macroAssembler_aarch64.cpp revision 9149:a8a8604f890f
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include <sys/types.h>
27
28#include "precompiled.hpp"
29#include "asm/assembler.hpp"
30#include "asm/assembler.inline.hpp"
31#include "interpreter/interpreter.hpp"
32
33#include "compiler/disassembler.hpp"
34#include "memory/resourceArea.hpp"
35#include "nativeInst_aarch64.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "opto/compile.hpp"
39#include "opto/node.hpp"
40#include "runtime/biasedLocking.hpp"
41#include "runtime/icache.hpp"
42#include "runtime/interfaceSupport.hpp"
43#include "runtime/sharedRuntime.hpp"
44
45#if INCLUDE_ALL_GCS
46#include "gc/g1/g1CollectedHeap.inline.hpp"
47#include "gc/g1/g1SATBCardTableModRefBS.hpp"
48#include "gc/g1/heapRegion.hpp"
49#endif
50
51#ifdef PRODUCT
52#define BLOCK_COMMENT(str) /* nothing */
53#define STOP(error) stop(error)
54#else
55#define BLOCK_COMMENT(str) block_comment(str)
56#define STOP(error) block_comment(error); stop(error)
57#endif
58
59#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
60
61// Patch any kind of instruction; there may be several instructions.
62// Return the total length (in bytes) of the instructions.
63int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
64  int instructions = 1;
65  assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
66  long offset = (target - branch) >> 2;
67  unsigned insn = *(unsigned*)branch;
68  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
69    // Load register (literal)
70    Instruction_aarch64::spatch(branch, 23, 5, offset);
71  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
72    // Unconditional branch (immediate)
73    Instruction_aarch64::spatch(branch, 25, 0, offset);
74  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
75    // Conditional branch (immediate)
76    Instruction_aarch64::spatch(branch, 23, 5, offset);
77  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
78    // Compare & branch (immediate)
79    Instruction_aarch64::spatch(branch, 23, 5, offset);
80  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
81    // Test & branch (immediate)
82    Instruction_aarch64::spatch(branch, 18, 5, offset);
83  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
84    // PC-rel. addressing
85    offset = target-branch;
86    int shift = Instruction_aarch64::extract(insn, 31, 31);
87    if (shift) {
88      u_int64_t dest = (u_int64_t)target;
89      uint64_t pc_page = (uint64_t)branch >> 12;
90      uint64_t adr_page = (uint64_t)target >> 12;
91      unsigned offset_lo = dest & 0xfff;
92      offset = adr_page - pc_page;
93
94      // We handle 3 types of PC relative addressing
95      //   1 - adrp    Rx, target_page
96      //       ldr/str Ry, [Rx, #offset_in_page]
97      //   2 - adrp    Rx, target_page
98      //       add     Ry, Rx, #offset_in_page
99      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
100      // In the first 2 cases we must check that Rx is the same in the adrp and the
101      // subsequent ldr/str or add instruction. Otherwise we could accidentally end
102      // up treating a type 3 relocation as a type 1 or 2 just because it happened
103      // to be followed by a random unrelated ldr/str or add instruction.
104      //
105      // In the case of a type 3 relocation, we know that these are only generated
106      // for the safepoint polling page, or for the card type byte map base so we
107      // assert as much and of course that the offset is 0.
108      //
109      unsigned insn2 = ((unsigned*)branch)[1];
110      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
111                Instruction_aarch64::extract(insn, 4, 0) ==
112                        Instruction_aarch64::extract(insn2, 9, 5)) {
113        // Load/store register (unsigned immediate)
114        unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
115        Instruction_aarch64::patch(branch + sizeof (unsigned),
116                                    21, 10, offset_lo >> size);
117        guarantee(((dest >> size) << size) == dest, "misaligned target");
118        instructions = 2;
119      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
120                Instruction_aarch64::extract(insn, 4, 0) ==
121                        Instruction_aarch64::extract(insn2, 4, 0)) {
122        // add (immediate)
123        Instruction_aarch64::patch(branch + sizeof (unsigned),
124                                   21, 10, offset_lo);
125        instructions = 2;
126      } else {
127        assert((jbyte *)target ==
128                ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base ||
129               target == StubRoutines::crc_table_addr() ||
130               (address)target == os::get_polling_page(),
131               "adrp must be polling page or byte map base");
132        assert(offset_lo == 0, "offset must be 0 for polling page or byte map base");
133      }
134    }
135    int offset_lo = offset & 3;
136    offset >>= 2;
137    Instruction_aarch64::spatch(branch, 23, 5, offset);
138    Instruction_aarch64::patch(branch, 30, 29, offset_lo);
139  } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
140    u_int64_t dest = (u_int64_t)target;
141    // Move wide constant
142    assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
143    assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
144    Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
145    Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
146    Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
147    assert(target_addr_for_insn(branch) == target, "should be");
148    instructions = 3;
149  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
150             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
151    // nothing to do
152    assert(target == 0, "did not expect to relocate target for polling page load");
153  } else {
154    ShouldNotReachHere();
155  }
156  return instructions * NativeInstruction::instruction_size;
157}
158
159int MacroAssembler::patch_oop(address insn_addr, address o) {
160  int instructions;
161  unsigned insn = *(unsigned*)insn_addr;
162  assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
163
164  // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
165  // narrow OOPs by setting the upper 16 bits in the first
166  // instruction.
167  if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
168    // Move narrow OOP
169    narrowOop n = oopDesc::encode_heap_oop((oop)o);
170    Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
171    Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
172    instructions = 2;
173  } else {
174    // Move wide OOP
175    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
176    uintptr_t dest = (uintptr_t)o;
177    Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
178    Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
179    Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
180    instructions = 3;
181  }
182  return instructions * NativeInstruction::instruction_size;
183}
184
185address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
186  long offset = 0;
187  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
188    // Load register (literal)
189    offset = Instruction_aarch64::sextract(insn, 23, 5);
190    return address(((uint64_t)insn_addr + (offset << 2)));
191  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
192    // Unconditional branch (immediate)
193    offset = Instruction_aarch64::sextract(insn, 25, 0);
194  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
195    // Conditional branch (immediate)
196    offset = Instruction_aarch64::sextract(insn, 23, 5);
197  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
198    // Compare & branch (immediate)
199    offset = Instruction_aarch64::sextract(insn, 23, 5);
200   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
201    // Test & branch (immediate)
202    offset = Instruction_aarch64::sextract(insn, 18, 5);
203  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
204    // PC-rel. addressing
205    offset = Instruction_aarch64::extract(insn, 30, 29);
206    offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
207    int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
208    if (shift) {
209      offset <<= shift;
210      uint64_t target_page = ((uint64_t)insn_addr) + offset;
211      target_page &= ((uint64_t)-1) << shift;
212      // Return the target address for the following sequences
213      //   1 - adrp    Rx, target_page
214      //       ldr/str Ry, [Rx, #offset_in_page]
215      //   2 - adrp    Rx, target_page         ]
216      //       add     Ry, Rx, #offset_in_page
217      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
218      //
219      // In the first two cases  we check that the register is the same and
220      // return the target_page + the offset within the page.
221      // Otherwise we assume it is a page aligned relocation and return
222      // the target page only. The only cases this is generated is for
223      // the safepoint polling page or for the card table byte map base so
224      // we assert as much.
225      //
226      unsigned insn2 = ((unsigned*)insn_addr)[1];
227      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
228                Instruction_aarch64::extract(insn, 4, 0) ==
229                        Instruction_aarch64::extract(insn2, 9, 5)) {
230        // Load/store register (unsigned immediate)
231        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
232        unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
233        return address(target_page + (byte_offset << size));
234      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
235                Instruction_aarch64::extract(insn, 4, 0) ==
236                        Instruction_aarch64::extract(insn2, 4, 0)) {
237        // add (immediate)
238        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
239        return address(target_page + byte_offset);
240      } else {
241        assert((jbyte *)target_page ==
242                ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base ||
243               (address)target_page == os::get_polling_page(),
244               "adrp must be polling page or byte map base");
245        return (address)target_page;
246      }
247    } else {
248      ShouldNotReachHere();
249    }
250  } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
251    u_int32_t *insns = (u_int32_t *)insn_addr;
252    // Move wide constant: movz, movk, movk.  See movptr().
253    assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
254    assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
255    return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
256                   + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
257                   + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
258  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
259             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
260    return 0;
261  } else {
262    ShouldNotReachHere();
263  }
264  return address(((uint64_t)insn_addr + (offset << 2)));
265}
266
267void MacroAssembler::serialize_memory(Register thread, Register tmp) {
268  dsb(Assembler::SY);
269}
270
271
272void MacroAssembler::reset_last_Java_frame(bool clear_fp,
273                                           bool clear_pc) {
274  // we must set sp to zero to clear frame
275  str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
276  // must clear fp, so that compiled frames are not confused; it is
277  // possible that we need it only for debugging
278  if (clear_fp) {
279    str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
280  }
281
282  if (clear_pc) {
283    str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
284  }
285}
286
287// Calls to C land
288//
289// When entering C land, the rfp, & resp of the last Java frame have to be recorded
290// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
291// has to be reset to 0. This is required to allow proper stack traversal.
292void MacroAssembler::set_last_Java_frame(Register last_java_sp,
293                                         Register last_java_fp,
294                                         Register last_java_pc,
295                                         Register scratch) {
296
297  if (last_java_pc->is_valid()) {
298      str(last_java_pc, Address(rthread,
299                                JavaThread::frame_anchor_offset()
300                                + JavaFrameAnchor::last_Java_pc_offset()));
301    }
302
303  // determine last_java_sp register
304  if (last_java_sp == sp) {
305    mov(scratch, sp);
306    last_java_sp = scratch;
307  } else if (!last_java_sp->is_valid()) {
308    last_java_sp = esp;
309  }
310
311  str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
312
313  // last_java_fp is optional
314  if (last_java_fp->is_valid()) {
315    str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
316  }
317}
318
319void MacroAssembler::set_last_Java_frame(Register last_java_sp,
320                                         Register last_java_fp,
321                                         address  last_java_pc,
322                                         Register scratch) {
323  if (last_java_pc != NULL) {
324    adr(scratch, last_java_pc);
325  } else {
326    // FIXME: This is almost never correct.  We should delete all
327    // cases of set_last_Java_frame with last_java_pc=NULL and use the
328    // correct return address instead.
329    adr(scratch, pc());
330  }
331
332  str(scratch, Address(rthread,
333                       JavaThread::frame_anchor_offset()
334                       + JavaFrameAnchor::last_Java_pc_offset()));
335
336  set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
337}
338
339void MacroAssembler::set_last_Java_frame(Register last_java_sp,
340                                         Register last_java_fp,
341                                         Label &L,
342                                         Register scratch) {
343  if (L.is_bound()) {
344    set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
345  } else {
346    InstructionMark im(this);
347    L.add_patch_at(code(), locator());
348    set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
349  }
350}
351
352void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
353  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
354  assert(CodeCache::find_blob(entry.target()) != NULL,
355         "destination of far call not found in code cache");
356  if (far_branches()) {
357    unsigned long offset;
358    // We can use ADRP here because we know that the total size of
359    // the code cache cannot exceed 2Gb.
360    adrp(tmp, entry, offset);
361    add(tmp, tmp, offset);
362    if (cbuf) cbuf->set_insts_mark();
363    blr(tmp);
364  } else {
365    if (cbuf) cbuf->set_insts_mark();
366    bl(entry);
367  }
368}
369
370void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
371  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
372  assert(CodeCache::find_blob(entry.target()) != NULL,
373         "destination of far call not found in code cache");
374  if (far_branches()) {
375    unsigned long offset;
376    // We can use ADRP here because we know that the total size of
377    // the code cache cannot exceed 2Gb.
378    adrp(tmp, entry, offset);
379    add(tmp, tmp, offset);
380    if (cbuf) cbuf->set_insts_mark();
381    br(tmp);
382  } else {
383    if (cbuf) cbuf->set_insts_mark();
384    b(entry);
385  }
386}
387
388int MacroAssembler::biased_locking_enter(Register lock_reg,
389                                         Register obj_reg,
390                                         Register swap_reg,
391                                         Register tmp_reg,
392                                         bool swap_reg_contains_mark,
393                                         Label& done,
394                                         Label* slow_case,
395                                         BiasedLockingCounters* counters) {
396  assert(UseBiasedLocking, "why call this otherwise?");
397  assert_different_registers(lock_reg, obj_reg, swap_reg);
398
399  if (PrintBiasedLockingStatistics && counters == NULL)
400    counters = BiasedLocking::counters();
401
402  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
403  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
404  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
405  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
406  Address saved_mark_addr(lock_reg, 0);
407
408  // Biased locking
409  // See whether the lock is currently biased toward our thread and
410  // whether the epoch is still valid
411  // Note that the runtime guarantees sufficient alignment of JavaThread
412  // pointers to allow age to be placed into low bits
413  // First check to see whether biasing is even enabled for this object
414  Label cas_label;
415  int null_check_offset = -1;
416  if (!swap_reg_contains_mark) {
417    null_check_offset = offset();
418    ldr(swap_reg, mark_addr);
419  }
420  andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
421  cmp(tmp_reg, markOopDesc::biased_lock_pattern);
422  br(Assembler::NE, cas_label);
423  // The bias pattern is present in the object's header. Need to check
424  // whether the bias owner and the epoch are both still current.
425  load_prototype_header(tmp_reg, obj_reg);
426  orr(tmp_reg, tmp_reg, rthread);
427  eor(tmp_reg, swap_reg, tmp_reg);
428  andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
429  if (counters != NULL) {
430    Label around;
431    cbnz(tmp_reg, around);
432    atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
433    b(done);
434    bind(around);
435  } else {
436    cbz(tmp_reg, done);
437  }
438
439  Label try_revoke_bias;
440  Label try_rebias;
441
442  // At this point we know that the header has the bias pattern and
443  // that we are not the bias owner in the current epoch. We need to
444  // figure out more details about the state of the header in order to
445  // know what operations can be legally performed on the object's
446  // header.
447
448  // If the low three bits in the xor result aren't clear, that means
449  // the prototype header is no longer biased and we have to revoke
450  // the bias on this object.
451  andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
452  cbnz(rscratch1, try_revoke_bias);
453
454  // Biasing is still enabled for this data type. See whether the
455  // epoch of the current bias is still valid, meaning that the epoch
456  // bits of the mark word are equal to the epoch bits of the
457  // prototype header. (Note that the prototype header's epoch bits
458  // only change at a safepoint.) If not, attempt to rebias the object
459  // toward the current thread. Note that we must be absolutely sure
460  // that the current epoch is invalid in order to do this because
461  // otherwise the manipulations it performs on the mark word are
462  // illegal.
463  andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
464  cbnz(rscratch1, try_rebias);
465
466  // The epoch of the current bias is still valid but we know nothing
467  // about the owner; it might be set or it might be clear. Try to
468  // acquire the bias of the object using an atomic operation. If this
469  // fails we will go in to the runtime to revoke the object's bias.
470  // Note that we first construct the presumed unbiased header so we
471  // don't accidentally blow away another thread's valid bias.
472  {
473    Label here;
474    mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
475    andr(swap_reg, swap_reg, rscratch1);
476    orr(tmp_reg, swap_reg, rthread);
477    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
478    // If the biasing toward our thread failed, this means that
479    // another thread succeeded in biasing it toward itself and we
480    // need to revoke that bias. The revocation will occur in the
481    // interpreter runtime in the slow case.
482    bind(here);
483    if (counters != NULL) {
484      atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
485                  tmp_reg, rscratch1, rscratch2);
486    }
487  }
488  b(done);
489
490  bind(try_rebias);
491  // At this point we know the epoch has expired, meaning that the
492  // current "bias owner", if any, is actually invalid. Under these
493  // circumstances _only_, we are allowed to use the current header's
494  // value as the comparison value when doing the cas to acquire the
495  // bias in the current epoch. In other words, we allow transfer of
496  // the bias from one thread to another directly in this situation.
497  //
498  // FIXME: due to a lack of registers we currently blow away the age
499  // bits in this situation. Should attempt to preserve them.
500  {
501    Label here;
502    load_prototype_header(tmp_reg, obj_reg);
503    orr(tmp_reg, rthread, tmp_reg);
504    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
505    // If the biasing toward our thread failed, then another thread
506    // succeeded in biasing it toward itself and we need to revoke that
507    // bias. The revocation will occur in the runtime in the slow case.
508    bind(here);
509    if (counters != NULL) {
510      atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
511                  tmp_reg, rscratch1, rscratch2);
512    }
513  }
514  b(done);
515
516  bind(try_revoke_bias);
517  // The prototype mark in the klass doesn't have the bias bit set any
518  // more, indicating that objects of this data type are not supposed
519  // to be biased any more. We are going to try to reset the mark of
520  // this object to the prototype value and fall through to the
521  // CAS-based locking scheme. Note that if our CAS fails, it means
522  // that another thread raced us for the privilege of revoking the
523  // bias of this particular object, so it's okay to continue in the
524  // normal locking code.
525  //
526  // FIXME: due to a lack of registers we currently blow away the age
527  // bits in this situation. Should attempt to preserve them.
528  {
529    Label here, nope;
530    load_prototype_header(tmp_reg, obj_reg);
531    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
532    bind(here);
533
534    // Fall through to the normal CAS-based lock, because no matter what
535    // the result of the above CAS, some thread must have succeeded in
536    // removing the bias bit from the object's header.
537    if (counters != NULL) {
538      atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
539                  rscratch1, rscratch2);
540    }
541    bind(nope);
542  }
543
544  bind(cas_label);
545
546  return null_check_offset;
547}
548
549void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
550  assert(UseBiasedLocking, "why call this otherwise?");
551
552  // Check for biased locking unlock case, which is a no-op
553  // Note: we do not have to check the thread ID for two reasons.
554  // First, the interpreter checks for IllegalMonitorStateException at
555  // a higher level. Second, if the bias was revoked while we held the
556  // lock, the object could not be rebiased toward another thread, so
557  // the bias bit would be clear.
558  ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
559  andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
560  cmp(temp_reg, markOopDesc::biased_lock_pattern);
561  br(Assembler::EQ, done);
562}
563
564
565// added to make this compile
566
567REGISTER_DEFINITION(Register, noreg);
568
569static void pass_arg0(MacroAssembler* masm, Register arg) {
570  if (c_rarg0 != arg ) {
571    masm->mov(c_rarg0, arg);
572  }
573}
574
575static void pass_arg1(MacroAssembler* masm, Register arg) {
576  if (c_rarg1 != arg ) {
577    masm->mov(c_rarg1, arg);
578  }
579}
580
581static void pass_arg2(MacroAssembler* masm, Register arg) {
582  if (c_rarg2 != arg ) {
583    masm->mov(c_rarg2, arg);
584  }
585}
586
587static void pass_arg3(MacroAssembler* masm, Register arg) {
588  if (c_rarg3 != arg ) {
589    masm->mov(c_rarg3, arg);
590  }
591}
592
593void MacroAssembler::call_VM_base(Register oop_result,
594                                  Register java_thread,
595                                  Register last_java_sp,
596                                  address  entry_point,
597                                  int      number_of_arguments,
598                                  bool     check_exceptions) {
599   // determine java_thread register
600  if (!java_thread->is_valid()) {
601    java_thread = rthread;
602  }
603
604  // determine last_java_sp register
605  if (!last_java_sp->is_valid()) {
606    last_java_sp = esp;
607  }
608
609  // debugging support
610  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
611  assert(java_thread == rthread, "unexpected register");
612#ifdef ASSERT
613  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
614  // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
615#endif // ASSERT
616
617  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
618  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
619
620  // push java thread (becomes first argument of C function)
621
622  mov(c_rarg0, java_thread);
623
624  // set last Java frame before call
625  assert(last_java_sp != rfp, "can't use rfp");
626
627  Label l;
628  set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
629
630  // do the call, remove parameters
631  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
632
633  // reset last Java frame
634  // Only interpreter should have to clear fp
635  reset_last_Java_frame(true, true);
636
637   // C++ interp handles this in the interpreter
638  check_and_handle_popframe(java_thread);
639  check_and_handle_earlyret(java_thread);
640
641  if (check_exceptions) {
642    // check for pending exceptions (java_thread is set upon return)
643    ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
644    Label ok;
645    cbz(rscratch1, ok);
646    lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
647    br(rscratch1);
648    bind(ok);
649  }
650
651  // get oop result if there is one and reset the value in the thread
652  if (oop_result->is_valid()) {
653    get_vm_result(oop_result, java_thread);
654  }
655}
656
657void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
658  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
659}
660
661// Maybe emit a call via a trampoline.  If the code cache is small
662// trampolines won't be emitted.
