macroAssembler_aarch64.cpp revision 8413:92457dfb91bd
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include <sys/types.h>
27
28#include "precompiled.hpp"
29#include "asm/assembler.hpp"
30#include "asm/assembler.inline.hpp"
31#include "interpreter/interpreter.hpp"
32
33#include "compiler/disassembler.hpp"
34#include "memory/resourceArea.hpp"
35#include "nativeInst_aarch64.hpp"
36#include "opto/compile.hpp"
37#include "opto/node.hpp"
38#include "runtime/biasedLocking.hpp"
39#include "runtime/icache.hpp"
40#include "runtime/interfaceSupport.hpp"
41#include "runtime/sharedRuntime.hpp"
42
43#if INCLUDE_ALL_GCS
44#include "gc/g1/g1CollectedHeap.inline.hpp"
45#include "gc/g1/g1SATBCardTableModRefBS.hpp"
46#include "gc/g1/heapRegion.hpp"
47#endif
48
49#ifdef PRODUCT
50#define BLOCK_COMMENT(str) /* nothing */
51#define STOP(error) stop(error)
52#else
53#define BLOCK_COMMENT(str) block_comment(str)
54#define STOP(error) block_comment(error); stop(error)
55#endif
56
57#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
58
59// Patch any kind of instruction; there may be several instructions.
60// Return the total length (in bytes) of the instructions.
61int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
62  int instructions = 1;
63  assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
64  long offset = (target - branch) >> 2;
65  unsigned insn = *(unsigned*)branch;
66  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
67    // Load register (literal)
68    Instruction_aarch64::spatch(branch, 23, 5, offset);
69  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
70    // Unconditional branch (immediate)
71    Instruction_aarch64::spatch(branch, 25, 0, offset);
72  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
73    // Conditional branch (immediate)
74    Instruction_aarch64::spatch(branch, 23, 5, offset);
75  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
76    // Compare & branch (immediate)
77    Instruction_aarch64::spatch(branch, 23, 5, offset);
78  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
79    // Test & branch (immediate)
80    Instruction_aarch64::spatch(branch, 18, 5, offset);
81  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
82    // PC-rel. addressing
83    offset = target-branch;
84    int shift = Instruction_aarch64::extract(insn, 31, 31);
85    if (shift) {
86      u_int64_t dest = (u_int64_t)target;
87      uint64_t pc_page = (uint64_t)branch >> 12;
88      uint64_t adr_page = (uint64_t)target >> 12;
89      unsigned offset_lo = dest & 0xfff;
90      offset = adr_page - pc_page;
91
92      // We handle 3 types of PC relative addressing
93      //   1 - adrp    Rx, target_page
94      //       ldr/str Ry, [Rx, #offset_in_page]
95      //   2 - adrp    Rx, target_page
96      //       add     Ry, Rx, #offset_in_page
97      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
98      // In the first 2 cases we must check that Rx is the same in the adrp and the
99      // subsequent ldr/str or add instruction. Otherwise we could accidentally end
100      // up treating a type 3 relocation as a type 1 or 2 just because it happened
101      // to be followed by a random unrelated ldr/str or add instruction.
102      //
103      // In the case of a type 3 relocation, we know that these are only generated
104      // for the safepoint polling page, or for the card type byte map base so we
105      // assert as much and of course that the offset is 0.
106      //
107      unsigned insn2 = ((unsigned*)branch)[1];
108      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
109                Instruction_aarch64::extract(insn, 4, 0) ==
110                        Instruction_aarch64::extract(insn2, 9, 5)) {
111        // Load/store register (unsigned immediate)
112        unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
113        Instruction_aarch64::patch(branch + sizeof (unsigned),
114                                    21, 10, offset_lo >> size);
115        guarantee(((dest >> size) << size) == dest, "misaligned target");
116        instructions = 2;
117      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
118                Instruction_aarch64::extract(insn, 4, 0) ==
119                        Instruction_aarch64::extract(insn2, 4, 0)) {
120        // add (immediate)
121        Instruction_aarch64::patch(branch + sizeof (unsigned),
122                                   21, 10, offset_lo);
123        instructions = 2;
124      } else {
125        assert((jbyte *)target ==
126                ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base ||
127               target == StubRoutines::crc_table_addr() ||
128               (address)target == os::get_polling_page(),
129               "adrp must be polling page or byte map base");
130        assert(offset_lo == 0, "offset must be 0 for polling page or byte map base");
131      }
132    }
133    int offset_lo = offset & 3;
134    offset >>= 2;
135    Instruction_aarch64::spatch(branch, 23, 5, offset);
136    Instruction_aarch64::patch(branch, 30, 29, offset_lo);
137  } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
138    u_int64_t dest = (u_int64_t)target;
139    // Move wide constant
140    assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
141    assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
142    Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
143    Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
144    Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
145    assert(target_addr_for_insn(branch) == target, "should be");
146    instructions = 3;
147  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
148             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
149    // nothing to do
150    assert(target == 0, "did not expect to relocate target for polling page load");
151  } else {
152    ShouldNotReachHere();
153  }
154  return instructions * NativeInstruction::instruction_size;
155}
156
157int MacroAssembler::patch_oop(address insn_addr, address o) {
158  int instructions;
159  unsigned insn = *(unsigned*)insn_addr;
160  assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
161
162  // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
163  // narrow OOPs by setting the upper 16 bits in the first
164  // instruction.
