T_ADDRESS:
283      if (int_args < Argument::n_int_register_parameters_j) {
284        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
285      } else {
286        regs[i].set2(VMRegImpl::stack2reg(stk_args));
287        stk_args += 2;
288      }
289      break;
290    case T_FLOAT:
291      if (fp_args < Argument::n_float_register_parameters_j) {
292        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
293      } else {
294        regs[i].set1(VMRegImpl::stack2reg(stk_args));
295        stk_args += 2;
296      }
297      break;
298    case T_DOUBLE:
299      assert(sig_bt[i + 1] == T_VOID, "expecting half");
300      if (fp_args < Argument::n_float_register_parameters_j) {
301        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
302      } else {
303        regs[i].set2(VMRegImpl::stack2reg(stk_args));
304        stk_args += 2;
305      }
306      break;
307    default:
308      ShouldNotReachHere();
309      break;
310    }
311  }
312
313  return round_to(stk_args, 2);
314}
315
316// Patch the callers callsite with entry to compiled code if it exists.
317static void patch_callers_callsite(MacroAssembler *masm) {
318  Label L;
319  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
320  __ cbz(rscratch1, L);
321
322  __ enter();
323  __ push_CPU_state();
324
325  // VM needs caller's callsite
326  // VM needs target method
327  // This needs to be a long call since we will relocate this adapter to
328  // the codeBuffer and it may not reach
329
330#ifndef PRODUCT
331  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
332#endif
333
334  __ mov(c_rarg0, rmethod);
335  __ mov(c_rarg1, lr);
336  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
337  __ blrt(rscratch1, 2, 0, 0);
338  __ maybe_isb();
339
340  __ pop_CPU_state();
341  // restore sp
342  __ leave();
343  __ bind(L);
344}
345
346static void gen_c2i_adapter(MacroAssembler *masm,
347                            int total_args_passed,
348                            int comp_args_on_stack,
349                            const BasicType *sig_bt,
350                            const VMRegPair *regs,
351                            Label& skip_fixup) {
352  // Before we get into the guts of the C2I adapter, see if we should be here
353  // at all.  We've come from compiled code and are attempting to jump to the
354  // interpreter, which means the caller made a static call to get here
355  // (vcalls always get a compiled target if there is one).  Check for a
356  // compiled target.  If there is one, we need to patch the caller's call.
357  patch_callers_callsite(masm);
358
359  __ bind(skip_fixup);
360
361  int words_pushed = 0;
362
363  // Since all args are passed on the stack, total_args_passed *
364  // Interpreter::stackElementSize is the space we need.
365
366  int extraspace = total_args_passed * Interpreter::stackElementSize;
367
368  __ mov(r13, sp);
369
370  // stack is aligned, keep it that way
371  extraspace = round_to(extraspace, 2*wordSize);
372
373  if (extraspace)
374    __ sub(sp, sp, extraspace);
375
376  // Now write the args into the outgoing interpreter space
377  for (int i = 0; i < total_args_passed; i++) {
378    if (sig_bt[i] == T_VOID) {
379      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
380      continue;
381    }
382
383    // offset to start parameters
384    int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
385    int next_off = st_off - Interpreter::stackElementSize;
386
387    // Say 4 args:
388    // i   st_off
389    // 0   32 T_LONG
390    // 1   24 T_VOID
391    // 2   16 T_OBJECT
392    // 3    8 T_BOOL
393    // -    0 return address
394    //
395    // However to make thing extra confusing. Because we can fit a long/double in
396    // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
397    // leaves one slot empty and only stores to a single slot. In this case the
398    // slot that is occupied is the T_VOID slot. See I said it was confusing.
399
400    VMReg r_1 = regs[i].first();
401    VMReg r_2 = regs[i].second();
402    if (!r_1->is_valid()) {
403      assert(!r_2->is_valid(), "");
404      continue;
405    }
406    if (r_1->is_stack()) {
407      // memory to memory use rscratch1
408      int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
409                    + extraspace
410                    + words_pushed * wordSize);
411      if (!r_2->is_valid()) {
412        // sign extend??
413        __ ldrw(rscratch1, Address(sp, ld_off));
414        __ str(rscratch1, Address(sp, st_off));
415
416      } else {
417
418        __ ldr(rscratch1, Address(sp, ld_off));
419
420        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
421        // T_DOUBLE and T_LONG use two slots in the interpreter
422        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
423          // ld_off == LSW, ld_off+wordSize == MSW
424          // st_off == MSW, next_off == LSW
425          __ str(rscratch1, Address(sp, next_off));
426#ifdef ASSERT
427          // Overwrite the unused slot with known junk
428          __ mov(rscratch1, 0xdeadffffdeadaaaaul);
429          __ str(rscratch1, Address(sp, st_off));
430#endif /* ASSERT */
431        } else {
432          __ str(rscratch1, Address(sp, st_off));
433        }
434      }
435    } else if (r_1->is_Register()) {
436      Register r = r_1->as_Register();
437      if (!r_2->is_valid()) {
438        // must be only an int (or less ) so move only 32bits to slot
439        // why not sign extend??
440        __ str(r, Address(sp, st_off));
441      } else {
442        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
443        // T_DOUBLE and T_LONG use two slots in the interpreter
444        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
445          // long/double in gpr
446#ifdef ASSERT
447          // Overwrite the unused slot with known junk
448          __ mov(rscratch1, 0xdeadffffdeadaaabul);
449          __ str(rscratch1, Address(sp, st_off));
450#endif /* ASSERT */
451          __ str(r, Address(sp, next_off));
452        } else {
453          __ str(r, Address(sp, st_off));
454        }
455      }
456    } else {
457      assert(r_1->is_FloatRegister(), "");
458      if (!r_2->is_valid()) {
459        // only a float use just part of the slot
460        __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
461      } else {
462#ifdef ASSERT
463        // Overwrite the unused slot with known junk
464        __ mov(rscratch1, 0xdeadffffdeadaaacul);
465        __ str(rscratch1, Address(sp, st_off));
466#endif /* ASSERT */
467        __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
468      }
469    }
470  }
471
472  __ mov(esp, sp); // Interp expects args on caller's expression stack
473
474  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
475  __ br(rscratch1);
476}
477
478
479void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
480                                    int total_args_passed,
481                                    int comp_args_on_stack,
482                                    const BasicType *sig_bt,
483                                    const VMRegPair *regs) {
484
485  // Note: r13 contains the senderSP on entry. We must preserve it since
486  // we may do a i2c -> c2i transition if we lose a race where compiled
487  // code goes non-entrant while we get args ready.
488
489  // In addition we use r13 to locate all the interpreter args because
490  // we must align the stack to 16 bytes.
491
492  // Adapters are frameless.
493
494  // An i2c adapter is frameless because the *caller* frame, which is
495  // interpreted, routinely repairs its own esp (from
496  // interpreter_frame_last_sp), even if a callee has modified the
497  // stack pointer.  It also recalculates and aligns sp.
498
499  // A c2i adapter is frameless because the *callee* frame, which is
500  // interpreted, routinely repairs its caller's sp (from sender_sp,
501  // which is set up via the senderSP register).
502
503  // In other words, if *either* the caller or callee is interpreted, we can
504  // get the stack pointer repaired after a call.
505
506  // This is why c2i and i2c adapters cannot be indefinitely composed.
507  // In particular, if a c2i adapter were to somehow call an i2c adapter,
508  // both caller and callee would be compiled methods, and neither would
509  // clean up the stack pointer changes performed by the two adapters.
510  // If this happens, control eventually transfers back to the compiled
511  // caller, but with an uncorrected stack, causing delayed havoc.
512
513  if (VerifyAdapterCalls &&
514      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
515#if 0
516    // So, let's test for cascading c2i/i2c adapters right now.
517    //  assert(Interpreter::contains($return_addr) ||
518    //         StubRoutines::contains($return_addr),
519    //         "i2c adapter must return to an interpreter frame");
520    __ block_comment("verify_i2c { ");
521    Label L_ok;
522    if (Interpreter::code() != NULL)
523      range_check(masm, rax, r11,
524                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
525                  L_ok);
526    if (StubRoutines::code1() != NULL)
527      range_check(masm, rax, r11,
528                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
529                  L_ok);
530    if (StubRoutines::code2() != NULL)
531      range_check(masm, rax, r11,
532                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
533                  L_ok);
534    const char* msg = "i2c adapter must return to an interpreter frame";
535    __ block_comment(msg);
536    __ stop(msg);
537    __ bind(L_ok);
538    __ block_comment("} verify_i2ce ");
539#endif
540  }
541
542  // Cut-out for having no stack args.
543  int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
544  if (comp_args_on_stack) {
545    __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
546    __ andr(sp, rscratch1, -16);
547  }
548
549  // Will jump to the compiled code just as if compiled code was doing it.
550  // Pre-load the register-jump target early, to schedule it better.
551  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
552
553#if INCLUDE_JVMCI
554  if (EnableJVMCI) {
555    // check if this call should be routed towards a specific entry point
556    __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
557    Label no_alternative_target;
558    __ cbz(rscratch2, no_alternative_target);
559    __ mov(rscratch1, rscratch2);
560    __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
561    __ bind(no_alternative_target);
562  }
563#endif // INCLUDE_JVMCI
564
565  // Now generate the shuffle code.
566  for (int i = 0; i < total_args_passed; i++) {
567    if (sig_bt[i] == T_VOID) {
568      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
569      continue;
570    }
571
572    // Pick up 0, 1 or 2 words from SP+offset.
573
574    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
575            "scrambled load targets?");
576    // Load in argument order going down.
577    int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
578    // Point to interpreter value (vs. tag)
579    int next_off = ld_off - Interpreter::stackElementSize;
580    //
581    //
582    //
583    VMReg r_1 = regs[i].first();
584    VMReg r_2 = regs[i].second();
585    if (!r_1->is_valid()) {
586      assert(!r_2->is_valid(), "");
587      continue;
588    }
589    if (r_1->is_stack()) {
590      // Convert stack slot to an SP offset (+ wordSize to account for return address )
591      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
592      if (!r_2->is_valid()) {
593        // sign extend???
594        __ ldrsw(rscratch2, Address(esp, ld_off));
595        __ str(rscratch2, Address(sp, st_off));
596      } else {
597        //
598        // We are using two optoregs. This can be either T_OBJECT,
599        // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
600        // two slots but only uses one for thr T_LONG or T_DOUBLE case
601        // So we must adjust where to pick up the data to match the
602        // interpreter.
603        //
604        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
605        // are accessed as negative so LSW is at LOW address
606
607        // ld_off is MSW so get LSW
608        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
609                           next_off : ld_off;
610        __ ldr(rscratch2, Address(esp, offset));
611        // st_off is LSW (i.e. reg.first())
612        __ str(rscratch2, Address(sp, st_off));
613      }
614    } else if (r_1->is_Register()) {  // Register argument
615      Register r = r_1->as_Register();
616      if (r_2->is_valid()) {
617        //
618        // We are using two VMRegs. This can be either T_OBJECT,
619        // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
620        // two slots but only uses one for thr T_LONG or T_DOUBLE case
621        // So we must adjust where to pick up the data to match the
622        // interpreter.
623
624        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
625                           next_off : ld_off;
626
627        // this can be a misaligned move
628        __ ldr(r, Address(esp, offset));
629      } else {
630        // sign extend and use a full word?
631        __ ldrw(r, Address(esp, ld_off));
632      }
633    } else {
634      if (!r_2->is_valid()) {
635        __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
636      } else {
637        __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
638      }
639    }
640  }
641
642  // 6243940 We might end up in handle_wrong_method if
643  // the callee is deoptimized as we race thru here. If that
644  // happens we don't want to take a safepoint because the
645  // caller frame will look interpreted and arguments are now
646  // "compiled" so it is much better to make this transition
647  // invisible to the stack walking code. Unfortunately if
648  // we try and find the callee by normal means a safepoint
649  // is possible. So we stash the desired callee in the thread
650  // and the vm will find there should this case occur.