663
664address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
665  assert(entry.rspec().type() == relocInfo::runtime_call_type
666         || entry.rspec().type() == relocInfo::opt_virtual_call_type
667         || entry.rspec().type() == relocInfo::static_call_type
668         || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
669
670  unsigned int start_offset = offset();
671  if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
672    address stub = emit_trampoline_stub(start_offset, entry.target());
673    if (stub == NULL) {
674      return NULL; // CodeCache is full
675    }
676  }
677
678  if (cbuf) cbuf->set_insts_mark();
679  relocate(entry.rspec());
680  if (Assembler::reachable_from_branch_at(pc(), entry.target())) {
681    bl(entry.target());
682  } else {
683    bl(pc());
684  }
685  // just need to return a non-null address
686  return pc();
687}
688
689
690// Emit a trampoline stub for a call to a target which is too far away.
691//
692// code sequences:
693//
694// call-site:
695//   branch-and-link to <destination> or <trampoline stub>
696//
697// Related trampoline stub for this call site in the stub section:
698//   load the call target from the constant pool
699//   branch (LR still points to the call site above)
700
701address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
702                                             address dest) {
703  address stub = start_a_stub(Compile::MAX_stubs_size/2);
704  if (stub == NULL) {
705    return NULL;  // CodeBuffer::expand failed
706  }
707
708  // Create a trampoline stub relocation which relates this trampoline stub
709  // with the call instruction at insts_call_instruction_offset in the
710  // instructions code-section.
711  align(wordSize);
712  relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
713                                            + insts_call_instruction_offset));
714  const int stub_start_offset = offset();
715
716  // Now, create the trampoline stub's code:
717  // - load the call
718  // - call
719  Label target;
720  ldr(rscratch1, target);
721  br(rscratch1);
722  bind(target);
723  assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
724         "should be");
725  emit_int64((int64_t)dest);
726
727  const address stub_start_addr = addr_at(stub_start_offset);
728
729  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
730
731  end_a_stub();
732  return stub;
733}
734
735address MacroAssembler::ic_call(address entry) {
736  RelocationHolder rh = virtual_call_Relocation::spec(pc());
737  // address const_ptr = long_constant((jlong)Universe::non_oop_word());
738  // unsigned long offset;
739  // ldr_constant(rscratch2, const_ptr);
740  movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
741  return trampoline_call(Address(entry, rh));
742}
743
744// Implementation of call_VM versions
745
746void MacroAssembler::call_VM(Register oop_result,
747                             address entry_point,
748                             bool check_exceptions) {
749  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
750}
751
752void MacroAssembler::call_VM(Register oop_result,
753                             address entry_point,
754                             Register arg_1,
755                             bool check_exceptions) {
756  pass_arg1(this, arg_1);
757  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
758}
759
760void MacroAssembler::call_VM(Register oop_result,
761                             address entry_point,
762                             Register arg_1,
763                             Register arg_2,
764                             bool check_exceptions) {
765  assert(arg_1 != c_rarg2, "smashed arg");
766  pass_arg2(this, arg_2);
767  pass_arg1(this, arg_1);
768  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
769}
770
771void MacroAssembler::call_VM(Register oop_result,
772                             address entry_point,
773                             Register arg_1,
774                             Register arg_2,
775                             Register arg_3,
776                             bool check_exceptions) {
777  assert(arg_1 != c_rarg3, "smashed arg");
778  assert(arg_2 != c_rarg3, "smashed arg");
779  pass_arg3(this, arg_3);
780
781  assert(arg_1 != c_rarg2, "smashed arg");
782  pass_arg2(this, arg_2);
783
784  pass_arg1(this, arg_1);
785  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
786}
787
788void MacroAssembler::call_VM(Register oop_result,
789                             Register last_java_sp,
790                             address entry_point,
791                             int number_of_arguments,
792                             bool check_exceptions) {
793  call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
794}
795
796void MacroAssembler::call_VM(Register oop_result,
797                             Register last_java_sp,
798                             address entry_point,
799                             Register arg_1,
800                             bool check_exceptions) {
801  pass_arg1(this, arg_1);
802  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
803}
804
805void MacroAssembler::call_VM(Register oop_result,
806                             Register last_java_sp,
807                             address entry_point,
808                             Register arg_1,
809                             Register arg_2,
810                             bool check_exceptions) {
811
812  assert(arg_1 != c_rarg2, "smashed arg");
813  pass_arg2(this, arg_2);
814  pass_arg1(this, arg_1);
815  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
816}
817
818void MacroAssembler::call_VM(Register oop_result,
819                             Register last_java_sp,
820                             address entry_point,
821                             Register arg_1,
822                             Register arg_2,
823                             Register arg_3,
824                             bool check_exceptions) {
825  assert(arg_1 != c_rarg3, "smashed arg");
826  assert(arg_2 != c_rarg3, "smashed arg");
827  pass_arg3(this, arg_3);
828  assert(arg_1 != c_rarg2, "smashed arg");
829  pass_arg2(this, arg_2);
830  pass_arg1(this, arg_1);
831  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
832}
833
834
835void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
836  ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
837  str(zr, Address(java_thread, JavaThread::vm_result_offset()));
838  verify_oop(oop_result, "broken oop in call_VM_base");
839}
840
841void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
842  ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
843  str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
844}
845
846void MacroAssembler::align(int modulus) {
847  while (offset() % modulus != 0) nop();
848}
849
850// these are no-ops overridden by InterpreterMacroAssembler
851
852void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
853
854void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
855
856
857RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
858                                                      Register tmp,
859                                                      int offset) {
860  intptr_t value = *delayed_value_addr;
861  if (value != 0)
862    return RegisterOrConstant(value + offset);
863
864  // load indirectly to solve generation ordering problem
865  ldr(tmp, ExternalAddress((address) delayed_value_addr));
866
867  if (offset != 0)
868    add(tmp, tmp, offset);
869
870  return RegisterOrConstant(tmp);
871}
872
873
874void MacroAssembler:: notify(int type) {
875  if (type == bytecode_start) {
876    // set_last_Java_frame(esp, rfp, (address)NULL);
877    Assembler:: notify(type);
878    // reset_last_Java_frame(true, false);
879  }
880  else
881    Assembler:: notify(type);
882}
883
884// Look up the method for a megamorphic invokeinterface call.
885// The target method is determined by <intf_klass, itable_index>.
886// The receiver klass is in recv_klass.
887// On success, the result will be in method_result, and execution falls through.
888// On failure, execution transfers to the given label.
889void MacroAssembler::lookup_interface_method(Register recv_klass,
890                                             Register intf_klass,
891                                             RegisterOrConstant itable_index,
892                                             Register method_result,
893                                             Register scan_temp,
894                                             Label& L_no_such_interface) {
895  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
896  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
897         "caller must use same register for non-constant itable index as for method");
898
899  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
900  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
901  int itentry_off = itableMethodEntry::method_offset_in_bytes();
902  int scan_step   = itableOffsetEntry::size() * wordSize;
903  int vte_size    = vtableEntry::size() * wordSize;
904  assert(vte_size == wordSize, "else adjust times_vte_scale");
905
906  ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
907
908  // %%% Could store the aligned, prescaled offset in the klassoop.
909  // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
910  lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
911  add(scan_temp, scan_temp, vtable_base);
912  if (HeapWordsPerLong > 1) {
913    // Round up to align_object_offset boundary
914    // see code for instanceKlass::start_of_itable!
915    round_to(scan_temp, BytesPerLong);
916  }
917
918  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
919  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
920  // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
921  lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
922  if (itentry_off)
923    add(recv_klass, recv_klass, itentry_off);
924
925  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
926  //   if (scan->interface() == intf) {
927  //     result = (klass + scan->offset() + itable_index);
928  //   }
929  // }
930  Label search, found_method;
931
932  for (int peel = 1; peel >= 0; peel--) {
933    ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
934    cmp(intf_klass, method_result);
935
936    if (peel) {
937      br(Assembler::EQ, found_method);
938    } else {
939      br(Assembler::NE, search);
940      // (invert the test to fall through to found_method...)
941    }
942
943    if (!peel)  break;
944
945    bind(search);
946
947    // Check that the previous entry is non-null.  A null entry means that
948    // the receiver class doesn't implement the interface, and wasn't the
949    // same as when the caller was compiled.
950    cbz(method_result, L_no_such_interface);
951    add(scan_temp, scan_temp, scan_step);
952  }
953
954  bind(found_method);
955
956  // Got a hit.
957  ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
958  ldr(method_result, Address(recv_klass, scan_temp));
959}
960
961// virtual method calling
962void MacroAssembler::lookup_virtual_method(Register recv_klass,
963                                           RegisterOrConstant vtable_index,
964                                           Register method_result) {
965  const int base = InstanceKlass::vtable_start_offset() * wordSize;
966  assert(vtableEntry::size() * wordSize == 8,
967         "adjust the scaling in the code below");
968  int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
969
970  if (vtable_index.is_register()) {
971    lea(method_result, Address(recv_klass,
972                               vtable_index.as_register(),
973                               Address::lsl(LogBytesPerWord)));
974    ldr(method_result, Address(method_result, vtable_offset_in_bytes));
975  } else {
976    vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
977    ldr(method_result, Address(recv_klass, vtable_offset_in_bytes));
978  }
979}
980
981void MacroAssembler::check_klass_subtype(Register sub_klass,
982                           Register super_klass,
983                           Register temp_reg,
984                           Label& L_success) {
985  Label L_failure;
986  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
987  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
988  bind(L_failure);
989}
990
991
992void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
993                                                   Register super_klass,
994                                                   Register temp_reg,
995                                                   Label* L_success,
996                                                   Label* L_failure,
997                                                   Label* L_slow_path,
998                                        RegisterOrConstant super_check_offset) {
999  assert_different_registers(sub_klass, super_klass, temp_reg);
1000  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1001  if (super_check_offset.is_register()) {
1002    assert_different_registers(sub_klass, super_klass,
1003                               super_check_offset.as_register());
1004  } else if (must_load_sco) {
1005    assert(temp_reg != noreg, "supply either a temp or a register offset");
1006  }
1007
1008  Label L_fallthrough;
1009  int label_nulls = 0;
1010  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1011  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1012  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1013  assert(label_nulls <= 1, "at most one NULL in the batch");
1014
1015  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1016  int sco_offset = in_bytes(Klass::super_check_offset_offset());
1017  Address super_check_offset_addr(super_klass, sco_offset);
1018
1019  // Hacked jmp, which may only be used just before L_fallthrough.
1020#define final_jmp(label)                                                \
1021  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1022  else                            b(label)                /*omit semi*/
1023
1024  // If the pointers are equal, we are done (e.g., String[] elements).
1025  // This self-check enables sharing of secondary supertype arrays among
1026  // non-primary types such as array-of-interface.  Otherwise, each such
1027  // type would need its own customized SSA.
1028  // We move this check to the front of the fast path because many
1029  // type checks are in fact trivially successful in this manner,
1030  // so we get a nicely predicted branch right at the start of the check.
1031  cmp(sub_klass, super_klass);
1032  br(Assembler::EQ, *L_success);
1033
1034  // Check the supertype display:
1035  if (must_load_sco) {
1036    ldrw(temp_reg, super_check_offset_addr);
1037    super_check_offset = RegisterOrConstant(temp_reg);
1038  }
1039  Address super_check_addr(sub_klass, super_check_offset);
1040  ldr(rscratch1, super_check_addr);
1041  cmp(super_klass, rscratch1); // load displayed supertype
1042
1043  // This check has worked decisively for primary supers.
1044  // Secondary supers are sought in the super_cache ('super_cache_addr').
1045  // (Secondary supers are interfaces and very deeply nested subtypes.)
1046  // This works in the same check above because of a tricky aliasing
1047  // between the super_cache and the primary super display elements.
1048  // (The 'super_check_addr' can address either, as the case requires.)
1049  // Note that the cache is updated below if it does not help us find
1050  // what we need immediately.
1051  // So if it was a primary super, we can just fail immediately.
1052  // Otherwise, it's the slow path for us (no success at this point).
1053
1054  if (super_check_offset.is_register()) {
1055    br(Assembler::EQ, *L_success);
1056    cmp(super_check_offset.as_register(), sc_offset);
1057    if (L_failure == &L_fallthrough) {
1058      br(Assembler::EQ, *L_slow_path);
1059    } else {
1060      br(Assembler::NE, *L_failure);
1061      final_jmp(*L_slow_path);
1062    }
1063  } else if (super_check_offset.as_constant() == sc_offset) {
1064    // Need a slow path; fast failure is impossible.
1065    if (L_slow_path == &L_fallthrough) {
1066      br(Assembler::EQ, *L_success);
1067    } else {
1068      br(Assembler::NE, *L_slow_path);
1069      final_jmp(*L_success);
1070    }
1071  } else {
1072    // No slow path; it's a fast decision.
1073    if (L_failure == &L_fallthrough) {
1074      br(Assembler::EQ, *L_success);
1075    } else {
1076      br(Assembler::NE, *L_failure);
1077      final_jmp(*L_success);
1078    }
1079  }
1080
1081  bind(L_fallthrough);
1082
1083#undef final_jmp
1084}
1085
1086// These two are taken from x86, but they look generally useful
1087
1088// scans count pointer sized words at [addr] for occurence of value,
1089// generic
1090void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1091                                Register scratch) {
1092  Label Lloop, Lexit;
1093  cbz(count, Lexit);
1094  bind(Lloop);
1095  ldr(scratch, post(addr, wordSize));
1096  cmp(value, scratch);
1097  br(EQ, Lexit);
1098  sub(count, count, 1);
1099  cbnz(count, Lloop);
1100  bind(Lexit);
1101}
1102
1103// scans count 4 byte words at [addr] for occurence of value,
1104// generic
1105void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1106                                Register scratch) {
1107  Label Lloop, Lexit;
1108  cbz(count, Lexit);
1109  bind(Lloop);
1110  ldrw(scratch, post(addr, wordSize));
1111  cmpw(value, scratch);
1112  br(EQ, Lexit);
1113  sub(count, count, 1);
1114  cbnz(count, Lloop);
1115  bind(Lexit);
1116}
1117
1118void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1119                                                   Register super_klass,
1120                                                   Register temp_reg,
1121                                                   Register temp2_reg,
1122                                                   Label* L_success,
1123                                                   Label* L_failure,
1124                                                   bool set_cond_codes) {
1125  assert_different_registers(sub_klass, super_klass, temp_reg);
1126  if (temp2_reg != noreg)
1127    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1128#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1129
1130  Label L_fallthrough;
1131  int label_nulls = 0;
1132  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1133  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1134  assert(label_nulls <= 1, "at most one NULL in the batch");
1135
1136  // a couple of useful fields in sub_klass:
1137  int ss_offset = in_bytes(Klass::secondary_supers_offset());
1138  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1139  Address secondary_supers_addr(sub_klass, ss_offset);
1140  Address super_cache_addr(     sub_klass, sc_offset);
1141
1142  BLOCK_COMMENT("check_klass_subtype_slow_path");
1143
1144  // Do a linear scan of the secondary super-klass chain.
1145  // This code is rarely used, so simplicity is a virtue here.
1146  // The repne_scan instruction uses fixed registers, which we must spill.
1147  // Don't worry too much about pre-existing connections with the input regs.
1148
1149  assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1150  assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1151
1152  // Get super_klass value into r0 (even if it was in r5 or r2).
1153  RegSet pushed_registers;
1154  if (!IS_A_TEMP(r2))    pushed_registers += r2;
1155  if (!IS_A_TEMP(r5))    pushed_registers += r5;
1156
1157  if (super_klass != r0 || UseCompressedOops) {
1158    if (!IS_A_TEMP(r0))   pushed_registers += r0;
1159  }
1160
1161  push(pushed_registers, sp);
1162
1163#ifndef PRODUCT
1164  mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1165  Address pst_counter_addr(rscratch2);
1166  ldr(rscratch1, pst_counter_addr);
1167  add(rscratch1, rscratch1, 1);
1168  str(rscratch1, pst_counter_addr);
1169#endif //PRODUCT
1170
1171  // We will consult the secondary-super array.
1172  ldr(r5, secondary_supers_addr);
1173  // Load the array length.
1174  ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1175  // Skip to start of data.
1176  add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1177
1178  cmp(sp, zr); // Clear Z flag; SP is never zero
1179  // Scan R2 words at [R5] for an occurrence of R0.
1180  // Set NZ/Z based on last compare.
1181  repne_scan(r5, r0, r2, rscratch1);
1182
1183  // Unspill the temp. registers:
1184  pop(pushed_registers, sp);
1185
1186  br(Assembler::NE, *L_failure);
1187
1188  // Success.  Cache the super we found and proceed in triumph.
1189  str(super_klass, super_cache_addr);
1190
1191  if (L_success != &L_fallthrough) {
1192    b(*L_success);
1193  }
1194
1195#undef IS_A_TEMP
1196
1197  bind(L_fallthrough);
1198}
1199
1200
1201void MacroAssembler::verify_oop(Register reg, const char* s) {
1202  if (!VerifyOops) return;
1203
1204  // Pass register number to verify_oop_subroutine
1205  const char* b = NULL;
1206  {
1207    ResourceMark rm;
1208    stringStream ss;
1209    ss.print("verify_oop: %s: %s", reg->name(), s);
1210    b = code_string(ss.as_string());
1211  }
1212  BLOCK_COMMENT("verify_oop {");
1213
1214  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1215  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1216
1217  mov(r0, reg);
1218  mov(rscratch1, (address)b);
1219
1220  // call indirectly to solve generation ordering problem
1221  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1222  ldr(rscratch2, Address(rscratch2));
1223  blr(rscratch2);
1224
1225  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1226  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1227
1228  BLOCK_COMMENT("} verify_oop");
1229}
1230
1231void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1232  if (!VerifyOops) return;
1233
1234  const char* b = NULL;
1235  {
1236    ResourceMark rm;
1237    stringStream ss;
1238    ss.print("verify_oop_addr: %s", s);
1239    b = code_string(ss.as_string());
1240  }
1241  BLOCK_COMMENT("verify_oop_addr {");
1242
1243  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1244  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1245
1246  // addr may contain sp so we will have to adjust it based on the
1247  // pushes that we just did.