165  if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
166    // Move narrow OOP
167    narrowOop n = oopDesc::encode_heap_oop((oop)o);
168    Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
169    Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
170    instructions = 2;
171  } else {
172    // Move wide OOP
173    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
174    uintptr_t dest = (uintptr_t)o;
175    Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
176    Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
177    Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
178    instructions = 3;
179  }
180  return instructions * NativeInstruction::instruction_size;
181}
182
183address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
184  long offset = 0;
185  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
186    // Load register (literal)
187    offset = Instruction_aarch64::sextract(insn, 23, 5);
188    return address(((uint64_t)insn_addr + (offset << 2)));
189  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
190    // Unconditional branch (immediate)
191    offset = Instruction_aarch64::sextract(insn, 25, 0);
192  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
193    // Conditional branch (immediate)
194    offset = Instruction_aarch64::sextract(insn, 23, 5);
195  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
196    // Compare & branch (immediate)
197    offset = Instruction_aarch64::sextract(insn, 23, 5);
198   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
199    // Test & branch (immediate)
200    offset = Instruction_aarch64::sextract(insn, 18, 5);
201  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
202    // PC-rel. addressing
203    offset = Instruction_aarch64::extract(insn, 30, 29);
204    offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
205    int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
206    if (shift) {
207      offset <<= shift;
208      uint64_t target_page = ((uint64_t)insn_addr) + offset;
209      target_page &= ((uint64_t)-1) << shift;
210      // Return the target address for the following sequences
211      //   1 - adrp    Rx, target_page
212      //       ldr/str Ry, [Rx, #offset_in_page]
213      //   2 - adrp    Rx, target_page         ]
214      //       add     Ry, Rx, #offset_in_page
215      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
216      //
217      // In the first two cases  we check that the register is the same and
218      // return the target_page + the offset within the page.
219      // Otherwise we assume it is a page aligned relocation and return
220      // the target page only. The only cases this is generated is for
221      // the safepoint polling page or for the card table byte map base so
222      // we assert as much.
223      //
224      unsigned insn2 = ((unsigned*)insn_addr)[1];
225      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
226                Instruction_aarch64::extract(insn, 4, 0) ==
227                        Instruction_aarch64::extract(insn2, 9, 5)) {
228        // Load/store register (unsigned immediate)
229        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
230        unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
231        return address(target_page + (byte_offset << size));
232      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
233                Instruction_aarch64::extract(insn, 4, 0) ==
234                        Instruction_aarch64::extract(insn2, 4, 0)) {
235        // add (immediate)
236        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
237        return address(target_page + byte_offset);
238      } else {
239        assert((jbyte *)target_page ==
240                ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base ||
241               (address)target_page == os::get_polling_page(),
242               "adrp must be polling page or byte map base");
243        return (address)target_page;
244      }
245    } else {
246      ShouldNotReachHere();
247    }
248  } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
249    u_int32_t *insns = (u_int32_t *)insn_addr;
250    // Move wide constant: movz, movk, movk.  See movptr().
251    assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
252    assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
253    return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
254                   + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
255                   + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
256  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
257             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
258    return 0;
259  } else {
260    ShouldNotReachHere();
261  }
262  return address(((uint64_t)insn_addr + (offset << 2)));
263}
264
265void MacroAssembler::serialize_memory(Register thread, Register tmp) {
266  dsb(Assembler::SY);
267}
268
269
270void MacroAssembler::reset_last_Java_frame(bool clear_fp,
271                                           bool clear_pc) {
272  // we must set sp to zero to clear frame
273  str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
274  // must clear fp, so that compiled frames are not confused; it is
275  // possible that we need it only for debugging
276  if (clear_fp) {
277    str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
278  }
279
280  if (clear_pc) {
281    str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
282  }
283}
284
285// Calls to C land
286//
287// When entering C land, the rfp, & resp of the last Java frame have to be recorded
288// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
289// has to be reset to 0. This is required to allow proper stack traversal.
290void MacroAssembler::set_last_Java_frame(Register last_java_sp,
291                                         Register last_java_fp,
292                                         Register last_java_pc,
293                                         Register scratch) {
294
295  if (last_java_pc->is_valid()) {
296      str(last_java_pc, Address(rthread,
297                                JavaThread::frame_anchor_offset()
298                                + JavaFrameAnchor::last_Java_pc_offset()));
299    }
300
301  // determine last_java_sp register
302  if (last_java_sp == sp) {
303    mov(scratch, sp);
304    last_java_sp = scratch;
305  } else if (!last_java_sp->is_valid()) {
306    last_java_sp = esp;
307  }
308
309  str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
310
311  // last_java_fp is optional
312  if (last_java_fp->is_valid()) {
313    str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
314  }
315}
316
317void MacroAssembler::set_last_Java_frame(Register last_java_sp,
318                                         Register last_java_fp,
319                                         address  last_java_pc,
320                                         Register scratch) {
321  if (last_java_pc != NULL) {
322    adr(scratch, last_java_pc);
323  } else {
324    // FIXME: This is almost never correct.  We should delete all
325    // cases of set_last_Java_frame with last_java_pc=NULL and use the
326    // correct return address instead.