651
652  __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
653
654  __ br(rscratch1);
655}
656
657#ifdef BUILTIN_SIM
658static void generate_i2c_adapter_name(char *result, int total_args_passed, const BasicType *sig_bt)
659{
660  strcpy(result, "i2c(");
661  int idx = 4;
662  for (int i = 0; i < total_args_passed; i++) {
663    switch(sig_bt[i]) {
664    case T_BOOLEAN:
665      result[idx++] = 'Z';
666      break;
667    case T_CHAR:
668      result[idx++] = 'C';
669      break;
670    case T_FLOAT:
671      result[idx++] = 'F';
672      break;
673    case T_DOUBLE:
674      assert((i < (total_args_passed - 1)) && (sig_bt[i+1] == T_VOID),
675             "double must be followed by void");
676      i++;
677      result[idx++] = 'D';
678      break;
679    case T_BYTE:
680      result[idx++] = 'B';
681      break;
682    case T_SHORT:
683      result[idx++] = 'S';
684      break;
685    case T_INT:
686      result[idx++] = 'I';
687      break;
688    case T_LONG:
689      assert((i < (total_args_passed - 1)) && (sig_bt[i+1] == T_VOID),
690             "long must be followed by void");
691      i++;
692      result[idx++] = 'L';
693      break;
694    case T_OBJECT:
695      result[idx++] = 'O';
696      break;
697    case T_ARRAY:
698      result[idx++] = '[';
699      break;
700    case T_ADDRESS:
701      result[idx++] = 'P';
702      break;
703    case T_NARROWOOP:
704      result[idx++] = 'N';
705      break;
706    case T_METADATA:
707      result[idx++] = 'M';
708      break;
709    case T_NARROWKLASS:
710      result[idx++] = 'K';
711      break;
712    default:
713      result[idx++] = '?';
714      break;
715    }
716  }
717  result[idx++] = ')';
718  result[idx] = '\0';
719}
720#endif
721
722// ---------------------------------------------------------------
723AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
724                                                            int total_args_passed,
725                                                            int comp_args_on_stack,
726                                                            const BasicType *sig_bt,
727                                                            const VMRegPair *regs,
728                                                            AdapterFingerPrint* fingerprint) {
729  address i2c_entry = __ pc();
730#ifdef BUILTIN_SIM
731  char *name = NULL;
732  AArch64Simulator *sim = NULL;
733  size_t len = 65536;
734  if (NotifySimulator) {
735    name = NEW_C_HEAP_ARRAY(char, len, mtInternal);
736  }
737
738  if (name) {
739    generate_i2c_adapter_name(name, total_args_passed, sig_bt);
740    sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
741    sim->notifyCompile(name, i2c_entry);
742  }
743#endif
744  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
745
746  address c2i_unverified_entry = __ pc();
747  Label skip_fixup;
748
749  Label ok;
750
751  Register holder = rscratch2;
752  Register receiver = j_rarg0;
753  Register tmp = r10;  // A call-clobbered register not used for arg passing
754
755  // -------------------------------------------------------------------------
756  // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
757  // to the interpreter.  The args start out packed in the compiled layout.  They
758  // need to be unpacked into the interpreter layout.  This will almost always
759  // require some stack space.  We grow the current (compiled) stack, then repack
760  // the args.  We  finally end in a jump to the generic interpreter entry point.
761  // On exit from the interpreter, the interpreter will restore our SP (lest the
762  // compiled code, which relys solely on SP and not FP, get sick).
763
764  {
765    __ block_comment("c2i_unverified_entry {");
766    __ load_klass(rscratch1, receiver);
767    __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset()));
768    __ cmp(rscratch1, tmp);
769    __ ldr(rmethod, Address(holder, CompiledICHolder::holder_method_offset()));
770    __ br(Assembler::EQ, ok);
771    __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
772
773    __ bind(ok);
774    // Method might have been compiled since the call site was patched to
775    // interpreted; if that is the case treat it as a miss so we can get
776    // the call site corrected.
777    __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
778    __ cbz(rscratch1, skip_fixup);
779    __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
780    __ block_comment("} c2i_unverified_entry");
781  }
782
783  address c2i_entry = __ pc();
784
785#ifdef BUILTIN_SIM
786  if (name) {
787    name[0] = 'c';
788    name[2] = 'i';
789    sim->notifyCompile(name, c2i_entry);
790    FREE_C_HEAP_ARRAY(char, name, mtInternal);
791  }
792#endif
793
794  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
795
796  __ flush();
797  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
798}
799
800int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
801                                         VMRegPair *regs,
802                                         VMRegPair *regs2,
803                                         int total_args_passed) {
804  assert(regs2 == NULL, "not needed on AArch64");
805
806// We return the amount of VMRegImpl stack slots we need to reserve for all
807// the arguments NOT counting out_preserve_stack_slots.
808
809    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
810      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
811    };
812    static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
813      c_farg0, c_farg1, c_farg2, c_farg3,
814      c_farg4, c_farg5, c_farg6, c_farg7
815    };
816
817    uint int_args = 0;
818    uint fp_args = 0;
819    uint stk_args = 0; // inc by 2 each time
820
821    for (int i = 0; i < total_args_passed; i++) {
822      switch (sig_bt[i]) {
823      case T_BOOLEAN:
824      case T_CHAR:
825      case T_BYTE:
826      case T_SHORT:
827      case T_INT:
828        if (int_args < Argument::n_int_register_parameters_c) {
829          regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
830        } else {
831          regs[i].set1(VMRegImpl::stack2reg(stk_args));
832          stk_args += 2;
833        }
834        break;
835      case T_LONG:
836        assert(sig_bt[i + 1] == T_VOID, "expecting half");
837        // fall through
838      case T_OBJECT:
839      case T_ARRAY:
840      case T_ADDRESS:
841      case T_METADATA:
842        if (int_args < Argument::n_int_register_parameters_c) {
843          regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
844        } else {
845          regs[i].set2(VMRegImpl::stack2reg(stk_args));
846          stk_args += 2;
847        }
848        break;
849      case T_FLOAT:
850        if (fp_args < Argument::n_float_register_parameters_c) {
851          regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
852        } else {
853          regs[i].set1(VMRegImpl::stack2reg(stk_args));
854          stk_args += 2;
855        }
856        break;
857      case T_DOUBLE:
858        assert(sig_bt[i + 1] == T_VOID, "expecting half");
859        if (fp_args < Argument::n_float_register_parameters_c) {
860          regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
861        } else {
862          regs[i].set2(VMRegImpl::stack2reg(stk_args));
863          stk_args += 2;
864        }
865        break;
866      case T_VOID: // Halves of longs and doubles
867        assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
868        regs[i].set_bad();
869        break;
870      default:
871        ShouldNotReachHere();
872        break;
873      }
874    }
875
876  return stk_args;
877}
878
879// On 64 bit we will store integer like items to the stack as
880// 64 bits items (sparc abi) even though java would only store
881// 32bits for a parameter. On 32bit it will simply be 32 bits
882// So this routine will do 32->32 on 32bit and 32->64 on 64bit
883static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
884  if (src.first()->is_stack()) {
885    if (dst.first()->is_stack()) {
886      // stack to stack
887      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
888      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
889    } else {
890      // stack to reg
891      __ ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
892    }
893  } else if (dst.first()->is_stack()) {
894    // reg to stack
895    // Do we really have to sign extend???
896    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
897    __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
898  } else {
899    if (dst.first() != src.first()) {
900      __ sxtw(dst.first()->as_Register(), src.first()->as_Register());
901    }
902  }
903}
904
905// An oop arg. Must pass a handle not the oop itself
906static void object_move(MacroAssembler* masm,
907                        OopMap* map,
908                        int oop_handle_offset,
909                        int framesize_in_slots,
910                        VMRegPair src,
911                        VMRegPair dst,
912                        bool is_receiver,
913                        int* receiver_offset) {
914
915  // must pass a handle. First figure out the location we use as a handle
916
917  Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
918
919  // See if oop is NULL if it is we need no handle
920
921  if (src.first()->is_stack()) {
922
923    // Oop is already on the stack as an argument
924    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
925    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
926    if (is_receiver) {
927      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
928    }
929
930    __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
931    __ lea(rHandle, Address(rfp, reg2offset_in(src.first())));
932    // conditionally move a NULL
933    __ cmp(rscratch1, zr);
934    __ csel(rHandle, zr, rHandle, Assembler::EQ);
935  } else {
936
937    // Oop is in an a register we must store it to the space we reserve
938    // on the stack for oop_handles and pass a handle if oop is non-NULL
939
940    const Register rOop = src.first()->as_Register();
941    int oop_slot;
942    if (rOop == j_rarg0)
943      oop_slot = 0;
944    else if (rOop == j_rarg1)
945      oop_slot = 1;
946    else if (rOop == j_rarg2)
947      oop_slot = 2;
948    else if (rOop == j_rarg3)
949      oop_slot = 3;
950    else if (rOop == j_rarg4)
951      oop_slot = 4;
952    else if (rOop == j_rarg5)
953      oop_slot = 5;
954    else if (rOop == j_rarg6)
955      oop_slot = 6;
956    else {
957      assert(rOop == j_rarg7, "wrong register");
958      oop_slot = 7;
959    }
960
961    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
962    int offset = oop_slot*VMRegImpl::stack_slot_size;
963
964    map->set_oop(VMRegImpl::stack2reg(oop_slot));
965    // Store oop in handle area, may be NULL
966    __ str(rOop, Address(sp, offset));
967    if (is_receiver) {
968      *receiver_offset = offset;
969    }
970
971    __ cmp(rOop, zr);
972    __ lea(rHandle, Address(sp, offset));
973    // conditionally move a NULL
974    __ csel(rHandle, zr, rHandle, Assembler::EQ);
975  }
976
977  // If arg is on the stack then place it otherwise it is already in correct reg.
978  if (dst.first()->is_stack()) {
979    __ str(rHandle, Address(sp, reg2offset_out(dst.first())));
980  }
981}
982
983// A float arg may have to do float reg int reg conversion
984static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
985  if (src.first() != dst.first()) {
986    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
987      __ fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
988    else
989      ShouldNotReachHere();
990  }
991}
992
993// A long move
994static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
995  if (src.first()->is_stack()) {
996    if (dst.first()->is_stack()) {
997      // stack to stack
998      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
999      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
1000    } else {
1001      // stack to reg
1002      __ ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
1003    }
1004  } else if (dst.first()->is_stack()) {
1005    // reg to stack
1006    // Do we really have to sign extend???