1248  if (addr.uses(sp)) {
1249    lea(r0, addr);
1250    ldr(r0, Address(r0, 4 * wordSize));
1251  } else {
1252    ldr(r0, addr);
1253  }
1254  mov(rscratch1, (address)b);
1255
1256  // call indirectly to solve generation ordering problem
1257  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1258  ldr(rscratch2, Address(rscratch2));
1259  blr(rscratch2);
1260
1261  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1262  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1263
1264  BLOCK_COMMENT("} verify_oop_addr");
1265}
1266
1267Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1268                                         int extra_slot_offset) {
1269  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1270  int stackElementSize = Interpreter::stackElementSize;
1271  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1272#ifdef ASSERT
1273  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1274  assert(offset1 - offset == stackElementSize, "correct arithmetic");
1275#endif
1276  if (arg_slot.is_constant()) {
1277    return Address(esp, arg_slot.as_constant() * stackElementSize
1278                   + offset);
1279  } else {
1280    add(rscratch1, esp, arg_slot.as_register(),
1281        ext::uxtx, exact_log2(stackElementSize));
1282    return Address(rscratch1, offset);
1283  }
1284}
1285
1286void MacroAssembler::call_VM_leaf_base(address entry_point,
1287                                       int number_of_arguments,
1288                                       Label *retaddr) {
1289  call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1290}
1291
1292void MacroAssembler::call_VM_leaf_base1(address entry_point,
1293                                        int number_of_gp_arguments,
1294                                        int number_of_fp_arguments,
1295                                        ret_type type,
1296                                        Label *retaddr) {
1297  Label E, L;
1298
1299  stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1300
1301  // We add 1 to number_of_arguments because the thread in arg0 is
1302  // not counted
1303  mov(rscratch1, entry_point);
1304  blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1305  if (retaddr)
1306    bind(*retaddr);
1307
1308  ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1309  maybe_isb();
1310}
1311
1312void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1313  call_VM_leaf_base(entry_point, number_of_arguments);
1314}
1315
1316void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1317  pass_arg0(this, arg_0);
1318  call_VM_leaf_base(entry_point, 1);
1319}
1320
1321void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1322  pass_arg0(this, arg_0);
1323  pass_arg1(this, arg_1);
1324  call_VM_leaf_base(entry_point, 2);
1325}
1326
1327void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1328                                  Register arg_1, Register arg_2) {
1329  pass_arg0(this, arg_0);
1330  pass_arg1(this, arg_1);
1331  pass_arg2(this, arg_2);
1332  call_VM_leaf_base(entry_point, 3);
1333}
1334
1335void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1336  pass_arg0(this, arg_0);
1337  MacroAssembler::call_VM_leaf_base(entry_point, 1);
1338}
1339
1340void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1341
1342  assert(arg_0 != c_rarg1, "smashed arg");
1343  pass_arg1(this, arg_1);
1344  pass_arg0(this, arg_0);
1345  MacroAssembler::call_VM_leaf_base(entry_point, 2);
1346}
1347
1348void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1349  assert(arg_0 != c_rarg2, "smashed arg");
1350  assert(arg_1 != c_rarg2, "smashed arg");
1351  pass_arg2(this, arg_2);
1352  assert(arg_0 != c_rarg1, "smashed arg");
1353  pass_arg1(this, arg_1);
1354  pass_arg0(this, arg_0);
1355  MacroAssembler::call_VM_leaf_base(entry_point, 3);
1356}
1357
1358void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1359  assert(arg_0 != c_rarg3, "smashed arg");
1360  assert(arg_1 != c_rarg3, "smashed arg");
1361  assert(arg_2 != c_rarg3, "smashed arg");
1362  pass_arg3(this, arg_3);
1363  assert(arg_0 != c_rarg2, "smashed arg");
1364  assert(arg_1 != c_rarg2, "smashed arg");
1365  pass_arg2(this, arg_2);
1366  assert(arg_0 != c_rarg1, "smashed arg");
1367  pass_arg1(this, arg_1);
1368  pass_arg0(this, arg_0);
1369  MacroAssembler::call_VM_leaf_base(entry_point, 4);
1370}
1371
1372void MacroAssembler::null_check(Register reg, int offset) {
1373  if (needs_explicit_null_check(offset)) {
1374    // provoke OS NULL exception if reg = NULL by
1375    // accessing M[reg] w/o changing any registers
1376    // NOTE: this is plenty to provoke a segv
1377    ldr(zr, Address(reg));
1378  } else {
1379    // nothing to do, (later) access of M[reg + offset]
1380    // will provoke OS NULL exception if reg = NULL
1381  }
1382}
1383
1384// MacroAssembler protected routines needed to implement
1385// public methods
1386
1387void MacroAssembler::mov(Register r, Address dest) {
1388  code_section()->relocate(pc(), dest.rspec());
1389  u_int64_t imm64 = (u_int64_t)dest.target();
1390  movptr(r, imm64);
1391}
1392
1393// Move a constant pointer into r.  In AArch64 mode the virtual
1394// address space is 48 bits in size, so we only need three
1395// instructions to create a patchable instruction sequence that can
1396// reach anywhere.
1397void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1398#ifndef PRODUCT
1399  {
1400    char buffer[64];
1401    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1402    block_comment(buffer);
1403  }
1404#endif
1405  assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1406  movz(r, imm64 & 0xffff);
1407  imm64 >>= 16;
1408  movk(r, imm64 & 0xffff, 16);
1409  imm64 >>= 16;
1410  movk(r, imm64 & 0xffff, 32);
1411}
1412
1413// Macro to mov replicated immediate to vector register.
1414//  Vd will get the following values for different arrangements in T
1415//   imm32 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1416//   imm32 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1417//   imm32 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1418//   imm32 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1419//   imm32 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1420//   imm32 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1421//   T1D/T2D: invalid
1422void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1423  assert(T != T1D && T != T2D, "invalid arrangement");
1424  if (T == T8B || T == T16B) {
1425    assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1426    movi(Vd, T, imm32 & 0xff, 0);
1427    return;
1428  }
1429  u_int32_t nimm32 = ~imm32;
1430  if (T == T4H || T == T8H) {
1431    assert((imm32  & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1432    imm32 &= 0xffff;
1433    nimm32 &= 0xffff;
1434  }
1435  u_int32_t x = imm32;
1436  int movi_cnt = 0;
1437  int movn_cnt = 0;
1438  while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1439  x = nimm32;
1440  while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1441  if (movn_cnt < movi_cnt) imm32 = nimm32;
1442  unsigned lsl = 0;
1443  while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1444  if (movn_cnt < movi_cnt)
1445    mvni(Vd, T, imm32 & 0xff, lsl);
1446  else
1447    movi(Vd, T, imm32 & 0xff, lsl);
1448  imm32 >>= 8; lsl += 8;
1449  while (imm32) {
1450    while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1451    if (movn_cnt < movi_cnt)
1452      bici(Vd, T, imm32 & 0xff, lsl);
1453    else
1454      orri(Vd, T, imm32 & 0xff, lsl);
1455    lsl += 8; imm32 >>= 8;
1456  }
1457}
1458
1459void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1460{
1461#ifndef PRODUCT
1462  {
1463    char buffer[64];
1464    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1465    block_comment(buffer);
1466  }
1467#endif
1468  if (operand_valid_for_logical_immediate(false, imm64)) {
1469    orr(dst, zr, imm64);
1470  } else {
1471    // we can use a combination of MOVZ or MOVN with
1472    // MOVK to build up the constant
1473    u_int64_t imm_h[4];
1474    int zero_count = 0;
1475    int neg_count = 0;
1476    int i;
1477    for (i = 0; i < 4; i++) {
1478      imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1479      if (imm_h[i] == 0) {
1480        zero_count++;
1481      } else if (imm_h[i] == 0xffffL) {
1482        neg_count++;
1483      }
1484    }
1485    if (zero_count == 4) {
1486      // one MOVZ will do
1487      movz(dst, 0);
1488    } else if (neg_count == 4) {
1489      // one MOVN will do
1490      movn(dst, 0);
1491    } else if (zero_count == 3) {
1492      for (i = 0; i < 4; i++) {
1493        if (imm_h[i] != 0L) {
1494          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1495          break;
1496        }
1497      }
1498    } else if (neg_count == 3) {
1499      // one MOVN will do
1500      for (int i = 0; i < 4; i++) {
1501        if (imm_h[i] != 0xffffL) {
1502          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1503          break;
1504        }
1505      }
1506    } else if (zero_count == 2) {
1507      // one MOVZ and one MOVK will do
1508      for (i = 0; i < 3; i++) {
1509        if (imm_h[i] != 0L) {
1510          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1511          i++;
1512          break;
1513        }
1514      }
1515      for (;i < 4; i++) {
1516        if (imm_h[i] != 0L) {
1517          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1518        }
1519      }
1520    } else if (neg_count == 2) {
1521      // one MOVN and one MOVK will do
1522      for (i = 0; i < 4; i++) {
1523        if (imm_h[i] != 0xffffL) {
1524          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1525          i++;
1526          break;
1527        }
1528      }
1529      for (;i < 4; i++) {
1530        if (imm_h[i] != 0xffffL) {
1531          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1532        }
1533      }
1534    } else if (zero_count == 1) {
1535      // one MOVZ and two MOVKs will do
1536      for (i = 0; i < 4; i++) {
1537        if (imm_h[i] != 0L) {
1538          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1539          i++;
1540          break;
1541        }
1542      }
1543      for (;i < 4; i++) {
1544        if (imm_h[i] != 0x0L) {
1545          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1546        }
1547      }
1548    } else if (neg_count == 1) {
1549      // one MOVN and two MOVKs will do
1550      for (i = 0; i < 4; i++) {
1551        if (imm_h[i] != 0xffffL) {
1552          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1553          i++;
1554          break;
1555        }
1556      }
1557      for (;i < 4; i++) {
1558        if (imm_h[i] != 0xffffL) {
1559          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1560        }
1561      }
1562    } else {
1563      // use a MOVZ and 3 MOVKs (makes it easier to debug)
1564      movz(dst, (u_int32_t)imm_h[0], 0);
1565      for (i = 1; i < 4; i++) {
1566        movk(dst, (u_int32_t)imm_h[i], (i << 4));
1567      }
1568    }
1569  }
1570}
1571
1572void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1573{
1574#ifndef PRODUCT
1575    {
1576      char buffer[64];
1577      snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1578      block_comment(buffer);
1579    }
1580#endif
1581  if (operand_valid_for_logical_immediate(true, imm32)) {
1582    orrw(dst, zr, imm32);
1583  } else {
1584    // we can use MOVZ, MOVN or two calls to MOVK to build up the
1585    // constant
1586    u_int32_t imm_h[2];
1587    imm_h[0] = imm32 & 0xffff;
1588    imm_h[1] = ((imm32 >> 16) & 0xffff);
1589    if (imm_h[0] == 0) {
1590      movzw(dst, imm_h[1], 16);
1591    } else if (imm_h[0] == 0xffff) {
1592      movnw(dst, imm_h[1] ^ 0xffff, 16);
1593    } else if (imm_h[1] == 0) {
1594      movzw(dst, imm_h[0], 0);
1595    } else if (imm_h[1] == 0xffff) {
1596      movnw(dst, imm_h[0] ^ 0xffff, 0);
1597    } else {
1598      // use a MOVZ and MOVK (makes it easier to debug)
1599      movzw(dst, imm_h[0], 0);
1600      movkw(dst, imm_h[1], 16);
1601    }
1602  }
1603}
1604
1605// Form an address from base + offset in Rd.  Rd may or may
1606// not actually be used: you must use the Address that is returned.
1607// It is up to you to ensure that the shift provided matches the size
1608// of your data.
1609Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1610  if (Address::offset_ok_for_immed(byte_offset, shift))
1611    // It fits; no need for any heroics
1612    return Address(base, byte_offset);
1613
1614  // Don't do anything clever with negative or misaligned offsets
1615  unsigned mask = (1 << shift) - 1;
1616  if (byte_offset < 0 || byte_offset & mask) {
1617    mov(Rd, byte_offset);
1618    add(Rd, base, Rd);
1619    return Address(Rd);
1620  }
1621
1622  // See if we can do this with two 12-bit offsets
1623  {
1624    unsigned long word_offset = byte_offset >> shift;
1625    unsigned long masked_offset = word_offset & 0xfff000;
1626    if (Address::offset_ok_for_immed(word_offset - masked_offset)
1627        && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1628      add(Rd, base, masked_offset << shift);
1629      word_offset -= masked_offset;
1630      return Address(Rd, word_offset << shift);
1631    }
1632  }
1633
1634  // Do it the hard way
1635  mov(Rd, byte_offset);
1636  add(Rd, base, Rd);
1637  return Address(Rd);
1638}
1639
1640void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1641  Label retry_load;
1642  bind(retry_load);
1643  // flush and load exclusive from the memory location
1644  ldxrw(tmp, counter_addr);
1645  addw(tmp, tmp, 1);
1646  // if we store+flush with no intervening write tmp wil be zero
1647  stxrw(tmp2, tmp, counter_addr);
1648  cbnzw(tmp2, retry_load);
1649}
1650
1651
1652int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1653                                    bool want_remainder, Register scratch)
1654{
1655  // Full implementation of Java idiv and irem.  The function
1656  // returns the (pc) offset of the div instruction - may be needed
1657  // for implicit exceptions.
1658  //
1659  // constraint : ra/rb =/= scratch
1660  //         normal case
1661  //
1662  // input : ra: dividend
1663  //         rb: divisor
1664  //
1665  // result: either
1666  //         quotient  (= ra idiv rb)
1667  //         remainder (= ra irem rb)
1668
1669  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1670
1671  int idivl_offset = offset();
1672  if (! want_remainder) {
1673    sdivw(result, ra, rb);
1674  } else {
1675    sdivw(scratch, ra, rb);
1676    Assembler::msubw(result, scratch, rb, ra);
1677  }
1678
1679  return idivl_offset;
1680}
1681
1682int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1683                                    bool want_remainder, Register scratch)
1684{
1685  // Full implementation of Java ldiv and lrem.  The function
1686  // returns the (pc) offset of the div instruction - may be needed
1687  // for implicit exceptions.
1688  //
1689  // constraint : ra/rb =/= scratch
1690  //         normal case
1691  //
1692  // input : ra: dividend
1693  //         rb: divisor
1694  //
1695  // result: either
1696  //         quotient  (= ra idiv rb)
1697  //         remainder (= ra irem rb)
1698
1699  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1700
1701  int idivq_offset = offset();
1702  if (! want_remainder) {
1703    sdiv(result, ra, rb);
1704  } else {
1705    sdiv(scratch, ra, rb);
1706    Assembler::msub(result, scratch, rb, ra);
1707  }
1708
1709  return idivq_offset;
1710}
1711
1712void MacroAssembler::membar(Membar_mask_bits order_constraint) {
1713  address prev = pc() - NativeMembar::instruction_size;
1714  if (prev == code()->last_membar()) {
1715    NativeMembar *bar = NativeMembar_at(prev);
1716    // We are merging two memory barrier instructions.  On AArch64 we
1717    // can do this simply by ORing them together.
1718    bar->set_kind(bar->get_kind() | order_constraint);
1719    BLOCK_COMMENT("merged membar");
1720  } else {
1721    code()->set_last_membar(pc());
1722    dmb(Assembler::barrier(order_constraint));
1723  }
1724}
1725
1726// MacroAssembler routines found actually to be needed
1727
1728void MacroAssembler::push(Register src)
1729{
1730  str(src, Address(pre(esp, -1 * wordSize)));
1731}
1732
1733void MacroAssembler::pop(Register dst)
1734{
1735  ldr(dst, Address(post(esp, 1 * wordSize)));
1736}
1737
1738// Note: load_unsigned_short used to be called load_unsigned_word.
1739int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1740  int off = offset();
1741  ldrh(dst, src);
1742  return off;
1743}
1744
1745int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1746  int off = offset();
1747  ldrb(dst, src);
1748  return off;
1749}
1750
1751int MacroAssembler::load_signed_short(Register dst, Address src) {
1752  int off = offset();
1753  ldrsh(dst, src);
1754  return off;
1755}
1756
1757int MacroAssembler::load_signed_byte(Register dst, Address src) {
1758  int off = offset();
1759  ldrsb(dst, src);
1760  return off;
1761}
1762
1763int MacroAssembler::load_signed_short32(Register dst, Address src) {
1764  int off = offset();
1765  ldrshw(dst, src);
1766  return off;
1767}
1768
1769int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1770  int off = offset();
1771  ldrsbw(dst, src);
1772  return off;
1773}
1774
1775void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1776  switch (size_in_bytes) {
1777  case  8:  ldr(dst, src); break;
1778  case  4:  ldrw(dst, src); break;
1779  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1780  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1781  default:  ShouldNotReachHere();
1782  }
1783}
1784
1785void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1786  switch (size_in_bytes) {
1787  case  8:  str(src, dst); break;
1788  case  4:  strw(src, dst); break;
1789  case  2:  strh(src, dst); break;
1790  case  1:  strb(src, dst); break;
1791  default:  ShouldNotReachHere();
1792  }
1793}
1794
1795void MacroAssembler::decrementw(Register reg, int value)
1796{
1797  if (value < 0)  { incrementw(reg, -value);      return; }
1798  if (value == 0) {                               return; }
1799  if (value < (1 << 12)) { subw(reg, reg, value); return; }
1800  /* else */ {
1801    guarantee(reg != rscratch2, "invalid dst for register decrement");
1802    movw(rscratch2, (unsigned)value);
1803    subw(reg, reg, rscratch2);
1804  }
1805}
1806
1807void MacroAssembler::decrement(Register reg, int value)
1808{
1809  if (value < 0)  { increment(reg, -value);      return; }
1810  if (value == 0) {                              return; }
1811  if (value < (1 << 12)) { sub(reg, reg, value); return; }
1812  /* else */ {
1813    assert(reg != rscratch2, "invalid dst for register decrement");
1814    mov(rscratch2, (unsigned long)value);
1815    sub(reg, reg, rscratch2);
1816  }
1817}
1818
1819void MacroAssembler::decrementw(Address dst, int value)
1820{
1821  assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1822  ldrw(rscratch1, dst);
1823  decrementw(rscratch1, value);
1824  strw(rscratch1, dst);
1825}
1826
1827void MacroAssembler::decrement(Address dst, int value)
1828{
1829  assert(!dst.uses(rscratch1), "invalid address for decrement");
1830  ldr(rscratch1, dst);
1831  decrement(rscratch1, value);
1832  str(rscratch1, dst);
1833}
1834
1835void MacroAssembler::incrementw(Register reg, int value)
1836{
1837  if (value < 0)  { decrementw(reg, -value);      return; }
1838  if (value == 0) {                               return; }
1839  if (value < (1 << 12)) { addw(reg, reg, value); return; }
1840  /* else */ {
1841    assert(reg != rscratch2, "invalid dst for register increment");
1842    movw(rscratch2, (unsigned)value);
1843    addw(reg, reg, rscratch2);
1844  }
1845}
1846
1847void MacroAssembler::increment(Register reg, int value)
1848{
1849  if (value < 0)  { decrement(reg, -value);      return; }
1850  if (value == 0) {                              return; }
1851  if (value < (1 << 12)) { add(reg, reg, value); return; }
1852  /* else */ {
1853    assert(reg != rscratch2, "invalid dst for register increment");
1854    movw(rscratch2, (unsigned)value);
1855    add(reg, reg, rscratch2);
1856  }
1857}
1858
1859void MacroAssembler::incrementw(Address dst, int value)
1860{
1861  assert(!dst.uses(rscratch1), "invalid dst for address increment");
1862  ldrw(rscratch1, dst);
1863  incrementw(rscratch1, value);
1864  strw(rscratch1, dst);
1865}
1866
1867void MacroAssembler::increment(Address dst, int value)
1868{
1869  assert(!dst.uses(rscratch1), "invalid dst for address increment");
1870  ldr(rscratch1, dst);
1871  increment(rscratch1, value);
1872  str(rscratch1, dst);
1873}
1874
1875
1876void MacroAssembler::pusha() {
1877  push(0x7fffffff, sp);
1878}
1879
1880void MacroAssembler::popa() {
1881  pop(0x7fffffff, sp);
1882}
1883
1884// Push lots of registers in the bit set supplied.  Don't push sp.