327    adr(scratch, pc());
328  }
329
330  str(scratch, Address(rthread,
331                       JavaThread::frame_anchor_offset()
332                       + JavaFrameAnchor::last_Java_pc_offset()));
333
334  set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
335}
336
337void MacroAssembler::set_last_Java_frame(Register last_java_sp,
338                                         Register last_java_fp,
339                                         Label &L,
340                                         Register scratch) {
341  if (L.is_bound()) {
342    set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
343  } else {
344    InstructionMark im(this);
345    L.add_patch_at(code(), locator());
346    set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
347  }
348}
349
350void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
351  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
352  assert(CodeCache::find_blob(entry.target()) != NULL,
353         "destination of far call not found in code cache");
354  if (far_branches()) {
355    unsigned long offset;
356    // We can use ADRP here because we know that the total size of
357    // the code cache cannot exceed 2Gb.
358    adrp(tmp, entry, offset);
359    add(tmp, tmp, offset);
360    if (cbuf) cbuf->set_insts_mark();
361    blr(tmp);
362  } else {
363    if (cbuf) cbuf->set_insts_mark();
364    bl(entry);
365  }
366}
367
368void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
369  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
370  assert(CodeCache::find_blob(entry.target()) != NULL,
371         "destination of far call not found in code cache");
372  if (far_branches()) {
373    unsigned long offset;
374    // We can use ADRP here because we know that the total size of
375    // the code cache cannot exceed 2Gb.
376    adrp(tmp, entry, offset);
377    add(tmp, tmp, offset);
378    if (cbuf) cbuf->set_insts_mark();
379    br(tmp);
380  } else {
381    if (cbuf) cbuf->set_insts_mark();
382    b(entry);
383  }
384}
385
386int MacroAssembler::biased_locking_enter(Register lock_reg,
387                                         Register obj_reg,
388                                         Register swap_reg,
389                                         Register tmp_reg,
390                                         bool swap_reg_contains_mark,
391                                         Label& done,
392                                         Label* slow_case,
393                                         BiasedLockingCounters* counters) {
394  assert(UseBiasedLocking, "why call this otherwise?");
395  assert_different_registers(lock_reg, obj_reg, swap_reg);
396
397  if (PrintBiasedLockingStatistics && counters == NULL)
398    counters = BiasedLocking::counters();
399
400  bool need_tmp_reg = false;
401  if (tmp_reg == noreg) {
402    tmp_reg = rscratch2;
403  }
404  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1);
405  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
406  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
407  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
408  Address saved_mark_addr(lock_reg, 0);
409
410  // Biased locking
411  // See whether the lock is currently biased toward our thread and
412  // whether the epoch is still valid
413  // Note that the runtime guarantees sufficient alignment of JavaThread
414  // pointers to allow age to be placed into low bits
415  // First check to see whether biasing is even enabled for this object
416  Label cas_label;
417  int null_check_offset = -1;
418  if (!swap_reg_contains_mark) {
419    null_check_offset = offset();
420    ldr(swap_reg, mark_addr);
421  }
422  andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
423  cmp(tmp_reg, markOopDesc::biased_lock_pattern);
424  br(Assembler::NE, cas_label);
425  // The bias pattern is present in the object's header. Need to check
426  // whether the bias owner and the epoch are both still current.
427  load_prototype_header(tmp_reg, obj_reg);
428  orr(tmp_reg, tmp_reg, rthread);
429  eor(tmp_reg, swap_reg, tmp_reg);
430  andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
431  if (counters != NULL) {
432    Label around;
433    cbnz(tmp_reg, around);
434    atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1);
435    b(done);
436    bind(around);
437  } else {
438    cbz(tmp_reg, done);
439  }
440
441  Label try_revoke_bias;
442  Label try_rebias;
443
444  // At this point we know that the header has the bias pattern and
445  // that we are not the bias owner in the current epoch. We need to
446  // figure out more details about the state of the header in order to
447  // know what operations can be legally performed on the object's
448  // header.
449
450  // If the low three bits in the xor result aren't clear, that means
451  // the prototype header is no longer biased and we have to revoke
452  // the bias on this object.
453  andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
454  cbnz(rscratch1, try_revoke_bias);
455
456  // Biasing is still enabled for this data type. See whether the
457  // epoch of the current bias is still valid, meaning that the epoch
458  // bits of the mark word are equal to the epoch bits of the
459  // prototype header. (Note that the prototype header's epoch bits
460  // only change at a safepoint.) If not, attempt to rebias the object
461  // toward the current thread. Note that we must be absolutely sure
462  // that the current epoch is invalid in order to do this because
463  // otherwise the manipulations it performs on the mark word are
464  // illegal.