1007    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1008    __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
1009  } else {
1010    if (dst.first() != src.first()) {
1011      __ mov(dst.first()->as_Register(), src.first()->as_Register());
1012    }
1013  }
1014}
1015
1016
1017// A double move
1018static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1019  if (src.first() != dst.first()) {
1020    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
1021      __ fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1022    else
1023      ShouldNotReachHere();
1024  }
1025}
1026
1027
1028void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1029  // We always ignore the frame_slots arg and just use the space just below frame pointer
1030  // which by this time is free to use
1031  switch (ret_type) {
1032  case T_FLOAT:
1033    __ strs(v0, Address(rfp, -wordSize));
1034    break;
1035  case T_DOUBLE:
1036    __ strd(v0, Address(rfp, -wordSize));
1037    break;
1038  case T_VOID:  break;
1039  default: {
1040    __ str(r0, Address(rfp, -wordSize));
1041    }
1042  }
1043}
1044
1045void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1046  // We always ignore the frame_slots arg and just use the space just below frame pointer
1047  // which by this time is free to use
1048  switch (ret_type) {
1049  case T_FLOAT:
1050    __ ldrs(v0, Address(rfp, -wordSize));
1051    break;
1052  case T_DOUBLE:
1053    __ ldrd(v0, Address(rfp, -wordSize));
1054    break;
1055  case T_VOID:  break;
1056  default: {
1057    __ ldr(r0, Address(rfp, -wordSize));
1058    }
1059  }
1060}
1061static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1062  RegSet x;
1063  for ( int i = first_arg ; i < arg_count ; i++ ) {
1064    if (args[i].first()->is_Register()) {
1065      x = x + args[i].first()->as_Register();
1066    } else if (args[i].first()->is_FloatRegister()) {
1067      __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
1068    }
1069  }
1070  __ push(x, sp);
1071}
1072
1073static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1074  RegSet x;
1075  for ( int i = first_arg ; i < arg_count ; i++ ) {
1076    if (args[i].first()->is_Register()) {
1077      x = x + args[i].first()->as_Register();
1078    } else {
1079      ;
1080    }
1081  }
1082  __ pop(x, sp);
1083  for ( int i = first_arg ; i < arg_count ; i++ ) {
1084    if (args[i].first()->is_Register()) {
1085      ;
1086    } else if (args[i].first()->is_FloatRegister()) {
1087      __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
1088    }
1089  }
1090}
1091
1092
1093// Check GC_locker::needs_gc and enter the runtime if it's true.  This
1094// keeps a new JNI critical region from starting until a GC has been
1095// forced.  Save down any oops in registers and describe them in an
1096// OopMap.
1097static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1098                                               int stack_slots,
1099                                               int total_c_args,
1100                                               int total_in_args,
1101                                               int arg_save_area,
1102                                               OopMapSet* oop_maps,
1103                                               VMRegPair* in_regs,
1104                                               BasicType* in_sig_bt) { Unimplemented(); }
1105
1106// Unpack an array argument into a pointer to the body and the length
1107// if the array is non-null, otherwise pass 0 for both.
1108static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); }
1109
1110
1111class ComputeMoveOrder: public StackObj {
1112  class MoveOperation: public ResourceObj {
1113    friend class ComputeMoveOrder;
1114   private:
1115    VMRegPair        _src;
1116    VMRegPair        _dst;
1117    int              _src_index;
1118    int              _dst_index;
1119    bool             _processed;
1120    MoveOperation*  _next;
1121    MoveOperation*  _prev;
1122
1123    static int get_id(VMRegPair r) { Unimplemented(); return 0; }
1124
1125   public:
1126    MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1127      _src(src)
1128    , _src_index(src_index)
1129    , _dst(dst)
1130    , _dst_index(dst_index)
1131    , _next(NULL)
1132    , _prev(NULL)
1133    , _processed(false) { Unimplemented(); }
1134
1135    VMRegPair src() const              { Unimplemented(); return _src; }
1136    int src_id() const                 { Unimplemented(); return 0; }
1137    int src_index() const              { Unimplemented(); return 0; }
1138    VMRegPair dst() const              { Unimplemented(); return _src; }
1139    void set_dst(int i, VMRegPair dst) { Unimplemented(); }
1140    int dst_index() const              { Unimplemented(); return 0; }
1141    int dst_id() const                 { Unimplemented(); return 0; }
1142    MoveOperation* next() const        { Unimplemented(); return 0; }
1143    MoveOperation* prev() const        { Unimplemented(); return 0; }
1144    void set_processed()               { Unimplemented(); }
1145    bool is_processed() const          { Unimplemented(); return 0; }
1146
1147    // insert
1148    void break_cycle(VMRegPair temp_register) { Unimplemented(); }
1149
1150    void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); }
1151  };
1152
1153 private:
1154  GrowableArray<MoveOperation*> edges;
1155
1156 public:
1157  ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1158                    BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); }
1159
1160  // Collected all the move operations
1161  void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); }
1162
1163  // Walk the edges breaking cycles between moves.  The result list
1164  // can be walked in order to produce the proper set of loads
1165  GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; }
1166};
1167
1168
1169static void rt_call(MacroAssembler* masm, address dest, int gpargs, int fpargs, int type) {
1170  CodeBlob *cb = CodeCache::find_blob(dest);
1171  if (cb) {
1172    __ far_call(RuntimeAddress(dest));
1173  } else {
1174    assert((unsigned)gpargs < 256, "eek!");
1175    assert((unsigned)fpargs < 32, "eek!");
1176    __ lea(rscratch1, RuntimeAddress(dest));
1177    if (UseBuiltinSim)   __ mov(rscratch2, (gpargs << 6) | (fpargs << 2) | type);
1178    __ blrt(rscratch1, rscratch2);
1179    __ maybe_isb();
1180  }
1181}
1182
1183static void verify_oop_args(MacroAssembler* masm,
1184                            methodHandle method,
1185                            const BasicType* sig_bt,
1186                            const VMRegPair* regs) {
1187  Register temp_reg = r19;  // not part of any compiled calling seq
1188  if (VerifyOops) {
1189    for (int i = 0; i < method->size_of_parameters(); i++) {
1190      if (sig_bt[i] == T_OBJECT ||
1191          sig_bt[i] == T_ARRAY) {
1192        VMReg r = regs[i].first();
1193        assert(r->is_valid(), "bad oop arg");
1194        if (r->is_stack()) {
1195          __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1196          __ verify_oop(temp_reg);
1197        } else {
1198          __ verify_oop(r->as_Register());
1199        }
1200      }
1201    }
1202  }
1203}
1204
1205static void gen_special_dispatch(MacroAssembler* masm,
1206                                 methodHandle method,
1207                                 const BasicType* sig_bt,
1208                                 const VMRegPair* regs) {
1209  verify_oop_args(masm, method, sig_bt, regs);
1210  vmIntrinsics::ID iid = method->intrinsic_id();
1211
1212  // Now write the args into the outgoing interpreter space
1213  bool     has_receiver   = false;
1214  Register receiver_reg   = noreg;
1215  int      member_arg_pos = -1;
1216  Register member_reg     = noreg;
1217  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1218  if (ref_kind != 0) {
1219    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1220    member_reg = r19;  // known to be free at this point
1221    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1222  } else if (iid == vmIntrinsics::_invokeBasic) {
1223    has_receiver = true;
1224  } else {
1225    fatal("unexpected intrinsic id %d", iid);
1226  }
1227
1228  if (member_reg != noreg) {
1229    // Load the member_arg into register, if necessary.
1230    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1231    VMReg r = regs[member_arg_pos].first();
1232    if (r->is_stack()) {
1233      __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1234    } else {
1235      // no data motion is needed
1236      member_reg = r->as_Register();
1237    }
1238  }
1239
1240  if (has_receiver) {
1241    // Make sure the receiver is loaded into a register.
1242    assert(method->size_of_parameters() > 0, "oob");
1243    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1244    VMReg r = regs[0].first();
1245    assert(r->is_valid(), "bad receiver arg");
1246    if (r->is_stack()) {
1247      // Porting note:  This assumes that compiled calling conventions always
1248      // pass the receiver oop in a register.  If this is not true on some
1249      // platform, pick a temp and load the receiver from stack.
1250      fatal("receiver always in a register");
1251      receiver_reg = r2;  // known to be free at this point
1252      __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1253    } else {
1254      // no data motion is needed
1255      receiver_reg = r->as_Register();
1256    }
1257  }
1258
1259  // Figure out which address we are really jumping to:
1260  MethodHandles::generate_method_handle_dispatch(masm, iid,
1261                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1262}
1263
1264// ---------------------------------------------------------------------------
1265// Generate a native wrapper for a given method.  The method takes arguments
1266// in the Java compiled code convention, marshals them to the native
1267// convention (handlizes oops, etc), transitions to native, makes the call,
1268// returns to java state (possibly blocking), unhandlizes any result and
1269// returns.
1270//
1271// Critical native functions are a shorthand for the use of
1272// GetPrimtiveArrayCritical and disallow the use of any other JNI
1273// functions.  The wrapper is expected to unpack the arguments before
1274// passing them to the callee and perform checks before and after the
1275// native call to ensure that they GC_locker
1276// lock_critical/unlock_critical semantics are followed.  Some other
1277// parts of JNI setup are skipped like the tear down of the JNI handle
1278// block and the check for pending exceptions it's impossible for them
1279// to be thrown.
1280//
1281// They are roughly structured like this:
1282//    if (GC_locker::needs_gc())
1283//      SharedRuntime::block_for_jni_critical();
1284//    tranistion to thread_in_native
1285//    unpack arrray arguments and call native entry point
1286//    check for safepoint in progress
1287//    check if any thread suspend flags are set
1288//      call into JVM and possible unlock the JNI critical
1289//      if a GC was suppressed while in the critical native.
1290//    transition back to thread_in_Java
1291//    return to caller
1292//
1293nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1294                                                const methodHandle& method,
1295                                                int compile_id,
1296                                                BasicType* in_sig_bt,
1297                                                VMRegPair* in_regs,
1298                                                BasicType ret_type) {
1299#ifdef BUILTIN_SIM
1300  if (NotifySimulator) {
1301    // Names are up to 65536 chars long.  UTF8-coded strings are up to
1302    // 3 bytes per character.  We concatenate three such strings.
1303    // Yes, I know this is ridiculous, but it's debug code and glibc
1304    // allocates large arrays very efficiently.
