sharedRuntime_aarch64.cpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include "precompiled.hpp"
27#include "asm/macroAssembler.hpp"
28#include "asm/macroAssembler.inline.hpp"
29#include "code/debugInfoRec.hpp"
30#include "code/icBuffer.hpp"
31#include "code/vtableStubs.hpp"
32#include "interpreter/interpreter.hpp"
33#include "interpreter/interp_masm.hpp"
34#include "oops/compiledICHolder.hpp"
35#include "prims/jvmtiRedefineClassesTrace.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/vframeArray.hpp"
38#include "vmreg_aarch64.inline.hpp"
39#ifdef COMPILER1
40#include "c1/c1_Runtime1.hpp"
41#endif
42#ifdef COMPILER2
43#include "adfiles/ad_aarch64.hpp"
44#include "opto/runtime.hpp"
45#endif
46
47#ifdef BUILTIN_SIM
48#include "../../../../../../simulator/simulator.hpp"
49#endif
50
51#define __ masm->
52
53const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
54
55class SimpleRuntimeFrame {
56
57  public:
58
59  // Most of the runtime stubs have this simple frame layout.
60  // This class exists to make the layout shared in one place.
61  // Offsets are for compiler stack slots, which are jints.
62  enum layout {
63    // The frame sender code expects that rbp will be in the "natural" place and
64    // will override any oopMap setting for it. We must therefore force the layout
65    // so that it agrees with the frame sender code.
66    // we don't expect any arg reg save area so aarch64 asserts that
67    // frame::arg_reg_save_area_bytes == 0
68    rbp_off = 0,
69    rbp_off2,
70    return_off, return_off2,
71    framesize
72  };
73};
74
75// FIXME -- this is used by C1
76class RegisterSaver {
77 public:
78  static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
79  static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
80
81  // Offsets into the register save area
82  // Used by deoptimization when it is managing result register
83  // values on its own
84
85  static int r0_offset_in_bytes(void)    { return (32 + r0->encoding()) * wordSize; }
86  static int reg_offset_in_bytes(Register r)    { return r0_offset_in_bytes() + r->encoding() * wordSize; }
87  static int rmethod_offset_in_bytes(void)    { return reg_offset_in_bytes(rmethod); }
88  static int rscratch1_offset_in_bytes(void)    { return (32 + rscratch1->encoding()) * wordSize; }
89  static int v0_offset_in_bytes(void)   { return 0; }
90  static int return_offset_in_bytes(void) { return (32 /* floats*/ + 31 /* gregs*/) * wordSize; }
91
92  // During deoptimization only the result registers need to be restored,
93  // all the other values have already been extracted.
94  static void restore_result_registers(MacroAssembler* masm);
95
96    // Capture info about frame layout
97  enum layout {
98                fpu_state_off = 0,
99                fpu_state_end = fpu_state_off+FPUStateSizeInWords-1,
100                // The frame sender code expects that rfp will be in
101                // the "natural" place and will override any oopMap
102                // setting for it. We must therefore force the layout
103                // so that it agrees with the frame sender code.
104                r0_off = fpu_state_off+FPUStateSizeInWords,
105                rfp_off = r0_off + 30 * 2,
106                return_off = rfp_off + 2,      // slot for return address
107                reg_save_size = return_off + 2};
108
109};
110
111OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
112#ifdef COMPILER2
113  if (save_vectors) {
114    // Save upper half of vector registers
115    int vect_words = 32 * 8 / wordSize;
116    additional_frame_words += vect_words;
117  }
118#else
119  assert(!save_vectors, "vectors are generated only by C2");
120#endif
121
122  int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
123                                     reg_save_size*BytesPerInt, 16);
124  // OopMap frame size is in compiler stack slots (jint's) not bytes or words
125  int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
126  // The caller will allocate additional_frame_words
127  int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
128  // CodeBlob frame size is in words.
129  int frame_size_in_words = frame_size_in_bytes / wordSize;
130  *total_frame_words = frame_size_in_words;
131
132  // Save registers, fpu state, and flags.
133
134  __ enter();
135  __ push_CPU_state(save_vectors);
136
137  // Set an oopmap for the call site.  This oopmap will map all
138  // oop-registers and debug-info registers as callee-saved.  This
139  // will allow deoptimization at this safepoint to find all possible
140  // debug-info recordings, as well as let GC find all oops.
141
142  OopMapSet *oop_maps = new OopMapSet();
143  OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
144
145  for (int i = 0; i < RegisterImpl::number_of_registers; i++) {
146    Register r = as_Register(i);
147    if (r < rheapbase && r != rscratch1 && r != rscratch2) {
148      int sp_offset = 2 * (i + 32); // SP offsets are in 4-byte words,
149                                    // register slots are 8 bytes
150                                    // wide, 32 floating-point
151                                    // registers
152      oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots),
153                                r->as_VMReg());
154    }
155  }
156
157  for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++) {
158    FloatRegister r = as_FloatRegister(i);
159    int sp_offset = save_vectors ? (4 * i) : (2 * i);
160    oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
161                              r->as_VMReg());
162  }
163
164  return oop_map;
165}
166
167void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
168#ifndef COMPILER2
169  assert(!restore_vectors, "vectors are generated only by C2");
170#endif
171  __ pop_CPU_state(restore_vectors);
172  __ leave();
173}
174
175void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
176
177  // Just restore result register. Only used by deoptimization. By
178  // now any callee save register that needs to be restored to a c2
179  // caller of the deoptee has been extracted into the vframeArray
180  // and will be stuffed into the c2i adapter we create for later
181  // restoration so only result registers need to be restored here.
182
183  // Restore fp result register
184  __ ldrd(v0, Address(sp, v0_offset_in_bytes()));
185  // Restore integer result register
186  __ ldr(r0, Address(sp, r0_offset_in_bytes()));
187
188  // Pop all of the register save are off the stack
189  __ add(sp, sp, round_to(return_offset_in_bytes(), 16));
190}
191
192// Is vector's size (in bytes) bigger than a size saved by default?
193// 8 bytes vector registers are saved by default on AArch64.
194bool SharedRuntime::is_wide_vector(int size) {
195  return size > 8;
196}
197// The java_calling_convention describes stack locations as ideal slots on
198// a frame with no abi restrictions. Since we must observe abi restrictions
199// (like the placement of the register window) the slots must be biased by
200// the following value.
201static int reg2offset_in(VMReg r) {
202  // Account for saved rfp and lr
203  // This should really be in_preserve_stack_slots
204  return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
205}
206
207static int reg2offset_out(VMReg r) {
208  return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
209}
210
211template <class T> static const T& min (const T& a, const T& b) {
212  return (a > b) ? b : a;
213}
214
215// ---------------------------------------------------------------------------
216// Read the array of BasicTypes from a signature, and compute where the
217// arguments should go.  Values in the VMRegPair regs array refer to 4-byte
218// quantities.  Values less than VMRegImpl::stack0 are registers, those above
219// refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
220// as framesizes are fixed.
221// VMRegImpl::stack0 refers to the first slot 0(sp).
222// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
223// up to RegisterImpl::number_of_registers) are the 64-bit
224// integer registers.
225
226// Note: the INPUTS in sig_bt are in units of Java argument words,
227// which are 64-bit.  The OUTPUTS are in 32-bit units.
228
229// The Java calling convention is a "shifted" version of the C ABI.
230// By skipping the first C ABI register we can call non-static jni
231// methods with small numbers of arguments without having to shuffle
232// the arguments at all. Since we control the java ABI we ought to at
233// least get some advantage out of it.
234
235int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
236                                           VMRegPair *regs,
237                                           int total_args_passed,
238                                           int is_outgoing) {
239
240  // Create the mapping between argument positions and
241  // registers.
242  static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
243    j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
244  };
245  static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
246    j_farg0, j_farg1, j_farg2, j_farg3,
247    j_farg4, j_farg5, j_farg6, j_farg7
248  };
249
250
251  uint int_args = 0;
252  uint fp_args = 0;
253  uint stk_args = 0; // inc by 2 each time
254
255  for (int i = 0; i < total_args_passed; i++) {
256    switch (sig_bt[i]) {
257    case T_BOOLEAN:
258    case T_CHAR:
259    case T_BYTE:
260    case T_SHORT:
261    case T_INT:
262      if (int_args < Argument::n_int_register_parameters_j) {
263        regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
264      } else {
265        regs[i].set1(VMRegImpl::stack2reg(stk_args));
266        stk_args += 2;
267      }
268      break;
269    case T_VOID:
270      // halves of T_LONG or T_DOUBLE
271      assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
272      regs[i].set_bad();
273      break;
274    case T_LONG:
275      assert(sig_bt[i + 1] == T_VOID, "expecting half");
276      // fall through
277    case T_OBJECT:
278    case T_ARRAY:
279    case T_ADDRESS:
280      if (int_args < Argument::n_int_register_parameters_j) {
281        regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
282      } else {
283        regs[i].set2(VMRegImpl::stack2reg(stk_args));
284        stk_args += 2;
285      }
286      break;
287    case T_FLOAT:
288      if (fp_args < Argument::n_float_register_parameters_j) {
289        regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
290      } else {
291        regs[i].set1(VMRegImpl::stack2reg(stk_args));
292        stk_args += 2;
293      }
294      break;
295    case T_DOUBLE:
296      assert(sig_bt[i + 1] == T_VOID, "expecting half");
297      if (fp_args < Argument::n_float_register_parameters_j) {
298        regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
299      } else {
300        regs[i].set2(VMRegImpl::stack2reg(stk_args));
301        stk_args += 2;
302      }
303      break;
304    default:
305      ShouldNotReachHere();
306      break;
307    }
308  }
309
310  return round_to(stk_args, 2);
311}
312
313// Patch the callers callsite with entry to compiled code if it exists.
314static void patch_callers_callsite(MacroAssembler *masm) {
315  Label L;
316  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
317  __ cbz(rscratch1, L);
318
319  __ enter();
320  __ push_CPU_state();
321
322  // VM needs caller's callsite
323  // VM needs target method
324  // This needs to be a long call since we will relocate this adapter to
325  // the codeBuffer and it may not reach
326
327#ifndef PRODUCT
328  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
329#endif
330
331  __ mov(c_rarg0, rmethod);
332  __ mov(c_rarg1, lr);
333  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
334  __ blrt(rscratch1, 2, 0, 0);
335  __ maybe_isb();
336
337  __ pop_CPU_state();
338  // restore sp
339  __ leave();
340  __ bind(L);
341}
342
343static void gen_c2i_adapter(MacroAssembler *masm,
344                            int total_args_passed,
345                            int comp_args_on_stack,
346                            const BasicType *sig_bt,
347                            const VMRegPair *regs,
348                            Label& skip_fixup) {
349  // Before we get into the guts of the C2I adapter, see if we should be here
350  // at all.  We've come from compiled code and are attempting to jump to the
351  // interpreter, which means the caller made a static call to get here
352  // (vcalls always get a compiled target if there is one).  Check for a
353  // compiled target.  If there is one, we need to patch the caller's call.
354  patch_callers_callsite(masm);
355
356  __ bind(skip_fixup);
357
358  int words_pushed = 0;
359
360  // Since all args are passed on the stack, total_args_passed *
361  // Interpreter::stackElementSize is the space we need.
362
363  int extraspace = total_args_passed * Interpreter::stackElementSize;
364
365  __ mov(r13, sp);
366
367  // stack is aligned, keep it that way
368  extraspace = round_to(extraspace, 2*wordSize);
369
370  if (extraspace)
371    __ sub(sp, sp, extraspace);
372
373  // Now write the args into the outgoing interpreter space
374  for (int i = 0; i < total_args_passed; i++) {
375    if (sig_bt[i] == T_VOID) {
376      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
377      continue;
378    }
379
380    // offset to start parameters
381    int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
382    int next_off = st_off - Interpreter::stackElementSize;
383
384    // Say 4 args:
385    // i   st_off
386    // 0   32 T_LONG
387    // 1   24 T_VOID
388    // 2   16 T_OBJECT
389    // 3    8 T_BOOL
390    // -    0 return address
391    //
392    // However to make thing extra confusing. Because we can fit a long/double in
393    // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
394    // leaves one slot empty and only stores to a single slot. In this case the
395    // slot that is occupied is the T_VOID slot. See I said it was confusing.
396
397    VMReg r_1 = regs[i].first();
398    VMReg r_2 = regs[i].second();
399    if (!r_1->is_valid()) {
400      assert(!r_2->is_valid(), "");
401      continue;
402    }
403    if (r_1->is_stack()) {
404      // memory to memory use rscratch1
405      int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
406                    + extraspace
407                    + words_pushed * wordSize);
408      if (!r_2->is_valid()) {
409        // sign extend??