465  andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
466  cbnz(rscratch1, try_rebias);
467
468  // The epoch of the current bias is still valid but we know nothing
469  // about the owner; it might be set or it might be clear. Try to
470  // acquire the bias of the object using an atomic operation. If this
471  // fails we will go in to the runtime to revoke the object's bias.
472  // Note that we first construct the presumed unbiased header so we
473  // don't accidentally blow away another thread's valid bias.
474  {
475    Label here;
476    mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
477    andr(swap_reg, swap_reg, rscratch1);
478    orr(tmp_reg, swap_reg, rthread);
479    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
480    // If the biasing toward our thread failed, this means that
481    // another thread succeeded in biasing it toward itself and we
482    // need to revoke that bias. The revocation will occur in the
483    // interpreter runtime in the slow case.
484    bind(here);
485    if (counters != NULL) {
486      atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
487                  tmp_reg, rscratch1);
488    }
489  }
490  b(done);
491
492  bind(try_rebias);
493  // At this point we know the epoch has expired, meaning that the
494  // current "bias owner", if any, is actually invalid. Under these
495  // circumstances _only_, we are allowed to use the current header's
496  // value as the comparison value when doing the cas to acquire the
497  // bias in the current epoch. In other words, we allow transfer of
498  // the bias from one thread to another directly in this situation.
499  //
500  // FIXME: due to a lack of registers we currently blow away the age
501  // bits in this situation. Should attempt to preserve them.
502  {
503    Label here;
504    load_prototype_header(tmp_reg, obj_reg);
505    orr(tmp_reg, rthread, tmp_reg);
506    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
507    // If the biasing toward our thread failed, then another thread
508    // succeeded in biasing it toward itself and we need to revoke that
509    // bias. The revocation will occur in the runtime in the slow case.
510    bind(here);
511    if (counters != NULL) {
512      atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
513                  tmp_reg, rscratch1);
514    }
515  }
516  b(done);
517
518  bind(try_revoke_bias);
519  // The prototype mark in the klass doesn't have the bias bit set any
520  // more, indicating that objects of this data type are not supposed
521  // to be biased any more. We are going to try to reset the mark of
522  // this object to the prototype value and fall through to the
523  // CAS-based locking scheme. Note that if our CAS fails, it means
524  // that another thread raced us for the privilege of revoking the
525  // bias of this particular object, so it's okay to continue in the
526  // normal locking code.
527  //
528  // FIXME: due to a lack of registers we currently blow away the age
529  // bits in this situation. Should attempt to preserve them.
530  {
531    Label here, nope;
532    load_prototype_header(tmp_reg, obj_reg);
533    cmpxchgptr(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
534    bind(here);
535
536    // Fall through to the normal CAS-based lock, because no matter what
537    // the result of the above CAS, some thread must have succeeded in
538    // removing the bias bit from the object's header.
539    if (counters != NULL) {
540      atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
541                  rscratch1);
542    }
543    bind(nope);
544  }
545
546  bind(cas_label);
547
548  return null_check_offset;
549}
550
551void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
552  assert(UseBiasedLocking, "why call this otherwise?");
553
554  // Check for biased locking unlock case, which is a no-op
555  // Note: we do not have to check the thread ID for two reasons.
556  // First, the interpreter checks for IllegalMonitorStateException at
557  // a higher level. Second, if the bias was revoked while we held the
558  // lock, the object could not be rebiased toward another thread, so
559  // the bias bit would be clear.
560  ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
561  andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
562  cmp(temp_reg, markOopDesc::biased_lock_pattern);
563  br(Assembler::EQ, done);
564}
565
566
567// added to make this compile
568
569REGISTER_DEFINITION(Register, noreg);
570
571static void pass_arg0(MacroAssembler* masm, Register arg) {
572  if (c_rarg0 != arg ) {
573    masm->mov(c_rarg0, arg);
574  }
575}
576
577static void pass_arg1(MacroAssembler* masm, Register arg) {
578  if (c_rarg1 != arg ) {
579    masm->mov(c_rarg1, arg);
580  }
581}
582
583static void pass_arg2(MacroAssembler* masm, Register arg) {
584  if (c_rarg2 != arg ) {
585    masm->mov(c_rarg2, arg);
586  }
587}
588
589static void pass_arg3(MacroAssembler* masm, Register arg) {
590  if (c_rarg3 != arg ) {
591    masm->mov(c_rarg3, arg);
592  }
593}
594
595void MacroAssembler::call_VM_base(Register oop_result,
596                                  Register java_thread,
597                                  Register last_java_sp,
598                                  address  entry_point,
599                                  int      number_of_arguments,
600                                  bool     check_exceptions) {
601   // determine java_thread register
602  if (!java_thread->is_valid()) {
603    java_thread = rthread;
604  }
605
606  // determine last_java_sp register
607  if (!last_java_sp->is_valid()) {
608    last_java_sp = esp;
609  }
610
611  // debugging support
612  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
613  assert(java_thread == rthread, "unexpected register");
614#ifdef ASSERT
615  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
616  // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
617#endif // ASSERT
618
619  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
620  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
621
622  // push java thread (becomes first argument of C function)
623
624  mov(c_rarg0, java_thread);
625
626  // set last Java frame before call
627  assert(last_java_sp != rfp, "can't use rfp");
628
629  Label l;
630  set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
631
632  // do the call, remove parameters
633  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
634
635  // reset last Java frame
636  // Only interpreter should have to clear fp
637  reset_last_Java_frame(true, true);
638
639   // C++ interp handles this in the interpreter
640  check_and_handle_popframe(java_thread);
641  check_and_handle_earlyret(java_thread);
642
643  if (check_exceptions) {
644    // check for pending exceptions (java_thread is set upon return)
645    ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
646    Label ok;
647    cbz(rscratch1, ok);
648    lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
649    br(rscratch1);
650    bind(ok);
651  }
652
653  // get oop result if there is one and reset the value in the thread
654  if (oop_result->is_valid()) {
655    get_vm_result(oop_result, java_thread);
656  }
657}
658
659void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
660  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
661}
662
663// Maybe emit a call via a trampoline.  If the code cache is small
664// trampolines won't be emitted.