1305    size_t len = (65536 * 3) * 3;
1306    char *name = new char[len];
1307
1308    strncpy(name, method()->method_holder()->name()->as_utf8(), len);
1309    strncat(name, ".", len);
1310    strncat(name, method()->name()->as_utf8(), len);
1311    strncat(name, method()->signature()->as_utf8(), len);
1312    AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck)->notifyCompile(name, __ pc());
1313    delete[] name;
1314  }
1315#endif
1316
1317  if (method->is_method_handle_intrinsic()) {
1318    vmIntrinsics::ID iid = method->intrinsic_id();
1319    intptr_t start = (intptr_t)__ pc();
1320    int vep_offset = ((intptr_t)__ pc()) - start;
1321
1322    // First instruction must be a nop as it may need to be patched on deoptimisation
1323    __ nop();
1324    gen_special_dispatch(masm,
1325                         method,
1326                         in_sig_bt,
1327                         in_regs);
1328    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1329    __ flush();
1330    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1331    return nmethod::new_native_nmethod(method,
1332                                       compile_id,
1333                                       masm->code(),
1334                                       vep_offset,
1335                                       frame_complete,
1336                                       stack_slots / VMRegImpl::slots_per_word,
1337                                       in_ByteSize(-1),
1338                                       in_ByteSize(-1),
1339                                       (OopMapSet*)NULL);
1340  }
1341  bool is_critical_native = true;
1342  address native_func = method->critical_native_function();
1343  if (native_func == NULL) {
1344    native_func = method->native_function();
1345    is_critical_native = false;
1346  }
1347  assert(native_func != NULL, "must have function");
1348
1349  // An OopMap for lock (and class if static)
1350  OopMapSet *oop_maps = new OopMapSet();
1351  intptr_t start = (intptr_t)__ pc();
1352
1353  // We have received a description of where all the java arg are located
1354  // on entry to the wrapper. We need to convert these args to where
1355  // the jni function will expect them. To figure out where they go
1356  // we convert the java signature to a C signature by inserting
1357  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1358
1359  const int total_in_args = method->size_of_parameters();
1360  int total_c_args = total_in_args;
1361  if (!is_critical_native) {
1362    total_c_args += 1;
1363    if (method->is_static()) {
1364      total_c_args++;
1365    }
1366  } else {
1367    for (int i = 0; i < total_in_args; i++) {
1368      if (in_sig_bt[i] == T_ARRAY) {
1369        total_c_args++;
1370      }
1371    }
1372  }
1373
1374  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1375  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1376  BasicType* in_elem_bt = NULL;
1377
1378  int argc = 0;
1379  if (!is_critical_native) {
1380    out_sig_bt[argc++] = T_ADDRESS;
1381    if (method->is_static()) {
1382      out_sig_bt[argc++] = T_OBJECT;
1383    }
1384
1385    for (int i = 0; i < total_in_args ; i++ ) {
1386      out_sig_bt[argc++] = in_sig_bt[i];
1387    }
1388  } else {
1389    Thread* THREAD = Thread::current();
1390    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1391    SignatureStream ss(method->signature());
1392    for (int i = 0; i < total_in_args ; i++ ) {
1393      if (in_sig_bt[i] == T_ARRAY) {
1394        // Arrays are passed as int, elem* pair
1395        out_sig_bt[argc++] = T_INT;
1396        out_sig_bt[argc++] = T_ADDRESS;
1397        Symbol* atype = ss.as_symbol(CHECK_NULL);
1398        const char* at = atype->as_C_string();
1399        if (strlen(at) == 2) {
1400          assert(at[0] == '[', "must be");
1401          switch (at[1]) {
1402            case 'B': in_elem_bt[i]  = T_BYTE; break;
1403            case 'C': in_elem_bt[i]  = T_CHAR; break;
1404            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1405            case 'F': in_elem_bt[i]  = T_FLOAT; break;
1406            case 'I': in_elem_bt[i]  = T_INT; break;
1407            case 'J': in_elem_bt[i]  = T_LONG; break;
1408            case 'S': in_elem_bt[i]  = T_SHORT; break;
1409            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1410            default: ShouldNotReachHere();
1411          }
1412        }
1413      } else {
1414        out_sig_bt[argc++] = in_sig_bt[i];
1415        in_elem_bt[i] = T_VOID;
1416      }
1417      if (in_sig_bt[i] != T_VOID) {
1418        assert(in_sig_bt[i] == ss.type(), "must match");
1419        ss.next();
1420      }
1421    }
1422  }
1423
1424  // Now figure out where the args must be stored and how much stack space
1425  // they require.
1426  int out_arg_slots;
1427  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1428
1429  // Compute framesize for the wrapper.  We need to handlize all oops in
1430  // incoming registers
1431
1432  // Calculate the total number of stack slots we will need.
1433
1434  // First count the abi requirement plus all of the outgoing args
1435  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1436
1437  // Now the space for the inbound oop handle area
1438  int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1439  if (is_critical_native) {
1440    // Critical natives may have to call out so they need a save area
1441    // for register arguments.
1442    int double_slots = 0;
1443    int single_slots = 0;
1444    for ( int i = 0; i < total_in_args; i++) {
1445      if (in_regs[i].first()->is_Register()) {
1446        const Register reg = in_regs[i].first()->as_Register();
1447        switch (in_sig_bt[i]) {
1448          case T_BOOLEAN:
1449          case T_BYTE:
1450          case T_SHORT:
1451          case T_CHAR:
1452          case T_INT:  single_slots++; break;
1453          case T_ARRAY:  // specific to LP64 (7145024)
1454          case T_LONG: double_slots++; break;
1455          default:  ShouldNotReachHere();
1456        }
1457      } else if (in_regs[i].first()->is_FloatRegister()) {
1458        ShouldNotReachHere();
1459      }
1460    }
1461    total_save_slots = double_slots * 2 + single_slots;
1462    // align the save area
1463    if (double_slots != 0) {
1464      stack_slots = round_to(stack_slots, 2);
1465    }
1466  }
1467
1468  int oop_handle_offset = stack_slots;
1469  stack_slots += total_save_slots;
1470
1471  // Now any space we need for handlizing a klass if static method
1472
1473  int klass_slot_offset = 0;
1474  int klass_offset = -1;
1475  int lock_slot_offset = 0;
1476  bool is_static = false;
1477
1478  if (method->is_static()) {
1479    klass_slot_offset = stack_slots;
1480    stack_slots += VMRegImpl::slots_per_word;
1481    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1482    is_static = true;
1483  }
1484
1485  // Plus a lock if needed
1486
1487  if (method->is_synchronized()) {
1488    lock_slot_offset = stack_slots;
1489    stack_slots += VMRegImpl::slots_per_word;
1490  }
1491
1492  // Now a place (+2) to save return values or temp during shuffling
1493  // + 4 for return address (which we own) and saved rfp
1494  stack_slots += 6;
1495
1496  // Ok The space we have allocated will look like:
1497  //
1498  //
1499  // FP-> |                     |
1500  //      |---------------------|
1501  //      | 2 slots for moves   |
1502  //      |---------------------|
1503  //      | lock box (if sync)  |
1504  //      |---------------------| <- lock_slot_offset
1505  //      | klass (if static)   |
1506  //      |---------------------| <- klass_slot_offset
1507  //      | oopHandle area      |
1508  //      |---------------------| <- oop_handle_offset (8 java arg registers)
1509  //      | outbound memory     |
1510  //      | based arguments     |
1511  //      |                     |
1512  //      |---------------------|
1513  //      |                     |
1514  // SP-> | out_preserved_slots |
1515  //
1516  //
1517
1518
1519  // Now compute actual number of stack words we need rounding to make
1520  // stack properly aligned.
1521  stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1522
1523  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1524
1525  // First thing make an ic check to see if we should even be here
1526
1527  // We are free to use all registers as temps without saving them and
1528  // restoring them except rfp. rfp is the only callee save register
1529  // as far as the interpreter and the compiler(s) are concerned.
1530
1531
1532  const Register ic_reg = rscratch2;
1533  const Register receiver = j_rarg0;
1534
1535  Label hit;
1536  Label exception_pending;
1537
1538  assert_different_registers(ic_reg, receiver, rscratch1);
1539  __ verify_oop(receiver);
1540  __ cmp_klass(receiver, ic_reg, rscratch1);
1541  __ br(Assembler::EQ, hit);
1542
1543  __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1544
1545  // Verified entry point must be aligned
1546  __ align(8);
1547
1548  __ bind(hit);
1549
1550  int vep_offset = ((intptr_t)__ pc()) - start;
1551
1552  // If we have to make this method not-entrant we'll overwrite its
1553  // first instruction with a jump.  For this action to be legal we
1554  // must ensure that this first instruction is a B, BL, NOP, BKPT,
1555  // SVC, HVC, or SMC.  Make it a NOP.
1556  __ nop();
1557
1558  // Generate stack overflow check
1559  if (UseStackBanging) {
1560    __ bang_stack_with_offset(JavaThread::stack_shadow_zone_size());
1561  } else {
1562    Unimplemented();
1563  }
1564
1565  // Generate a new frame for the wrapper.
1566  __ enter();
1567  // -2 because return address is already present and so is saved rfp
1568  __ sub(sp, sp, stack_size - 2*wordSize);
1569
1570  // Frame is now completed as far as size and linkage.
1571  int frame_complete = ((intptr_t)__ pc()) - start;
1572
1573  // record entry into native wrapper code
1574  if (NotifySimulator) {
1575    __ notify(Assembler::method_entry);
1576  }
1577
1578  // We use r20 as the oop handle for the receiver/klass
1579  // It is callee save so it survives the call to native
1580
1581  const Register oop_handle_reg = r20;
1582
1583  if (is_critical_native) {
1584    check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
1585                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1586  }
1587
1588  //
1589  // We immediately shuffle the arguments so that any vm call we have to
1590  // make from here on out (sync slow path, jvmti, etc.) we will have
1591  // captured the oops from our caller and have a valid oopMap for
1592  // them.
1593
1594  // -----------------
1595  // The Grand Shuffle
1596
1597  // The Java calling convention is either equal (linux) or denser (win64) than the
1598  // c calling convention. However the because of the jni_env argument the c calling
1599  // convention always has at least one more (and two for static) arguments than Java.
1600  // Therefore if we move the args from java -> c backwards then we will never have
1601  // a register->register conflict and we don't have to build a dependency graph
1602  // and figure out how to break any cycles.
1603  //
1604
1605  // Record esp-based slot for receiver on stack for non-static methods
1606  int receiver_offset = -1;
1607
1608  // This is a trick. We double the stack slots so we can claim
1609  // the oops in the caller's frame. Since we are sure to have
1610  // more args than the caller doubling is enough to make
1611  // sure we can capture all the incoming oop args from the
1612  // caller.
1613  //
1614  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1615
1616  // Mark location of rfp (someday)
1617  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1618
1619
1620  int float_args = 0;
1621  int int_args = 0;
1622
1623#ifdef ASSERT
1624  bool reg_destroyed[RegisterImpl::number_of_registers];
1625  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
1626  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1627    reg_destroyed[r] = false;
1628  }
1629  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
1630    freg_destroyed[f] = false;
1631  }
1632
1633#endif /* ASSERT */
1634
1635  // This may iterate in two different directions depending on the
1636  // kind of native it is.  The reason is that for regular JNI natives
1637  // the incoming and outgoing registers are offset upwards and for
1638  // critical natives they are offset down.
1639  GrowableArray<int> arg_order(2 * total_in_args);
1640  VMRegPair tmp_vmreg;
1641  tmp_vmreg.set1(r19->as_VMReg());
1642
1643  if (!is_critical_native) {
1644    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1645      arg_order.push(i);
1646      arg_order.push(c_arg);
1647    }
1648  } else {
1649    // Compute a valid move order, using tmp_vmreg to break any cycles
1650    ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
1651  }
1652
1653  int temploc = -1;
1654  for (int ai = 0; ai < arg_order.length(); ai += 2) {
1655    int i = arg_order.at(ai);
1656    int c_arg = arg_order.at(ai + 1);
1657    __ block_comment(err_msg("move %d -> %d", i, c_arg));
1658    if (c_arg == -1) {
1659      assert(is_critical_native, "should only be required for critical natives");
1660      // This arg needs to be moved to a temporary
1661      __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
1662      in_regs[i] = tmp_vmreg;
1663      temploc = i;
1664      continue;
1665    } else if (i == -1) {
1666      assert(is_critical_native, "should only be required for critical natives");
1667      // Read from the temporary location
1668      assert(temploc != -1, "must be valid");
1669      i = temploc;
1670      temploc = -1;
1671    }
1672#ifdef ASSERT
1673    if (in_regs[i].first()->is_Register()) {
1674      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1675    } else if (in_regs[i].first()->is_FloatRegister()) {
1676      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1677    }
1678    if (out_regs[c_arg].first()->is_Register()) {
1679      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1680    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1681      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1682    }
1683#endif /* ASSERT */
1684    switch (in_sig_bt[i]) {
1685      case T_ARRAY:
1686        if (is_critical_native) {
1687          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1688          c_arg++;
1689#ifdef ASSERT
1690          if (out_regs[c_arg].first()->is_Register()) {
1691            reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1692          } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1693            freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1694          }
1695#endif
1696          int_args++;
1697          break;
1698        }
1699      case T_OBJECT:
1700        assert(!is_critical_native, "no oop arguments");
1701        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1702                    ((i == 0) && (!is_static)),
1703                    &receiver_offset);
1704        int_args++;
1705        break;
1706      case T_VOID:
1707        break;
1708
1709      case T_FLOAT:
1710        float_move(masm, in_regs[i], out_regs[c_arg]);
1711        float_args++;
1712        break;
1713
1714      case T_DOUBLE:
1715        assert( i + 1 < total_in_args &&
1716                in_sig_bt[i + 1] == T_VOID &&
1717                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1718        double_move(masm, in_regs[i], out_regs[c_arg]);
1719        float_args++;
1720        break;
1721
1722      case T_LONG :
1723        long_move(masm, in_regs[i], out_regs[c_arg]);
1724        int_args++;
1725        break;
1726
1727      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1728
1729      default:
1730        move32_64(masm, in_regs[i], out_regs[c_arg]);
1731        int_args++;
1732    }
1733  }
1734
1735  // point c_arg at the first arg that is already loaded in case we
1736  // need to spill before we call out
1737  int c_arg = total_c_args - total_in_args;
1738
1739  // Pre-load a static method's oop into c_rarg1.