410        __ ldrw(rscratch1, Address(sp, ld_off));
411        __ str(rscratch1, Address(sp, st_off));
412
413      } else {
414
415        __ ldr(rscratch1, Address(sp, ld_off));
416
417        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
418        // T_DOUBLE and T_LONG use two slots in the interpreter
419        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
420          // ld_off == LSW, ld_off+wordSize == MSW
421          // st_off == MSW, next_off == LSW
422          __ str(rscratch1, Address(sp, next_off));
423#ifdef ASSERT
424          // Overwrite the unused slot with known junk
425          __ mov(rscratch1, 0xdeadffffdeadaaaaul);
426          __ str(rscratch1, Address(sp, st_off));
427#endif /* ASSERT */
428        } else {
429          __ str(rscratch1, Address(sp, st_off));
430        }
431      }
432    } else if (r_1->is_Register()) {
433      Register r = r_1->as_Register();
434      if (!r_2->is_valid()) {
435        // must be only an int (or less ) so move only 32bits to slot
436        // why not sign extend??
437        __ str(r, Address(sp, st_off));
438      } else {
439        // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
440        // T_DOUBLE and T_LONG use two slots in the interpreter
441        if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
442          // long/double in gpr
443#ifdef ASSERT
444          // Overwrite the unused slot with known junk
445          __ mov(rscratch1, 0xdeadffffdeadaaabul);
446          __ str(rscratch1, Address(sp, st_off));
447#endif /* ASSERT */
448          __ str(r, Address(sp, next_off));
449        } else {
450          __ str(r, Address(sp, st_off));
451        }
452      }
453    } else {
454      assert(r_1->is_FloatRegister(), "");
455      if (!r_2->is_valid()) {
456        // only a float use just part of the slot
457        __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
458      } else {
459#ifdef ASSERT
460        // Overwrite the unused slot with known junk
461        __ mov(rscratch1, 0xdeadffffdeadaaacul);
462        __ str(rscratch1, Address(sp, st_off));
463#endif /* ASSERT */
464        __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
465      }
466    }
467  }
468
469  __ mov(esp, sp); // Interp expects args on caller's expression stack
470
471  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
472  __ br(rscratch1);
473}
474
475
476void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
477                                    int total_args_passed,
478                                    int comp_args_on_stack,
479                                    const BasicType *sig_bt,
480                                    const VMRegPair *regs) {
481
482  // Note: r13 contains the senderSP on entry. We must preserve it since
483  // we may do a i2c -> c2i transition if we lose a race where compiled
484  // code goes non-entrant while we get args ready.
485
486  // In addition we use r13 to locate all the interpreter args because
487  // we must align the stack to 16 bytes.
488
489  // Adapters are frameless.
490
491  // An i2c adapter is frameless because the *caller* frame, which is
492  // interpreted, routinely repairs its own esp (from
493  // interpreter_frame_last_sp), even if a callee has modified the
494  // stack pointer.  It also recalculates and aligns sp.
495
496  // A c2i adapter is frameless because the *callee* frame, which is
497  // interpreted, routinely repairs its caller's sp (from sender_sp,
498  // which is set up via the senderSP register).
499
500  // In other words, if *either* the caller or callee is interpreted, we can
501  // get the stack pointer repaired after a call.
502
503  // This is why c2i and i2c adapters cannot be indefinitely composed.
504  // In particular, if a c2i adapter were to somehow call an i2c adapter,
505  // both caller and callee would be compiled methods, and neither would
506  // clean up the stack pointer changes performed by the two adapters.
507  // If this happens, control eventually transfers back to the compiled
508  // caller, but with an uncorrected stack, causing delayed havoc.
509
510  if (VerifyAdapterCalls &&
511      (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
512#if 0
513    // So, let's test for cascading c2i/i2c adapters right now.
514    //  assert(Interpreter::contains($return_addr) ||
515    //         StubRoutines::contains($return_addr),
516    //         "i2c adapter must return to an interpreter frame");
517    __ block_comment("verify_i2c { ");
518    Label L_ok;
519    if (Interpreter::code() != NULL)
520      range_check(masm, rax, r11,
521                  Interpreter::code()->code_start(), Interpreter::code()->code_end(),
522                  L_ok);
523    if (StubRoutines::code1() != NULL)
524      range_check(masm, rax, r11,
525                  StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
526                  L_ok);
527    if (StubRoutines::code2() != NULL)
528      range_check(masm, rax, r11,
529                  StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
530                  L_ok);
531    const char* msg = "i2c adapter must return to an interpreter frame";
532    __ block_comment(msg);
533    __ stop(msg);
534    __ bind(L_ok);
535    __ block_comment("} verify_i2ce ");
536#endif
537  }
538
539  // Cut-out for having no stack args.
540  int comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
541  if (comp_args_on_stack) {
542    __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
543    __ andr(sp, rscratch1, -16);
544  }
545
546  // Will jump to the compiled code just as if compiled code was doing it.
547  // Pre-load the register-jump target early, to schedule it better.
548  __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
549
550  // Now generate the shuffle code.
551  for (int i = 0; i < total_args_passed; i++) {
552    if (sig_bt[i] == T_VOID) {
553      assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
554      continue;
555    }
556
557    // Pick up 0, 1 or 2 words from SP+offset.
558
559    assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
560            "scrambled load targets?");
561    // Load in argument order going down.
562    int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
563    // Point to interpreter value (vs. tag)
564    int next_off = ld_off - Interpreter::stackElementSize;
565    //
566    //
567    //
568    VMReg r_1 = regs[i].first();
569    VMReg r_2 = regs[i].second();
570    if (!r_1->is_valid()) {
571      assert(!r_2->is_valid(), "");
572      continue;
573    }
574    if (r_1->is_stack()) {
575      // Convert stack slot to an SP offset (+ wordSize to account for return address )
576      int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
577      if (!r_2->is_valid()) {
578        // sign extend???
579        __ ldrsw(rscratch2, Address(esp, ld_off));
580        __ str(rscratch2, Address(sp, st_off));
581      } else {
582        //
583        // We are using two optoregs. This can be either T_OBJECT,
584        // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
585        // two slots but only uses one for thr T_LONG or T_DOUBLE case
586        // So we must adjust where to pick up the data to match the
587        // interpreter.
588        //
589        // Interpreter local[n] == MSW, local[n+1] == LSW however locals
590        // are accessed as negative so LSW is at LOW address
591
592        // ld_off is MSW so get LSW
593        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
594                           next_off : ld_off;
595        __ ldr(rscratch2, Address(esp, offset));
596        // st_off is LSW (i.e. reg.first())
597        __ str(rscratch2, Address(sp, st_off));
598      }
599    } else if (r_1->is_Register()) {  // Register argument
600      Register r = r_1->as_Register();
601      if (r_2->is_valid()) {
602        //
603        // We are using two VMRegs. This can be either T_OBJECT,
604        // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
605        // two slots but only uses one for thr T_LONG or T_DOUBLE case
606        // So we must adjust where to pick up the data to match the
607        // interpreter.
608
609        const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
610                           next_off : ld_off;
611
612        // this can be a misaligned move
613        __ ldr(r, Address(esp, offset));
614      } else {
615        // sign extend and use a full word?
616        __ ldrw(r, Address(esp, ld_off));
617      }
618    } else {
619      if (!r_2->is_valid()) {
620        __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
621      } else {
622        __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
623      }
624    }
625  }
626
627  // 6243940 We might end up in handle_wrong_method if
628  // the callee is deoptimized as we race thru here. If that
629  // happens we don't want to take a safepoint because the
630  // caller frame will look interpreted and arguments are now
631  // "compiled" so it is much better to make this transition
632  // invisible to the stack walking code. Unfortunately if
633  // we try and find the callee by normal means a safepoint
634  // is possible. So we stash the desired callee in the thread
635  // and the vm will find there should this case occur.
636
637  __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
638
639  __ br(rscratch1);
640}
641
642#ifdef BUILTIN_SIM
643static void generate_i2c_adapter_name(char *result, int total_args_passed, const BasicType *sig_bt)
644{
645  strcpy(result, "i2c(");
646  int idx = 4;
647  for (int i = 0; i < total_args_passed; i++) {
648    switch(sig_bt[i]) {
649    case T_BOOLEAN:
650      result[idx++] = 'Z';
651      break;
652    case T_CHAR:
653      result[idx++] = 'C';
654      break;
655    case T_FLOAT:
656      result[idx++] = 'F';
657      break;
658    case T_DOUBLE:
659      assert((i < (total_args_passed - 1)) && (sig_bt[i+1] == T_VOID),
660             "double must be followed by void");
661      i++;
662      result[idx++] = 'D';
663      break;
664    case T_BYTE:
665      result[idx++] = 'B';
666      break;
667    case T_SHORT:
668      result[idx++] = 'S';
669      break;
670    case T_INT:
671      result[idx++] = 'I';
672      break;
673    case T_LONG:
674      assert((i < (total_args_passed - 1)) && (sig_bt[i+1] == T_VOID),
675             "long must be followed by void");
676      i++;
677      result[idx++] = 'L';
678      break;
679    case T_OBJECT:
680      result[idx++] = 'O';
681      break;
682    case T_ARRAY:
683      result[idx++] = '[';
684      break;
685    case T_ADDRESS:
686      result[idx++] = 'P';
687      break;
688    case T_NARROWOOP:
689      result[idx++] = 'N';
690      break;
691    case T_METADATA:
692      result[idx++] = 'M';
693      break;
694    case T_NARROWKLASS:
695      result[idx++] = 'K';
696      break;
697    default:
698      result[idx++] = '?';
699      break;
700    }
701  }
702  result[idx++] = ')';
703  result[idx] = '\0';
704}
705#endif
706
707// ---------------------------------------------------------------
708AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
709                                                            int total_args_passed,
710                                                            int comp_args_on_stack,
711                                                            const BasicType *sig_bt,
712                                                            const VMRegPair *regs,
713                                                            AdapterFingerPrint* fingerprint) {
714  address i2c_entry = __ pc();
715#ifdef BUILTIN_SIM
716  char *name = NULL;
717  AArch64Simulator *sim = NULL;
718  size_t len = 65536;
719  if (NotifySimulator) {
720    name = NEW_C_HEAP_ARRAY(char, len, mtInternal);
721  }
722
723  if (name) {
724    generate_i2c_adapter_name(name, total_args_passed, sig_bt);
725    sim = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
726    sim->notifyCompile(name, i2c_entry);
727  }
728#endif
729  gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
730
731  address c2i_unverified_entry = __ pc();
732  Label skip_fixup;
733
734  Label ok;
735
736  Register holder = rscratch2;
737  Register receiver = j_rarg0;
738  Register tmp = r10;  // A call-clobbered register not used for arg passing
739
740  // -------------------------------------------------------------------------
741  // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
742  // to the interpreter.  The args start out packed in the compiled layout.  They
743  // need to be unpacked into the interpreter layout.  This will almost always
744  // require some stack space.  We grow the current (compiled) stack, then repack
745  // the args.  We  finally end in a jump to the generic interpreter entry point.
746  // On exit from the interpreter, the interpreter will restore our SP (lest the
747  // compiled code, which relys solely on SP and not FP, get sick).
748
749  {
750    __ block_comment("c2i_unverified_entry {");
751    __ load_klass(rscratch1, receiver);
752    __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset()));
753    __ cmp(rscratch1, tmp);
754    __ ldr(rmethod, Address(holder, CompiledICHolder::holder_method_offset()));
755    __ br(Assembler::EQ, ok);
756    __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
757
758    __ bind(ok);
759    // Method might have been compiled since the call site was patched to
760    // interpreted; if that is the case treat it as a miss so we can get
761    // the call site corrected.
762    __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
763    __ cbz(rscratch1, skip_fixup);
764    __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
765    __ block_comment("} c2i_unverified_entry");
766  }
767
768  address c2i_entry = __ pc();
769
770#ifdef BUILTIN_SIM
771  if (name) {
772    name[0] = 'c';
773    name[2] = 'i';
774    sim->notifyCompile(name, c2i_entry);
775    FREE_C_HEAP_ARRAY(char, name, mtInternal);
776  }
777#endif
778
779  gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
780
781  __ flush();
782  return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
783}
784
785int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
786                                         VMRegPair *regs,
787                                         VMRegPair *regs2,
788                                         int total_args_passed) {
789  assert(regs2 == NULL, "not needed on AArch64");
790
791// We return the amount of VMRegImpl stack slots we need to reserve for all
792// the arguments NOT counting out_preserve_stack_slots.