1885// Return the number of words pushed
1886int MacroAssembler::push(unsigned int bitset, Register stack) {
1887  int words_pushed = 0;
1888
1889  // Scan bitset to accumulate register pairs
1890  unsigned char regs[32];
1891  int count = 0;
1892  for (int reg = 0; reg <= 30; reg++) {
1893    if (1 & bitset)
1894      regs[count++] = reg;
1895    bitset >>= 1;
1896  }
1897  regs[count++] = zr->encoding_nocheck();
1898  count &= ~1;  // Only push an even nuber of regs
1899
1900  if (count) {
1901    stp(as_Register(regs[0]), as_Register(regs[1]),
1902       Address(pre(stack, -count * wordSize)));
1903    words_pushed += 2;
1904  }
1905  for (int i = 2; i < count; i += 2) {
1906    stp(as_Register(regs[i]), as_Register(regs[i+1]),
1907       Address(stack, i * wordSize));
1908    words_pushed += 2;
1909  }
1910
1911  assert(words_pushed == count, "oops, pushed != count");
1912
1913  return count;
1914}
1915
1916int MacroAssembler::pop(unsigned int bitset, Register stack) {
1917  int words_pushed = 0;
1918
1919  // Scan bitset to accumulate register pairs
1920  unsigned char regs[32];
1921  int count = 0;
1922  for (int reg = 0; reg <= 30; reg++) {
1923    if (1 & bitset)
1924      regs[count++] = reg;
1925    bitset >>= 1;
1926  }
1927  regs[count++] = zr->encoding_nocheck();
1928  count &= ~1;
1929
1930  for (int i = 2; i < count; i += 2) {
1931    ldp(as_Register(regs[i]), as_Register(regs[i+1]),
1932       Address(stack, i * wordSize));
1933    words_pushed += 2;
1934  }
1935  if (count) {
1936    ldp(as_Register(regs[0]), as_Register(regs[1]),
1937       Address(post(stack, count * wordSize)));
1938    words_pushed += 2;
1939  }
1940
1941  assert(words_pushed == count, "oops, pushed != count");
1942
1943  return count;
1944}
1945#ifdef ASSERT
1946void MacroAssembler::verify_heapbase(const char* msg) {
1947#if 0
1948  assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
1949  assert (Universe::heap() != NULL, "java heap should be initialized");
1950  if (CheckCompressedOops) {
1951    Label ok;
1952    push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
1953    cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1954    br(Assembler::EQ, ok);
1955    stop(msg);
1956    bind(ok);
1957    pop(1 << rscratch1->encoding(), sp);
1958  }
1959#endif
1960}
1961#endif
1962
1963void MacroAssembler::stop(const char* msg) {
1964  address ip = pc();
1965  pusha();
1966  mov(c_rarg0, (address)msg);
1967  mov(c_rarg1, (address)ip);
1968  mov(c_rarg2, sp);
1969  mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
1970  // call(c_rarg3);
1971  blrt(c_rarg3, 3, 0, 1);
1972  hlt(0);
1973}
1974
1975// If a constant does not fit in an immediate field, generate some
1976// number of MOV instructions and then perform the operation.
1977void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1978                                           add_sub_imm_insn insn1,
1979                                           add_sub_reg_insn insn2) {
1980  assert(Rd != zr, "Rd = zr and not setting flags?");
1981  if (operand_valid_for_add_sub_immediate((int)imm)) {
1982    (this->*insn1)(Rd, Rn, imm);
1983  } else {
1984    if (uabs(imm) < (1 << 24)) {
1985       (this->*insn1)(Rd, Rn, imm & -(1 << 12));
1986       (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
1987    } else {
1988       assert_different_registers(Rd, Rn);
1989       mov(Rd, (uint64_t)imm);
1990       (this->*insn2)(Rd, Rn, Rd, LSL, 0);
1991    }
1992  }
1993}
1994
1995// Seperate vsn which sets the flags. Optimisations are more restricted
1996// because we must set the flags correctly.
1997void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1998                                           add_sub_imm_insn insn1,
1999                                           add_sub_reg_insn insn2) {
2000  if (operand_valid_for_add_sub_immediate((int)imm)) {
2001    (this->*insn1)(Rd, Rn, imm);
2002  } else {
2003    assert_different_registers(Rd, Rn);
2004    assert(Rd != zr, "overflow in immediate operand");
2005    mov(Rd, (uint64_t)imm);
2006    (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2007  }
2008}
2009
2010
2011void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2012  if (increment.is_register()) {
2013    add(Rd, Rn, increment.as_register());
2014  } else {
2015    add(Rd, Rn, increment.as_constant());
2016  }
2017}
2018
2019void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2020  if (increment.is_register()) {
2021    addw(Rd, Rn, increment.as_register());
2022  } else {
2023    addw(Rd, Rn, increment.as_constant());
2024  }
2025}
2026
2027void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2028  if (decrement.is_register()) {
2029    sub(Rd, Rn, decrement.as_register());
2030  } else {
2031    sub(Rd, Rn, decrement.as_constant());
2032  }
2033}
2034
2035void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2036  if (decrement.is_register()) {
2037    subw(Rd, Rn, decrement.as_register());
2038  } else {
2039    subw(Rd, Rn, decrement.as_constant());
2040  }
2041}
2042
2043void MacroAssembler::reinit_heapbase()
2044{
2045  if (UseCompressedOops) {
2046    if (Universe::is_fully_initialized()) {
2047      mov(rheapbase, Universe::narrow_ptrs_base());
2048    } else {
2049      lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2050      ldr(rheapbase, Address(rheapbase));
2051    }
2052  }
2053}
2054
2055// this simulates the behaviour of the x86 cmpxchg instruction using a
2056// load linked/store conditional pair. we use the acquire/release
2057// versions of these instructions so that we flush pending writes as
2058// per Java semantics.
2059
2060// n.b the x86 version assumes the old value to be compared against is
2061// in rax and updates rax with the value located in memory if the
2062// cmpxchg fails. we supply a register for the old value explicitly
2063
2064// the aarch64 load linked/store conditional instructions do not
2065// accept an offset. so, unlike x86, we must provide a plain register
2066// to identify the memory word to be compared/exchanged rather than a
2067// register+offset Address.
2068
2069void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2070                                Label &succeed, Label *fail) {
2071  // oldv holds comparison value
2072  // newv holds value to write in exchange
2073  // addr identifies memory word to compare against/update
2074  // tmp returns 0/1 for success/failure
2075  Label retry_load, nope;
2076
2077  bind(retry_load);
2078  // flush and load exclusive from the memory location
2079  // and fail if it is not what we expect
2080  ldaxr(tmp, addr);
2081  cmp(tmp, oldv);
2082  br(Assembler::NE, nope);
2083  // if we store+flush with no intervening write tmp wil be zero
2084  stlxr(tmp, newv, addr);
2085  cbzw(tmp, succeed);
2086  // retry so we only ever return after a load fails to compare
2087  // ensures we don't return a stale value after a failed write.
2088  b(retry_load);
2089  // if the memory word differs we return it in oldv and signal a fail
2090  bind(nope);
2091  membar(AnyAny);
2092  mov(oldv, tmp);
2093  if (fail)
2094    b(*fail);
2095}
2096
2097void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2098                                Label &succeed, Label *fail) {
2099  // oldv holds comparison value
2100  // newv holds value to write in exchange
2101  // addr identifies memory word to compare against/update
2102  // tmp returns 0/1 for success/failure
2103  Label retry_load, nope;
2104
2105  bind(retry_load);
2106  // flush and load exclusive from the memory location
2107  // and fail if it is not what we expect
2108  ldaxrw(tmp, addr);
2109  cmp(tmp, oldv);
2110  br(Assembler::NE, nope);
2111  // if we store+flush with no intervening write tmp wil be zero
2112  stlxrw(tmp, newv, addr);
2113  cbzw(tmp, succeed);
2114  // retry so we only ever return after a load fails to compare
2115  // ensures we don't return a stale value after a failed write.
2116  b(retry_load);
2117  // if the memory word differs we return it in oldv and signal a fail
2118  bind(nope);
2119  membar(AnyAny);
2120  mov(oldv, tmp);
2121  if (fail)
2122    b(*fail);
2123}
2124
2125static bool different(Register a, RegisterOrConstant b, Register c) {
2126  if (b.is_constant())
2127    return a != c;
2128  else
2129    return a != b.as_register() && a != c && b.as_register() != c;
2130}
2131
2132#define ATOMIC_OP(LDXR, OP, IOP, STXR)                                       \
2133void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \
2134  Register result = rscratch2;                                          \
2135  if (prev->is_valid())                                                 \
2136    result = different(prev, incr, addr) ? prev : rscratch2;            \
2137                                                                        \
2138  Label retry_load;                                                     \
2139  bind(retry_load);                                                     \
2140  LDXR(result, addr);                                                   \
2141  OP(rscratch1, result, incr);                                          \
2142  STXR(rscratch2, rscratch1, addr);                                     \
2143  cbnzw(rscratch2, retry_load);                                         \
2144  if (prev->is_valid() && prev != result) {                             \
2145    IOP(prev, rscratch1, incr);                                         \
2146  }                                                                     \
2147}
2148
2149ATOMIC_OP(ldxr, add, sub, stxr)
2150ATOMIC_OP(ldxrw, addw, subw, stxrw)
2151
2152#undef ATOMIC_OP
2153
2154#define ATOMIC_XCHG(OP, LDXR, STXR)                                     \
2155void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2156  Register result = rscratch2;                                          \
2157  if (prev->is_valid())                                                 \
2158    result = different(prev, newv, addr) ? prev : rscratch2;            \
2159                                                                        \
2160  Label retry_load;                                                     \
2161  bind(retry_load);                                                     \
2162  LDXR(result, addr);                                                   \
2163  STXR(rscratch1, newv, addr);                                          \
2164  cbnzw(rscratch1, retry_load);                                         \
2165  if (prev->is_valid() && prev != result)                               \
2166    mov(prev, result);                                                  \
2167}
2168
2169ATOMIC_XCHG(xchg, ldxr, stxr)
2170ATOMIC_XCHG(xchgw, ldxrw, stxrw)
2171
2172#undef ATOMIC_XCHG
2173
2174void MacroAssembler::incr_allocated_bytes(Register thread,
2175                                          Register var_size_in_bytes,
2176                                          int con_size_in_bytes,
2177                                          Register t1) {
2178  if (!thread->is_valid()) {
2179    thread = rthread;
2180  }
2181  assert(t1->is_valid(), "need temp reg");
2182
2183  ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2184  if (var_size_in_bytes->is_valid()) {
2185    add(t1, t1, var_size_in_bytes);
2186  } else {
2187    add(t1, t1, con_size_in_bytes);
2188  }
2189  str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2190}
2191
2192#ifndef PRODUCT
2193extern "C" void findpc(intptr_t x);
2194#endif
2195
2196void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2197{
2198  // In order to get locks to work, we need to fake a in_VM state
2199  if (ShowMessageBoxOnError ) {
2200    JavaThread* thread = JavaThread::current();
2201    JavaThreadState saved_state = thread->thread_state();
2202    thread->set_thread_state(_thread_in_vm);
2203#ifndef PRODUCT
2204    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2205      ttyLocker ttyl;
2206      BytecodeCounter::print();
2207    }
2208#endif
2209    if (os::message_box(msg, "Execution stopped, print registers?")) {
2210      ttyLocker ttyl;
2211      tty->print_cr(" pc = 0x%016lx", pc);
2212#ifndef PRODUCT
2213      tty->cr();
2214      findpc(pc);
2215      tty->cr();
2216#endif
2217      tty->print_cr(" r0 = 0x%016lx", regs[0]);
2218      tty->print_cr(" r1 = 0x%016lx", regs[1]);
2219      tty->print_cr(" r2 = 0x%016lx", regs[2]);
2220      tty->print_cr(" r3 = 0x%016lx", regs[3]);
2221      tty->print_cr(" r4 = 0x%016lx", regs[4]);
2222      tty->print_cr(" r5 = 0x%016lx", regs[5]);
2223      tty->print_cr(" r6 = 0x%016lx", regs[6]);
2224      tty->print_cr(" r7 = 0x%016lx", regs[7]);
2225      tty->print_cr(" r8 = 0x%016lx", regs[8]);
2226      tty->print_cr(" r9 = 0x%016lx", regs[9]);
2227      tty->print_cr("r10 = 0x%016lx", regs[10]);
2228      tty->print_cr("r11 = 0x%016lx", regs[11]);
2229      tty->print_cr("r12 = 0x%016lx", regs[12]);
2230      tty->print_cr("r13 = 0x%016lx", regs[13]);
2231      tty->print_cr("r14 = 0x%016lx", regs[14]);
2232      tty->print_cr("r15 = 0x%016lx", regs[15]);
2233      tty->print_cr("r16 = 0x%016lx", regs[16]);
2234      tty->print_cr("r17 = 0x%016lx", regs[17]);
2235      tty->print_cr("r18 = 0x%016lx", regs[18]);
2236      tty->print_cr("r19 = 0x%016lx", regs[19]);
2237      tty->print_cr("r20 = 0x%016lx", regs[20]);
2238      tty->print_cr("r21 = 0x%016lx", regs[21]);
2239      tty->print_cr("r22 = 0x%016lx", regs[22]);
2240      tty->print_cr("r23 = 0x%016lx", regs[23]);
2241      tty->print_cr("r24 = 0x%016lx", regs[24]);
2242      tty->print_cr("r25 = 0x%016lx", regs[25]);
2243      tty->print_cr("r26 = 0x%016lx", regs[26]);
2244      tty->print_cr("r27 = 0x%016lx", regs[27]);
2245      tty->print_cr("r28 = 0x%016lx", regs[28]);
2246      tty->print_cr("r30 = 0x%016lx", regs[30]);
2247      tty->print_cr("r31 = 0x%016lx", regs[31]);
2248      BREAKPOINT;
2249    }
2250    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2251  } else {
2252    ttyLocker ttyl;
2253    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2254                    msg);
2255    assert(false, "DEBUG MESSAGE: %s", msg);
2256  }
2257}
2258
2259#ifdef BUILTIN_SIM
2260// routine to generate an x86 prolog for a stub function which
2261// bootstraps into the generated ARM code which directly follows the
2262// stub
2263//
2264// the argument encodes the number of general and fp registers
2265// passed by the caller and the callng convention (currently just
2266// the number of general registers and assumes C argument passing)
2267
2268extern "C" {
2269int aarch64_stub_prolog_size();
2270void aarch64_stub_prolog();
2271void aarch64_prolog();
2272}
2273
2274void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2275                                   address *prolog_ptr)
2276{
2277  int calltype = (((ret_type & 0x3) << 8) |
2278                  ((fp_arg_count & 0xf) << 4) |
2279                  (gp_arg_count & 0xf));
2280
2281  // the addresses for the x86 to ARM entry code we need to use
2282  address start = pc();
2283  // printf("start = %lx\n", start);
2284  int byteCount =  aarch64_stub_prolog_size();
2285  // printf("byteCount = %x\n", byteCount);
2286  int instructionCount = (byteCount + 3)/ 4;
2287  // printf("instructionCount = %x\n", instructionCount);
2288  for (int i = 0; i < instructionCount; i++) {
2289    nop();
2290  }
2291
2292  memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2293
2294  // write the address of the setup routine and the call format at the
2295  // end of into the copied code
2296  u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2297  if (prolog_ptr)
2298    patch_end[-2] = (u_int64_t)prolog_ptr;
2299  patch_end[-1] = calltype;
2300}
2301#endif
2302
2303void MacroAssembler::push_CPU_state(bool save_vectors) {
2304  push(0x3fffffff, sp);         // integer registers except lr & sp
2305
2306  if (!save_vectors) {
2307    for (int i = 30; i >= 0; i -= 2)
2308      stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2309           Address(pre(sp, -2 * wordSize)));
2310  } else {
2311    for (int i = 30; i >= 0; i -= 2)
2312      stpq(as_FloatRegister(i), as_FloatRegister(i+1),
2313           Address(pre(sp, -4 * wordSize)));
2314  }
2315}
2316
2317void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2318  if (!restore_vectors) {
2319    for (int i = 0; i < 32; i += 2)
2320      ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2321           Address(post(sp, 2 * wordSize)));
2322  } else {
2323    for (int i = 0; i < 32; i += 2)
2324      ldpq(as_FloatRegister(i), as_FloatRegister(i+1),
2325           Address(post(sp, 4 * wordSize)));
2326  }
2327
2328  pop(0x3fffffff, sp);         // integer registers except lr & sp
2329}
2330
2331/**
2332 * Helpers for multiply_to_len().
2333 */
2334void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2335                                     Register src1, Register src2) {
2336  adds(dest_lo, dest_lo, src1);
2337  adc(dest_hi, dest_hi, zr);
2338  adds(dest_lo, dest_lo, src2);
2339  adc(final_dest_hi, dest_hi, zr);
2340}
2341
2342// Generate an address from (r + r1 extend offset).  "size" is the
2343// size of the operand.  The result may be in rscratch2.
2344Address MacroAssembler::offsetted_address(Register r, Register r1,
2345                                          Address::extend ext, int offset, int size) {
2346  if (offset || (ext.shift() % size != 0)) {
2347    lea(rscratch2, Address(r, r1, ext));
2348    return Address(rscratch2, offset);
2349  } else {
2350    return Address(r, r1, ext);
2351  }
2352}
2353
2354Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2355{
2356  assert(offset >= 0, "spill to negative address?");
2357  // Offset reachable ?
2358  //   Not aligned - 9 bits signed offset
2359  //   Aligned - 12 bits unsigned offset shifted
2360  Register base = sp;
2361  if ((offset & (size-1)) && offset >= (1<<8)) {
2362    add(tmp, base, offset & ((1<<12)-1));
2363    base = tmp;
2364    offset &= -1<<12;
2365  }
2366
2367  if (offset >= (1<<12) * size) {
2368    add(tmp, base, offset & (((1<<12)-1)<<12));
2369    base = tmp;
2370    offset &= ~(((1<<12)-1)<<12);
2371  }
2372
2373  return Address(base, offset);
2374}
2375
2376/**
2377 * Multiply 64 bit by 64 bit first loop.