1740  if (method->is_static() && !is_critical_native) {
1741
1742    //  load oop into a register
1743    __ movoop(c_rarg1,
1744              JNIHandles::make_local(method->method_holder()->java_mirror()),
1745              /*immediate*/true);
1746
1747    // Now handlize the static class mirror it's known not-null.
1748    __ str(c_rarg1, Address(sp, klass_offset));
1749    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1750
1751    // Now get the handle
1752    __ lea(c_rarg1, Address(sp, klass_offset));
1753    // and protect the arg if we must spill
1754    c_arg--;
1755  }
1756
1757  // Change state to native (we save the return address in the thread, since it might not
1758  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1759  // points into the right code segment. It does not have to be the correct return pc.
1760  // We use the same pc/oopMap repeatedly when we call out
1761
1762  intptr_t the_pc = (intptr_t) __ pc();
1763  oop_maps->add_gc_map(the_pc - start, map);
1764
1765  __ set_last_Java_frame(sp, noreg, (address)the_pc, rscratch1);
1766
1767  Label dtrace_method_entry, dtrace_method_entry_done;
1768  {
1769    unsigned long offset;
1770    __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
1771    __ ldrb(rscratch1, Address(rscratch1, offset));
1772    __ cbnzw(rscratch1, dtrace_method_entry);
1773    __ bind(dtrace_method_entry_done);
1774  }
1775
1776  // RedefineClasses() tracing support for obsolete method entry
1777  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1778    // protect the args we've loaded
1779    save_args(masm, total_c_args, c_arg, out_regs);
1780    __ mov_metadata(c_rarg1, method());
1781    __ call_VM_leaf(
1782      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1783      rthread, c_rarg1);
1784    restore_args(masm, total_c_args, c_arg, out_regs);
1785  }
1786
1787  // Lock a synchronized method
1788
1789  // Register definitions used by locking and unlocking
1790
1791  const Register swap_reg = r0;
1792  const Register obj_reg  = r19;  // Will contain the oop
1793  const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1794  const Register old_hdr  = r13;  // value of old header at unlock time
1795  const Register tmp = lr;
1796
1797  Label slow_path_lock;
1798  Label lock_done;
1799
1800  if (method->is_synchronized()) {
1801    assert(!is_critical_native, "unhandled");
1802
1803    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1804
1805    // Get the handle (the 2nd argument)
1806    __ mov(oop_handle_reg, c_rarg1);
1807
1808    // Get address of the box
1809
1810    __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1811
1812    // Load the oop from the handle
1813    __ ldr(obj_reg, Address(oop_handle_reg, 0));
1814
1815    if (UseBiasedLocking) {
1816      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock);
1817    }
1818
1819    // Load (object->mark() | 1) into swap_reg %r0
1820    __ ldr(rscratch1, Address(obj_reg, 0));
1821    __ orr(swap_reg, rscratch1, 1);
1822
1823    // Save (object->mark() | 1) into BasicLock's displaced header
1824    __ str(swap_reg, Address(lock_reg, mark_word_offset));
1825
1826    // src -> dest iff dest == r0 else r0 <- dest
1827    { Label here;
1828      __ cmpxchgptr(r0, lock_reg, obj_reg, rscratch1, lock_done, /*fallthrough*/NULL);
1829    }
1830
1831    // Hmm should this move to the slow path code area???
1832
1833    // Test if the oopMark is an obvious stack pointer, i.e.,
1834    //  1) (mark & 3) == 0, and
1835    //  2) sp <= mark < mark + os::pagesize()
1836    // These 3 tests can be done by evaluating the following
1837    // expression: ((mark - sp) & (3 - os::vm_page_size())),
1838    // assuming both stack pointer and pagesize have their
1839    // least significant 2 bits clear.
1840    // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
1841
1842    __ sub(swap_reg, sp, swap_reg);
1843    __ neg(swap_reg, swap_reg);
1844    __ ands(swap_reg, swap_reg, 3 - os::vm_page_size());
1845
1846    // Save the test result, for recursive case, the result is zero
1847    __ str(swap_reg, Address(lock_reg, mark_word_offset));
1848    __ br(Assembler::NE, slow_path_lock);
1849
1850    // Slow path will re-enter here
1851
1852    __ bind(lock_done);
1853  }
1854
1855
1856  // Finally just about ready to make the JNI call
1857
1858  // get JNIEnv* which is first argument to native
1859  if (!is_critical_native) {
1860    __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1861  }
1862
1863  // Now set thread in native
1864  __ mov(rscratch1, _thread_in_native);
1865  __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1866  __ stlrw(rscratch1, rscratch2);
1867
1868  {
1869    int return_type = 0;
1870    switch (ret_type) {
1871    case T_VOID: break;
1872      return_type = 0; break;
1873    case T_CHAR:
1874    case T_BYTE:
1875    case T_SHORT:
1876    case T_INT:
1877    case T_BOOLEAN:
1878    case T_LONG:
1879      return_type = 1; break;
1880    case T_ARRAY:
1881    case T_OBJECT:
1882      return_type = 1; break;
1883    case T_FLOAT:
1884      return_type = 2; break;
1885    case T_DOUBLE:
1886      return_type = 3; break;
1887    default:
1888      ShouldNotReachHere();
1889    }
1890    rt_call(masm, native_func,
1891            int_args + 2, // AArch64 passes up to 8 args in int registers
1892            float_args,   // and up to 8 float args
1893            return_type);
1894  }
1895
1896  // Unpack native results.
1897  switch (ret_type) {
1898  case T_BOOLEAN: __ ubfx(r0, r0, 0, 8);             break;
1899  case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
1900  case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
1901  case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
1902  case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
1903  case T_DOUBLE :
1904  case T_FLOAT  :
1905    // Result is in v0 we'll save as needed
1906    break;
1907  case T_ARRAY:                 // Really a handle
1908  case T_OBJECT:                // Really a handle
1909      break; // can't de-handlize until after safepoint check
1910  case T_VOID: break;
1911  case T_LONG: break;
1912  default       : ShouldNotReachHere();
1913  }
1914
1915  // Switch thread to "native transition" state before reading the synchronization state.
1916  // This additional state is necessary because reading and testing the synchronization
1917  // state is not atomic w.r.t. GC, as this scenario demonstrates:
1918  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1919  //     VM thread changes sync state to synchronizing and suspends threads for GC.
1920  //     Thread A is resumed to finish this native method, but doesn't block here since it
1921  //     didn't see any synchronization is progress, and escapes.
1922  __ mov(rscratch1, _thread_in_native_trans);
1923
1924  if(os::is_MP()) {
1925    if (UseMembar) {
1926      __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1927
1928      // Force this write out before the read below
1929      __ dmb(Assembler::SY);
1930    } else {
1931      __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1932      __ stlrw(rscratch1, rscratch2);
1933
1934      // Write serialization page so VM thread can do a pseudo remote membar.
1935      // We use the current thread pointer to calculate a thread specific
1936      // offset to write to within the page. This minimizes bus traffic
1937      // due to cache line collision.
1938      __ serialize_memory(rthread, r2);
1939    }
1940  }
1941
1942  // check for safepoint operation in progress and/or pending suspend requests
1943  Label safepoint_in_progress, safepoint_in_progress_done;
1944  {
1945    assert(SafepointSynchronize::_not_synchronized == 0, "fix this code");
1946    unsigned long offset;
1947    __ adrp(rscratch1,
1948            ExternalAddress((address)SafepointSynchronize::address_of_state()),
1949            offset);
1950    __ ldrw(rscratch1, Address(rscratch1, offset));
1951    __ cbnzw(rscratch1, safepoint_in_progress);
1952    __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1953    __ cbnzw(rscratch1, safepoint_in_progress);
1954    __ bind(safepoint_in_progress_done);
1955  }
1956
1957  // change thread state
1958  Label after_transition;
1959  __ mov(rscratch1, _thread_in_Java);
1960  __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1961  __ stlrw(rscratch1, rscratch2);
1962  __ bind(after_transition);
1963
1964  Label reguard;
1965  Label reguard_done;
1966  __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1967  __ cmpw(rscratch1, JavaThread::stack_guard_yellow_reserved_disabled);
1968  __ br(Assembler::EQ, reguard);
1969  __ bind(reguard_done);
1970
1971  // native result if any is live
1972
1973  // Unlock
1974  Label unlock_done;
1975  Label slow_path_unlock;
1976  if (method->is_synchronized()) {
1977
1978    // Get locked oop from the handle we passed to jni
1979    __ ldr(obj_reg, Address(oop_handle_reg, 0));
1980
1981    Label done;
1982
1983    if (UseBiasedLocking) {
1984      __ biased_locking_exit(obj_reg, old_hdr, done);
1985    }
1986
1987    // Simple recursive lock?
1988
1989    __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1990    __ cbz(rscratch1, done);
1991
1992    // Must save r0 if if it is live now because cmpxchg must use it
1993    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1994      save_native_result(masm, ret_type, stack_slots);
1995    }
1996
1997
1998    // get address of the stack lock
1999    __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2000    //  get old displaced header
2001    __ ldr(old_hdr, Address(r0, 0));
2002
2003    // Atomic swap old header if oop still contains the stack lock
2004    Label succeed;
2005    __ cmpxchgptr(r0, old_hdr, obj_reg, rscratch1, succeed, &slow_path_unlock);
2006    __ bind(succeed);
2007
2008    // slow path re-enters here
2009    __ bind(unlock_done);
2010    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2011      restore_native_result(masm, ret_type, stack_slots);
2012    }
2013
2014    __ bind(done);
2015  }
2016
2017  Label dtrace_method_exit, dtrace_method_exit_done;
2018  {
2019    unsigned long offset;
2020    __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
2021    __ ldrb(rscratch1, Address(rscratch1, offset));
2022    __ cbnzw(rscratch1, dtrace_method_exit);
2023    __ bind(dtrace_method_exit_done);
2024  }
2025
2026  __ reset_last_Java_frame(false, true);
2027
2028  // Unpack oop result
2029  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2030      Label L;
2031      __ cbz(r0, L);
2032      __ ldr(r0, Address(r0, 0));
2033      __ bind(L);
2034      __ verify_oop(r0);
2035  }
2036
2037  if (!is_critical_native) {
2038    // reset handle block
2039    __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
2040    __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes()));
2041  }
2042
2043  __ leave();
2044
2045  if (!is_critical_native) {
2046    // Any exception pending?