793
794    static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
795      c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
796    };
797    static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
798      c_farg0, c_farg1, c_farg2, c_farg3,
799      c_farg4, c_farg5, c_farg6, c_farg7
800    };
801
802    uint int_args = 0;
803    uint fp_args = 0;
804    uint stk_args = 0; // inc by 2 each time
805
806    for (int i = 0; i < total_args_passed; i++) {
807      switch (sig_bt[i]) {
808      case T_BOOLEAN:
809      case T_CHAR:
810      case T_BYTE:
811      case T_SHORT:
812      case T_INT:
813        if (int_args < Argument::n_int_register_parameters_c) {
814          regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
815        } else {
816          regs[i].set1(VMRegImpl::stack2reg(stk_args));
817          stk_args += 2;
818        }
819        break;
820      case T_LONG:
821        assert(sig_bt[i + 1] == T_VOID, "expecting half");
822        // fall through
823      case T_OBJECT:
824      case T_ARRAY:
825      case T_ADDRESS:
826      case T_METADATA:
827        if (int_args < Argument::n_int_register_parameters_c) {
828          regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
829        } else {
830          regs[i].set2(VMRegImpl::stack2reg(stk_args));
831          stk_args += 2;
832        }
833        break;
834      case T_FLOAT:
835        if (fp_args < Argument::n_float_register_parameters_c) {
836          regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
837        } else {
838          regs[i].set1(VMRegImpl::stack2reg(stk_args));
839          stk_args += 2;
840        }
841        break;
842      case T_DOUBLE:
843        assert(sig_bt[i + 1] == T_VOID, "expecting half");
844        if (fp_args < Argument::n_float_register_parameters_c) {
845          regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
846        } else {
847          regs[i].set2(VMRegImpl::stack2reg(stk_args));
848          stk_args += 2;
849        }
850        break;
851      case T_VOID: // Halves of longs and doubles
852        assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
853        regs[i].set_bad();
854        break;
855      default:
856        ShouldNotReachHere();
857        break;
858      }
859    }
860
861  return stk_args;
862}
863
864// On 64 bit we will store integer like items to the stack as
865// 64 bits items (sparc abi) even though java would only store
866// 32bits for a parameter. On 32bit it will simply be 32 bits
867// So this routine will do 32->32 on 32bit and 32->64 on 64bit
868static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
869  if (src.first()->is_stack()) {
870    if (dst.first()->is_stack()) {
871      // stack to stack
872      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
873      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
874    } else {
875      // stack to reg
876      __ ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
877    }
878  } else if (dst.first()->is_stack()) {
879    // reg to stack
880    // Do we really have to sign extend???
881    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
882    __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
883  } else {
884    if (dst.first() != src.first()) {
885      __ sxtw(dst.first()->as_Register(), src.first()->as_Register());
886    }
887  }
888}
889
890// An oop arg. Must pass a handle not the oop itself
891static void object_move(MacroAssembler* masm,
892                        OopMap* map,
893                        int oop_handle_offset,
894                        int framesize_in_slots,
895                        VMRegPair src,
896                        VMRegPair dst,
897                        bool is_receiver,
898                        int* receiver_offset) {
899
900  // must pass a handle. First figure out the location we use as a handle
901
902  Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
903
904  // See if oop is NULL if it is we need no handle
905
906  if (src.first()->is_stack()) {
907
908    // Oop is already on the stack as an argument
909    int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
910    map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
911    if (is_receiver) {
912      *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
913    }
914
915    __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
916    __ lea(rHandle, Address(rfp, reg2offset_in(src.first())));
917    // conditionally move a NULL
918    __ cmp(rscratch1, zr);
919    __ csel(rHandle, zr, rHandle, Assembler::EQ);
920  } else {
921
922    // Oop is in an a register we must store it to the space we reserve
923    // on the stack for oop_handles and pass a handle if oop is non-NULL
924
925    const Register rOop = src.first()->as_Register();
926    int oop_slot;
927    if (rOop == j_rarg0)
928      oop_slot = 0;
929    else if (rOop == j_rarg1)
930      oop_slot = 1;
931    else if (rOop == j_rarg2)
932      oop_slot = 2;
933    else if (rOop == j_rarg3)
934      oop_slot = 3;
935    else if (rOop == j_rarg4)
936      oop_slot = 4;
937    else if (rOop == j_rarg5)
938      oop_slot = 5;
939    else if (rOop == j_rarg6)
940      oop_slot = 6;
941    else {
942      assert(rOop == j_rarg7, "wrong register");
943      oop_slot = 7;
944    }
945
946    oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
947    int offset = oop_slot*VMRegImpl::stack_slot_size;
948
949    map->set_oop(VMRegImpl::stack2reg(oop_slot));
950    // Store oop in handle area, may be NULL
951    __ str(rOop, Address(sp, offset));
952    if (is_receiver) {
953      *receiver_offset = offset;
954    }
955
956    __ cmp(rOop, zr);
957    __ lea(rHandle, Address(sp, offset));
958    // conditionally move a NULL
959    __ csel(rHandle, zr, rHandle, Assembler::EQ);
960  }
961
962  // If arg is on the stack then place it otherwise it is already in correct reg.
963  if (dst.first()->is_stack()) {
964    __ str(rHandle, Address(sp, reg2offset_out(dst.first())));
965  }
966}
967
968// A float arg may have to do float reg int reg conversion
969static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
970  if (src.first() != dst.first()) {
971    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
972      __ fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
973    else
974      ShouldNotReachHere();
975  }
976}
977
978// A long move
979static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
980  if (src.first()->is_stack()) {
981    if (dst.first()->is_stack()) {
982      // stack to stack
983      __ ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
984      __ str(rscratch1, Address(sp, reg2offset_out(dst.first())));
985    } else {
986      // stack to reg
987      __ ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
988    }
989  } else if (dst.first()->is_stack()) {
990    // reg to stack
991    // Do we really have to sign extend???
992    // __ movslq(src.first()->as_Register(), src.first()->as_Register());
993    __ str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
994  } else {
995    if (dst.first() != src.first()) {
996      __ mov(dst.first()->as_Register(), src.first()->as_Register());
997    }
998  }
999}
1000
1001
1002// A double move
1003static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1004  if (src.first() != dst.first()) {
1005    if (src.is_single_phys_reg() && dst.is_single_phys_reg())
1006      __ fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1007    else
1008      ShouldNotReachHere();
1009  }
1010}
1011
1012
1013void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1014  // We always ignore the frame_slots arg and just use the space just below frame pointer
1015  // which by this time is free to use
1016  switch (ret_type) {
1017  case T_FLOAT:
1018    __ strs(v0, Address(rfp, -wordSize));
1019    break;
1020  case T_DOUBLE:
1021    __ strd(v0, Address(rfp, -wordSize));
1022    break;
1023  case T_VOID:  break;
1024  default: {
1025    __ str(r0, Address(rfp, -wordSize));
1026    }
1027  }
1028}
1029
1030void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1031  // We always ignore the frame_slots arg and just use the space just below frame pointer
1032  // which by this time is free to use
1033  switch (ret_type) {
1034  case T_FLOAT:
1035    __ ldrs(v0, Address(rfp, -wordSize));
1036    break;
1037  case T_DOUBLE:
1038    __ ldrd(v0, Address(rfp, -wordSize));
1039    break;
1040  case T_VOID:  break;
1041  default: {
1042    __ ldr(r0, Address(rfp, -wordSize));
1043    }
1044  }
1045}
1046static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1047  RegSet x;
1048  for ( int i = first_arg ; i < arg_count ; i++ ) {
1049    if (args[i].first()->is_Register()) {
1050      x = x + args[i].first()->as_Register();
1051    } else if (args[i].first()->is_FloatRegister()) {
1052      __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
1053    }
1054  }
1055  __ push(x, sp);
1056}
1057
1058static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1059  RegSet x;
1060  for ( int i = first_arg ; i < arg_count ; i++ ) {
1061    if (args[i].first()->is_Register()) {
1062      x = x + args[i].first()->as_Register();
1063    } else {
1064      ;
1065    }
1066  }
1067  __ pop(x, sp);
1068  for ( int i = first_arg ; i < arg_count ; i++ ) {
1069    if (args[i].first()->is_Register()) {
1070      ;
1071    } else if (args[i].first()->is_FloatRegister()) {
1072      __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
1073    }
1074  }
1075}
1076
1077
1078// Check GC_locker::needs_gc and enter the runtime if it's true.  This
1079// keeps a new JNI critical region from starting until a GC has been
1080// forced.  Save down any oops in registers and describe them in an
1081// OopMap.
1082static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1083                                               int stack_slots,
1084                                               int total_c_args,
1085                                               int total_in_args,
1086                                               int arg_save_area,
1087                                               OopMapSet* oop_maps,
1088                                               VMRegPair* in_regs,
1089                                               BasicType* in_sig_bt) { Unimplemented(); }
1090
1091// Unpack an array argument into a pointer to the body and the length
1092// if the array is non-null, otherwise pass 0 for both.
1093static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); }
1094
1095
1096class ComputeMoveOrder: public StackObj {
1097  class MoveOperation: public ResourceObj {
1098    friend class ComputeMoveOrder;
1099   private:
1100    VMRegPair        _src;
1101    VMRegPair        _dst;
1102    int              _src_index;
1103    int              _dst_index;
1104    bool             _processed;
1105    MoveOperation*  _next;
1106    MoveOperation*  _prev;
1107
1108    static int get_id(VMRegPair r) { Unimplemented(); return 0; }
1109
1110   public:
1111    MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1112      _src(src)
1113    , _src_index(src_index)
1114    , _dst(dst)
1115    , _dst_index(dst_index)
1116    , _next(NULL)
1117    , _prev(NULL)
1118    , _processed(false) { Unimplemented(); }
1119
1120    VMRegPair src() const              { Unimplemented(); return _src; }
1121    int src_id() const                 { Unimplemented(); return 0; }
1122    int src_index() const              { Unimplemented(); return 0; }
1123    VMRegPair dst() const              { Unimplemented(); return _src; }
1124    void set_dst(int i, VMRegPair dst) { Unimplemented(); }
1125    int dst_index() const              { Unimplemented(); return 0; }
1126    int dst_id() const                 { Unimplemented(); return 0; }
1127    MoveOperation* next() const        { Unimplemented(); return 0; }
1128    MoveOperation* prev() const        { Unimplemented(); return 0; }
1129    void set_processed()               { Unimplemented(); }
1130    bool is_processed() const          { Unimplemented(); return 0; }
1131
1132    // insert
1133    void break_cycle(VMRegPair temp_register) { Unimplemented(); }
1134
1135    void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); }
1136  };
1137
1138 private:
1139  GrowableArray<MoveOperation*> edges;
1140
1141 public:
1142  ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1143                    BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); }
1144
1145  // Collected all the move operations
1146  void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); }
1147
1148  // Walk the edges breaking cycles between moves.  The result list
1149  // can be walked in order to produce the proper set of loads
1150  GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; }
1151};
1152
1153
1154static void rt_call(MacroAssembler* masm, address dest, int gpargs, int fpargs, int type) {
1155  CodeBlob *cb = CodeCache::find_blob(dest);
1156  if (cb) {
1157    __ far_call(RuntimeAddress(dest));
1158  } else {
1159    assert((unsigned)gpargs < 256, "eek!");
1160    assert((unsigned)fpargs < 32, "eek!");
1161    __ lea(rscratch1, RuntimeAddress(dest));
1162    if (UseBuiltinSim)   __ mov(rscratch2, (gpargs << 6) | (fpargs << 2) | type);
1163    __ blrt(rscratch1, rscratch2);
1164    __ maybe_isb();
1165  }
1166}
1167
1168static void verify_oop_args(MacroAssembler* masm,
1169                            methodHandle method,
1170                            const BasicType* sig_bt,
1171                            const VMRegPair* regs) {
1172  Register temp_reg = r19;  // not part of any compiled calling seq
1173  if (VerifyOops) {
1174    for (int i = 0; i < method->size_of_parameters(); i++) {
1175      if (sig_bt[i] == T_OBJECT ||
1176          sig_bt[i] == T_ARRAY) {
1177        VMReg r = regs[i].first();
1178        assert(r->is_valid(), "bad oop arg");
1179        if (r->is_stack()) {
1180          __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1181          __ verify_oop(temp_reg);
1182        } else {
1183          __ verify_oop(r->as_Register());
1184        }
1185      }
1186    }
1187  }
1188}
1189
1190static void gen_special_dispatch(MacroAssembler* masm,
1191                                 methodHandle method,
1192                                 const BasicType* sig_bt,
1193                                 const VMRegPair* regs) {
1194  verify_oop_args(masm, method, sig_bt, regs);
1195  vmIntrinsics::ID iid = method->intrinsic_id();
1196
1197  // Now write the args into the outgoing interpreter space
1198  bool     has_receiver   = false;
1199  Register receiver_reg   = noreg;
1200  int      member_arg_pos = -1;
1201  Register member_reg     = noreg;
1202  int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1203  if (ref_kind != 0) {
1204    member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1205    member_reg = r19;  // known to be free at this point
1206    has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1207  } else if (iid == vmIntrinsics::_invokeBasic) {
1208    has_receiver = true;
1209  } else {
1210    fatal(err_msg_res("unexpected intrinsic id %d", iid));
1211  }
1212
1213  if (member_reg != noreg) {
1214    // Load the member_arg into register, if necessary.