665
666void MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
667  assert(entry.rspec().type() == relocInfo::runtime_call_type
668         || entry.rspec().type() == relocInfo::opt_virtual_call_type
669         || entry.rspec().type() == relocInfo::static_call_type
670         || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
671
672  unsigned int start_offset = offset();
673  if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
674    emit_trampoline_stub(offset(), entry.target());
675  }
676
677  if (cbuf) cbuf->set_insts_mark();
678  relocate(entry.rspec());
679  if (Assembler::reachable_from_branch_at(pc(), entry.target())) {
680    bl(entry.target());
681  } else {
682    bl(pc());
683  }
684}
685
686
687// Emit a trampoline stub for a call to a target which is too far away.
688//
689// code sequences:
690//
691// call-site:
692//   branch-and-link to <destination> or <trampoline stub>
693//
694// Related trampoline stub for this call site in the stub section:
695//   load the call target from the constant pool
696//   branch (LR still points to the call site above)
697
698void MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
699                                             address dest) {
700  address stub = start_a_stub(Compile::MAX_stubs_size/2);
701  if (stub == NULL) {
702    start_a_stub(Compile::MAX_stubs_size/2);
703    Compile::current()->env()->record_out_of_memory_failure();
704    return;
705  }
706
707  // Create a trampoline stub relocation which relates this trampoline stub
708  // with the call instruction at insts_call_instruction_offset in the
709  // instructions code-section.
710  align(wordSize);
711  relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
712                                            + insts_call_instruction_offset));
713  const int stub_start_offset = offset();
714
715  // Now, create the trampoline stub's code:
716  // - load the call
717  // - call
718  Label target;
719  ldr(rscratch1, target);
720  br(rscratch1);
721  bind(target);
722  assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
723         "should be");
724  emit_int64((int64_t)dest);
725
726  const address stub_start_addr = addr_at(stub_start_offset);
727
728  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
729
730  end_a_stub();
731}
732
733void MacroAssembler::ic_call(address entry) {
734  RelocationHolder rh = virtual_call_Relocation::spec(pc());
735  // address const_ptr = long_constant((jlong)Universe::non_oop_word());
736  // unsigned long offset;
737  // ldr_constant(rscratch2, const_ptr);
738  movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
739  trampoline_call(Address(entry, rh));
740}
741
742// Implementation of call_VM versions
743
744void MacroAssembler::call_VM(Register oop_result,
745                             address entry_point,
746                             bool check_exceptions) {
747  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
748}
749
750void MacroAssembler::call_VM(Register oop_result,
751                             address entry_point,
752                             Register arg_1,
753                             bool check_exceptions) {
754  pass_arg1(this, arg_1);
755  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
756}
757
758void MacroAssembler::call_VM(Register oop_result,
759                             address entry_point,
760                             Register arg_1,
761                             Register arg_2,
762                             bool check_exceptions) {
763  assert(arg_1 != c_rarg2, "smashed arg");
764  pass_arg2(this, arg_2);
765  pass_arg1(this, arg_1);
766  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
767}
768
769void MacroAssembler::call_VM(Register oop_result,
770                             address entry_point,
771                             Register arg_1,
772                             Register arg_2,
773                             Register arg_3,
774                             bool check_exceptions) {
775  assert(arg_1 != c_rarg3, "smashed arg");
776  assert(arg_2 != c_rarg3, "smashed arg");
777  pass_arg3(this, arg_3);
778
779  assert(arg_1 != c_rarg2, "smashed arg");
780  pass_arg2(this, arg_2);
781
782  pass_arg1(this, arg_1);
783  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
784}
785
786void MacroAssembler::call_VM(Register oop_result,
787                             Register last_java_sp,
788                             address entry_point,
789                             int number_of_arguments,
790                             bool check_exceptions) {
791  call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
792}
793
794void MacroAssembler::call_VM(Register oop_result,
795                             Register last_java_sp,
796                             address entry_point,
797                             Register arg_1,
798                             bool check_exceptions) {
799  pass_arg1(this, arg_1);
800  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
801}
802
803void MacroAssembler::call_VM(Register oop_result,
804                             Register last_java_sp,
805                             address entry_point,
806                             Register arg_1,
807                             Register arg_2,
808                             bool check_exceptions) {
809
810  assert(arg_1 != c_rarg2, "smashed arg");
811  pass_arg2(this, arg_2);
812  pass_arg1(this, arg_1);