2378 */
2379void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2380                                           Register y, Register y_idx, Register z,
2381                                           Register carry, Register product,
2382                                           Register idx, Register kdx) {
2383  //
2384  //  jlong carry, x[], y[], z[];
2385  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2386  //    huge_128 product = y[idx] * x[xstart] + carry;
2387  //    z[kdx] = (jlong)product;
2388  //    carry  = (jlong)(product >>> 64);
2389  //  }
2390  //  z[xstart] = carry;
2391  //
2392
2393  Label L_first_loop, L_first_loop_exit;
2394  Label L_one_x, L_one_y, L_multiply;
2395
2396  subsw(xstart, xstart, 1);
2397  br(Assembler::MI, L_one_x);
2398
2399  lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2400  ldr(x_xstart, Address(rscratch1));
2401  ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2402
2403  bind(L_first_loop);
2404  subsw(idx, idx, 1);
2405  br(Assembler::MI, L_first_loop_exit);
2406  subsw(idx, idx, 1);
2407  br(Assembler::MI, L_one_y);
2408  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2409  ldr(y_idx, Address(rscratch1));
2410  ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2411  bind(L_multiply);
2412
2413  // AArch64 has a multiply-accumulate instruction that we can't use
2414  // here because it has no way to process carries, so we have to use
2415  // separate add and adc instructions.  Bah.
2416  umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2417  mul(product, x_xstart, y_idx);
2418  adds(product, product, carry);
2419  adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2420
2421  subw(kdx, kdx, 2);
2422  ror(product, product, 32); // back to big-endian
2423  str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2424
2425  b(L_first_loop);
2426
2427  bind(L_one_y);
2428  ldrw(y_idx, Address(y,  0));
2429  b(L_multiply);
2430
2431  bind(L_one_x);
2432  ldrw(x_xstart, Address(x,  0));
2433  b(L_first_loop);
2434
2435  bind(L_first_loop_exit);
2436}
2437
2438/**
2439 * Multiply 128 bit by 128. Unrolled inner loop.
2440 *
2441 */
2442void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2443                                             Register carry, Register carry2,
2444                                             Register idx, Register jdx,
2445                                             Register yz_idx1, Register yz_idx2,
2446                                             Register tmp, Register tmp3, Register tmp4,
2447                                             Register tmp6, Register product_hi) {
2448
2449  //   jlong carry, x[], y[], z[];
2450  //   int kdx = ystart+1;
2451  //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2452  //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2453  //     jlong carry2  = (jlong)(tmp3 >>> 64);
2454  //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2455  //     carry  = (jlong)(tmp4 >>> 64);
2456  //     z[kdx+idx+1] = (jlong)tmp3;
2457  //     z[kdx+idx] = (jlong)tmp4;
2458  //   }
2459  //   idx += 2;
2460  //   if (idx > 0) {
2461  //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2462  //     z[kdx+idx] = (jlong)yz_idx1;
2463  //     carry  = (jlong)(yz_idx1 >>> 64);
2464  //   }
2465  //
2466
2467  Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2468
2469  lsrw(jdx, idx, 2);
2470
2471  bind(L_third_loop);
2472
2473  subsw(jdx, jdx, 1);
2474  br(Assembler::MI, L_third_loop_exit);
2475  subw(idx, idx, 4);
2476
2477  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2478
2479  ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2480
2481  lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2482
2483  ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2484  ror(yz_idx2, yz_idx2, 32);
2485
2486  ldp(rscratch2, rscratch1, Address(tmp6, 0));
2487
2488  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2489  umulh(tmp4, product_hi, yz_idx1);
2490
2491  ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2492  ror(rscratch2, rscratch2, 32);
2493
2494  mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2495  umulh(carry2, product_hi, yz_idx2);
2496
2497  // propagate sum of both multiplications into carry:tmp4:tmp3
2498  adds(tmp3, tmp3, carry);
2499  adc(tmp4, tmp4, zr);
2500  adds(tmp3, tmp3, rscratch1);
2501  adcs(tmp4, tmp4, tmp);
2502  adc(carry, carry2, zr);
2503  adds(tmp4, tmp4, rscratch2);
2504  adc(carry, carry, zr);
2505
2506  ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2507  ror(tmp4, tmp4, 32);
2508  stp(tmp4, tmp3, Address(tmp6, 0));
2509
2510  b(L_third_loop);
2511  bind (L_third_loop_exit);
2512
2513  andw (idx, idx, 0x3);
2514  cbz(idx, L_post_third_loop_done);
2515
2516  Label L_check_1;
2517  subsw(idx, idx, 2);
2518  br(Assembler::MI, L_check_1);
2519
2520  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2521  ldr(yz_idx1, Address(rscratch1, 0));
2522  ror(yz_idx1, yz_idx1, 32);
2523  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2524  umulh(tmp4, product_hi, yz_idx1);
2525  lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2526  ldr(yz_idx2, Address(rscratch1, 0));
2527  ror(yz_idx2, yz_idx2, 32);
2528
2529  add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2530
2531  ror(tmp3, tmp3, 32);
2532  str(tmp3, Address(rscratch1, 0));
2533
2534  bind (L_check_1);
2535
2536  andw (idx, idx, 0x1);
2537  subsw(idx, idx, 1);
2538  br(Assembler::MI, L_post_third_loop_done);
2539  ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2540  mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2541  umulh(carry2, tmp4, product_hi);
2542  ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2543
2544  add2_with_carry(carry2, tmp3, tmp4, carry);
2545
2546  strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2547  extr(carry, carry2, tmp3, 32);
2548
2549  bind(L_post_third_loop_done);
2550}
2551
2552/**
2553 * Code for BigInteger::multiplyToLen() instrinsic.
2554 *
2555 * r0: x
2556 * r1: xlen
2557 * r2: y
2558 * r3: ylen
2559 * r4:  z
2560 * r5: zlen
2561 * r10: tmp1
2562 * r11: tmp2
2563 * r12: tmp3
2564 * r13: tmp4
2565 * r14: tmp5
2566 * r15: tmp6
2567 * r16: tmp7
2568 *
2569 */
2570void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2571                                     Register z, Register zlen,
2572                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2573                                     Register tmp5, Register tmp6, Register product_hi) {
2574
2575  assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2576
2577  const Register idx = tmp1;
2578  const Register kdx = tmp2;
2579  const Register xstart = tmp3;
2580
2581  const Register y_idx = tmp4;
2582  const Register carry = tmp5;
2583  const Register product  = xlen;
2584  const Register x_xstart = zlen;  // reuse register
2585
2586  // First Loop.
2587  //
2588  //  final static long LONG_MASK = 0xffffffffL;
2589  //  int xstart = xlen - 1;
2590  //  int ystart = ylen - 1;
2591  //  long carry = 0;
2592  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2593  //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2594  //    z[kdx] = (int)product;
2595  //    carry = product >>> 32;
2596  //  }
2597  //  z[xstart] = (int)carry;
2598  //
2599
2600  movw(idx, ylen);      // idx = ylen;
2601  movw(kdx, zlen);      // kdx = xlen+ylen;
2602  mov(carry, zr);       // carry = 0;
2603
2604  Label L_done;
2605
2606  movw(xstart, xlen);
2607  subsw(xstart, xstart, 1);
2608  br(Assembler::MI, L_done);
2609
2610  multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
2611
2612  Label L_second_loop;
2613  cbzw(kdx, L_second_loop);
2614
2615  Label L_carry;
2616  subw(kdx, kdx, 1);
2617  cbzw(kdx, L_carry);
2618
2619  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2620  lsr(carry, carry, 32);
2621  subw(kdx, kdx, 1);
2622
2623  bind(L_carry);
2624  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2625
2626  // Second and third (nested) loops.
2627  //
2628  // for (int i = xstart-1; i >= 0; i--) { // Second loop
2629  //   carry = 0;
2630  //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
2631  //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
2632  //                    (z[k] & LONG_MASK) + carry;
2633  //     z[k] = (int)product;
2634  //     carry = product >>> 32;
2635  //   }
2636  //   z[i] = (int)carry;
2637  // }
2638  //
2639  // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
2640
2641  const Register jdx = tmp1;
2642
2643  bind(L_second_loop);
2644  mov(carry, zr);                // carry = 0;
2645  movw(jdx, ylen);               // j = ystart+1
2646
2647  subsw(xstart, xstart, 1);      // i = xstart-1;
2648  br(Assembler::MI, L_done);
2649
2650  str(z, Address(pre(sp, -4 * wordSize)));
2651
2652  Label L_last_x;
2653  lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
2654  subsw(xstart, xstart, 1);       // i = xstart-1;
2655  br(Assembler::MI, L_last_x);
2656
2657  lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
2658  ldr(product_hi, Address(rscratch1));
2659  ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
2660
2661  Label L_third_loop_prologue;
2662  bind(L_third_loop_prologue);
2663
2664  str(ylen, Address(sp, wordSize));
2665  stp(x, xstart, Address(sp, 2 * wordSize));
2666  multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
2667                          tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
2668  ldp(z, ylen, Address(post(sp, 2 * wordSize)));
2669  ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
2670
2671  addw(tmp3, xlen, 1);
2672  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2673  subsw(tmp3, tmp3, 1);
2674  br(Assembler::MI, L_done);
2675
2676  lsr(carry, carry, 32);
2677  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2678  b(L_second_loop);
2679
2680  // Next infrequent code is moved outside loops.
2681  bind(L_last_x);
2682  ldrw(product_hi, Address(x,  0));
2683  b(L_third_loop_prologue);
2684
2685  bind(L_done);
2686}
2687
2688/**
2689 * Emits code to update CRC-32 with a byte value according to constants in table
2690 *
2691 * @param [in,out]crc   Register containing the crc.
2692 * @param [in]val       Register containing the byte to fold into the CRC.
2693 * @param [in]table     Register containing the table of crc constants.
2694 *
2695 * uint32_t crc;
2696 * val = crc_table[(val ^ crc) & 0xFF];
2697 * crc = val ^ (crc >> 8);
2698 *
2699 */
2700void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
2701  eor(val, val, crc);
2702  andr(val, val, 0xff);
2703  ldrw(val, Address(table, val, Address::lsl(2)));
2704  eor(crc, val, crc, Assembler::LSR, 8);
2705}
2706
2707/**
2708 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
2709 *
2710 * @param [in,out]crc   Register containing the crc.
2711 * @param [in]v         Register containing the 32-bit to fold into the CRC.
2712 * @param [in]table0    Register containing table 0 of crc constants.
2713 * @param [in]table1    Register containing table 1 of crc constants.
2714 * @param [in]table2    Register containing table 2 of crc constants.
2715 * @param [in]table3    Register containing table 3 of crc constants.
2716 *
2717 * uint32_t crc;
2718 *   v = crc ^ v
2719 *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
2720 *
2721 */
2722void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
2723        Register table0, Register table1, Register table2, Register table3,
2724        bool upper) {
2725  eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
2726  uxtb(tmp, v);
2727  ldrw(crc, Address(table3, tmp, Address::lsl(2)));
2728  ubfx(tmp, v, 8, 8);
2729  ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
2730  eor(crc, crc, tmp);
2731  ubfx(tmp, v, 16, 8);
2732  ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
2733  eor(crc, crc, tmp);
2734  ubfx(tmp, v, 24, 8);
2735  ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
2736  eor(crc, crc, tmp);
2737}
2738
2739/**
2740 * @param crc   register containing existing CRC (32-bit)
2741 * @param buf   register pointing to input byte buffer (byte*)
2742 * @param len   register containing number of bytes
2743 * @param table register that will contain address of CRC table
2744 * @param tmp   scratch register
2745 */
2746void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
2747        Register table0, Register table1, Register table2, Register table3,
2748        Register tmp, Register tmp2, Register tmp3) {
2749  Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
2750  unsigned long offset;
2751
2752    ornw(crc, zr, crc);
2753
2754  if (UseCRC32) {
2755    Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2756
2757      subs(len, len, 64);
2758      br(Assembler::GE, CRC_by64_loop);
2759      adds(len, len, 64-4);
2760      br(Assembler::GE, CRC_by4_loop);
2761      adds(len, len, 4);
2762      br(Assembler::GT, CRC_by1_loop);
2763      b(L_exit);
2764
2765    BIND(CRC_by4_loop);
2766      ldrw(tmp, Address(post(buf, 4)));
2767      subs(len, len, 4);
2768      crc32w(crc, crc, tmp);
2769      br(Assembler::GE, CRC_by4_loop);
2770      adds(len, len, 4);
2771      br(Assembler::LE, L_exit);
2772    BIND(CRC_by1_loop);
2773      ldrb(tmp, Address(post(buf, 1)));
2774      subs(len, len, 1);
2775      crc32b(crc, crc, tmp);
2776      br(Assembler::GT, CRC_by1_loop);
2777      b(L_exit);
2778
2779      align(CodeEntryAlignment);
2780    BIND(CRC_by64_loop);
2781      subs(len, len, 64);
2782      ldp(tmp, tmp3, Address(post(buf, 16)));
2783      crc32x(crc, crc, tmp);
2784      crc32x(crc, crc, tmp3);
2785      ldp(tmp, tmp3, Address(post(buf, 16)));
2786      crc32x(crc, crc, tmp);
2787      crc32x(crc, crc, tmp3);
2788      ldp(tmp, tmp3, Address(post(buf, 16)));
2789      crc32x(crc, crc, tmp);
2790      crc32x(crc, crc, tmp3);
2791      ldp(tmp, tmp3, Address(post(buf, 16)));
2792      crc32x(crc, crc, tmp);
2793      crc32x(crc, crc, tmp3);
2794      br(Assembler::GE, CRC_by64_loop);
2795      adds(len, len, 64-4);
2796      br(Assembler::GE, CRC_by4_loop);
2797      adds(len, len, 4);
2798      br(Assembler::GT, CRC_by1_loop);
2799    BIND(L_exit);
2800      ornw(crc, zr, crc);
2801      return;
2802  }
2803
2804    adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2805    if (offset) add(table0, table0, offset);
2806    add(table1, table0, 1*256*sizeof(juint));
2807    add(table2, table0, 2*256*sizeof(juint));
2808    add(table3, table0, 3*256*sizeof(juint));
2809
2810  if (UseNeon) {
2811      cmp(len, 64);
2812      br(Assembler::LT, L_by16);
2813      eor(v16, T16B, v16, v16);
2814
2815    Label L_fold;
2816
2817      add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
2818
2819      ld1(v0, v1, T2D, post(buf, 32));
2820      ld1r(v4, T2D, post(tmp, 8));
2821      ld1r(v5, T2D, post(tmp, 8));
2822      ld1r(v6, T2D, post(tmp, 8));
2823      ld1r(v7, T2D, post(tmp, 8));
2824      mov(v16, T4S, 0, crc);
2825
2826      eor(v0, T16B, v0, v16);
2827      sub(len, len, 64);
2828
2829    BIND(L_fold);
2830      pmull(v22, T8H, v0, v5, T8B);
2831      pmull(v20, T8H, v0, v7, T8B);
2832      pmull(v23, T8H, v0, v4, T8B);
2833      pmull(v21, T8H, v0, v6, T8B);
2834
2835      pmull2(v18, T8H, v0, v5, T16B);
2836      pmull2(v16, T8H, v0, v7, T16B);
2837      pmull2(v19, T8H, v0, v4, T16B);
2838      pmull2(v17, T8H, v0, v6, T16B);
2839
2840      uzp1(v24, v20, v22, T8H);
2841      uzp2(v25, v20, v22, T8H);
2842      eor(v20, T16B, v24, v25);
2843
2844      uzp1(v26, v16, v18, T8H);
2845      uzp2(v27, v16, v18, T8H);
2846      eor(v16, T16B, v26, v27);
2847
2848      ushll2(v22, T4S, v20, T8H, 8);
2849      ushll(v20, T4S, v20, T4H, 8);
2850
2851      ushll2(v18, T4S, v16, T8H, 8);
2852      ushll(v16, T4S, v16, T4H, 8);
2853
2854      eor(v22, T16B, v23, v22);
2855      eor(v18, T16B, v19, v18);
2856      eor(v20, T16B, v21, v20);
2857      eor(v16, T16B, v17, v16);
2858
2859      uzp1(v17, v16, v20, T2D);
2860      uzp2(v21, v16, v20, T2D);
2861      eor(v17, T16B, v17, v21);
2862
2863      ushll2(v20, T2D, v17, T4S, 16);
2864      ushll(v16, T2D, v17, T2S, 16);
2865
2866      eor(v20, T16B, v20, v22);
2867      eor(v16, T16B, v16, v18);
2868
2869      uzp1(v17, v20, v16, T2D);
2870      uzp2(v21, v20, v16, T2D);
2871      eor(v28, T16B, v17, v21);
2872
2873      pmull(v22, T8H, v1, v5, T8B);
2874      pmull(v20, T8H, v1, v7, T8B);
2875      pmull(v23, T8H, v1, v4, T8B);
2876      pmull(v21, T8H, v1, v6, T8B);
2877
2878      pmull2(v18, T8H, v1, v5, T16B);
2879      pmull2(v16, T8H, v1, v7, T16B);
2880      pmull2(v19, T8H, v1, v4, T16B);
2881      pmull2(v17, T8H, v1, v6, T16B);
2882
2883      ld1(v0, v1, T2D, post(buf, 32));
2884
2885      uzp1(v24, v20, v22, T8H);
2886      uzp2(v25, v20, v22, T8H);
2887      eor(v20, T16B, v24, v25);
2888
2889      uzp1(v26, v16, v18, T8H);
2890      uzp2(v27, v16, v18, T8H);
2891      eor(v16, T16B, v26, v27);
2892
2893      ushll2(v22, T4S, v20, T8H, 8);
2894      ushll(v20, T4S, v20, T4H, 8);
2895
2896      ushll2(v18, T4S, v16, T8H, 8);
2897      ushll(v16, T4S, v16, T4H, 8);
2898
2899      eor(v22, T16B, v23, v22);
2900      eor(v18, T16B, v19, v18);
2901      eor(v20, T16B, v21, v20);
2902      eor(v16, T16B, v17, v16);
2903
2904      uzp1(v17, v16, v20, T2D);
2905      uzp2(v21, v16, v20, T2D);
2906      eor(v16, T16B, v17, v21);
2907
2908      ushll2(v20, T2D, v16, T4S, 16);
2909      ushll(v16, T2D, v16, T2S, 16);
2910
2911      eor(v20, T16B, v22, v20);
2912      eor(v16, T16B, v16, v18);
2913
2914      uzp1(v17, v20, v16, T2D);
2915      uzp2(v21, v20, v16, T2D);
2916      eor(v20, T16B, v17, v21);
2917
2918      shl(v16, T2D, v28, 1);
2919      shl(v17, T2D, v20, 1);
2920
2921      eor(v0, T16B, v0, v16);
2922      eor(v1, T16B, v1, v17);
2923
2924      subs(len, len, 32);
2925      br(Assembler::GE, L_fold);
2926
2927      mov(crc, 0);
2928      mov(tmp, v0, T1D, 0);
2929      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2930      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2931      mov(tmp, v0, T1D, 1);
2932      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2933      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2934      mov(tmp, v1, T1D, 0);
2935      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2936      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2937      mov(tmp, v1, T1D, 1);
2938      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2939      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2940
2941      add(len, len, 32);
2942  }
2943
2944  BIND(L_by16);
2945    subs(len, len, 16);
2946    br(Assembler::GE, L_by16_loop);
2947    adds(len, len, 16-4);
2948    br(Assembler::GE, L_by4_loop);
2949    adds(len, len, 4);
2950    br(Assembler::GT, L_by1_loop);
2951    b(L_exit);
2952
2953  BIND(L_by4_loop);
2954    ldrw(tmp, Address(post(buf, 4)));
2955    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
2956    subs(len, len, 4);
2957    br(Assembler::GE, L_by4_loop);
2958    adds(len, len, 4);
2959    br(Assembler::LE, L_exit);
2960  BIND(L_by1_loop);
2961    subs(len, len, 1);
2962    ldrb(tmp, Address(post(buf, 1)));
2963    update_byte_crc32(crc, tmp, table0);
2964    br(Assembler::GT, L_by1_loop);
2965    b(L_exit);
2966
2967    align(CodeEntryAlignment);
2968  BIND(L_by16_loop);
2969    subs(len, len, 16);
2970    ldp(tmp, tmp3, Address(post(buf, 16)));
2971    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2972    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2973    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
2974    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
2975    br(Assembler::GE, L_by16_loop);
2976    adds(len, len, 16-4);
2977    br(Assembler::GE, L_by4_loop);
2978    adds(len, len, 4);
2979    br(Assembler::GT, L_by1_loop);
2980  BIND(L_exit);
2981    ornw(crc, zr, crc);
2982}
2983
2984/**
2985 * @param crc   register containing existing CRC (32-bit)
2986 * @param buf   register pointing to input byte buffer (byte*)
2987 * @param len   register containing number of bytes
2988 * @param table register that will contain address of CRC table
2989 * @param tmp   scratch register
2990 */
2991void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
2992        Register table0, Register table1, Register table2, Register table3,
2993        Register tmp, Register tmp2, Register tmp3) {
2994  Label L_exit;
2995  Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2996
2997    subs(len, len, 64);
2998    br(Assembler::GE, CRC_by64_loop);
2999    adds(len, len, 64-4);
3000    br(Assembler::GE, CRC_by4_loop);
3001    adds(len, len, 4);
3002    br(Assembler::GT, CRC_by1_loop);
3003    b(L_exit);
3004
3005  BIND(CRC_by4_loop);
3006    ldrw(tmp, Address(post(buf, 4)));
3007    subs(len, len, 4);
3008    crc32cw(crc, crc, tmp);
3009    br(Assembler::GE, CRC_by4_loop);
3010    adds(len, len, 4);
3011    br(Assembler::LE, L_exit);
3012  BIND(CRC_by1_loop);
3013    ldrb(tmp, Address(post(buf, 1)));
3014    subs(len, len, 1);
3015    crc32cb(crc, crc, tmp);
3016    br(Assembler::GT, CRC_by1_loop);
3017    b(L_exit);
3018
3019    align(CodeEntryAlignment);
3020  BIND(CRC_by64_loop);
3021    subs(len, len, 64);
3022    ldp(tmp, tmp3, Address(post(buf, 16)));
3023    crc32cx(crc, crc, tmp);
3024    crc32cx(crc, crc, tmp3);
3025    ldp(tmp, tmp3, Address(post(buf, 16)));
3026    crc32cx(crc, crc, tmp);
3027    crc32cx(crc, crc, tmp3);
3028    ldp(tmp, tmp3, Address(post(buf, 16)));
3029    crc32cx(crc, crc, tmp);
3030    crc32cx(crc, crc, tmp3);
3031    ldp(tmp, tmp3, Address(post(buf, 16)));
3032    crc32cx(crc, crc, tmp);
3033    crc32cx(crc, crc, tmp3);
3034    br(Assembler::GE, CRC_by64_loop);
3035    adds(len, len, 64-4);
3036    br(Assembler::GE, CRC_by4_loop);
3037    adds(len, len, 4);
3038    br(Assembler::GT, CRC_by1_loop);
3039  BIND(L_exit);
3040    return;
3041}
3042
3043SkipIfEqual::SkipIfEqual(
3044    MacroAssembler* masm, const bool* flag_addr, bool value) {
3045  _masm = masm;
3046  unsigned long offset;
3047  _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3048  _masm->ldrb(rscratch1, Address(rscratch1, offset));
3049  _masm->cbzw(rscratch1, _label);
3050}
3051
3052SkipIfEqual::~SkipIfEqual() {
3053  _masm->bind(_label);
3054}
3055
3056void MacroAssembler::addptr(const Address &dst, int32_t src) {
3057  Address adr;
3058  switch(dst.getMode()) {
3059  case Address::base_plus_offset:
3060    // This is the expected mode, although we allow all the other
3061    // forms below.