1215    SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1216    VMReg r = regs[member_arg_pos].first();
1217    if (r->is_stack()) {
1218      __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1219    } else {
1220      // no data motion is needed
1221      member_reg = r->as_Register();
1222    }
1223  }
1224
1225  if (has_receiver) {
1226    // Make sure the receiver is loaded into a register.
1227    assert(method->size_of_parameters() > 0, "oob");
1228    assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1229    VMReg r = regs[0].first();
1230    assert(r->is_valid(), "bad receiver arg");
1231    if (r->is_stack()) {
1232      // Porting note:  This assumes that compiled calling conventions always
1233      // pass the receiver oop in a register.  If this is not true on some
1234      // platform, pick a temp and load the receiver from stack.
1235      fatal("receiver always in a register");
1236      receiver_reg = r2;  // known to be free at this point
1237      __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1238    } else {
1239      // no data motion is needed
1240      receiver_reg = r->as_Register();
1241    }
1242  }
1243
1244  // Figure out which address we are really jumping to:
1245  MethodHandles::generate_method_handle_dispatch(masm, iid,
1246                                                 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1247}
1248
1249// ---------------------------------------------------------------------------
1250// Generate a native wrapper for a given method.  The method takes arguments
1251// in the Java compiled code convention, marshals them to the native
1252// convention (handlizes oops, etc), transitions to native, makes the call,
1253// returns to java state (possibly blocking), unhandlizes any result and
1254// returns.
1255//
1256// Critical native functions are a shorthand for the use of
1257// GetPrimtiveArrayCritical and disallow the use of any other JNI
1258// functions.  The wrapper is expected to unpack the arguments before
1259// passing them to the callee and perform checks before and after the
1260// native call to ensure that they GC_locker
1261// lock_critical/unlock_critical semantics are followed.  Some other
1262// parts of JNI setup are skipped like the tear down of the JNI handle
1263// block and the check for pending exceptions it's impossible for them
1264// to be thrown.
1265//
1266// They are roughly structured like this:
1267//    if (GC_locker::needs_gc())
1268//      SharedRuntime::block_for_jni_critical();
1269//    tranistion to thread_in_native
1270//    unpack arrray arguments and call native entry point
1271//    check for safepoint in progress
1272//    check if any thread suspend flags are set
1273//      call into JVM and possible unlock the JNI critical
1274//      if a GC was suppressed while in the critical native.
1275//    transition back to thread_in_Java
1276//    return to caller
1277//
1278nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1279                                                methodHandle method,
1280                                                int compile_id,
1281                                                BasicType* in_sig_bt,
1282                                                VMRegPair* in_regs,
1283                                                BasicType ret_type) {
1284#ifdef BUILTIN_SIM
1285  if (NotifySimulator) {
1286    // Names are up to 65536 chars long.  UTF8-coded strings are up to
1287    // 3 bytes per character.  We concatenate three such strings.
1288    // Yes, I know this is ridiculous, but it's debug code and glibc
1289    // allocates large arrays very efficiently.
1290    size_t len = (65536 * 3) * 3;
1291    char *name = new char[len];
1292
1293    strncpy(name, method()->method_holder()->name()->as_utf8(), len);
1294    strncat(name, ".", len);
1295    strncat(name, method()->name()->as_utf8(), len);
1296    strncat(name, method()->signature()->as_utf8(), len);
1297    AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck)->notifyCompile(name, __ pc());
1298    delete[] name;
1299  }
1300#endif
1301
1302  if (method->is_method_handle_intrinsic()) {
1303    vmIntrinsics::ID iid = method->intrinsic_id();
1304    intptr_t start = (intptr_t)__ pc();
1305    int vep_offset = ((intptr_t)__ pc()) - start;
1306
1307    // First instruction must be a nop as it may need to be patched on deoptimisation
1308    __ nop();
1309    gen_special_dispatch(masm,
1310                         method,
1311                         in_sig_bt,
1312                         in_regs);
1313    int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1314    __ flush();
1315    int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1316    return nmethod::new_native_nmethod(method,
1317                                       compile_id,
1318                                       masm->code(),
1319                                       vep_offset,
1320                                       frame_complete,
1321                                       stack_slots / VMRegImpl::slots_per_word,
1322                                       in_ByteSize(-1),
1323                                       in_ByteSize(-1),
1324                                       (OopMapSet*)NULL);
1325  }
1326  bool is_critical_native = true;
1327  address native_func = method->critical_native_function();
1328  if (native_func == NULL) {
1329    native_func = method->native_function();
1330    is_critical_native = false;
1331  }
1332  assert(native_func != NULL, "must have function");
1333
1334  // An OopMap for lock (and class if static)
1335  OopMapSet *oop_maps = new OopMapSet();
1336  intptr_t start = (intptr_t)__ pc();
1337
1338  // We have received a description of where all the java arg are located
1339  // on entry to the wrapper. We need to convert these args to where
1340  // the jni function will expect them. To figure out where they go
1341  // we convert the java signature to a C signature by inserting
1342  // the hidden arguments as arg[0] and possibly arg[1] (static method)
1343
1344  const int total_in_args = method->size_of_parameters();
1345  int total_c_args = total_in_args;
1346  if (!is_critical_native) {
1347    total_c_args += 1;
1348    if (method->is_static()) {
1349      total_c_args++;
1350    }
1351  } else {
1352    for (int i = 0; i < total_in_args; i++) {
1353      if (in_sig_bt[i] == T_ARRAY) {
1354        total_c_args++;
1355      }
1356    }
1357  }
1358
1359  BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1360  VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1361  BasicType* in_elem_bt = NULL;
1362
1363  int argc = 0;
1364  if (!is_critical_native) {
1365    out_sig_bt[argc++] = T_ADDRESS;
1366    if (method->is_static()) {
1367      out_sig_bt[argc++] = T_OBJECT;
1368    }
1369
1370    for (int i = 0; i < total_in_args ; i++ ) {
1371      out_sig_bt[argc++] = in_sig_bt[i];
1372    }
1373  } else {
1374    Thread* THREAD = Thread::current();
1375    in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1376    SignatureStream ss(method->signature());
1377    for (int i = 0; i < total_in_args ; i++ ) {
1378      if (in_sig_bt[i] == T_ARRAY) {
1379        // Arrays are passed as int, elem* pair
1380        out_sig_bt[argc++] = T_INT;
1381        out_sig_bt[argc++] = T_ADDRESS;
1382        Symbol* atype = ss.as_symbol(CHECK_NULL);
1383        const char* at = atype->as_C_string();
1384        if (strlen(at) == 2) {
1385          assert(at[0] == '[', "must be");
1386          switch (at[1]) {
1387            case 'B': in_elem_bt[i]  = T_BYTE; break;
1388            case 'C': in_elem_bt[i]  = T_CHAR; break;
1389            case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1390            case 'F': in_elem_bt[i]  = T_FLOAT; break;
1391            case 'I': in_elem_bt[i]  = T_INT; break;
1392            case 'J': in_elem_bt[i]  = T_LONG; break;
1393            case 'S': in_elem_bt[i]  = T_SHORT; break;
1394            case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1395            default: ShouldNotReachHere();
1396          }
1397        }
1398      } else {
1399        out_sig_bt[argc++] = in_sig_bt[i];
1400        in_elem_bt[i] = T_VOID;
1401      }
1402      if (in_sig_bt[i] != T_VOID) {
1403        assert(in_sig_bt[i] == ss.type(), "must match");
1404        ss.next();
1405      }
1406    }
1407  }
1408
1409  // Now figure out where the args must be stored and how much stack space
1410  // they require.
1411  int out_arg_slots;
1412  out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1413
1414  // Compute framesize for the wrapper.  We need to handlize all oops in
1415  // incoming registers
1416
1417  // Calculate the total number of stack slots we will need.
1418
1419  // First count the abi requirement plus all of the outgoing args
1420  int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1421
1422  // Now the space for the inbound oop handle area
1423  int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1424  if (is_critical_native) {
1425    // Critical natives may have to call out so they need a save area
1426    // for register arguments.
1427    int double_slots = 0;
1428    int single_slots = 0;
1429    for ( int i = 0; i < total_in_args; i++) {
1430      if (in_regs[i].first()->is_Register()) {
1431        const Register reg = in_regs[i].first()->as_Register();
1432        switch (in_sig_bt[i]) {
1433          case T_BOOLEAN:
1434          case T_BYTE:
1435          case T_SHORT:
1436          case T_CHAR:
1437          case T_INT:  single_slots++; break;
1438          case T_ARRAY:  // specific to LP64 (7145024)
1439          case T_LONG: double_slots++; break;
1440          default:  ShouldNotReachHere();
1441        }
1442      } else if (in_regs[i].first()->is_FloatRegister()) {
1443        ShouldNotReachHere();
1444      }
1445    }
1446    total_save_slots = double_slots * 2 + single_slots;
1447    // align the save area
1448    if (double_slots != 0) {
1449      stack_slots = round_to(stack_slots, 2);
1450    }
1451  }
1452
1453  int oop_handle_offset = stack_slots;
1454  stack_slots += total_save_slots;
1455
1456  // Now any space we need for handlizing a klass if static method
1457
1458  int klass_slot_offset = 0;
1459  int klass_offset = -1;
1460  int lock_slot_offset = 0;
1461  bool is_static = false;
1462
1463  if (method->is_static()) {
1464    klass_slot_offset = stack_slots;
1465    stack_slots += VMRegImpl::slots_per_word;
1466    klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1467    is_static = true;
1468  }
1469
1470  // Plus a lock if needed
1471
1472  if (method->is_synchronized()) {
1473    lock_slot_offset = stack_slots;
1474    stack_slots += VMRegImpl::slots_per_word;
1475  }
1476
1477  // Now a place (+2) to save return values or temp during shuffling
1478  // + 4 for return address (which we own) and saved rfp
1479  stack_slots += 6;
1480
1481  // Ok The space we have allocated will look like:
1482  //
1483  //
1484  // FP-> |                     |
1485  //      |---------------------|
1486  //      | 2 slots for moves   |
1487  //      |---------------------|
1488  //      | lock box (if sync)  |
1489  //      |---------------------| <- lock_slot_offset
1490  //      | klass (if static)   |
1491  //      |---------------------| <- klass_slot_offset
1492  //      | oopHandle area      |
1493  //      |---------------------| <- oop_handle_offset (8 java arg registers)
1494  //      | outbound memory     |
1495  //      | based arguments     |
1496  //      |                     |
1497  //      |---------------------|
1498  //      |                     |
1499  // SP-> | out_preserved_slots |
1500  //
1501  //
1502
1503
1504  // Now compute actual number of stack words we need rounding to make
1505  // stack properly aligned.
1506  stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1507
1508  int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1509
1510  // First thing make an ic check to see if we should even be here
1511
1512  // We are free to use all registers as temps without saving them and
1513  // restoring them except rfp. rfp is the only callee save register
1514  // as far as the interpreter and the compiler(s) are concerned.
1515
1516
1517  const Register ic_reg = rscratch2;
1518  const Register receiver = j_rarg0;
1519
1520  Label hit;
1521  Label exception_pending;
1522
1523  assert_different_registers(ic_reg, receiver, rscratch1);
1524  __ verify_oop(receiver);
1525  __ cmp_klass(receiver, ic_reg, rscratch1);
1526  __ br(Assembler::EQ, hit);
1527
1528  __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1529
1530  // Verified entry point must be aligned
1531  __ align(8);
1532
1533  __ bind(hit);
1534
1535  int vep_offset = ((intptr_t)__ pc()) - start;
1536
1537  // If we have to make this method not-entrant we'll overwrite its
1538  // first instruction with a jump.  For this action to be legal we
1539  // must ensure that this first instruction is a B, BL, NOP, BKPT,
1540  // SVC, HVC, or SMC.  Make it a NOP.