2047    __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2048    __ cbnz(rscratch1, exception_pending);
2049  }
2050
2051  // record exit from native wrapper code
2052  if (NotifySimulator) {
2053    __ notify(Assembler::method_reentry);
2054  }
2055
2056  // We're done
2057  __ ret(lr);
2058
2059  // Unexpected paths are out of line and go here
2060
2061  if (!is_critical_native) {
2062    // forward the exception
2063    __ bind(exception_pending);
2064
2065    // and forward the exception
2066    __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2067  }
2068
2069  // Slow path locking & unlocking
2070  if (method->is_synchronized()) {
2071
2072    __ block_comment("Slow path lock {");
2073    __ bind(slow_path_lock);
2074
2075    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2076    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2077
2078    // protect the args we've loaded
2079    save_args(masm, total_c_args, c_arg, out_regs);
2080
2081    __ mov(c_rarg0, obj_reg);
2082    __ mov(c_rarg1, lock_reg);
2083    __ mov(c_rarg2, rthread);
2084
2085    // Not a leaf but we have last_Java_frame setup as we want
2086    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2087    restore_args(masm, total_c_args, c_arg, out_regs);
2088
2089#ifdef ASSERT
2090    { Label L;
2091      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2092      __ cbz(rscratch1, L);
2093      __ stop("no pending exception allowed on exit from monitorenter");
2094      __ bind(L);
2095    }
2096#endif
2097    __ b(lock_done);
2098
2099    __ block_comment("} Slow path lock");
2100
2101    __ block_comment("Slow path unlock {");
2102    __ bind(slow_path_unlock);
2103
2104    // If we haven't already saved the native result we must save it now as xmm registers
2105    // are still exposed.
2106
2107    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2108      save_native_result(masm, ret_type, stack_slots);
2109    }
2110
2111    __ mov(c_rarg2, rthread);
2112    __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2113    __ mov(c_rarg0, obj_reg);
2114
2115    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2116    // NOTE that obj_reg == r19 currently
2117    __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2118    __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2119
2120    rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 3, 0, 1);
2121
2122#ifdef ASSERT
2123    {
2124      Label L;
2125      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2126      __ cbz(rscratch1, L);
2127      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2128      __ bind(L);
2129    }
2130#endif /* ASSERT */
2131
2132    __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2133
2134    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2135      restore_native_result(masm, ret_type, stack_slots);
2136    }
2137    __ b(unlock_done);
2138
2139    __ block_comment("} Slow path unlock");
2140
2141  } // synchronized
2142
2143  // SLOW PATH Reguard the stack if needed
2144
2145  __ bind(reguard);
2146  save_native_result(masm, ret_type, stack_slots);
2147  rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), 0, 0, 0);
2148  restore_native_result(masm, ret_type, stack_slots);
2149  // and continue
2150  __ b(reguard_done);
2151
2152  // SLOW PATH safepoint
2153  {
2154    __ block_comment("safepoint {");
2155    __ bind(safepoint_in_progress);
2156
2157    // Don't use call_VM as it will see a possible pending exception and forward it
2158    // and never return here preventing us from clearing _last_native_pc down below.
2159    //
2160    save_native_result(masm, ret_type, stack_slots);
2161    __ mov(c_rarg0, rthread);
2162#ifndef PRODUCT
2163  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2164#endif
2165    if (!is_critical_native) {
2166      __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2167    } else {
2168      __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2169    }
2170    __ blrt(rscratch1, 1, 0, 1);
2171    __ maybe_isb();
2172    // Restore any method result value
2173    restore_native_result(masm, ret_type, stack_slots);
2174
2175    if (is_critical_native) {
2176      // The call above performed the transition to thread_in_Java so
2177      // skip the transition logic above.
2178      __ b(after_transition);
2179    }
2180
2181    __ b(safepoint_in_progress_done);
2182    __ block_comment("} safepoint");
2183  }
2184
2185  // SLOW PATH dtrace support
2186  {
2187    __ block_comment("dtrace entry {");
2188    __ bind(dtrace_method_entry);
2189
2190    // We have all of the arguments setup at this point. We must not touch any register
2191    // argument registers at this point (what if we save/restore them there are no oop?
2192
2193    save_args(masm, total_c_args, c_arg, out_regs);
2194    __ mov_metadata(c_rarg1, method());
2195    __ call_VM_leaf(
2196      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2197      rthread, c_rarg1);
2198    restore_args(masm, total_c_args, c_arg, out_regs);
2199    __ b(dtrace_method_entry_done);
2200    __ block_comment("} dtrace entry");
2201  }
2202
2203  {
2204    __ block_comment("dtrace exit {");
2205    __ bind(dtrace_method_exit);
2206    save_native_result(masm, ret_type, stack_slots);
2207    __ mov_metadata(c_rarg1, method());
2208    __ call_VM_leaf(
2209         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2210         rthread, c_rarg1);
2211    restore_native_result(masm, ret_type, stack_slots);
2212    __ b(dtrace_method_exit_done);
2213    __ block_comment("} dtrace exit");
2214  }
2215
2216
2217  __ flush();
2218
2219  nmethod *nm = nmethod::new_native_nmethod(method,
2220                                            compile_id,
2221                                            masm->code(),
2222                                            vep_offset,
2223                                            frame_complete,
2224                                            stack_slots / VMRegImpl::slots_per_word,
2225                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2226                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2227                                            oop_maps);
2228
2229  if (is_critical_native) {
2230    nm->set_lazy_critical_native(true);
2231  }
2232
2233  return nm;
2234
2235}
2236
2237// this function returns the adjust size (in number of words) to a c2i adapter
2238// activation for use during deoptimization
2239int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2240  assert(callee_locals >= callee_parameters,
2241          "test and remove; got more parms than locals");
2242  if (callee_locals < callee_parameters)
2243    return 0;                   // No adjustment for negative locals
2244  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2245  // diff is counted in stack words
2246  return round_to(diff, 2);
2247}
2248
2249
2250//------------------------------generate_deopt_blob----------------------------
2251void SharedRuntime::generate_deopt_blob() {
2252  // Allocate space for the code
2253  ResourceMark rm;
2254  // Setup code generation tools
2255  int pad = 0;
2256#if INCLUDE_JVMCI
2257  if (EnableJVMCI) {
2258    pad += 512; // Increase the buffer size when compiling for JVMCI
2259  }
2260#endif
2261  CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2262  MacroAssembler* masm = new MacroAssembler(&buffer);
2263  int frame_size_in_words;
2264  OopMap* map = NULL;
2265  OopMapSet *oop_maps = new OopMapSet();
2266
2267#ifdef BUILTIN_SIM
2268  AArch64Simulator *simulator;
2269  if (NotifySimulator) {
2270    simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2271    simulator->notifyCompile(const_cast<char*>("SharedRuntime::deopt_blob"), __ pc());
2272  }
2273#endif
2274
2275  // -------------
2276  // This code enters when returning to a de-optimized nmethod.  A return
2277  // address has been pushed on the the stack, and return values are in
2278  // registers.
2279  // If we are doing a normal deopt then we were called from the patched
2280  // nmethod from the point we returned to the nmethod. So the return
2281  // address on the stack is wrong by NativeCall::instruction_size
2282  // We will adjust the value so it looks like we have the original return
2283  // address on the stack (like when we eagerly deoptimized).
2284  // In the case of an exception pending when deoptimizing, we enter
2285  // with a return address on the stack that points after the call we patched
2286  // into the exception handler. We have the following register state from,
2287  // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2288  //    r0: exception oop
2289  //    r19: exception handler
2290  //    r3: throwing pc
2291  // So in this case we simply jam r3 into the useless return address and
2292  // the stack looks just like we want.
2293  //
2294  // At this point we need to de-opt.  We save the argument return
2295  // registers.  We call the first C routine, fetch_unroll_info().  This
2296  // routine captures the return values and returns a structure which
2297  // describes the current frame size and the sizes of all replacement frames.
2298  // The current frame is compiled code and may contain many inlined
2299  // functions, each with their own JVM state.  We pop the current frame, then
2300  // push all the new frames.  Then we call the C routine unpack_frames() to
2301  // populate these frames.  Finally unpack_frames() returns us the new target
2302  // address.  Notice that callee-save registers are BLOWN here; they have
2303  // already been captured in the vframeArray at the time the return PC was
2304  // patched.
2305  address start = __ pc();
2306  Label cont;
2307
2308  // Prolog for non exception case!
2309
2310  // Save everything in sight.
2311  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2312
2313  // Normal deoptimization.  Save exec mode for unpack_frames.
2314  __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2315  __ b(cont);
2316
2317  int reexecute_offset = __ pc() - start;
2318#if defined(INCLUDE_JVMCI) && !defined(COMPILER1)
2319  if (EnableJVMCI && UseJVMCICompiler) {
2320    // JVMCI does not use this kind of deoptimization
2321    __ should_not_reach_here();
2322  }
2323#endif
2324
2325  // Reexecute case
2326  // return address is the pc describes what bci to do re-execute at
2327
2328  // No need to update map as each call to save_live_registers will produce identical oopmap
2329  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2330
2331  __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2332  __ b(cont);
2333
2334#if INCLUDE_JVMCI
2335  Label after_fetch_unroll_info_call;
2336  int implicit_exception_uncommon_trap_offset = 0;
2337  int uncommon_trap_offset = 0;
2338
2339  if (EnableJVMCI) {
2340    implicit_exception_uncommon_trap_offset = __ pc() - start;
2341
2342    __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2343    __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2344
2345    uncommon_trap_offset = __ pc() - start;
2346
2347    // Save everything in sight.
2348    RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2349    // fetch_unroll_info needs to call last_java_frame()
2350    Label retaddr;
2351    __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2352
2353    __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2354    __ movw(rscratch1, -1);
2355    __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2356
2357    __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2358    __ mov(c_rarg0, rthread);
2359    __ lea(rscratch1,
2360           RuntimeAddress(CAST_FROM_FN_PTR(address,
2361                                           Deoptimization::uncommon_trap)));
2362    __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
2363    __ bind(retaddr);
2364    oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2365
2366    __ reset_last_Java_frame(false, false);
2367
2368    __ b(after_fetch_unroll_info_call);
2369  } // EnableJVMCI
2370#endif // INCLUDE_JVMCI
2371
2372  int exception_offset = __ pc() - start;
2373
2374  // Prolog for exception case
2375
2376  // all registers are dead at this entry point, except for r0, and
2377  // r3 which contain the exception oop and exception pc
2378  // respectively.  Set them in TLS and fall thru to the
2379  // unpack_with_exception_in_tls entry point.
2380
2381  __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2382  __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2383
2384  int exception_in_tls_offset = __ pc() - start;
2385
2386  // new implementation because exception oop is now passed in JavaThread
2387
2388  // Prolog for exception case
2389  // All registers must be preserved because they might be used by LinearScan
2390  // Exceptiop oop and throwing PC are passed in JavaThread
2391  // tos: stack at point of call to method that threw the exception (i.e. only
2392  // args are on the stack, no return address)
2393
2394  // The return address pushed by save_live_registers will be patched
2395  // later with the throwing pc. The correct value is not available
2396  // now because loading it from memory would destroy registers.
2397
2398  // NB: The SP at this point must be the SP of the method that is
2399  // being deoptimized.  Deoptimization assumes that the frame created
2400  // here by save_live_registers is immediately below the method's SP.
2401  // This is a somewhat fragile mechanism.
2402
2403  // Save everything in sight.
2404  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2405
2406  // Now it is safe to overwrite any register
2407
2408  // Deopt during an exception.  Save exec mode for unpack_frames.
2409  __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2410
2411  // load throwing pc from JavaThread and patch it as the return address
2412  // of the current frame. Then clear the field in JavaThread
2413
2414  __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2415  __ str(r3, Address(rfp, wordSize));
2416  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2417
2418#ifdef ASSERT
2419  // verify that there is really an exception oop in JavaThread
2420  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2421  __ verify_oop(r0);
2422
2423  // verify that there is no pending exception
2424  Label no_pending_exception;
2425  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2426  __ cbz(rscratch1, no_pending_exception);
2427  __ stop("must not have pending exception here");
2428  __ bind(no_pending_exception);
2429#endif
2430
2431  __ bind(cont);
2432
2433  // Call C code.  Need thread and this frame, but NOT official VM entry
2434  // crud.  We cannot block on this call, no GC can happen.