3062    adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3063    break;
3064  default:
3065    lea(rscratch2, dst);
3066    adr = Address(rscratch2);
3067    break;
3068  }
3069  ldr(rscratch1, adr);
3070  add(rscratch1, rscratch1, src);
3071  str(rscratch1, adr);
3072}
3073
3074void MacroAssembler::cmpptr(Register src1, Address src2) {
3075  unsigned long offset;
3076  adrp(rscratch1, src2, offset);
3077  ldr(rscratch1, Address(rscratch1, offset));
3078  cmp(src1, rscratch1);
3079}
3080
3081void MacroAssembler::store_check(Register obj, Address dst) {
3082  store_check(obj);
3083}
3084
3085void MacroAssembler::store_check(Register obj) {
3086  // Does a store check for the oop in register obj. The content of
3087  // register obj is destroyed afterwards.
3088
3089  BarrierSet* bs = Universe::heap()->barrier_set();
3090  assert(bs->kind() == BarrierSet::CardTableForRS ||
3091         bs->kind() == BarrierSet::CardTableExtension,
3092         "Wrong barrier set kind");
3093
3094  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
3095  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3096
3097  lsr(obj, obj, CardTableModRefBS::card_shift);
3098
3099  assert(CardTableModRefBS::dirty_card_val() == 0, "must be");
3100
3101  {
3102    ExternalAddress cardtable((address) ct->byte_map_base);
3103    unsigned long offset;
3104    adrp(rscratch1, cardtable, offset);
3105    assert(offset == 0, "byte_map_base is misaligned");
3106  }
3107
3108  if (UseCondCardMark) {
3109    Label L_already_dirty;
3110    membar(StoreLoad);
3111    ldrb(rscratch2,  Address(obj, rscratch1));
3112    cbz(rscratch2, L_already_dirty);
3113    strb(zr, Address(obj, rscratch1));
3114    bind(L_already_dirty);
3115  } else {
3116    if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
3117      membar(StoreStore);
3118    }
3119    strb(zr, Address(obj, rscratch1));
3120  }
3121}
3122
3123void MacroAssembler::load_klass(Register dst, Register src) {
3124  if (UseCompressedClassPointers) {
3125    ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3126    decode_klass_not_null(dst);
3127  } else {
3128    ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3129  }
3130}
3131
3132void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3133  if (UseCompressedClassPointers) {
3134    ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3135    if (Universe::narrow_klass_base() == NULL) {
3136      cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3137      return;
3138    } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3139               && Universe::narrow_klass_shift() == 0) {
3140      // Only the bottom 32 bits matter
3141      cmpw(trial_klass, tmp);
3142      return;
3143    }
3144    decode_klass_not_null(tmp);
3145  } else {
3146    ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3147  }
3148  cmp(trial_klass, tmp);
3149}
3150
3151void MacroAssembler::load_prototype_header(Register dst, Register src) {
3152  load_klass(dst, src);
3153  ldr(dst, Address(dst, Klass::prototype_header_offset()));
3154}
3155
3156void MacroAssembler::store_klass(Register dst, Register src) {
3157  // FIXME: Should this be a store release?  concurrent gcs assumes
3158  // klass length is valid if klass field is not null.
3159  if (UseCompressedClassPointers) {
3160    encode_klass_not_null(src);
3161    strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3162  } else {
3163    str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3164  }
3165}
3166
3167void MacroAssembler::store_klass_gap(Register dst, Register src) {
3168  if (UseCompressedClassPointers) {
3169    // Store to klass gap in destination
3170    strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3171  }
3172}
3173
3174// Algorithm must match oop.inline.hpp encode_heap_oop.
3175void MacroAssembler::encode_heap_oop(Register d, Register s) {
3176#ifdef ASSERT
3177  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3178#endif
3179  verify_oop(s, "broken oop in encode_heap_oop");
3180  if (Universe::narrow_oop_base() == NULL) {
3181    if (Universe::narrow_oop_shift() != 0) {
3182      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3183      lsr(d, s, LogMinObjAlignmentInBytes);
3184    } else {
3185      mov(d, s);
3186    }
3187  } else {
3188    subs(d, s, rheapbase);
3189    csel(d, d, zr, Assembler::HS);
3190    lsr(d, d, LogMinObjAlignmentInBytes);
3191
3192    /*  Old algorithm: is this any worse?
3193    Label nonnull;
3194    cbnz(r, nonnull);
3195    sub(r, r, rheapbase);
3196    bind(nonnull);
3197    lsr(r, r, LogMinObjAlignmentInBytes);
3198    */
3199  }
3200}
3201
3202void MacroAssembler::encode_heap_oop_not_null(Register r) {
3203#ifdef ASSERT
3204  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3205  if (CheckCompressedOops) {
3206    Label ok;
3207    cbnz(r, ok);
3208    stop("null oop passed to encode_heap_oop_not_null");
3209    bind(ok);
3210  }
3211#endif
3212  verify_oop(r, "broken oop in encode_heap_oop_not_null");
3213  if (Universe::narrow_oop_base() != NULL) {
3214    sub(r, r, rheapbase);
3215  }
3216  if (Universe::narrow_oop_shift() != 0) {
3217    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3218    lsr(r, r, LogMinObjAlignmentInBytes);
3219  }
3220}
3221
3222void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3223#ifdef ASSERT
3224  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3225  if (CheckCompressedOops) {
3226    Label ok;
3227    cbnz(src, ok);
3228    stop("null oop passed to encode_heap_oop_not_null2");
3229    bind(ok);
3230  }
3231#endif
3232  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3233
3234  Register data = src;
3235  if (Universe::narrow_oop_base() != NULL) {
3236    sub(dst, src, rheapbase);
3237    data = dst;
3238  }
3239  if (Universe::narrow_oop_shift() != 0) {
3240    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3241    lsr(dst, data, LogMinObjAlignmentInBytes);
3242    data = dst;
3243  }
3244  if (data == src)
3245    mov(dst, src);
3246}
3247
3248void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3249#ifdef ASSERT
3250  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3251#endif
3252  if (Universe::narrow_oop_base() == NULL) {
3253    if (Universe::narrow_oop_shift() != 0 || d != s) {
3254      lsl(d, s, Universe::narrow_oop_shift());
3255    }
3256  } else {
3257    Label done;
3258    if (d != s)
3259      mov(d, s);
3260    cbz(s, done);
3261    add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3262    bind(done);
3263  }
3264  verify_oop(d, "broken oop in decode_heap_oop");
3265}
3266
3267void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3268  assert (UseCompressedOops, "should only be used for compressed headers");
3269  assert (Universe::heap() != NULL, "java heap should be initialized");
3270  // Cannot assert, unverified entry point counts instructions (see .ad file)
3271  // vtableStubs also counts instructions in pd_code_size_limit.
3272  // Also do not verify_oop as this is called by verify_oop.
3273  if (Universe::narrow_oop_shift() != 0) {
3274    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3275    if (Universe::narrow_oop_base() != NULL) {
3276      add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3277    } else {
3278      add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3279    }
3280  } else {
3281    assert (Universe::narrow_oop_base() == NULL, "sanity");
3282  }
3283}
3284
3285void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3286  assert (UseCompressedOops, "should only be used for compressed headers");
3287  assert (Universe::heap() != NULL, "java heap should be initialized");
3288  // Cannot assert, unverified entry point counts instructions (see .ad file)
3289  // vtableStubs also counts instructions in pd_code_size_limit.
3290  // Also do not verify_oop as this is called by verify_oop.
3291  if (Universe::narrow_oop_shift() != 0) {
3292    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3293    if (Universe::narrow_oop_base() != NULL) {
3294      add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3295    } else {
3296      add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3297    }
3298  } else {
3299    assert (Universe::narrow_oop_base() == NULL, "sanity");
3300    if (dst != src) {
3301      mov(dst, src);
3302    }
3303  }
3304}
3305
3306void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3307  if (Universe::narrow_klass_base() == NULL) {
3308    if (Universe::narrow_klass_shift() != 0) {
3309      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3310      lsr(dst, src, LogKlassAlignmentInBytes);
3311    } else {
3312      if (dst != src) mov(dst, src);
3313    }
3314    return;
3315  }
3316
3317  if (use_XOR_for_compressed_class_base) {
3318    if (Universe::narrow_klass_shift() != 0) {
3319      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3320      lsr(dst, dst, LogKlassAlignmentInBytes);
3321    } else {
3322      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3323    }
3324    return;
3325  }
3326
3327  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3328      && Universe::narrow_klass_shift() == 0) {
3329    movw(dst, src);
3330    return;
3331  }
3332
3333#ifdef ASSERT
3334  verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3335#endif
3336
3337  Register rbase = dst;
3338  if (dst == src) rbase = rheapbase;
3339  mov(rbase, (uint64_t)Universe::narrow_klass_base());
3340  sub(dst, src, rbase);
3341  if (Universe::narrow_klass_shift() != 0) {
3342    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3343    lsr(dst, dst, LogKlassAlignmentInBytes);
3344  }
3345  if (dst == src) reinit_heapbase();
3346}
3347
3348void MacroAssembler::encode_klass_not_null(Register r) {
3349  encode_klass_not_null(r, r);
3350}
3351
3352void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3353  Register rbase = dst;
3354  assert (UseCompressedClassPointers, "should only be used for compressed headers");
3355
3356  if (Universe::narrow_klass_base() == NULL) {
3357    if (Universe::narrow_klass_shift() != 0) {
3358      assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3359      lsl(dst, src, LogKlassAlignmentInBytes);
3360    } else {
3361      if (dst != src) mov(dst, src);
3362    }
3363    return;
3364  }
3365
3366  if (use_XOR_for_compressed_class_base) {
3367    if (Universe::narrow_klass_shift() != 0) {
3368      lsl(dst, src, LogKlassAlignmentInBytes);
3369      eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3370    } else {
3371      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3372    }
3373    return;
3374  }
3375
3376  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3377      && Universe::narrow_klass_shift() == 0) {
3378    if (dst != src)
3379      movw(dst, src);
3380    movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3381    return;
3382  }
3383
3384  // Cannot assert, unverified entry point counts instructions (see .ad file)
3385  // vtableStubs also counts instructions in pd_code_size_limit.
3386  // Also do not verify_oop as this is called by verify_oop.
3387  if (dst == src) rbase = rheapbase;
3388  mov(rbase, (uint64_t)Universe::narrow_klass_base());
3389  if (Universe::narrow_klass_shift() != 0) {
3390    assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3391    add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3392  } else {
3393    add(dst, rbase, src);
3394  }
3395  if (dst == src) reinit_heapbase();
3396}
3397
3398void  MacroAssembler::decode_klass_not_null(Register r) {
3399  decode_klass_not_null(r, r);
3400}
3401
3402void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3403  assert (UseCompressedOops, "should only be used for compressed oops");
3404  assert (Universe::heap() != NULL, "java heap should be initialized");
3405  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3406
3407  int oop_index = oop_recorder()->find_index(obj);
3408  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3409
3410  InstructionMark im(this);
3411  RelocationHolder rspec = oop_Relocation::spec(oop_index);
3412  code_section()->relocate(inst_mark(), rspec);
3413  movz(dst, 0xDEAD, 16);
3414  movk(dst, 0xBEEF);
3415}
3416
3417void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3418  assert (UseCompressedClassPointers, "should only be used for compressed headers");
3419  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3420  int index = oop_recorder()->find_index(k);
3421  assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3422
3423  InstructionMark im(this);
3424  RelocationHolder rspec = metadata_Relocation::spec(index);
3425  code_section()->relocate(inst_mark(), rspec);
3426  narrowKlass nk = Klass::encode_klass(k);
3427  movz(dst, (nk >> 16), 16);
3428  movk(dst, nk & 0xffff);
3429}
3430
3431void MacroAssembler::load_heap_oop(Register dst, Address src)
3432{
3433  if (UseCompressedOops) {
3434    ldrw(dst, src);
3435    decode_heap_oop(dst);
3436  } else {
3437    ldr(dst, src);
3438  }
3439}
3440
3441void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
3442{
3443  if (UseCompressedOops) {
3444    ldrw(dst, src);
3445    decode_heap_oop_not_null(dst);
3446  } else {
3447    ldr(dst, src);
3448  }
3449}
3450
3451void MacroAssembler::store_heap_oop(Address dst, Register src) {
3452  if (UseCompressedOops) {
3453    assert(!dst.uses(src), "not enough registers");
3454    encode_heap_oop(src);
3455    strw(src, dst);
3456  } else
3457    str(src, dst);
3458}
3459
3460// Used for storing NULLs.
3461void MacroAssembler::store_heap_oop_null(Address dst) {
3462  if (UseCompressedOops) {
3463    strw(zr, dst);
3464  } else
3465    str(zr, dst);
3466}
3467
3468#if INCLUDE_ALL_GCS
3469void MacroAssembler::g1_write_barrier_pre(Register obj,
3470                                          Register pre_val,
3471                                          Register thread,
3472                                          Register tmp,
3473                                          bool tosca_live,
3474                                          bool expand_call) {
3475  // If expand_call is true then we expand the call_VM_leaf macro
3476  // directly to skip generating the check by
3477  // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3478
3479  assert(thread == rthread, "must be");
3480
3481  Label done;
3482  Label runtime;
3483
3484  assert(pre_val != noreg, "check this code");
3485
3486  if (obj != noreg)
3487    assert_different_registers(obj, pre_val, tmp);
3488
3489  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3490                                       PtrQueue::byte_offset_of_active()));
3491  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3492                                       PtrQueue::byte_offset_of_index()));
3493  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3494                                       PtrQueue::byte_offset_of_buf()));
3495
3496
3497  // Is marking active?
3498  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3499    ldrw(tmp, in_progress);
3500  } else {
3501    assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
3502    ldrb(tmp, in_progress);
3503  }
3504  cbzw(tmp, done);
3505
3506  // Do we need to load the previous value?
3507  if (obj != noreg) {
3508    load_heap_oop(pre_val, Address(obj, 0));
3509  }
3510
3511  // Is the previous value null?
3512  cbz(pre_val, done);
3513
3514  // Can we store original value in the thread's buffer?
3515  // Is index == 0?
3516  // (The index field is typed as size_t.)
3517
3518  ldr(tmp, index);                      // tmp := *index_adr
3519  cbz(tmp, runtime);                    // tmp == 0?
3520                                        // If yes, goto runtime
3521
3522  sub(tmp, tmp, wordSize);              // tmp := tmp - wordSize
3523  str(tmp, index);                      // *index_adr := tmp
3524  ldr(rscratch1, buffer);
3525  add(tmp, tmp, rscratch1);             // tmp := tmp + *buffer_adr
3526
3527  // Record the previous value
3528  str(pre_val, Address(tmp, 0));
3529  b(done);
3530
3531  bind(runtime);
3532  // save the live input values
3533  push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3534
3535  // Calling the runtime using the regular call_VM_leaf mechanism generates
3536  // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3537  // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
3538  //
3539  // If we care generating the pre-barrier without a frame (e.g. in the
3540  // intrinsified Reference.get() routine) then ebp might be pointing to
3541  // the caller frame and so this check will most likely fail at runtime.