1541  __ nop();
1542
1543  // Generate stack overflow check
1544  if (UseStackBanging) {
1545    __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
1546  } else {
1547    Unimplemented();
1548  }
1549
1550  // Generate a new frame for the wrapper.
1551  __ enter();
1552  // -2 because return address is already present and so is saved rfp
1553  __ sub(sp, sp, stack_size - 2*wordSize);
1554
1555  // Frame is now completed as far as size and linkage.
1556  int frame_complete = ((intptr_t)__ pc()) - start;
1557
1558  // record entry into native wrapper code
1559  if (NotifySimulator) {
1560    __ notify(Assembler::method_entry);
1561  }
1562
1563  // We use r20 as the oop handle for the receiver/klass
1564  // It is callee save so it survives the call to native
1565
1566  const Register oop_handle_reg = r20;
1567
1568  if (is_critical_native) {
1569    check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
1570                                       oop_handle_offset, oop_maps, in_regs, in_sig_bt);
1571  }
1572
1573  //
1574  // We immediately shuffle the arguments so that any vm call we have to
1575  // make from here on out (sync slow path, jvmti, etc.) we will have
1576  // captured the oops from our caller and have a valid oopMap for
1577  // them.
1578
1579  // -----------------
1580  // The Grand Shuffle
1581
1582  // The Java calling convention is either equal (linux) or denser (win64) than the
1583  // c calling convention. However the because of the jni_env argument the c calling
1584  // convention always has at least one more (and two for static) arguments than Java.
1585  // Therefore if we move the args from java -> c backwards then we will never have
1586  // a register->register conflict and we don't have to build a dependency graph
1587  // and figure out how to break any cycles.
1588  //
1589
1590  // Record esp-based slot for receiver on stack for non-static methods
1591  int receiver_offset = -1;
1592
1593  // This is a trick. We double the stack slots so we can claim
1594  // the oops in the caller's frame. Since we are sure to have
1595  // more args than the caller doubling is enough to make
1596  // sure we can capture all the incoming oop args from the
1597  // caller.
1598  //
1599  OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1600
1601  // Mark location of rfp (someday)
1602  // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1603
1604
1605  int float_args = 0;
1606  int int_args = 0;
1607
1608#ifdef ASSERT
1609  bool reg_destroyed[RegisterImpl::number_of_registers];
1610  bool freg_destroyed[FloatRegisterImpl::number_of_registers];
1611  for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
1612    reg_destroyed[r] = false;
1613  }
1614  for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
1615    freg_destroyed[f] = false;
1616  }
1617
1618#endif /* ASSERT */
1619
1620  // This may iterate in two different directions depending on the
1621  // kind of native it is.  The reason is that for regular JNI natives
1622  // the incoming and outgoing registers are offset upwards and for
1623  // critical natives they are offset down.
1624  GrowableArray<int> arg_order(2 * total_in_args);
1625  VMRegPair tmp_vmreg;
1626  tmp_vmreg.set1(r19->as_VMReg());
1627
1628  if (!is_critical_native) {
1629    for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1630      arg_order.push(i);
1631      arg_order.push(c_arg);
1632    }
1633  } else {
1634    // Compute a valid move order, using tmp_vmreg to break any cycles
1635    ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
1636  }
1637
1638  int temploc = -1;
1639  for (int ai = 0; ai < arg_order.length(); ai += 2) {
1640    int i = arg_order.at(ai);
1641    int c_arg = arg_order.at(ai + 1);
1642    __ block_comment(err_msg("move %d -> %d", i, c_arg));
1643    if (c_arg == -1) {
1644      assert(is_critical_native, "should only be required for critical natives");
1645      // This arg needs to be moved to a temporary
1646      __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
1647      in_regs[i] = tmp_vmreg;
1648      temploc = i;
1649      continue;
1650    } else if (i == -1) {
1651      assert(is_critical_native, "should only be required for critical natives");
1652      // Read from the temporary location
1653      assert(temploc != -1, "must be valid");
1654      i = temploc;
1655      temploc = -1;
1656    }
1657#ifdef ASSERT
1658    if (in_regs[i].first()->is_Register()) {
1659      assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1660    } else if (in_regs[i].first()->is_FloatRegister()) {
1661      assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1662    }
1663    if (out_regs[c_arg].first()->is_Register()) {
1664      reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1665    } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1666      freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1667    }
1668#endif /* ASSERT */
1669    switch (in_sig_bt[i]) {
1670      case T_ARRAY:
1671        if (is_critical_native) {
1672          unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
1673          c_arg++;
1674#ifdef ASSERT
1675          if (out_regs[c_arg].first()->is_Register()) {
1676            reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1677          } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1678            freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1679          }
1680#endif
1681          int_args++;
1682          break;
1683        }
1684      case T_OBJECT:
1685        assert(!is_critical_native, "no oop arguments");
1686        object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1687                    ((i == 0) && (!is_static)),
1688                    &receiver_offset);
1689        int_args++;
1690        break;
1691      case T_VOID:
1692        break;
1693
1694      case T_FLOAT:
1695        float_move(masm, in_regs[i], out_regs[c_arg]);
1696        float_args++;
1697        break;
1698
1699      case T_DOUBLE:
1700        assert( i + 1 < total_in_args &&
1701                in_sig_bt[i + 1] == T_VOID &&
1702                out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1703        double_move(masm, in_regs[i], out_regs[c_arg]);
1704        float_args++;
1705        break;
1706
1707      case T_LONG :
1708        long_move(masm, in_regs[i], out_regs[c_arg]);
1709        int_args++;
1710        break;
1711
1712      case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1713
1714      default:
1715        move32_64(masm, in_regs[i], out_regs[c_arg]);
1716        int_args++;
1717    }
1718  }
1719
1720  // point c_arg at the first arg that is already loaded in case we
1721  // need to spill before we call out
1722  int c_arg = total_c_args - total_in_args;
1723
1724  // Pre-load a static method's oop into c_rarg1.
1725  if (method->is_static() && !is_critical_native) {
1726
1727    //  load oop into a register
1728    __ movoop(c_rarg1,
1729              JNIHandles::make_local(method->method_holder()->java_mirror()),
1730              /*immediate*/true);
1731
1732    // Now handlize the static class mirror it's known not-null.
1733    __ str(c_rarg1, Address(sp, klass_offset));
1734    map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1735
1736    // Now get the handle
1737    __ lea(c_rarg1, Address(sp, klass_offset));
1738    // and protect the arg if we must spill
1739    c_arg--;
1740  }
1741
1742  // Change state to native (we save the return address in the thread, since it might not
1743  // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
1744  // points into the right code segment. It does not have to be the correct return pc.
1745  // We use the same pc/oopMap repeatedly when we call out
1746
1747  intptr_t the_pc = (intptr_t) __ pc();
1748  oop_maps->add_gc_map(the_pc - start, map);
1749
1750  __ set_last_Java_frame(sp, noreg, (address)the_pc, rscratch1);
1751
1752  Label dtrace_method_entry, dtrace_method_entry_done;
1753  {
1754    unsigned long offset;
1755    __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
1756    __ ldrb(rscratch1, Address(rscratch1, offset));
1757    __ cbnzw(rscratch1, dtrace_method_entry);
1758    __ bind(dtrace_method_entry_done);
1759  }
1760
1761  // RedefineClasses() tracing support for obsolete method entry
1762  if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1763    // protect the args we've loaded
1764    save_args(masm, total_c_args, c_arg, out_regs);
1765    __ mov_metadata(c_rarg1, method());
1766    __ call_VM_leaf(
1767      CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1768      rthread, c_rarg1);
1769    restore_args(masm, total_c_args, c_arg, out_regs);
1770  }
1771
1772  // Lock a synchronized method
1773
1774  // Register definitions used by locking and unlocking
1775
1776  const Register swap_reg = r0;
1777  const Register obj_reg  = r19;  // Will contain the oop
1778  const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1779  const Register old_hdr  = r13;  // value of old header at unlock time
1780  const Register tmp = c_rarg3;
1781
1782  Label slow_path_lock;
1783  Label lock_done;
1784
1785  if (method->is_synchronized()) {
1786    assert(!is_critical_native, "unhandled");
1787
1788    const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1789
1790    // Get the handle (the 2nd argument)
1791    __ mov(oop_handle_reg, c_rarg1);
1792
1793    // Get address of the box
1794
1795    __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1796
1797    // Load the oop from the handle
1798    __ ldr(obj_reg, Address(oop_handle_reg, 0));
1799
1800    if (UseBiasedLocking) {
1801      __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock);
1802    }
1803
1804    // Load (object->mark() | 1) into swap_reg %r0
1805    __ ldr(rscratch1, Address(obj_reg, 0));
1806    __ orr(swap_reg, rscratch1, 1);
1807
1808    // Save (object->mark() | 1) into BasicLock's displaced header
1809    __ str(swap_reg, Address(lock_reg, mark_word_offset));
1810
1811    // src -> dest iff dest == r0 else r0 <- dest
1812    { Label here;
1813      __ cmpxchgptr(r0, lock_reg, obj_reg, rscratch1, lock_done, /*fallthrough*/NULL);
1814    }
1815
1816    // Hmm should this move to the slow path code area???
1817
1818    // Test if the oopMark is an obvious stack pointer, i.e.,
1819    //  1) (mark & 3) == 0, and
1820    //  2) sp <= mark < mark + os::pagesize()
1821    // These 3 tests can be done by evaluating the following
1822    // expression: ((mark - sp) & (3 - os::vm_page_size())),
1823    // assuming both stack pointer and pagesize have their
1824    // least significant 2 bits clear.
1825    // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
1826
1827    __ sub(swap_reg, sp, swap_reg);
1828    __ neg(swap_reg, swap_reg);
1829    __ ands(swap_reg, swap_reg, 3 - os::vm_page_size());
1830
1831    // Save the test result, for recursive case, the result is zero
1832    __ str(swap_reg, Address(lock_reg, mark_word_offset));
1833    __ br(Assembler::NE, slow_path_lock);
1834
1835    // Slow path will re-enter here
1836
1837    __ bind(lock_done);
1838  }
1839
1840
1841  // Finally just about ready to make the JNI call
1842
1843  // get JNIEnv* which is first argument to native
1844  if (!is_critical_native) {
1845    __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1846  }
1847
1848  // Now set thread in native
1849  __ mov(rscratch1, _thread_in_native);
1850  __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1851  __ stlrw(rscratch1, rscratch2);
1852
1853  {
1854    int return_type = 0;
1855    switch (ret_type) {
1856    case T_VOID: break;
1857      return_type = 0; break;
1858    case T_CHAR:
1859    case T_BYTE:
1860    case T_SHORT:
1861    case T_INT:
1862    case T_BOOLEAN:
1863    case T_LONG:
1864      return_type = 1; break;
1865    case T_ARRAY:
1866    case T_OBJECT:
1867      return_type = 1; break;
1868    case T_FLOAT:
1869      return_type = 2; break;
1870    case T_DOUBLE:
1871      return_type = 3; break;
1872    default:
1873      ShouldNotReachHere();
1874    }
1875    rt_call(masm, native_func,
1876            int_args + 2, // AArch64 passes up to 8 args in int registers
1877            float_args,   // and up to 8 float args
1878            return_type);
1879  }
1880
1881  // Unpack native results.
1882  switch (ret_type) {
1883  case T_BOOLEAN: __ ubfx(r0, r0, 0, 8);             break;
1884  case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
1885  case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
1886  case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
1887  case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
1888  case T_DOUBLE :
1889  case T_FLOAT  :
1890    // Result is in v0 we'll save as needed
1891    break;
1892  case T_ARRAY:                 // Really a handle
1893  case T_OBJECT:                // Really a handle
1894      break; // can't de-handlize until after safepoint check
1895  case T_VOID: break;
1896  case T_LONG: break;
1897  default       : ShouldNotReachHere();
1898  }
1899
1900  // Switch thread to "native transition" state before reading the synchronization state.
1901  // This additional state is necessary because reading and testing the synchronization
1902  // state is not atomic w.r.t. GC, as this scenario demonstrates:
1903  //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1904  //     VM thread changes sync state to synchronizing and suspends threads for GC.
1905  //     Thread A is resumed to finish this native method, but doesn't block here since it
1906  //     didn't see any synchronization is progress, and escapes.