813  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
814}
815
816void MacroAssembler::call_VM(Register oop_result,
817                             Register last_java_sp,
818                             address entry_point,
819                             Register arg_1,
820                             Register arg_2,
821                             Register arg_3,
822                             bool check_exceptions) {
823  assert(arg_1 != c_rarg3, "smashed arg");
824  assert(arg_2 != c_rarg3, "smashed arg");
825  pass_arg3(this, arg_3);
826  assert(arg_1 != c_rarg2, "smashed arg");
827  pass_arg2(this, arg_2);
828  pass_arg1(this, arg_1);
829  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
830}
831
832
833void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
834  ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
835  str(zr, Address(java_thread, JavaThread::vm_result_offset()));
836  verify_oop(oop_result, "broken oop in call_VM_base");
837}
838
839void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
840  ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
841  str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
842}
843
844void MacroAssembler::align(int modulus) {
845  while (offset() % modulus != 0) nop();
846}
847
848// these are no-ops overridden by InterpreterMacroAssembler
849
850void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
851
852void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
853
854
855RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
856                                                      Register tmp,
857                                                      int offset) {
858  intptr_t value = *delayed_value_addr;
859  if (value != 0)
860    return RegisterOrConstant(value + offset);
861
862  // load indirectly to solve generation ordering problem
863  ldr(tmp, ExternalAddress((address) delayed_value_addr));
864
865  if (offset != 0)
866    add(tmp, tmp, offset);
867
868  return RegisterOrConstant(tmp);
869}
870
871
872void MacroAssembler:: notify(int type) {
873  if (type == bytecode_start) {
874    // set_last_Java_frame(esp, rfp, (address)NULL);
875    Assembler:: notify(type);
876    // reset_last_Java_frame(true, false);
877  }
878  else
879    Assembler:: notify(type);
880}
881
882// Look up the method for a megamorphic invokeinterface call.
883// The target method is determined by <intf_klass, itable_index>.
884// The receiver klass is in recv_klass.
885// On success, the result will be in method_result, and execution falls through.
886// On failure, execution transfers to the given label.
887void MacroAssembler::lookup_interface_method(Register recv_klass,
888                                             Register intf_klass,
889                                             RegisterOrConstant itable_index,
890                                             Register method_result,
891                                             Register scan_temp,
892                                             Label& L_no_such_interface) {
893  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
894  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
895         "caller must use same register for non-constant itable index as for method");
896
897  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
898  int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
899  int itentry_off = itableMethodEntry::method_offset_in_bytes();
900  int scan_step   = itableOffsetEntry::size() * wordSize;
901  int vte_size    = vtableEntry::size() * wordSize;
902  assert(vte_size == wordSize, "else adjust times_vte_scale");
903
904  ldrw(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
905
906  // %%% Could store the aligned, prescaled offset in the klassoop.
907  // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
908  lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
909  add(scan_temp, scan_temp, vtable_base);
910  if (HeapWordsPerLong > 1) {
911    // Round up to align_object_offset boundary
912    // see code for instanceKlass::start_of_itable!
913    round_to(scan_temp, BytesPerLong);
914  }
915
916  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
917  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
918  // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
919  lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
920  if (itentry_off)
921    add(recv_klass, recv_klass, itentry_off);
922
923  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
924  //   if (scan->interface() == intf) {
925  //     result = (klass + scan->offset() + itable_index);
926  //   }
927  // }
928  Label search, found_method;
929
930  for (int peel = 1; peel >= 0; peel--) {
931    ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
932    cmp(intf_klass, method_result);
933
934    if (peel) {
935      br(Assembler::EQ, found_method);
936    } else {
937      br(Assembler::NE, search);
938      // (invert the test to fall through to found_method...)
939    }
940
941    if (!peel)  break;
942
943    bind(search);
944
945    // Check that the previous entry is non-null.  A null entry means that
946    // the receiver class doesn't implement the interface, and wasn't the
947    // same as when the caller was compiled.
948    cbz(method_result, L_no_such_interface);
949    add(scan_temp, scan_temp, scan_step);
950  }
951
952  bind(found_method);
953
954  // Got a hit.