3542  //
3543  // Expanding the call directly bypasses the generation of the check.
3544  // So when we do not have have a full interpreter frame on the stack
3545  // expand_call should be passed true.
3546
3547  if (expand_call) {
3548    assert(pre_val != c_rarg1, "smashed arg");
3549    pass_arg1(this, thread);
3550    pass_arg0(this, pre_val);
3551    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3552  } else {
3553    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3554  }
3555
3556  pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3557
3558  bind(done);
3559}
3560
3561void MacroAssembler::g1_write_barrier_post(Register store_addr,
3562                                           Register new_val,
3563                                           Register thread,
3564                                           Register tmp,
3565                                           Register tmp2) {
3566  assert(thread == rthread, "must be");
3567
3568  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3569                                       PtrQueue::byte_offset_of_index()));
3570  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3571                                       PtrQueue::byte_offset_of_buf()));
3572
3573  BarrierSet* bs = Universe::heap()->barrier_set();
3574  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3575  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3576
3577  Label done;
3578  Label runtime;
3579
3580  // Does store cross heap regions?
3581
3582  eor(tmp, store_addr, new_val);
3583  lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
3584  cbz(tmp, done);
3585
3586  // crosses regions, storing NULL?
3587
3588  cbz(new_val, done);
3589
3590  // storing region crossing non-NULL, is card already dirty?
3591
3592  ExternalAddress cardtable((address) ct->byte_map_base);
3593  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3594  const Register card_addr = tmp;
3595
3596  lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
3597
3598  unsigned long offset;
3599  adrp(tmp2, cardtable, offset);
3600
3601  // get the address of the card
3602  add(card_addr, card_addr, tmp2);
3603  ldrb(tmp2, Address(card_addr, offset));
3604  cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3605  br(Assembler::EQ, done);
3606
3607  assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
3608
3609  membar(Assembler::StoreLoad);
3610
3611  ldrb(tmp2, Address(card_addr, offset));
3612  cbzw(tmp2, done);
3613
3614  // storing a region crossing, non-NULL oop, card is clean.
3615  // dirty card and log.
3616
3617  strb(zr, Address(card_addr, offset));
3618
3619  ldr(rscratch1, queue_index);
3620  cbz(rscratch1, runtime);
3621  sub(rscratch1, rscratch1, wordSize);
3622  str(rscratch1, queue_index);
3623
3624  ldr(tmp2, buffer);
3625  str(card_addr, Address(tmp2, rscratch1));
3626  b(done);
3627
3628  bind(runtime);
3629  // save the live input values
3630  push(store_addr->bit(true) | new_val->bit(true), sp);
3631  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3632  pop(store_addr->bit(true) | new_val->bit(true), sp);
3633
3634  bind(done);
3635}
3636
3637#endif // INCLUDE_ALL_GCS
3638
3639Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
3640  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
3641  int index = oop_recorder()->allocate_metadata_index(obj);
3642  RelocationHolder rspec = metadata_Relocation::spec(index);
3643  return Address((address)obj, rspec);
3644}
3645
3646// Move an oop into a register.  immediate is true if we want
3647// immediate instrcutions, i.e. we are not going to patch this
3648// instruction while the code is being executed by another thread.  In
3649// that case we can use move immediates rather than the constant pool.
3650void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
3651  int oop_index;
3652  if (obj == NULL) {
3653    oop_index = oop_recorder()->allocate_oop_index(obj);
3654  } else {
3655    oop_index = oop_recorder()->find_index(obj);
3656    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3657  }
3658  RelocationHolder rspec = oop_Relocation::spec(oop_index);
3659  if (! immediate) {
3660    address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
3661    ldr_constant(dst, Address(dummy, rspec));
3662  } else
3663    mov(dst, Address((address)obj, rspec));
3664}
3665
3666// Move a metadata address into a register.
3667void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
3668  int oop_index;
3669  if (obj == NULL) {
3670    oop_index = oop_recorder()->allocate_metadata_index(obj);
3671  } else {
3672    oop_index = oop_recorder()->find_index(obj);
3673  }
3674  RelocationHolder rspec = metadata_Relocation::spec(oop_index);
3675  mov(dst, Address((address)obj, rspec));
3676}
3677
3678Address MacroAssembler::constant_oop_address(jobject obj) {
3679  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
3680  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
3681  int oop_index = oop_recorder()->find_index(obj);
3682  return Address((address)obj, oop_Relocation::spec(oop_index));
3683}
3684
3685// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3686void MacroAssembler::tlab_allocate(Register obj,
3687                                   Register var_size_in_bytes,
3688                                   int con_size_in_bytes,
3689                                   Register t1,
3690                                   Register t2,
3691                                   Label& slow_case) {
3692  assert_different_registers(obj, t2);
3693  assert_different_registers(obj, var_size_in_bytes);
3694  Register end = t2;
3695
3696  // verify_tlab();
3697
3698  ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
3699  if (var_size_in_bytes == noreg) {
3700    lea(end, Address(obj, con_size_in_bytes));
3701  } else {
3702    lea(end, Address(obj, var_size_in_bytes));
3703  }
3704  ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
3705  cmp(end, rscratch1);
3706  br(Assembler::HI, slow_case);
3707
3708  // update the tlab top pointer
3709  str(end, Address(rthread, JavaThread::tlab_top_offset()));
3710
3711  // recover var_size_in_bytes if necessary
3712  if (var_size_in_bytes == end) {
3713    sub(var_size_in_bytes, var_size_in_bytes, obj);
3714  }
3715  // verify_tlab();
3716}
3717
3718// Preserves r19, and r3.
3719Register MacroAssembler::tlab_refill(Label& retry,
3720                                     Label& try_eden,
3721                                     Label& slow_case) {
3722  Register top = r0;
3723  Register t1  = r2;
3724  Register t2  = r4;
3725  assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
3726  Label do_refill, discard_tlab;
3727
3728  if (!Universe::heap()->supports_inline_contig_alloc()) {
3729    // No allocation in the shared eden.
3730    b(slow_case);
3731  }
3732
3733  ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3734  ldr(t1,  Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3735
3736  // calculate amount of free space
3737  sub(t1, t1, top);
3738  lsr(t1, t1, LogHeapWordSize);
3739
3740  // Retain tlab and allocate object in shared space if
3741  // the amount free in the tlab is too large to discard.
3742
3743  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3744  cmp(t1, rscratch1);
3745  br(Assembler::LE, discard_tlab);
3746
3747  // Retain
3748  // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3749  mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3750  add(rscratch1, rscratch1, t2);
3751  str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3752
3753  if (TLABStats) {
3754    // increment number of slow_allocations
3755    addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
3756         1, rscratch1);
3757  }
3758  b(try_eden);
3759
3760  bind(discard_tlab);
3761  if (TLABStats) {
3762    // increment number of refills
3763    addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
3764         rscratch1);
3765    // accumulate wastage -- t1 is amount free in tlab
3766    addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
3767         rscratch1);
3768  }
3769
3770  // if tlab is currently allocated (top or end != null) then
3771  // fill [top, end + alignment_reserve) with array object
3772  cbz(top, do_refill);
3773
3774  // set up the mark word
3775  mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3776  str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
3777  // set the length to the remaining space
3778  sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
3779  add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3780  lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
3781  strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
3782  // set klass to intArrayKlass
3783  {
3784    unsigned long offset;
3785    // dubious reloc why not an oop reloc?
3786    adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
3787         offset);
3788    ldr(t1, Address(rscratch1, offset));
3789  }
3790  // store klass last.  concurrent gcs assumes klass length is valid if
3791  // klass field is not null.
3792  store_klass(top, t1);
3793
3794  mov(t1, top);
3795  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3796  sub(t1, t1, rscratch1);
3797  incr_allocated_bytes(rthread, t1, 0, rscratch1);
3798
3799  // refill the tlab with an eden allocation
3800  bind(do_refill);
3801  ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3802  lsl(t1, t1, LogHeapWordSize);
3803  // allocate new tlab, address returned in top
3804  eden_allocate(top, t1, 0, t2, slow_case);
3805
3806  // Check that t1 was preserved in eden_allocate.
3807#ifdef ASSERT
3808  if (UseTLAB) {
3809    Label ok;
3810    Register tsize = r4;
3811    assert_different_registers(tsize, rthread, t1);
3812    str(tsize, Address(pre(sp, -16)));
3813    ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3814    lsl(tsize, tsize, LogHeapWordSize);
3815    cmp(t1, tsize);
3816    br(Assembler::EQ, ok);
3817    STOP("assert(t1 != tlab size)");
3818    should_not_reach_here();
3819
3820    bind(ok);
3821    ldr(tsize, Address(post(sp, 16)));
3822  }
3823#endif
3824  str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3825  str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3826  add(top, top, t1);
3827  sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3828  str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3829  verify_tlab();
3830  b(retry);
3831
3832  return rthread; // for use by caller
3833}
3834
3835// Defines obj, preserves var_size_in_bytes
3836void MacroAssembler::eden_allocate(Register obj,
3837                                   Register var_size_in_bytes,
3838                                   int con_size_in_bytes,
3839                                   Register t1,
3840                                   Label& slow_case) {
3841  assert_different_registers(obj, var_size_in_bytes, t1);
3842  if (!Universe::heap()->supports_inline_contig_alloc()) {
3843    b(slow_case);
3844  } else {
3845    Register end = t1;
3846    Register heap_end = rscratch2;
3847    Label retry;
3848    bind(retry);
3849    {
3850      unsigned long offset;
3851      adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
3852      ldr(heap_end, Address(rscratch1, offset));
3853    }
3854
3855    ExternalAddress heap_top((address) Universe::heap()->top_addr());
3856
3857    // Get the current top of the heap
3858    {
3859      unsigned long offset;
3860      adrp(rscratch1, heap_top, offset);
3861      // Use add() here after ARDP, rather than lea().
3862      // lea() does not generate anything if its offset is zero.
3863      // However, relocs expect to find either an ADD or a load/store
3864      // insn after an ADRP.  add() always generates an ADD insn, even
3865      // for add(Rn, Rn, 0).
3866      add(rscratch1, rscratch1, offset);
3867      ldaxr(obj, rscratch1);
3868    }
3869
3870    // Adjust it my the size of our new object
3871    if (var_size_in_bytes == noreg) {
3872      lea(end, Address(obj, con_size_in_bytes));
3873    } else {
3874      lea(end, Address(obj, var_size_in_bytes));
3875    }
3876
3877    // if end < obj then we wrapped around high memory
3878    cmp(end, obj);
3879    br(Assembler::LO, slow_case);
3880
3881    cmp(end, heap_end);
3882    br(Assembler::HI, slow_case);
3883
3884    // If heap_top hasn't been changed by some other thread, update it.
3885    stlxr(rscratch2, end, rscratch1);
3886    cbnzw(rscratch2, retry);
3887  }
3888}
3889
3890void MacroAssembler::verify_tlab() {
3891#ifdef ASSERT
3892  if (UseTLAB && VerifyOops) {
3893    Label next, ok;
3894
3895    stp(rscratch2, rscratch1, Address(pre(sp, -16)));
3896
3897    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3898    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3899    cmp(rscratch2, rscratch1);
3900    br(Assembler::HS, next);
3901    STOP("assert(top >= start)");
3902    should_not_reach_here();
3903
3904    bind(next);
3905    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3906    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3907    cmp(rscratch2, rscratch1);
3908    br(Assembler::HS, ok);
3909    STOP("assert(top <= end)");
3910    should_not_reach_here();
3911
3912    bind(ok);
3913    ldp(rscratch2, rscratch1, Address(post(sp, 16)));
3914  }
3915#endif
3916}
3917
3918// Writes to stack successive pages until offset reached to check for
3919// stack overflow + shadow pages.  This clobbers tmp.
3920void MacroAssembler::bang_stack_size(Register size, Register tmp) {
3921  assert_different_registers(tmp, size, rscratch1);
3922  mov(tmp, sp);
3923  // Bang stack for total size given plus shadow page size.
3924  // Bang one page at a time because large size can bang beyond yellow and
3925  // red zones.
3926  Label loop;
3927  mov(rscratch1, os::vm_page_size());
3928  bind(loop);
3929  lea(tmp, Address(tmp, -os::vm_page_size()));
3930  subsw(size, size, rscratch1);
3931  str(size, Address(tmp));
3932  br(Assembler::GT, loop);
3933
3934  // Bang down shadow pages too.
3935  // At this point, (tmp-0) is the last address touched, so don't
3936  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3937  // was post-decremented.)  Skip this address by starting at i=1, and
3938  // touch a few more pages below.  N.B.  It is important to touch all
3939  // the way down to and including i=StackShadowPages.
3940  for (int i = 0; i< StackShadowPages-1; i++) {
3941    // this could be any sized move but this is can be a debugging crumb
3942    // so the bigger the better.
3943    lea(tmp, Address(tmp, -os::vm_page_size()));
3944    str(size, Address(tmp));
3945  }
3946}
3947
3948
3949address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
3950  unsigned long off;
3951  adrp(r, Address(page, rtype), off);
3952  InstructionMark im(this);
3953  code_section()->relocate(inst_mark(), rtype);
3954  ldrw(zr, Address(r, off));
3955  return inst_mark();
3956}
3957
3958address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
3959  InstructionMark im(this);
3960  code_section()->relocate(inst_mark(), rtype);
3961  ldrw(zr, Address(r, 0));
3962  return inst_mark();
3963}
3964
3965void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
3966  relocInfo::relocType rtype = dest.rspec().reloc()->type();
3967  if (uabs(pc() - dest.target()) >= (1LL << 32)) {
3968    guarantee(rtype == relocInfo::none
3969              || rtype == relocInfo::external_word_type
3970              || rtype == relocInfo::poll_type
3971              || rtype == relocInfo::poll_return_type,
3972              "can only use a fixed address with an ADRP");
3973    // Out of range.  This doesn't happen very often, but we have to
3974    // handle it
3975    mov(reg1, dest);
3976    byte_offset = 0;
3977  } else {
3978    InstructionMark im(this);
3979    code_section()->relocate(inst_mark(), dest.rspec());
3980    byte_offset = (uint64_t)dest.target() & 0xfff;
3981    _adrp(reg1, dest.target());
3982  }
3983}
3984
3985void MacroAssembler::build_frame(int framesize) {
3986  assert(framesize > 0, "framesize must be > 0");
3987  if (framesize < ((1 << 9) + 2 * wordSize)) {
3988    sub(sp, sp, framesize);
3989    stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
3990    if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
3991  } else {
3992    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
3993    if (PreserveFramePointer) mov(rfp, sp);
3994    if (framesize < ((1 << 12) + 2 * wordSize))
3995      sub(sp, sp, framesize - 2 * wordSize);
3996    else {
3997      mov(rscratch1, framesize - 2 * wordSize);
3998      sub(sp, sp, rscratch1);
3999    }
4000  }
4001}
4002
4003void MacroAssembler::remove_frame(int framesize) {
4004  assert(framesize > 0, "framesize must be > 0");
4005  if (framesize < ((1 << 9) + 2 * wordSize)) {
4006    ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4007    add(sp, sp, framesize);
4008  } else {
4009    if (framesize < ((1 << 12) + 2 * wordSize))
4010      add(sp, sp, framesize - 2 * wordSize);
4011    else {
4012      mov(rscratch1, framesize - 2 * wordSize);
4013      add(sp, sp, rscratch1);
4014    }
4015    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4016  }
4017}
4018
4019
4020// Search for str1 in str2 and return index or -1
4021void MacroAssembler::string_indexof(Register str2, Register str1,
4022                                    Register cnt2, Register cnt1,
4023                                    Register tmp1, Register tmp2,
4024                                    Register tmp3, Register tmp4,
4025                                    int icnt1, Register result) {
4026  Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4027
4028  Register ch1 = rscratch1;
4029  Register ch2 = rscratch2;
4030  Register cnt1tmp = tmp1;
4031  Register cnt2tmp = tmp2;
4032  Register cnt1_neg = cnt1;
4033  Register cnt2_neg = cnt2;
4034  Register result_tmp = tmp4;
4035
4036  // Note, inline_string_indexOf() generates checks:
4037  // if (substr.count > string.count) return -1;
4038  // if (substr.count == 0) return 0;
4039
4040// We have two strings, a source string in str2, cnt2 and a pattern string
4041// in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4042
4043// For larger pattern and source we use a simplified Boyer Moore algorithm.
4044// With a small pattern and source we use linear scan.
4045
4046  if (icnt1 == -1) {
4047    cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4048    ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
4049    br(LO, LINEARSEARCH);       // a byte array.
4050    cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
4051    br(HS, LINEARSEARCH);
4052  }
4053
4054// The Boyer Moore alogorithm is based on the description here:-
4055//
4056// http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4057//
4058// This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4059// and the 'Good Suffix' rule.
4060//
4061// These rules are essentially heuristics for how far we can shift the
4062// pattern along the search string.
4063//
4064// The implementation here uses the 'Bad Character' rule only because of the
4065// complexity of initialisation for the 'Good Suffix' rule.
4066//
4067// This is also known as the Boyer-Moore-Horspool algorithm:-
4068//
4069// http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4070//
4071// #define ASIZE 128
4072//
4073//    int bm(unsigned char *x, int m, unsigned char *y, int n) {
4074//       int i, j;
4075//       unsigned c;
4076//       unsigned char bc[ASIZE];
4077//
4078//       /* Preprocessing */
4079//       for (i = 0; i < ASIZE; ++i)
4080//          bc[i] = 0;
4081//       for (i = 0; i < m - 1; ) {
4082//          c = x[i];
4083//          ++i;
4084//          if (c < ASIZE) bc[c] = i;
4085//       }
4086//
4087//       /* Searching */
4088//       j = 0;
4089//       while (j <= n - m) {
4090//          c = y[i+j];
4091//          if (x[m-1] == c)
4092//            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4093//          if (i < 0) return j;
4094//          if (c < ASIZE)
4095//            j = j - bc[y[j+m-1]] + m;
4096//          else
4097//            j += 1; // Advance by 1 only if char >= ASIZE
4098//       }
4099//    }
4100
4101  if (icnt1 == -1) {
4102    BIND(BM);
4103
4104    Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4105    Label BMADV, BMMATCH, BMCHECKEND;
4106
4107    Register cnt1end = tmp2;
4108    Register str2end = cnt2;
4109    Register skipch = tmp2;
4110
4111    // Restrict ASIZE to 128 to reduce stack space/initialisation.
4112    // The presence of chars >= ASIZE in the target string does not affect
4113    // performance, but we must be careful not to initialise them in the stack
4114    // array.
4115    // The presence of chars >= ASIZE in the source string may adversely affect
4116    // performance since we can only advance by one when we encounter one.