1907  __ mov(rscratch1, _thread_in_native_trans);
1908
1909  if(os::is_MP()) {
1910    if (UseMembar) {
1911      __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1912
1913      // Force this write out before the read below
1914      __ dmb(Assembler::SY);
1915    } else {
1916      __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1917      __ stlrw(rscratch1, rscratch2);
1918
1919      // Write serialization page so VM thread can do a pseudo remote membar.
1920      // We use the current thread pointer to calculate a thread specific
1921      // offset to write to within the page. This minimizes bus traffic
1922      // due to cache line collision.
1923      __ serialize_memory(rthread, r2);
1924    }
1925  }
1926
1927  // check for safepoint operation in progress and/or pending suspend requests
1928  Label safepoint_in_progress, safepoint_in_progress_done;
1929  {
1930    assert(SafepointSynchronize::_not_synchronized == 0, "fix this code");
1931    unsigned long offset;
1932    __ adrp(rscratch1,
1933            ExternalAddress((address)SafepointSynchronize::address_of_state()),
1934            offset);
1935    __ ldrw(rscratch1, Address(rscratch1, offset));
1936    __ cbnzw(rscratch1, safepoint_in_progress);
1937    __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1938    __ cbnzw(rscratch1, safepoint_in_progress);
1939    __ bind(safepoint_in_progress_done);
1940  }
1941
1942  // change thread state
1943  Label after_transition;
1944  __ mov(rscratch1, _thread_in_Java);
1945  __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1946  __ stlrw(rscratch1, rscratch2);
1947  __ bind(after_transition);
1948
1949  Label reguard;
1950  Label reguard_done;
1951  __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1952  __ cmpw(rscratch1, JavaThread::stack_guard_yellow_disabled);
1953  __ br(Assembler::EQ, reguard);
1954  __ bind(reguard_done);
1955
1956  // native result if any is live
1957
1958  // Unlock
1959  Label unlock_done;
1960  Label slow_path_unlock;
1961  if (method->is_synchronized()) {
1962
1963    // Get locked oop from the handle we passed to jni
1964    __ ldr(obj_reg, Address(oop_handle_reg, 0));
1965
1966    Label done;
1967
1968    if (UseBiasedLocking) {
1969      __ biased_locking_exit(obj_reg, old_hdr, done);
1970    }
1971
1972    // Simple recursive lock?
1973
1974    __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1975    __ cbz(rscratch1, done);
1976
1977    // Must save r0 if if it is live now because cmpxchg must use it
1978    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1979      save_native_result(masm, ret_type, stack_slots);
1980    }
1981
1982
1983    // get address of the stack lock
1984    __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1985    //  get old displaced header
1986    __ ldr(old_hdr, Address(r0, 0));
1987
1988    // Atomic swap old header if oop still contains the stack lock
1989    Label succeed;
1990    __ cmpxchgptr(r0, old_hdr, obj_reg, rscratch1, succeed, &slow_path_unlock);
1991    __ bind(succeed);
1992
1993    // slow path re-enters here
1994    __ bind(unlock_done);
1995    if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1996      restore_native_result(masm, ret_type, stack_slots);
1997    }
1998
1999    __ bind(done);
2000  }
2001
2002  Label dtrace_method_exit, dtrace_method_exit_done;
2003  {
2004    unsigned long offset;
2005    __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
2006    __ ldrb(rscratch1, Address(rscratch1, offset));
2007    __ cbnzw(rscratch1, dtrace_method_exit);
2008    __ bind(dtrace_method_exit_done);
2009  }
2010
2011  __ reset_last_Java_frame(false, true);
2012
2013  // Unpack oop result
2014  if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2015      Label L;
2016      __ cbz(r0, L);
2017      __ ldr(r0, Address(r0, 0));
2018      __ bind(L);
2019      __ verify_oop(r0);
2020  }
2021
2022  if (!is_critical_native) {
2023    // reset handle block
2024    __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
2025    __ str(zr, Address(r2, JNIHandleBlock::top_offset_in_bytes()));
2026  }
2027
2028  __ leave();
2029
2030  if (!is_critical_native) {
2031    // Any exception pending?
2032    __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2033    __ cbnz(rscratch1, exception_pending);
2034  }
2035
2036  // record exit from native wrapper code
2037  if (NotifySimulator) {
2038    __ notify(Assembler::method_reentry);
2039  }
2040
2041  // We're done
2042  __ ret(lr);
2043
2044  // Unexpected paths are out of line and go here
2045
2046  if (!is_critical_native) {
2047    // forward the exception
2048    __ bind(exception_pending);
2049
2050    // and forward the exception
2051    __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2052  }
2053
2054  // Slow path locking & unlocking
2055  if (method->is_synchronized()) {
2056
2057    __ block_comment("Slow path lock {");
2058    __ bind(slow_path_lock);
2059
2060    // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2061    // args are (oop obj, BasicLock* lock, JavaThread* thread)
2062
2063    // protect the args we've loaded
2064    save_args(masm, total_c_args, c_arg, out_regs);
2065
2066    __ mov(c_rarg0, obj_reg);
2067    __ mov(c_rarg1, lock_reg);
2068    __ mov(c_rarg2, rthread);
2069
2070    // Not a leaf but we have last_Java_frame setup as we want
2071    __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2072    restore_args(masm, total_c_args, c_arg, out_regs);
2073
2074#ifdef ASSERT
2075    { Label L;
2076      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2077      __ cbz(rscratch1, L);
2078      __ stop("no pending exception allowed on exit from monitorenter");
2079      __ bind(L);
2080    }
2081#endif
2082    __ b(lock_done);
2083
2084    __ block_comment("} Slow path lock");
2085
2086    __ block_comment("Slow path unlock {");
2087    __ bind(slow_path_unlock);
2088
2089    // If we haven't already saved the native result we must save it now as xmm registers
2090    // are still exposed.
2091
2092    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2093      save_native_result(masm, ret_type, stack_slots);
2094    }
2095
2096    __ mov(c_rarg2, rthread);
2097    __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2098    __ mov(c_rarg0, obj_reg);
2099
2100    // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2101    // NOTE that obj_reg == r19 currently
2102    __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2103    __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2104
2105    rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 3, 0, 1);
2106
2107#ifdef ASSERT
2108    {
2109      Label L;
2110      __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2111      __ cbz(rscratch1, L);
2112      __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2113      __ bind(L);
2114    }
2115#endif /* ASSERT */
2116
2117    __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2118
2119    if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2120      restore_native_result(masm, ret_type, stack_slots);
2121    }
2122    __ b(unlock_done);
2123
2124    __ block_comment("} Slow path unlock");
2125
2126  } // synchronized
2127
2128  // SLOW PATH Reguard the stack if needed
2129
2130  __ bind(reguard);
2131  save_native_result(masm, ret_type, stack_slots);
2132  rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), 0, 0, 0);
2133  restore_native_result(masm, ret_type, stack_slots);
2134  // and continue
2135  __ b(reguard_done);
2136
2137  // SLOW PATH safepoint
2138  {
2139    __ block_comment("safepoint {");
2140    __ bind(safepoint_in_progress);
2141
2142    // Don't use call_VM as it will see a possible pending exception and forward it
2143    // and never return here preventing us from clearing _last_native_pc down below.
2144    //
2145    save_native_result(masm, ret_type, stack_slots);
2146    __ mov(c_rarg0, rthread);
2147#ifndef PRODUCT
2148  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2149#endif
2150    if (!is_critical_native) {
2151      __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2152    } else {
2153      __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2154    }
2155    __ blrt(rscratch1, 1, 0, 1);
2156    __ maybe_isb();
2157    // Restore any method result value
2158    restore_native_result(masm, ret_type, stack_slots);
2159
2160    if (is_critical_native) {
2161      // The call above performed the transition to thread_in_Java so
2162      // skip the transition logic above.
2163      __ b(after_transition);
2164    }
2165
2166    __ b(safepoint_in_progress_done);
2167    __ block_comment("} safepoint");
2168  }
2169
2170  // SLOW PATH dtrace support
2171  {
2172    __ block_comment("dtrace entry {");
2173    __ bind(dtrace_method_entry);
2174
2175    // We have all of the arguments setup at this point. We must not touch any register
2176    // argument registers at this point (what if we save/restore them there are no oop?
2177
2178    save_args(masm, total_c_args, c_arg, out_regs);
2179    __ mov_metadata(c_rarg1, method());
2180    __ call_VM_leaf(
2181      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2182      rthread, c_rarg1);
2183    restore_args(masm, total_c_args, c_arg, out_regs);
2184    __ b(dtrace_method_entry_done);
2185    __ block_comment("} dtrace entry");
2186  }
2187
2188  {
2189    __ block_comment("dtrace exit {");
2190    __ bind(dtrace_method_exit);
2191    save_native_result(masm, ret_type, stack_slots);
2192    __ mov_metadata(c_rarg1, method());
2193    __ call_VM_leaf(
2194         CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2195         rthread, c_rarg1);
2196    restore_native_result(masm, ret_type, stack_slots);
2197    __ b(dtrace_method_exit_done);
2198    __ block_comment("} dtrace exit");
2199  }
2200
2201
2202  __ flush();
2203
2204  nmethod *nm = nmethod::new_native_nmethod(method,
2205                                            compile_id,
2206                                            masm->code(),
2207                                            vep_offset,
2208                                            frame_complete,
2209                                            stack_slots / VMRegImpl::slots_per_word,
2210                                            (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2211                                            in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2212                                            oop_maps);
2213
2214  if (is_critical_native) {
2215    nm->set_lazy_critical_native(true);
2216  }
2217
2218  return nm;
2219
2220}
2221
2222// this function returns the adjust size (in number of words) to a c2i adapter
2223// activation for use during deoptimization
2224int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2225  assert(callee_locals >= callee_parameters,
2226          "test and remove; got more parms than locals");
2227  if (callee_locals < callee_parameters)
2228    return 0;                   // No adjustment for negative locals
2229  int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2230  // diff is counted in stack words
2231  return round_to(diff, 2);
2232}
2233
2234
2235//------------------------------generate_deopt_blob----------------------------
2236void SharedRuntime::generate_deopt_blob() {
2237  // Allocate space for the code
2238  ResourceMark rm;
2239  // Setup code generation tools
2240  CodeBuffer buffer("deopt_blob", 2048, 1024);
2241  MacroAssembler* masm = new MacroAssembler(&buffer);
2242  int frame_size_in_words;
2243  OopMap* map = NULL;
2244  OopMapSet *oop_maps = new OopMapSet();
2245
2246#ifdef BUILTIN_SIM
2247  AArch64Simulator *simulator;
2248  if (NotifySimulator) {
2249    simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2250    simulator->notifyCompile(const_cast<char*>("SharedRuntime::deopt_blob"), __ pc());
2251  }
2252#endif
2253
2254  // -------------
2255  // This code enters when returning to a de-optimized nmethod.  A return
2256  // address has been pushed on the the stack, and return values are in
2257  // registers.
2258  // If we are doing a normal deopt then we were called from the patched
2259  // nmethod from the point we returned to the nmethod. So the return
2260  // address on the stack is wrong by NativeCall::instruction_size
2261  // We will adjust the value so it looks like we have the original return
2262  // address on the stack (like when we eagerly deoptimized).
2263  // In the case of an exception pending when deoptimizing, we enter
2264  // with a return address on the stack that points after the call we patched
2265  // into the exception handler. We have the following register state from,
2266  // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2267  //    r0: exception oop
2268  //    r19: exception handler
2269  //    r3: throwing pc
2270  // So in this case we simply jam r3 into the useless return address and
2271  // the stack looks just like we want.
2272  //
2273  // At this point we need to de-opt.  We save the argument return
2274  // registers.  We call the first C routine, fetch_unroll_info().  This
2275  // routine captures the return values and returns a structure which
2276  // describes the current frame size and the sizes of all replacement frames.
2277  // The current frame is compiled code and may contain many inlined
2278  // functions, each with their own JVM state.  We pop the current frame, then
2279  // push all the new frames.  Then we call the C routine unpack_frames() to
2280  // populate these frames.  Finally unpack_frames() returns us the new target
2281  // address.  Notice that callee-save registers are BLOWN here; they have
2282  // already been captured in the vframeArray at the time the return PC was
2283  // patched.
2284  address start = __ pc();
2285  Label cont;
2286
2287  // Prolog for non exception case!
2288
2289  // Save everything in sight.
2290  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2291
2292  // Normal deoptimization.  Save exec mode for unpack_frames.