955  ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
956  ldr(method_result, Address(recv_klass, scan_temp));
957}
958
959// virtual method calling
960void MacroAssembler::lookup_virtual_method(Register recv_klass,
961                                           RegisterOrConstant vtable_index,
962                                           Register method_result) {
963  const int base = InstanceKlass::vtable_start_offset() * wordSize;
964  assert(vtableEntry::size() * wordSize == 8,
965         "adjust the scaling in the code below");
966  int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
967
968  if (vtable_index.is_register()) {
969    lea(method_result, Address(recv_klass,
970                               vtable_index.as_register(),
971                               Address::lsl(LogBytesPerWord)));
972    ldr(method_result, Address(method_result, vtable_offset_in_bytes));
973  } else {
974    vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
975    ldr(method_result, Address(recv_klass, vtable_offset_in_bytes));
976  }
977}
978
979void MacroAssembler::check_klass_subtype(Register sub_klass,
980                           Register super_klass,
981                           Register temp_reg,
982                           Label& L_success) {
983  Label L_failure;
984  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
985  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
986  bind(L_failure);
987}
988
989
990void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
991                                                   Register super_klass,
992                                                   Register temp_reg,
993                                                   Label* L_success,
994                                                   Label* L_failure,
995                                                   Label* L_slow_path,
996                                        RegisterOrConstant super_check_offset) {
997  assert_different_registers(sub_klass, super_klass, temp_reg);
998  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
999  if (super_check_offset.is_register()) {
1000    assert_different_registers(sub_klass, super_klass,
1001                               super_check_offset.as_register());
1002  } else if (must_load_sco) {
1003    assert(temp_reg != noreg, "supply either a temp or a register offset");
1004  }
1005
1006  Label L_fallthrough;
1007  int label_nulls = 0;
1008  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1009  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1010  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1011  assert(label_nulls <= 1, "at most one NULL in the batch");
1012
1013  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1014  int sco_offset = in_bytes(Klass::super_check_offset_offset());
1015  Address super_check_offset_addr(super_klass, sco_offset);
1016
1017  // Hacked jmp, which may only be used just before L_fallthrough.
1018#define final_jmp(label)                                                \
1019  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1020  else                            b(label)                /*omit semi*/
1021
1022  // If the pointers are equal, we are done (e.g., String[] elements).
1023  // This self-check enables sharing of secondary supertype arrays among
1024  // non-primary types such as array-of-interface.  Otherwise, each such
1025  // type would need its own customized SSA.
1026  // We move this check to the front of the fast path because many
1027  // type checks are in fact trivially successful in this manner,
1028  // so we get a nicely predicted branch right at the start of the check.
1029  cmp(sub_klass, super_klass);
1030  br(Assembler::EQ, *L_success);
1031
1032  // Check the supertype display:
1033  if (must_load_sco) {
1034    ldrw(temp_reg, super_check_offset_addr);
1035    super_check_offset = RegisterOrConstant(temp_reg);
1036  }
1037  Address super_check_addr(sub_klass, super_check_offset);
1038  ldr(rscratch1, super_check_addr);
1039  cmp(super_klass, rscratch1); // load displayed supertype
1040
1041  // This check has worked decisively for primary supers.
1042  // Secondary supers are sought in the super_cache ('super_cache_addr').
1043  // (Secondary supers are interfaces and very deeply nested subtypes.)
1044  // This works in the same check above because of a tricky aliasing
1045  // between the super_cache and the primary super display elements.
1046  // (The 'super_check_addr' can address either, as the case requires.)
1047  // Note that the cache is updated below if it does not help us find
1048  // what we need immediately.
1049  // So if it was a primary super, we can just fail immediately.
1050  // Otherwise, it's the slow path for us (no success at this point).
1051
1052  if (super_check_offset.is_register()) {
1053    br(Assembler::EQ, *L_success);
1054    cmp(super_check_offset.as_register(), sc_offset);
1055    if (L_failure == &L_fallthrough) {
1056      br(Assembler::EQ, *L_slow_path);
1057    } else {
1058      br(Assembler::NE, *L_failure);
1059      final_jmp(*L_slow_path);
1060    }
1061  } else if (super_check_offset.as_constant() == sc_offset) {
1062    // Need a slow path; fast failure is impossible.
1063    if (L_slow_path == &L_fallthrough) {
1064      br(Assembler::EQ, *L_success);
1065    } else {
1066      br(Assembler::NE, *L_slow_path);
1067      final_jmp(*L_success);
1068    }
1069  } else {
1070    // No slow path; it's a fast decision.