4117
4118      stp(zr, zr, pre(sp, -128));
4119      for (int i = 1; i < 8; i++)
4120          stp(zr, zr, Address(sp, i*16));
4121
4122      mov(cnt1tmp, 0);
4123      sub(cnt1end, cnt1, 1);
4124    BIND(BCLOOP);
4125      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4126      cmp(ch1, 128);
4127      add(cnt1tmp, cnt1tmp, 1);
4128      br(HS, BCSKIP);
4129      strb(cnt1tmp, Address(sp, ch1));
4130    BIND(BCSKIP);
4131      cmp(cnt1tmp, cnt1end);
4132      br(LT, BCLOOP);
4133
4134      mov(result_tmp, str2);
4135
4136      sub(cnt2, cnt2, cnt1);
4137      add(str2end, str2, cnt2, LSL, 1);
4138    BIND(BMLOOPSTR2);
4139      sub(cnt1tmp, cnt1, 1);
4140      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4141      ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1)));
4142      cmp(ch1, skipch);
4143      br(NE, BMSKIP);
4144      subs(cnt1tmp, cnt1tmp, 1);
4145      br(LT, BMMATCH);
4146    BIND(BMLOOPSTR1);
4147      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
4148      ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1)));
4149      cmp(ch1, ch2);
4150      br(NE, BMSKIP);
4151      subs(cnt1tmp, cnt1tmp, 1);
4152      br(GE, BMLOOPSTR1);
4153    BIND(BMMATCH);
4154      sub(result_tmp, str2, result_tmp);
4155      lsr(result, result_tmp, 1);
4156      add(sp, sp, 128);
4157      b(DONE);
4158    BIND(BMADV);
4159      add(str2, str2, 2);
4160      b(BMCHECKEND);
4161    BIND(BMSKIP);
4162      cmp(skipch, 128);
4163      br(HS, BMADV);
4164      ldrb(ch2, Address(sp, skipch));
4165      add(str2, str2, cnt1, LSL, 1);
4166      sub(str2, str2, ch2, LSL, 1);
4167    BIND(BMCHECKEND);
4168      cmp(str2, str2end);
4169      br(LE, BMLOOPSTR2);
4170      add(sp, sp, 128);
4171      b(NOMATCH);
4172  }
4173
4174  BIND(LINEARSEARCH);
4175  {
4176    Label DO1, DO2, DO3;
4177
4178    Register str2tmp = tmp2;
4179    Register first = tmp3;
4180
4181    if (icnt1 == -1)
4182    {
4183        Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD;
4184
4185        cmp(cnt1, 4);
4186        br(LT, DOSHORT);
4187
4188        sub(cnt2, cnt2, cnt1);
4189        sub(cnt1, cnt1, 4);
4190        mov(result_tmp, cnt2);
4191
4192        lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4193        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4194        sub(cnt1_neg, zr, cnt1, LSL, 1);
4195        sub(cnt2_neg, zr, cnt2, LSL, 1);
4196        ldr(first, Address(str1, cnt1_neg));
4197
4198      BIND(FIRST_LOOP);
4199        ldr(ch2, Address(str2, cnt2_neg));
4200        cmp(first, ch2);
4201        br(EQ, STR1_LOOP);
4202      BIND(STR2_NEXT);
4203        adds(cnt2_neg, cnt2_neg, 2);
4204        br(LE, FIRST_LOOP);
4205        b(NOMATCH);
4206
4207      BIND(STR1_LOOP);
4208        adds(cnt1tmp, cnt1_neg, 8);
4209        add(cnt2tmp, cnt2_neg, 8);
4210        br(GE, LAST_WORD);
4211
4212      BIND(STR1_NEXT);
4213        ldr(ch1, Address(str1, cnt1tmp));
4214        ldr(ch2, Address(str2, cnt2tmp));
4215        cmp(ch1, ch2);
4216        br(NE, STR2_NEXT);
4217        adds(cnt1tmp, cnt1tmp, 8);
4218        add(cnt2tmp, cnt2tmp, 8);
4219        br(LT, STR1_NEXT);
4220
4221      BIND(LAST_WORD);
4222        ldr(ch1, Address(str1));
4223        sub(str2tmp, str2, cnt1_neg);         // adjust to corresponding
4224        ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2
4225        cmp(ch1, ch2);
4226        br(NE, STR2_NEXT);
4227        b(MATCH);
4228
4229      BIND(DOSHORT);
4230        cmp(cnt1, 2);
4231        br(LT, DO1);
4232        br(GT, DO3);
4233    }
4234
4235    if (icnt1 == 4) {
4236      Label CH1_LOOP;
4237
4238        ldr(ch1, str1);
4239        sub(cnt2, cnt2, 4);
4240        mov(result_tmp, cnt2);
4241        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4242        sub(cnt2_neg, zr, cnt2, LSL, 1);
4243
4244      BIND(CH1_LOOP);
4245        ldr(ch2, Address(str2, cnt2_neg));
4246        cmp(ch1, ch2);
4247        br(EQ, MATCH);
4248        adds(cnt2_neg, cnt2_neg, 2);
4249        br(LE, CH1_LOOP);
4250        b(NOMATCH);
4251    }
4252
4253    if (icnt1 == -1 || icnt1 == 2) {
4254      Label CH1_LOOP;
4255
4256      BIND(DO2);
4257        ldrw(ch1, str1);
4258        sub(cnt2, cnt2, 2);
4259        mov(result_tmp, cnt2);
4260        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4261        sub(cnt2_neg, zr, cnt2, LSL, 1);
4262
4263      BIND(CH1_LOOP);
4264        ldrw(ch2, Address(str2, cnt2_neg));
4265        cmp(ch1, ch2);
4266        br(EQ, MATCH);
4267        adds(cnt2_neg, cnt2_neg, 2);
4268        br(LE, CH1_LOOP);
4269        b(NOMATCH);
4270    }
4271
4272    if (icnt1 == -1 || icnt1 == 3) {
4273      Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4274
4275      BIND(DO3);
4276        ldrw(first, str1);
4277        ldrh(ch1, Address(str1, 4));
4278
4279        sub(cnt2, cnt2, 3);
4280        mov(result_tmp, cnt2);
4281        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4282        sub(cnt2_neg, zr, cnt2, LSL, 1);
4283
4284      BIND(FIRST_LOOP);
4285        ldrw(ch2, Address(str2, cnt2_neg));
4286        cmpw(first, ch2);
4287        br(EQ, STR1_LOOP);
4288      BIND(STR2_NEXT);
4289        adds(cnt2_neg, cnt2_neg, 2);
4290        br(LE, FIRST_LOOP);
4291        b(NOMATCH);
4292
4293      BIND(STR1_LOOP);
4294        add(cnt2tmp, cnt2_neg, 4);
4295        ldrh(ch2, Address(str2, cnt2tmp));
4296        cmp(ch1, ch2);
4297        br(NE, STR2_NEXT);
4298        b(MATCH);
4299    }
4300
4301    if (icnt1 == -1 || icnt1 == 1) {
4302      Label CH1_LOOP, HAS_ZERO;
4303      Label DO1_SHORT, DO1_LOOP;
4304
4305      BIND(DO1);
4306        ldrh(ch1, str1);
4307        cmp(cnt2, 4);
4308        br(LT, DO1_SHORT);
4309
4310        orr(ch1, ch1, ch1, LSL, 16);
4311        orr(ch1, ch1, ch1, LSL, 32);
4312
4313        sub(cnt2, cnt2, 4);
4314        mov(result_tmp, cnt2);
4315        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4316        sub(cnt2_neg, zr, cnt2, LSL, 1);
4317
4318        mov(tmp3, 0x0001000100010001);
4319      BIND(CH1_LOOP);
4320        ldr(ch2, Address(str2, cnt2_neg));
4321        eor(ch2, ch1, ch2);
4322        sub(tmp1, ch2, tmp3);
4323        orr(tmp2, ch2, 0x7fff7fff7fff7fff);
4324        bics(tmp1, tmp1, tmp2);
4325        br(NE, HAS_ZERO);
4326        adds(cnt2_neg, cnt2_neg, 8);
4327        br(LT, CH1_LOOP);
4328
4329        cmp(cnt2_neg, 8);
4330        mov(cnt2_neg, 0);
4331        br(LT, CH1_LOOP);
4332        b(NOMATCH);
4333
4334      BIND(HAS_ZERO);
4335        rev(tmp1, tmp1);
4336        clz(tmp1, tmp1);
4337        add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4338        b(MATCH);
4339
4340      BIND(DO1_SHORT);
4341        mov(result_tmp, cnt2);
4342        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4343        sub(cnt2_neg, zr, cnt2, LSL, 1);
4344      BIND(DO1_LOOP);
4345        ldrh(ch2, Address(str2, cnt2_neg));
4346        cmpw(ch1, ch2);
4347        br(EQ, MATCH);
4348        adds(cnt2_neg, cnt2_neg, 2);
4349        br(LT, DO1_LOOP);
4350    }
4351  }
4352  BIND(NOMATCH);
4353    mov(result, -1);
4354    b(DONE);
4355  BIND(MATCH);
4356    add(result, result_tmp, cnt2_neg, ASR, 1);
4357  BIND(DONE);
4358}
4359
4360// Compare strings.
4361void MacroAssembler::string_compare(Register str1, Register str2,
4362                                    Register cnt1, Register cnt2, Register result,
4363                                    Register tmp1) {
4364  Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4365    NEXT_WORD, DIFFERENCE;
4366
4367  BLOCK_COMMENT("string_compare {");
4368
4369  // Compute the minimum of the string lengths and save the difference.
4370  subsw(tmp1, cnt1, cnt2);
4371  cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4372
4373  // A very short string
4374  cmpw(cnt2, 4);
4375  br(Assembler::LT, SHORT_STRING);
4376
4377  // Check if the strings start at the same location.
4378  cmp(str1, str2);
4379  br(Assembler::EQ, LENGTH_DIFF);
4380
4381  // Compare longwords
4382  {
4383    subw(cnt2, cnt2, 4); // The last longword is a special case
4384
4385    // Move both string pointers to the last longword of their
4386    // strings, negate the remaining count, and convert it to bytes.
4387    lea(str1, Address(str1, cnt2, Address::uxtw(1)));
4388    lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4389    sub(cnt2, zr, cnt2, LSL, 1);
4390
4391    // Loop, loading longwords and comparing them into rscratch2.
4392    bind(NEXT_WORD);
4393    ldr(result, Address(str1, cnt2));
4394    ldr(cnt1, Address(str2, cnt2));
4395    adds(cnt2, cnt2, wordSize);
4396    eor(rscratch2, result, cnt1);
4397    cbnz(rscratch2, DIFFERENCE);
4398    br(Assembler::LT, NEXT_WORD);
4399
4400    // Last longword.  In the case where length == 4 we compare the
4401    // same longword twice, but that's still faster than another
4402    // conditional branch.
4403
4404    ldr(result, Address(str1));
4405    ldr(cnt1, Address(str2));
4406    eor(rscratch2, result, cnt1);
4407    cbz(rscratch2, LENGTH_DIFF);
4408
4409    // Find the first different characters in the longwords and
4410    // compute their difference.
4411    bind(DIFFERENCE);
4412    rev(rscratch2, rscratch2);
4413    clz(rscratch2, rscratch2);
4414    andr(rscratch2, rscratch2, -16);
4415    lsrv(result, result, rscratch2);
4416    uxthw(result, result);
4417    lsrv(cnt1, cnt1, rscratch2);
4418    uxthw(cnt1, cnt1);
4419    subw(result, result, cnt1);
4420    b(DONE);
4421  }
4422
4423  bind(SHORT_STRING);
4424  // Is the minimum length zero?
4425  cbz(cnt2, LENGTH_DIFF);
4426
4427  bind(SHORT_LOOP);
4428  load_unsigned_short(result, Address(post(str1, 2)));
4429  load_unsigned_short(cnt1, Address(post(str2, 2)));
4430  subw(result, result, cnt1);
4431  cbnz(result, DONE);
4432  sub(cnt2, cnt2, 1);
4433  cbnz(cnt2, SHORT_LOOP);
4434
4435  // Strings are equal up to min length.  Return the length difference.
4436  bind(LENGTH_DIFF);
4437  mov(result, tmp1);
4438
4439  // That's it
4440  bind(DONE);
4441
4442  BLOCK_COMMENT("} string_compare");
4443}
4444
4445
4446void MacroAssembler::string_equals(Register str1, Register str2,
4447                                   Register cnt, Register result,
4448                                   Register tmp1) {
4449  Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING,
4450    NEXT_WORD;
4451
4452  const Register tmp2 = rscratch1;
4453  assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2);
4454
4455  BLOCK_COMMENT("string_equals {");
4456
4457  // Start by assuming that the strings are not equal.
4458  mov(result, zr);
4459
4460  // A very short string
4461  cmpw(cnt, 4);
4462  br(Assembler::LT, SHORT_STRING);
4463
4464  // Check if the strings start at the same location.
4465  cmp(str1, str2);
4466  br(Assembler::EQ, SAME_CHARS);
4467
4468  // Compare longwords
4469  {
4470    subw(cnt, cnt, 4); // The last longword is a special case
4471
4472    // Move both string pointers to the last longword of their
4473    // strings, negate the remaining count, and convert it to bytes.
4474    lea(str1, Address(str1, cnt, Address::uxtw(1)));
4475    lea(str2, Address(str2, cnt, Address::uxtw(1)));
4476    sub(cnt, zr, cnt, LSL, 1);
4477
4478    // Loop, loading longwords and comparing them into rscratch2.
4479    bind(NEXT_WORD);
4480    ldr(tmp1, Address(str1, cnt));
4481    ldr(tmp2, Address(str2, cnt));
4482    adds(cnt, cnt, wordSize);
4483    eor(rscratch2, tmp1, tmp2);
4484    cbnz(rscratch2, DONE);
4485    br(Assembler::LT, NEXT_WORD);
4486
4487    // Last longword.  In the case where length == 4 we compare the
4488    // same longword twice, but that's still faster than another
4489    // conditional branch.
4490
4491    ldr(tmp1, Address(str1));
4492    ldr(tmp2, Address(str2));
4493    eor(rscratch2, tmp1, tmp2);
4494    cbz(rscratch2, SAME_CHARS);
4495    b(DONE);
4496  }
4497
4498  bind(SHORT_STRING);
4499  // Is the length zero?
4500  cbz(cnt, SAME_CHARS);
4501
4502  bind(SHORT_LOOP);
4503  load_unsigned_short(tmp1, Address(post(str1, 2)));
4504  load_unsigned_short(tmp2, Address(post(str2, 2)));
4505  subw(tmp1, tmp1, tmp2);
4506  cbnz(tmp1, DONE);
4507  sub(cnt, cnt, 1);
4508  cbnz(cnt, SHORT_LOOP);
4509
4510  // Strings are equal.
4511  bind(SAME_CHARS);
4512  mov(result, true);
4513
4514  // That's it
4515  bind(DONE);
4516
4517  BLOCK_COMMENT("} string_equals");
4518}
4519
4520// Compare char[] arrays aligned to 4 bytes
4521void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4522                                        Register result, Register tmp1)
4523{
4524  Register cnt1 = rscratch1;
4525  Register cnt2 = rscratch2;
4526  Register tmp2 = rscratch2;
4527
4528  Label SAME, DIFFER, NEXT, TAIL03, TAIL01;
4529
4530  int length_offset  = arrayOopDesc::length_offset_in_bytes();
4531  int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
4532
4533  BLOCK_COMMENT("char_arrays_equals  {");
4534
4535    // different until proven equal
4536    mov(result, false);
4537
4538    // same array?
4539    cmp(ary1, ary2);
4540    br(Assembler::EQ, SAME);
4541
4542    // ne if either null
4543    cbz(ary1, DIFFER);
4544    cbz(ary2, DIFFER);
4545
4546    // lengths ne?
4547    ldrw(cnt1, Address(ary1, length_offset));
4548    ldrw(cnt2, Address(ary2, length_offset));
4549    cmp(cnt1, cnt2);
4550    br(Assembler::NE, DIFFER);
4551
4552    lea(ary1, Address(ary1, base_offset));
4553    lea(ary2, Address(ary2, base_offset));
4554
4555    subs(cnt1, cnt1, 4);
4556    br(LT, TAIL03);
4557
4558  BIND(NEXT);
4559    ldr(tmp1, Address(post(ary1, 8)));
4560    ldr(tmp2, Address(post(ary2, 8)));
4561    subs(cnt1, cnt1, 4);
4562    eor(tmp1, tmp1, tmp2);
4563    cbnz(tmp1, DIFFER);
4564    br(GE, NEXT);
4565
4566  BIND(TAIL03);  // 0-3 chars left, cnt1 = #chars left - 4
4567    tst(cnt1, 0b10);
4568    br(EQ, TAIL01);
4569    ldrw(tmp1, Address(post(ary1, 4)));
4570    ldrw(tmp2, Address(post(ary2, 4)));
4571    cmp(tmp1, tmp2);
4572    br(NE, DIFFER);
4573  BIND(TAIL01);  // 0-1 chars left
4574    tst(cnt1, 0b01);
4575    br(EQ, SAME);
4576    ldrh(tmp1, ary1);
4577    ldrh(tmp2, ary2);
4578    cmp(tmp1, tmp2);
4579    br(NE, DIFFER);
4580
4581  BIND(SAME);
4582    mov(result, true);
4583  BIND(DIFFER); // result already set
4584
4585  BLOCK_COMMENT("} char_arrays_equals");
4586}
4587
4588// encode char[] to byte[] in ISO_8859_1
4589void MacroAssembler::encode_iso_array(Register src, Register dst,
4590                      Register len, Register result,
4591                      FloatRegister Vtmp1, FloatRegister Vtmp2,
4592                      FloatRegister Vtmp3, FloatRegister Vtmp4)
4593{
4594    Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
4595    Register tmp1 = rscratch1;
4596
4597      mov(result, len); // Save initial len
4598
4599#ifndef BUILTIN_SIM
4600      subs(len, len, 32);
4601      br(LT, LOOP_8);
4602
4603// The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
4604// to convert chars to bytes. These set the 'QC' bit in the FPSR if
4605// any char could not fit in a byte, so clear the FPSR so we can test it.
4606      clear_fpsr();
4607
4608    BIND(NEXT_32);
4609      ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
4610      uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
4611      uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
4612      uqxtn(Vtmp2, T8B, Vtmp3, T8H);
4613      uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
4614      get_fpsr(tmp1);
4615      cbnzw(tmp1, LOOP_8);
4616      st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
4617      subs(len, len, 32);
4618      add(src, src, 64);
4619      br(GE, NEXT_32);
4620
4621    BIND(LOOP_8);
4622      adds(len, len, 32-8);
4623      br(LT, LOOP_1);
4624      clear_fpsr(); // QC may be set from loop above, clear again
4625    BIND(NEXT_8);
4626      ld1(Vtmp1, T8H, src);
4627      uqxtn(Vtmp1, T8B, Vtmp1, T8H);
4628      get_fpsr(tmp1);
4629      cbnzw(tmp1, LOOP_1);
4630      st1(Vtmp1, T8B, post(dst, 8));
4631      subs(len, len, 8);
4632      add(src, src, 16);
4633      br(GE, NEXT_8);
4634
4635    BIND(LOOP_1);
4636      adds(len, len, 8);
4637      br(LE, DONE);
4638#else
4639      cbz(len, DONE);
4640#endif
4641    BIND(NEXT_1);
4642      ldrh(tmp1, Address(post(src, 2)));
4643      tst(tmp1, 0xff00);
4644      br(NE, DONE);
4645      strb(tmp1, Address(post(dst, 1)));
4646      subs(len, len, 1);
4647      br(GT, NEXT_1);
4648
4649    BIND(DONE);
4650      sub(result, result, len); // Return index where we stopped
4651}
4652