2435  //
2436  // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2437
2438  // fetch_unroll_info needs to call last_java_frame().
2439
2440  Label retaddr;
2441  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2442#ifdef ASSERT0
2443  { Label L;
2444    __ ldr(rscratch1, Address(rthread,
2445                              JavaThread::last_Java_fp_offset()));
2446    __ cbz(rscratch1, L);
2447    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2448    __ bind(L);
2449  }
2450#endif // ASSERT
2451  __ mov(c_rarg0, rthread);
2452  __ mov(c_rarg1, rcpool);
2453  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2454  __ blrt(rscratch1, 1, 0, 1);
2455  __ bind(retaddr);
2456
2457  // Need to have an oopmap that tells fetch_unroll_info where to
2458  // find any register it might need.
2459  oop_maps->add_gc_map(__ pc() - start, map);
2460
2461  __ reset_last_Java_frame(false, true);
2462
2463#if INCLUDE_JVMCI
2464  if (EnableJVMCI) {
2465    __ bind(after_fetch_unroll_info_call);
2466  }
2467#endif
2468
2469  // Load UnrollBlock* into r5
2470  __ mov(r5, r0);
2471
2472  __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2473   Label noException;
2474  __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2475  __ br(Assembler::NE, noException);
2476  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2477  // QQQ this is useless it was NULL above
2478  __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2479  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2480  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2481
2482  __ verify_oop(r0);
2483
2484  // Overwrite the result registers with the exception results.
2485  __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
2486  // I think this is useless
2487  // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2488
2489  __ bind(noException);
2490
2491  // Only register save data is on the stack.
2492  // Now restore the result registers.  Everything else is either dead
2493  // or captured in the vframeArray.
2494  RegisterSaver::restore_result_registers(masm);
2495
2496  // All of the register save area has been popped of the stack. Only the
2497  // return address remains.
2498
2499  // Pop all the frames we must move/replace.
2500  //
2501  // Frame picture (youngest to oldest)
2502  // 1: self-frame (no frame link)
2503  // 2: deopting frame  (no frame link)
2504  // 3: caller of deopting frame (could be compiled/interpreted).
2505  //
2506  // Note: by leaving the return address of self-frame on the stack
2507  // and using the size of frame 2 to adjust the stack
2508  // when we are done the return to frame 3 will still be on the stack.
2509
2510  // Pop deoptimized frame
2511  __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2512  __ sub(r2, r2, 2 * wordSize);
2513  __ add(sp, sp, r2);
2514  __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
2515  // LR should now be the return address to the caller (3)
2516
2517#ifdef ASSERT
2518  // Compilers generate code that bang the stack by as much as the
2519  // interpreter would need. So this stack banging should never
2520  // trigger a fault. Verify that it does not on non product builds.
2521  if (UseStackBanging) {
2522    __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2523    __ bang_stack_size(r19, r2);
2524  }
2525#endif
2526  // Load address of array of frame pcs into r2
2527  __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2528
2529  // Trash the old pc
2530  // __ addptr(sp, wordSize);  FIXME ????
2531
2532  // Load address of array of frame sizes into r4
2533  __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2534
2535  // Load counter into r3
2536  __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2537
2538  // Now adjust the caller's stack to make up for the extra locals
2539  // but record the original sp so that we can save it in the skeletal interpreter
2540  // frame and the stack walking of interpreter_sender will get the unextended sp
2541  // value and not the "real" sp value.
2542
2543  const Register sender_sp = r6;
2544
2545  __ mov(sender_sp, sp);
2546  __ ldrw(r19, Address(r5,
2547                       Deoptimization::UnrollBlock::
2548                       caller_adjustment_offset_in_bytes()));
2549  __ sub(sp, sp, r19);
2550
2551  // Push interpreter frames in a loop
2552  __ mov(rscratch1, (address)0xDEADDEAD);        // Make a recognizable pattern
2553  __ mov(rscratch2, rscratch1);
2554  Label loop;
2555  __ bind(loop);
2556  __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2557  __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2558  __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2559  __ enter();                           // Save old & set new fp
2560  __ sub(sp, sp, r19);                  // Prolog
2561  // This value is corrected by layout_activation_impl
2562  __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2563  __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2564  __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2565  __ sub(r3, r3, 1);                   // Decrement counter
2566  __ cbnz(r3, loop);
2567
2568    // Re-push self-frame
2569  __ ldr(lr, Address(r2));
2570  __ enter();
2571
2572  // Allocate a full sized register save area.  We subtract 2 because
2573  // enter() just pushed 2 words
2574  __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2575
2576  // Restore frame locals after moving the frame
2577  __ strd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes()));
2578  __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
2579
2580  // Call C code.  Need thread but NOT official VM entry
2581  // crud.  We cannot block on this call, no GC can happen.  Call should
2582  // restore return values to their stack-slots with the new SP.
2583  //
2584  // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2585
2586  // Use rfp because the frames look interpreted now
2587  // Don't need the precise return PC here, just precise enough to point into this code blob.
2588  address the_pc = __ pc();
2589  __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2590
2591  __ mov(c_rarg0, rthread);
2592  __ movw(c_rarg1, rcpool); // second arg: exec_mode
2593  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2594  __ blrt(rscratch1, 2, 0, 0);
2595
2596  // Set an oopmap for the call site
2597  // Use the same PC we used for the last java frame
2598  oop_maps->add_gc_map(the_pc - start,
2599                       new OopMap( frame_size_in_words, 0 ));
2600
2601  // Clear fp AND pc
2602  __ reset_last_Java_frame(true, true);
2603
2604  // Collect return values
2605  __ ldrd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes()));
2606  __ ldr(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
2607  // I think this is useless (throwing pc?)
2608  // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2609
2610  // Pop self-frame.
2611  __ leave();                           // Epilog
2612
2613  // Jump to interpreter
2614  __ ret(lr);
2615
2616  // Make sure all code is generated
2617  masm->flush();
2618
2619  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2620  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2621#if INCLUDE_JVMCI
2622  if (EnableJVMCI) {
2623    _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2624    _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2625  }
2626#endif
2627#ifdef BUILTIN_SIM
2628  if (NotifySimulator) {
2629    unsigned char *base = _deopt_blob->code_begin();
2630    simulator->notifyRelocate(start, base - start);
2631  }
2632#endif
2633}
2634
2635uint SharedRuntime::out_preserve_stack_slots() {
2636  return 0;
2637}
2638
2639#if defined(COMPILER2) || INCLUDE_JVMCI
2640//------------------------------generate_uncommon_trap_blob--------------------
2641void SharedRuntime::generate_uncommon_trap_blob() {
2642  // Allocate space for the code
2643  ResourceMark rm;
2644  // Setup code generation tools
2645  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2646  MacroAssembler* masm = new MacroAssembler(&buffer);
2647
2648#ifdef BUILTIN_SIM
2649  AArch64Simulator *simulator;
2650  if (NotifySimulator) {
2651    simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2652    simulator->notifyCompile(const_cast<char*>("SharedRuntime:uncommon_trap_blob"), __ pc());
2653  }
2654#endif
2655
2656  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2657
2658  address start = __ pc();
2659
2660  // Push self-frame.  We get here with a return address in LR
2661  // and sp should be 16 byte aligned
2662  // push rfp and retaddr by hand
2663  __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
2664  // we don't expect an arg reg save area
2665#ifndef PRODUCT
2666  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2667#endif
2668  // compiler left unloaded_class_index in j_rarg0 move to where the
2669  // runtime expects it.
2670  if (c_rarg1 != j_rarg0) {
2671    __ movw(c_rarg1, j_rarg0);
2672  }
2673
2674  // we need to set the past SP to the stack pointer of the stub frame
2675  // and the pc to the address where this runtime call will return
2676  // although actually any pc in this code blob will do).
2677  Label retaddr;
2678  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2679
2680  // Call C code.  Need thread but NOT official VM entry
2681  // crud.  We cannot block on this call, no GC can happen.  Call should
2682  // capture callee-saved registers as well as return values.
2683  // Thread is in rdi already.
2684  //
2685  // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2686  //
2687  // n.b. 2 gp args, 0 fp args, integral return type
2688
2689  __ mov(c_rarg0, rthread);
2690  __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap);
2691  __ lea(rscratch1,
2692         RuntimeAddress(CAST_FROM_FN_PTR(address,
2693                                         Deoptimization::uncommon_trap)));
2694  __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
2695  __ bind(retaddr);
2696
2697  // Set an oopmap for the call site
2698  OopMapSet* oop_maps = new OopMapSet();
2699  OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2700
2701  // location of rfp is known implicitly by the frame sender code
2702
2703  oop_maps->add_gc_map(__ pc() - start, map);
2704
2705  __ reset_last_Java_frame(false, true);
2706
2707  // move UnrollBlock* into r4
2708  __ mov(r4, r0);
2709
2710#ifdef ASSERT
2711  { Label L;
2712    __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
2713    __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2714    __ br(Assembler::EQ, L);
2715    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2716    __ bind(L);
2717  }
2718#endif
2719
2720  // Pop all the frames we must move/replace.
2721  //
2722  // Frame picture (youngest to oldest)
2723  // 1: self-frame (no frame link)
2724  // 2: deopting frame  (no frame link)
2725  // 3: caller of deopting frame (could be compiled/interpreted).
2726
2727  // Pop self-frame.  We have no frame, and must rely only on r0 and sp.
2728  __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog!
2729
2730  // Pop deoptimized frame (int)
2731  __ ldrw(r2, Address(r4,
2732                      Deoptimization::UnrollBlock::
2733                      size_of_deoptimized_frame_offset_in_bytes()));
2734  __ sub(r2, r2, 2 * wordSize);
2735  __ add(sp, sp, r2);
2736  __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
2737  // LR should now be the return address to the caller (3) frame
2738
2739#ifdef ASSERT
2740  // Compilers generate code that bang the stack by as much as the
2741  // interpreter would need. So this stack banging should never
2742  // trigger a fault. Verify that it does not on non product builds.
2743  if (UseStackBanging) {
2744    __ ldrw(r1, Address(r4,
2745                        Deoptimization::UnrollBlock::
2746                        total_frame_sizes_offset_in_bytes()));
2747    __ bang_stack_size(r1, r2);
2748  }
2749#endif
2750
2751  // Load address of array of frame pcs into r2 (address*)
2752  __ ldr(r2, Address(r4,
2753                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2754
2755  // Load address of array of frame sizes into r5 (intptr_t*)
2756  __ ldr(r5, Address(r4,
2757                     Deoptimization::UnrollBlock::
2758                     frame_sizes_offset_in_bytes()));
2759
2760  // Counter
2761  __ ldrw(r3, Address(r4,
2762                      Deoptimization::UnrollBlock::
2763                      number_of_frames_offset_in_bytes())); // (int)
2764
2765  // Now adjust the caller's stack to make up for the extra locals but
2766  // record the original sp so that we can save it in the skeletal
2767  // interpreter frame and the stack walking of interpreter_sender
2768  // will get the unextended sp value and not the "real" sp value.