2293  __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2294  __ b(cont);
2295
2296  int reexecute_offset = __ pc() - start;
2297
2298  // Reexecute case
2299  // return address is the pc describes what bci to do re-execute at
2300
2301  // No need to update map as each call to save_live_registers will produce identical oopmap
2302  (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2303
2304  __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2305  __ b(cont);
2306
2307  int exception_offset = __ pc() - start;
2308
2309  // Prolog for exception case
2310
2311  // all registers are dead at this entry point, except for r0, and
2312  // r3 which contain the exception oop and exception pc
2313  // respectively.  Set them in TLS and fall thru to the
2314  // unpack_with_exception_in_tls entry point.
2315
2316  __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2317  __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2318
2319  int exception_in_tls_offset = __ pc() - start;
2320
2321  // new implementation because exception oop is now passed in JavaThread
2322
2323  // Prolog for exception case
2324  // All registers must be preserved because they might be used by LinearScan
2325  // Exceptiop oop and throwing PC are passed in JavaThread
2326  // tos: stack at point of call to method that threw the exception (i.e. only
2327  // args are on the stack, no return address)
2328
2329  // The return address pushed by save_live_registers will be patched
2330  // later with the throwing pc. The correct value is not available
2331  // now because loading it from memory would destroy registers.
2332
2333  // NB: The SP at this point must be the SP of the method that is
2334  // being deoptimized.  Deoptimization assumes that the frame created
2335  // here by save_live_registers is immediately below the method's SP.
2336  // This is a somewhat fragile mechanism.
2337
2338  // Save everything in sight.
2339  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2340
2341  // Now it is safe to overwrite any register
2342
2343  // Deopt during an exception.  Save exec mode for unpack_frames.
2344  __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2345
2346  // load throwing pc from JavaThread and patch it as the return address
2347  // of the current frame. Then clear the field in JavaThread
2348
2349  __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2350  __ str(r3, Address(rfp, wordSize));
2351  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2352
2353#ifdef ASSERT
2354  // verify that there is really an exception oop in JavaThread
2355  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2356  __ verify_oop(r0);
2357
2358  // verify that there is no pending exception
2359  Label no_pending_exception;
2360  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2361  __ cbz(rscratch1, no_pending_exception);
2362  __ stop("must not have pending exception here");
2363  __ bind(no_pending_exception);
2364#endif
2365
2366  __ bind(cont);
2367
2368  // Call C code.  Need thread and this frame, but NOT official VM entry
2369  // crud.  We cannot block on this call, no GC can happen.
2370  //
2371  // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2372
2373  // fetch_unroll_info needs to call last_java_frame().
2374
2375  Label retaddr;
2376  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2377#ifdef ASSERT0
2378  { Label L;
2379    __ ldr(rscratch1, Address(rthread,
2380                              JavaThread::last_Java_fp_offset()));
2381    __ cbz(rscratch1, L);
2382    __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2383    __ bind(L);
2384  }
2385#endif // ASSERT
2386  __ mov(c_rarg0, rthread);
2387  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2388  __ blrt(rscratch1, 1, 0, 1);
2389  __ bind(retaddr);
2390
2391  // Need to have an oopmap that tells fetch_unroll_info where to
2392  // find any register it might need.
2393  oop_maps->add_gc_map(__ pc() - start, map);
2394
2395  __ reset_last_Java_frame(false, true);
2396
2397  // Load UnrollBlock* into rdi
2398  __ mov(r5, r0);
2399
2400   Label noException;
2401  __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2402  __ br(Assembler::NE, noException);
2403  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2404  // QQQ this is useless it was NULL above
2405  __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2406  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2407  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2408
2409  __ verify_oop(r0);
2410
2411  // Overwrite the result registers with the exception results.
2412  __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
2413  // I think this is useless
2414  // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2415
2416  __ bind(noException);
2417
2418  // Only register save data is on the stack.
2419  // Now restore the result registers.  Everything else is either dead
2420  // or captured in the vframeArray.
2421  RegisterSaver::restore_result_registers(masm);
2422
2423  // All of the register save area has been popped of the stack. Only the
2424  // return address remains.
2425
2426  // Pop all the frames we must move/replace.
2427  //
2428  // Frame picture (youngest to oldest)
2429  // 1: self-frame (no frame link)
2430  // 2: deopting frame  (no frame link)
2431  // 3: caller of deopting frame (could be compiled/interpreted).
2432  //
2433  // Note: by leaving the return address of self-frame on the stack
2434  // and using the size of frame 2 to adjust the stack
2435  // when we are done the return to frame 3 will still be on the stack.
2436
2437  // Pop deoptimized frame
2438  __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
2439  __ sub(r2, r2, 2 * wordSize);
2440  __ add(sp, sp, r2);
2441  __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
2442  // LR should now be the return address to the caller (3)
2443
2444#ifdef ASSERT
2445  // Compilers generate code that bang the stack by as much as the
2446  // interpreter would need. So this stack banging should never
2447  // trigger a fault. Verify that it does not on non product builds.
2448  if (UseStackBanging) {
2449    __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
2450    __ bang_stack_size(r19, r2);
2451  }
2452#endif
2453  // Load address of array of frame pcs into r2
2454  __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2455
2456  // Trash the old pc
2457  // __ addptr(sp, wordSize);  FIXME ????
2458
2459  // Load address of array of frame sizes into r4
2460  __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
2461
2462  // Load counter into r3
2463  __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
2464
2465  // Now adjust the caller's stack to make up for the extra locals
2466  // but record the original sp so that we can save it in the skeletal interpreter
2467  // frame and the stack walking of interpreter_sender will get the unextended sp
2468  // value and not the "real" sp value.
2469
2470  const Register sender_sp = r6;
2471
2472  __ mov(sender_sp, sp);
2473  __ ldrw(r19, Address(r5,
2474                       Deoptimization::UnrollBlock::
2475                       caller_adjustment_offset_in_bytes()));
2476  __ sub(sp, sp, r19);
2477
2478  // Push interpreter frames in a loop
2479  __ mov(rscratch1, (address)0xDEADDEAD);        // Make a recognizable pattern
2480  __ mov(rscratch2, rscratch1);
2481  Label loop;
2482  __ bind(loop);
2483  __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2484  __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2485  __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2486  __ enter();                           // Save old & set new fp
2487  __ sub(sp, sp, r19);                  // Prolog
2488  // This value is corrected by layout_activation_impl
2489  __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2490  __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2491  __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2492  __ sub(r3, r3, 1);                   // Decrement counter
2493  __ cbnz(r3, loop);
2494
2495    // Re-push self-frame
2496  __ ldr(lr, Address(r2));
2497  __ enter();
2498
2499  // Allocate a full sized register save area.  We subtract 2 because
2500  // enter() just pushed 2 words
2501  __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2502
2503  // Restore frame locals after moving the frame
2504  __ strd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes()));
2505  __ str(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
2506
2507  // Call C code.  Need thread but NOT official VM entry
2508  // crud.  We cannot block on this call, no GC can happen.  Call should
2509  // restore return values to their stack-slots with the new SP.
2510  //
2511  // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2512
2513  // Use rfp because the frames look interpreted now
2514  // Don't need the precise return PC here, just precise enough to point into this code blob.
2515  address the_pc = __ pc();
2516  __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2517
2518  __ mov(c_rarg0, rthread);
2519  __ movw(c_rarg1, rcpool); // second arg: exec_mode
2520  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2521  __ blrt(rscratch1, 2, 0, 0);
2522
2523  // Set an oopmap for the call site
2524  // Use the same PC we used for the last java frame
2525  oop_maps->add_gc_map(the_pc - start,
2526                       new OopMap( frame_size_in_words, 0 ));
2527
2528  // Clear fp AND pc
2529  __ reset_last_Java_frame(true, true);
2530
2531  // Collect return values
2532  __ ldrd(v0, Address(sp, RegisterSaver::v0_offset_in_bytes()));
2533  __ ldr(r0, Address(sp, RegisterSaver::r0_offset_in_bytes()));
2534  // I think this is useless (throwing pc?)
2535  // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2536
2537  // Pop self-frame.
2538  __ leave();                           // Epilog
2539
2540  // Jump to interpreter
2541  __ ret(lr);
2542
2543  // Make sure all code is generated
2544  masm->flush();
2545
2546  _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2547  _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2548
2549#ifdef BUILTIN_SIM
2550  if (NotifySimulator) {
2551    unsigned char *base = _deopt_blob->code_begin();
2552    simulator->notifyRelocate(start, base - start);
2553  }
2554#endif
2555}
2556
2557uint SharedRuntime::out_preserve_stack_slots() {
2558  return 0;
2559}
2560
2561#ifdef COMPILER2
2562//------------------------------generate_uncommon_trap_blob--------------------
2563void SharedRuntime::generate_uncommon_trap_blob() {
2564  // Allocate space for the code
2565  ResourceMark rm;
2566  // Setup code generation tools
2567  CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2568  MacroAssembler* masm = new MacroAssembler(&buffer);
2569
2570#ifdef BUILTIN_SIM
2571  AArch64Simulator *simulator;
2572  if (NotifySimulator) {
2573    simulator = AArch64Simulator::get_current(UseSimulatorCache, DisableBCCheck);
2574    simulator->notifyCompile(const_cast<char*>("SharedRuntime:uncommon_trap_blob"), __ pc());
2575  }
2576#endif
2577
2578  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2579
2580  address start = __ pc();
2581
2582  // Push self-frame.  We get here with a return address in LR
2583  // and sp should be 16 byte aligned
2584  // push rfp and retaddr by hand
2585  __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
2586  // we don't expect an arg reg save area
2587#ifndef PRODUCT
2588  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2589#endif
2590  // compiler left unloaded_class_index in j_rarg0 move to where the
2591  // runtime expects it.
2592  if (c_rarg1 != j_rarg0) {
2593    __ movw(c_rarg1, j_rarg0);
2594  }
2595
2596  // we need to set the past SP to the stack pointer of the stub frame
2597  // and the pc to the address where this runtime call will return
2598  // although actually any pc in this code blob will do).
2599  Label retaddr;
2600  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2601
2602  // Call C code.  Need thread but NOT official VM entry
2603  // crud.  We cannot block on this call, no GC can happen.  Call should
2604  // capture callee-saved registers as well as return values.
2605  // Thread is in rdi already.
2606  //
2607  // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2608  //
2609  // n.b. 2 gp args, 0 fp args, integral return type
2610
2611  __ mov(c_rarg0, rthread);
2612  __ lea(rscratch1,
2613         RuntimeAddress(CAST_FROM_FN_PTR(address,
2614                                         Deoptimization::uncommon_trap)));
2615  __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
2616  __ bind(retaddr);
2617
2618  // Set an oopmap for the call site
2619  OopMapSet* oop_maps = new OopMapSet();
2620  OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2621
2622  // location of rfp is known implicitly by the frame sender code
2623
2624  oop_maps->add_gc_map(__ pc() - start, map);
2625
2626  __ reset_last_Java_frame(false, true);
2627
2628  // move UnrollBlock* into r4
2629  __ mov(r4, r0);
2630
2631  // Pop all the frames we must move/replace.
2632  //
2633  // Frame picture (youngest to oldest)
2634  // 1: self-frame (no frame link)
2635  // 2: deopting frame  (no frame link)
2636  // 3: caller of deopting frame (could be compiled/interpreted).
2637
2638  // Pop self-frame.  We have no frame, and must rely only on r0 and sp.
2639  __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog!
2640
2641  // Pop deoptimized frame (int)
2642  __ ldrw(r2, Address(r4,
2643                      Deoptimization::UnrollBlock::
2644                      size_of_deoptimized_frame_offset_in_bytes()));
2645  __ sub(r2, r2, 2 * wordSize);
2646  __ add(sp, sp, r2);
2647  __ ldp(rfp, lr, __ post(sp, 2 * wordSize));
2648  // LR should now be the return address to the caller (3) frame
2649
2650#ifdef ASSERT
2651  // Compilers generate code that bang the stack by as much as the
2652  // interpreter would need. So this stack banging should never
2653  // trigger a fault. Verify that it does not on non product builds.
2654  if (UseStackBanging) {
2655    __ ldrw(r1, Address(r4,
2656                        Deoptimization::UnrollBlock::
2657                        total_frame_sizes_offset_in_bytes()));
2658    __ bang_stack_size(r1, r2);
2659  }
2660#endif
2661
2662  // Load address of array of frame pcs into r2 (address*)
2663  __ ldr(r2, Address(r4,
2664                     Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
2665
2666  // Load address of array of frame sizes into r5 (intptr_t*)
2667  __ ldr(r5, Address(r4,
2668                     Deoptimization::UnrollBlock::
2669                     frame_sizes_offset_in_bytes()));
2670
2671  // Counter
2672  __ ldrw(r3, Address(r4,
2673                      Deoptimization::UnrollBlock::
2674                      number_of_frames_offset_in_bytes())); // (int)
2675
2676  // Now adjust the caller's stack to make up for the extra locals but
2677  // record the original sp so that we can save it in the skeletal
2678  // interpreter frame and the stack walking of interpreter_sender
2679  // will get the unextended sp value and not the "real" sp value.