2769
2770  const Register sender_sp = r8;
2771
2772  __ mov(sender_sp, sp);
2773  __ ldrw(r1, Address(r4,
2774                      Deoptimization::UnrollBlock::
2775                      caller_adjustment_offset_in_bytes())); // (int)
2776  __ sub(sp, sp, r1);
2777
2778  // Push interpreter frames in a loop
2779  Label loop;
2780  __ bind(loop);
2781  __ ldr(r1, Address(r5, 0));       // Load frame size
2782  __ sub(r1, r1, 2 * wordSize);     // We'll push pc and rfp by hand
2783  __ ldr(lr, Address(r2, 0));       // Save return address
2784  __ enter();                       // and old rfp & set new rfp
2785  __ sub(sp, sp, r1);               // Prolog
2786  __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2787  // This value is corrected by layout_activation_impl
2788  __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2789  __ mov(sender_sp, sp);          // Pass sender_sp to next frame
2790  __ add(r5, r5, wordSize);       // Bump array pointer (sizes)
2791  __ add(r2, r2, wordSize);       // Bump array pointer (pcs)
2792  __ subsw(r3, r3, 1);            // Decrement counter
2793  __ br(Assembler::GT, loop);
2794  __ ldr(lr, Address(r2, 0));     // save final return address
2795  // Re-push self-frame
2796  __ enter();                     // & old rfp & set new rfp
2797
2798  // Use rfp because the frames look interpreted now
2799  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2800  // Don't need the precise return PC here, just precise enough to point into this code blob.
2801  address the_pc = __ pc();
2802  __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2803
2804  // Call C code.  Need thread but NOT official VM entry
2805  // crud.  We cannot block on this call, no GC can happen.  Call should
2806  // restore return values to their stack-slots with the new SP.
2807  // Thread is in rdi already.
2808  //
2809  // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2810  //
2811  // n.b. 2 gp args, 0 fp args, integral return type
2812
2813  // sp should already be aligned
2814  __ mov(c_rarg0, rthread);
2815  __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2816  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2817  __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
2818
2819  // Set an oopmap for the call site
2820  // Use the same PC we used for the last java frame
2821  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
2822
2823  // Clear fp AND pc
2824  __ reset_last_Java_frame(true, true);
2825
2826  // Pop self-frame.
2827  __ leave();                 // Epilog
2828
2829  // Jump to interpreter
2830  __ ret(lr);
2831
2832  // Make sure all code is generated
2833  masm->flush();
2834
2835  _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
2836                                                 SimpleRuntimeFrame::framesize >> 1);
2837
2838#ifdef BUILTIN_SIM
2839  if (NotifySimulator) {
2840    unsigned char *base = _deopt_blob->code_begin();
2841    simulator->notifyRelocate(start, base - start);
2842  }
2843#endif
2844}
2845#endif // COMPILER2
2846
2847
2848//------------------------------generate_handler_blob------
2849//
2850// Generate a special Compile2Runtime blob that saves all registers,
2851// and setup oopmap.
2852//
2853SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2854  ResourceMark rm;
2855  OopMapSet *oop_maps = new OopMapSet();
2856  OopMap* map;
2857
2858  // Allocate space for the code.  Setup code generation tools.
2859  CodeBuffer buffer("handler_blob", 2048, 1024);
2860  MacroAssembler* masm = new MacroAssembler(&buffer);
2861
2862  address start   = __ pc();
2863  address call_pc = NULL;
2864  int frame_size_in_words;
2865  bool cause_return = (poll_type == POLL_AT_RETURN);
2866  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2867
2868  // Save registers, fpu state, and flags
2869  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
2870
2871  // The following is basically a call_VM.  However, we need the precise
2872  // address of the call in order to generate an oopmap. Hence, we do all the
2873  // work outselves.
2874
2875  Label retaddr;
2876  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2877
2878  // The return address must always be correct so that frame constructor never
2879  // sees an invalid pc.
2880
2881  if (!cause_return) {
2882    // overwrite the return address pushed by save_live_registers
2883    __ ldr(c_rarg0, Address(rthread, JavaThread::saved_exception_pc_offset()));
2884    __ str(c_rarg0, Address(rfp, wordSize));
2885  }
2886
2887  // Do the call
2888  __ mov(c_rarg0, rthread);
2889  __ lea(rscratch1, RuntimeAddress(call_ptr));
2890  __ blrt(rscratch1, 1, 0, 1);
2891  __ bind(retaddr);
2892
2893  // Set an oopmap for the call site.  This oopmap will map all
2894  // oop-registers and debug-info registers as callee-saved.  This
2895  // will allow deoptimization at this safepoint to find all possible
2896  // debug-info recordings, as well as let GC find all oops.
2897
2898  oop_maps->add_gc_map( __ pc() - start, map);
2899
2900  Label noException;
2901
2902  __ reset_last_Java_frame(false, true);
2903
2904  __ maybe_isb();
2905  __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2906
2907  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2908  __ cbz(rscratch1, noException);
2909
2910  // Exception pending
2911
2912  RegisterSaver::restore_live_registers(masm);
2913
2914  __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2915
2916  // No exception case
2917  __ bind(noException);
2918
2919  // Normal exit, restore registers and exit.
2920  RegisterSaver::restore_live_registers(masm, save_vectors);
2921
2922  __ ret(lr);
2923
2924  // Make sure all code is generated
2925  masm->flush();
2926
2927  // Fill-out other meta info
2928  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2929}
2930
2931//
2932// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2933//
2934// Generate a stub that calls into vm to find out the proper destination
2935// of a java call. All the argument registers are live at this point
2936// but since this is generic code we don't know what they are and the caller
2937// must do any gc of the args.
2938//
2939RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2940  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2941
2942  // allocate space for the code
2943  ResourceMark rm;
2944
2945  CodeBuffer buffer(name, 1000, 512);
2946  MacroAssembler* masm                = new MacroAssembler(&buffer);
2947
2948  int frame_size_in_words;
2949
2950  OopMapSet *oop_maps = new OopMapSet();
2951  OopMap* map = NULL;
2952
2953  int start = __ offset();
2954
2955  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2956
2957  int frame_complete = __ offset();
2958
2959  {
2960    Label retaddr;
2961    __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2962
2963    __ mov(c_rarg0, rthread);
2964    __ lea(rscratch1, RuntimeAddress(destination));
2965
2966    __ blrt(rscratch1, 1, 0, 1);
2967    __ bind(retaddr);
2968  }
2969
2970  // Set an oopmap for the call site.
2971  // We need this not only for callee-saved registers, but also for volatile
2972  // registers that the compiler might be keeping live across a safepoint.
2973
2974  oop_maps->add_gc_map( __ offset() - start, map);
2975
2976  __ maybe_isb();
2977
2978  // r0 contains the address we are going to jump to assuming no exception got installed
2979
2980  // clear last_Java_sp
2981  __ reset_last_Java_frame(false, true);
2982  // check for pending exceptions
2983  Label pending;
2984  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2985  __ cbnz(rscratch1, pending);
2986
2987  // get the returned Method*
2988  __ get_vm_result_2(rmethod, rthread);
2989  __ str(rmethod, Address(sp, RegisterSaver::reg_offset_in_bytes(rmethod)));
2990
2991  // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2992  __ str(r0, Address(sp, RegisterSaver::rscratch1_offset_in_bytes()));
2993  RegisterSaver::restore_live_registers(masm);
2994
2995  // We are back the the original state on entry and ready to go.
2996
2997  __ br(rscratch1);
2998
2999  // Pending exception after the safepoint
3000
3001  __ bind(pending);
3002
3003  RegisterSaver::restore_live_registers(masm);
3004
3005  // exception pending => remove activation and forward to exception handler
3006
3007  __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
3008
3009  __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
3010  __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3011
3012  // -------------
3013  // make sure all code is generated
3014  masm->flush();
3015
3016  // return the  blob
3017  // frame_size_words or bytes??
3018  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3019}
3020
3021
3022#if defined(COMPILER2) || INCLUDE_JVMCI
3023// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3024//
3025//------------------------------generate_exception_blob---------------------------
3026// creates exception blob at the end
3027// Using exception blob, this code is jumped from a compiled method.
3028// (see emit_exception_handler in x86_64.ad file)
3029//
3030// Given an exception pc at a call we call into the runtime for the
3031// handler in this method. This handler might merely restore state
3032// (i.e. callee save registers) unwind the frame and jump to the
3033// exception handler for the nmethod if there is no Java level handler
3034// for the nmethod.
3035//
3036// This code is entered with a jmp.
3037//
3038// Arguments:
3039//   r0: exception oop
3040//   r3: exception pc
3041//
3042// Results:
3043//   r0: exception oop
3044//   r3: exception pc in caller or ???
3045//   destination: exception handler of caller
3046//
3047// Note: the exception pc MUST be at a call (precise debug information)
3048//       Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved.
3049//
3050
3051void OptoRuntime::generate_exception_blob() {
3052  assert(!OptoRuntime::is_callee_saved_register(R3_num), "");
3053  assert(!OptoRuntime::is_callee_saved_register(R0_num), "");
3054  assert(!OptoRuntime::is_callee_saved_register(R2_num), "");
3055
3056  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3057
3058  // Allocate space for the code
3059  ResourceMark rm;
3060  // Setup code generation tools
3061  CodeBuffer buffer("exception_blob", 2048, 1024);
3062  MacroAssembler* masm = new MacroAssembler(&buffer);
3063
3064  // TODO check various assumptions made here
3065  //
3066  // make sure we do so before running this
3067
3068  address start = __ pc();
3069
3070  // push rfp and retaddr by hand
3071  // Exception pc is 'return address' for stack walker
3072  __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
3073  // there are no callee save registers and we don't expect an
3074  // arg reg save area
3075#ifndef PRODUCT
3076  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
3077#endif
3078  // Store exception in Thread object. We cannot pass any arguments to the
3079  // handle_exception call, since we do not want to make any assumption
3080  // about the size of the frame where the exception happened in.
3081  __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
3082  __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
3083
3084  // This call does all the hard work.  It checks if an exception handler
3085  // exists in the method.
3086  // If so, it returns the handler address.
3087  // If not, it prepares for stack-unwinding, restoring the callee-save
3088  // registers of the frame being removed.
3089  //
3090  // address OptoRuntime::handle_exception_C(JavaThread* thread)
3091  //
3092  // n.b. 1 gp arg, 0 fp args, integral return type
3093
3094  // the stack should always be aligned
3095  address the_pc = __ pc();
3096  __ set_last_Java_frame(sp, noreg, the_pc, rscratch1);
3097  __ mov(c_rarg0, rthread);
3098  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3099  __ blrt(rscratch1, 1, 0, MacroAssembler::ret_type_integral);
3100  __ maybe_isb();
3101
3102  // Set an oopmap for the call site.  This oopmap will only be used if we
3103  // are unwinding the stack.  Hence, all locations will be dead.
3104  // Callee-saved registers will be the same as the frame above (i.e.,
3105  // handle_exception_stub), since they were restored when we got the
3106  // exception.
3107
3108  OopMapSet* oop_maps = new OopMapSet();
3109
3110  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3111
3112  __ reset_last_Java_frame(false, true);
3113
3114  // Restore callee-saved registers
3115
3116  // rfp is an implicitly saved callee saved register (i.e. the calling
3117  // convention will save restore it in prolog/epilog) Other than that
3118  // there are no callee save registers now that adapter frames are gone.
3119  // and we dont' expect an arg reg save area
3120  __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize)));
3121
3122  // r0: exception handler
3123
3124  // We have a handler in r0 (could be deopt blob).
3125  __ mov(r8, r0);
3126
3127  // Get the exception oop
3128  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
3129  // Get the exception pc in case we are deoptimized
3130  __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset()));
3131#ifdef ASSERT
3132  __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset()));
3133  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
3134#endif
3135  // Clear the exception oop so GC no longer processes it as a root.
3136  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
3137
3138  // r0: exception oop
3139  // r8:  exception handler
3140  // r4: exception pc
3141  // Jump to handler
3142
3143  __ br(r8);
3144
3145  // Make sure all code is generated
3146  masm->flush();
3147
3148  // Set exception blob
3149  _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3150}
3151#endif // COMPILER2
3152