2680
2681  const Register sender_sp = r8;
2682
2683  __ mov(sender_sp, sp);
2684  __ ldrw(r1, Address(r4,
2685                      Deoptimization::UnrollBlock::
2686                      caller_adjustment_offset_in_bytes())); // (int)
2687  __ sub(sp, sp, r1);
2688
2689  // Push interpreter frames in a loop
2690  Label loop;
2691  __ bind(loop);
2692  __ ldr(r1, Address(r5, 0));       // Load frame size
2693  __ sub(r1, r1, 2 * wordSize);     // We'll push pc and rfp by hand
2694  __ ldr(lr, Address(r2, 0));       // Save return address
2695  __ enter();                       // and old rfp & set new rfp
2696  __ sub(sp, sp, r1);               // Prolog
2697  __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2698  // This value is corrected by layout_activation_impl
2699  __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2700  __ mov(sender_sp, sp);          // Pass sender_sp to next frame
2701  __ add(r5, r5, wordSize);       // Bump array pointer (sizes)
2702  __ add(r2, r2, wordSize);       // Bump array pointer (pcs)
2703  __ subsw(r3, r3, 1);            // Decrement counter
2704  __ br(Assembler::GT, loop);
2705  __ ldr(lr, Address(r2, 0));     // save final return address
2706  // Re-push self-frame
2707  __ enter();                     // & old rfp & set new rfp
2708
2709  // Use rfp because the frames look interpreted now
2710  // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2711  // Don't need the precise return PC here, just precise enough to point into this code blob.
2712  address the_pc = __ pc();
2713  __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2714
2715  // Call C code.  Need thread but NOT official VM entry
2716  // crud.  We cannot block on this call, no GC can happen.  Call should
2717  // restore return values to their stack-slots with the new SP.
2718  // Thread is in rdi already.
2719  //
2720  // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2721  //
2722  // n.b. 2 gp args, 0 fp args, integral return type
2723
2724  // sp should already be aligned
2725  __ mov(c_rarg0, rthread);
2726  __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2727  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2728  __ blrt(rscratch1, 2, 0, MacroAssembler::ret_type_integral);
2729
2730  // Set an oopmap for the call site
2731  // Use the same PC we used for the last java frame
2732  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
2733
2734  // Clear fp AND pc
2735  __ reset_last_Java_frame(true, true);
2736
2737  // Pop self-frame.
2738  __ leave();                 // Epilog
2739
2740  // Jump to interpreter
2741  __ ret(lr);
2742
2743  // Make sure all code is generated
2744  masm->flush();
2745
2746  _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
2747                                                 SimpleRuntimeFrame::framesize >> 1);
2748
2749#ifdef BUILTIN_SIM
2750  if (NotifySimulator) {
2751    unsigned char *base = _deopt_blob->code_begin();
2752    simulator->notifyRelocate(start, base - start);
2753  }
2754#endif
2755}
2756#endif // COMPILER2
2757
2758
2759//------------------------------generate_handler_blob------
2760//
2761// Generate a special Compile2Runtime blob that saves all registers,
2762// and setup oopmap.
2763//
2764SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2765  ResourceMark rm;
2766  OopMapSet *oop_maps = new OopMapSet();
2767  OopMap* map;
2768
2769  // Allocate space for the code.  Setup code generation tools.
2770  CodeBuffer buffer("handler_blob", 2048, 1024);
2771  MacroAssembler* masm = new MacroAssembler(&buffer);
2772
2773  address start   = __ pc();
2774  address call_pc = NULL;
2775  int frame_size_in_words;
2776  bool cause_return = (poll_type == POLL_AT_RETURN);
2777  bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
2778
2779  // Save registers, fpu state, and flags
2780  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
2781
2782  // The following is basically a call_VM.  However, we need the precise
2783  // address of the call in order to generate an oopmap. Hence, we do all the
2784  // work outselves.
2785
2786  Label retaddr;
2787  __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2788
2789  // The return address must always be correct so that frame constructor never
2790  // sees an invalid pc.
2791
2792  if (!cause_return) {
2793    // overwrite the return address pushed by save_live_registers
2794    __ ldr(c_rarg0, Address(rthread, JavaThread::saved_exception_pc_offset()));
2795    __ str(c_rarg0, Address(rfp, wordSize));
2796  }
2797
2798  // Do the call
2799  __ mov(c_rarg0, rthread);
2800  __ lea(rscratch1, RuntimeAddress(call_ptr));
2801  __ blrt(rscratch1, 1, 0, 1);
2802  __ bind(retaddr);
2803
2804  // Set an oopmap for the call site.  This oopmap will map all
2805  // oop-registers and debug-info registers as callee-saved.  This
2806  // will allow deoptimization at this safepoint to find all possible
2807  // debug-info recordings, as well as let GC find all oops.
2808
2809  oop_maps->add_gc_map( __ pc() - start, map);
2810
2811  Label noException;
2812
2813  __ reset_last_Java_frame(false, true);
2814
2815  __ maybe_isb();
2816  __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2817
2818  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2819  __ cbz(rscratch1, noException);
2820
2821  // Exception pending
2822
2823  RegisterSaver::restore_live_registers(masm);
2824
2825  __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2826
2827  // No exception case
2828  __ bind(noException);
2829
2830  // Normal exit, restore registers and exit.
2831  RegisterSaver::restore_live_registers(masm, save_vectors);
2832
2833  __ ret(lr);
2834
2835  // Make sure all code is generated
2836  masm->flush();
2837
2838  // Fill-out other meta info
2839  return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2840}
2841
2842//
2843// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2844//
2845// Generate a stub that calls into vm to find out the proper destination
2846// of a java call. All the argument registers are live at this point
2847// but since this is generic code we don't know what they are and the caller
2848// must do any gc of the args.
2849//
2850RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2851  assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
2852
2853  // allocate space for the code
2854  ResourceMark rm;
2855
2856  CodeBuffer buffer(name, 1000, 512);
2857  MacroAssembler* masm                = new MacroAssembler(&buffer);
2858
2859  int frame_size_in_words;
2860
2861  OopMapSet *oop_maps = new OopMapSet();
2862  OopMap* map = NULL;
2863
2864  int start = __ offset();
2865
2866  map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2867
2868  int frame_complete = __ offset();
2869
2870  {
2871    Label retaddr;
2872    __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2873
2874    __ mov(c_rarg0, rthread);
2875    __ lea(rscratch1, RuntimeAddress(destination));
2876
2877    __ blrt(rscratch1, 1, 0, 1);
2878    __ bind(retaddr);
2879  }
2880
2881  // Set an oopmap for the call site.
2882  // We need this not only for callee-saved registers, but also for volatile
2883  // registers that the compiler might be keeping live across a safepoint.
2884
2885  oop_maps->add_gc_map( __ offset() - start, map);
2886
2887  __ maybe_isb();
2888
2889  // r0 contains the address we are going to jump to assuming no exception got installed
2890
2891  // clear last_Java_sp
2892  __ reset_last_Java_frame(false, true);
2893  // check for pending exceptions
2894  Label pending;
2895  __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2896  __ cbnz(rscratch1, pending);
2897
2898  // get the returned Method*
2899  __ get_vm_result_2(rmethod, rthread);
2900  __ str(rmethod, Address(sp, RegisterSaver::reg_offset_in_bytes(rmethod)));
2901
2902  // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2903  __ str(r0, Address(sp, RegisterSaver::rscratch1_offset_in_bytes()));
2904  RegisterSaver::restore_live_registers(masm);
2905
2906  // We are back the the original state on entry and ready to go.
2907
2908  __ br(rscratch1);
2909
2910  // Pending exception after the safepoint
2911
2912  __ bind(pending);
2913
2914  RegisterSaver::restore_live_registers(masm);
2915
2916  // exception pending => remove activation and forward to exception handler
2917
2918  __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
2919
2920  __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
2921  __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2922
2923  // -------------
2924  // make sure all code is generated
2925  masm->flush();
2926
2927  // return the  blob
2928  // frame_size_words or bytes??
2929  return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2930}
2931
2932
2933#ifdef COMPILER2
2934// This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
2935//
2936//------------------------------generate_exception_blob---------------------------
2937// creates exception blob at the end
2938// Using exception blob, this code is jumped from a compiled method.
2939// (see emit_exception_handler in x86_64.ad file)
2940//
2941// Given an exception pc at a call we call into the runtime for the
2942// handler in this method. This handler might merely restore state
2943// (i.e. callee save registers) unwind the frame and jump to the
2944// exception handler for the nmethod if there is no Java level handler
2945// for the nmethod.
2946//
2947// This code is entered with a jmp.
2948//
2949// Arguments:
2950//   r0: exception oop
2951//   r3: exception pc
2952//
2953// Results:
2954//   r0: exception oop
2955//   r3: exception pc in caller or ???
2956//   destination: exception handler of caller
2957//
2958// Note: the exception pc MUST be at a call (precise debug information)
2959//       Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved.
2960//
2961
2962void OptoRuntime::generate_exception_blob() {
2963  assert(!OptoRuntime::is_callee_saved_register(R3_num), "");
2964  assert(!OptoRuntime::is_callee_saved_register(R0_num), "");
2965  assert(!OptoRuntime::is_callee_saved_register(R2_num), "");
2966
2967  assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2968
2969  // Allocate space for the code
2970  ResourceMark rm;
2971  // Setup code generation tools
2972  CodeBuffer buffer("exception_blob", 2048, 1024);
2973  MacroAssembler* masm = new MacroAssembler(&buffer);
2974
2975  // TODO check various assumptions made here
2976  //
2977  // make sure we do so before running this
2978
2979  address start = __ pc();
2980
2981  // push rfp and retaddr by hand
2982  // Exception pc is 'return address' for stack walker
2983  __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
2984  // there are no callee save registers and we don't expect an
2985  // arg reg save area
2986#ifndef PRODUCT
2987  assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2988#endif
2989  // Store exception in Thread object. We cannot pass any arguments to the
2990  // handle_exception call, since we do not want to make any assumption
2991  // about the size of the frame where the exception happened in.
2992  __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2993  __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2994
2995  // This call does all the hard work.  It checks if an exception handler
2996  // exists in the method.
2997  // If so, it returns the handler address.
2998  // If not, it prepares for stack-unwinding, restoring the callee-save
2999  // registers of the frame being removed.
3000  //
3001  // address OptoRuntime::handle_exception_C(JavaThread* thread)
3002  //
3003  // n.b. 1 gp arg, 0 fp args, integral return type
3004
3005  // the stack should always be aligned
3006  address the_pc = __ pc();
3007  __ set_last_Java_frame(sp, noreg, the_pc, rscratch1);
3008  __ mov(c_rarg0, rthread);
3009  __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3010  __ blrt(rscratch1, 1, 0, MacroAssembler::ret_type_integral);
3011  __ maybe_isb();
3012
3013  // Set an oopmap for the call site.  This oopmap will only be used if we
3014  // are unwinding the stack.  Hence, all locations will be dead.
3015  // Callee-saved registers will be the same as the frame above (i.e.,
3016  // handle_exception_stub), since they were restored when we got the
3017  // exception.
3018
3019  OopMapSet* oop_maps = new OopMapSet();
3020
3021  oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3022
3023  __ reset_last_Java_frame(false, true);
3024
3025  // Restore callee-saved registers
3026
3027  // rfp is an implicitly saved callee saved register (i.e. the calling
3028  // convention will save restore it in prolog/epilog) Other than that
3029  // there are no callee save registers now that adapter frames are gone.
3030  // and we dont' expect an arg reg save area
3031  __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize)));
3032
3033  // r0: exception handler
3034
3035  // We have a handler in r0 (could be deopt blob).
3036  __ mov(r8, r0);
3037
3038  // Get the exception oop
3039  __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
3040  // Get the exception pc in case we are deoptimized
3041  __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset()));
3042#ifdef ASSERT
3043  __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset()));
3044  __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
3045#endif
3046  // Clear the exception oop so GC no longer processes it as a root.
3047  __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
3048
3049  // r0: exception oop
3050  // r8:  exception handler
3051  // r4: exception pc
3052  // Jump to handler
3053
3054  __ br(r8);
3055
3056  // Make sure all code is generated
3057  masm->flush();
3058
3059  // Set exception blob
3060  _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3061}
3062#endif // COMPILER2
3063