1071    if (L_failure == &L_fallthrough) {
1072      br(Assembler::EQ, *L_success);
1073    } else {
1074      br(Assembler::NE, *L_failure);
1075      final_jmp(*L_success);
1076    }
1077  }
1078
1079  bind(L_fallthrough);
1080
1081#undef final_jmp
1082}
1083
1084// These two are taken from x86, but they look generally useful
1085
1086// scans count pointer sized words at [addr] for occurence of value,
1087// generic
1088void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1089                                Register scratch) {
1090  Label Lloop, Lexit;
1091  cbz(count, Lexit);
1092  bind(Lloop);
1093  ldr(scratch, post(addr, wordSize));
1094  cmp(value, scratch);
1095  br(EQ, Lexit);
1096  sub(count, count, 1);
1097  cbnz(count, Lloop);
1098  bind(Lexit);
1099}
1100
1101// scans count 4 byte words at [addr] for occurence of value,
1102// generic
1103void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1104                                Register scratch) {
1105  Label Lloop, Lexit;
1106  cbz(count, Lexit);
1107  bind(Lloop);
1108  ldrw(scratch, post(addr, wordSize));
1109  cmpw(value, scratch);
1110  br(EQ, Lexit);
1111  sub(count, count, 1);
1112  cbnz(count, Lloop);
1113  bind(Lexit);
1114}
1115
1116void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1117                                                   Register super_klass,
1118                                                   Register temp_reg,
1119                                                   Register temp2_reg,
1120                                                   Label* L_success,
1121                                                   Label* L_failure,
1122                                                   bool set_cond_codes) {
1123  assert_different_registers(sub_klass, super_klass, temp_reg);
1124  if (temp2_reg != noreg)
1125    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1126#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1127
1128  Label L_fallthrough;
1129  int label_nulls = 0;
1130  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1131  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1132  assert(label_nulls <= 1, "at most one NULL in the batch");
1133
1134  // a couple of useful fields in sub_klass:
1135  int ss_offset = in_bytes(Klass::secondary_supers_offset());
1136  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1137  Address secondary_supers_addr(sub_klass, ss_offset);
1138  Address super_cache_addr(     sub_klass, sc_offset);
1139
1140  BLOCK_COMMENT("check_klass_subtype_slow_path");
1141
1142  // Do a linear scan of the secondary super-klass chain.
1143  // This code is rarely used, so simplicity is a virtue here.
1144  // The repne_scan instruction uses fixed registers, which we must spill.
1145  // Don't worry too much about pre-existing connections with the input regs.
1146
1147  assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1148  assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1149
1150  // Get super_klass value into r0 (even if it was in r5 or r2).
1151  RegSet pushed_registers;
1152  if (!IS_A_TEMP(r2))    pushed_registers += r2;
1153  if (!IS_A_TEMP(r5))    pushed_registers += r5;
1154
1155  if (super_klass != r0 || UseCompressedOops) {
1156    if (!IS_A_TEMP(r0))   pushed_registers += r0;
1157  }
1158
1159  push(pushed_registers, sp);
1160
1161#ifndef PRODUCT
1162  mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1163  Address pst_counter_addr(rscratch2);
1164  ldr(rscratch1, pst_counter_addr);
1165  add(rscratch1, rscratch1, 1);
1166  str(rscratch1, pst_counter_addr);
1167#endif //PRODUCT
1168
1169  // We will consult the secondary-super array.
1170  ldr(r5, secondary_supers_addr);
1171  // Load the array length.
1172  ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1173  // Skip to start of data.
1174  add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1175
1176  cmp(sp, zr); // Clear Z flag; SP is never zero
1177  // Scan R2 words at [R5] for an occurrence of R0.
1178  // Set NZ/Z based on last compare.
1179  repne_scan(r5, r0, r2, rscratch1);
1180
1181  // Unspill the temp. registers:
1182  pop(pushed_registers, sp);
1183
1184  br(Assembler::NE, *L_failure);
1185
1186  // Success.  Cache the super we found and proceed in triumph.
1187  str(super_klass, super_cache_addr);
1188
1189  if (L_success != &L_fallthrough) {
1190    b(*L_success);
1191  }
1192
1193#undef IS_A_TEMP
1194
1195  bind(L_fallthrough);
1196}
1197
1198
1199void MacroAssembler::verify_oop(Register reg, const char* s) {
1200  if (!VerifyOops) return;
1201
1202  // Pass register number to verify_oop_subroutine
1203  const char* b = NULL;
1204  {
1205    ResourceMark rm;
1206    stringStream ss;
1207    ss.print("verify_oop: %s: %s", reg->name(), s);
1208    b = code_string(ss.as_string());
1209  }
1210  BLOCK_COMMENT("verify_oop {");
1211
1212  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1213  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1214
1215  mov(r0, reg);
1216  mov(rscratch1, (address)b);
1217
1218  // call indirectly to solve generation ordering problem
1219  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1220  ldr(rscratch2, Address(rscratch2));
1221  blr(rscratch2);
1222
1223  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1224  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1225
1226  BLOCK_COMMENT("} verify_oop");
1227}
1228
1229void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1230  if (!VerifyOops) return;
1231
1232  const char* b = NULL;
1233  {
1234    ResourceMark rm;
1235    stringStream ss;
1236    ss.print("verify_oop_addr: %s", s);
1237    b = code_string(ss.as_string());
1238  }
1239  BLOCK_COMMENT("verify_oop_addr {");
1240
1241  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1242  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1243
1244  // addr may contain sp so we will have to adjust it based on the
1245  // pushes that we just did.
1246  if (addr.uses(sp)) {
1247    lea(r0, addr);
1248    ldr(r0, Address(r0, 4 * wordSize));
1249  } else {
1250    ldr(r0, addr);
1251  }
1252  mov(rscratch1, (address)b);
1253
1254  // call indirectly to solve generation ordering problem
1255  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1256  ldr(rscratch2, Address(rscratch2));
1257  blr(rscratch2);
1258
1259  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1260  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1261
1262  BLOCK_COMMENT("} verify_oop_addr");
1263}
1264
1265Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1266                                         int extra_slot_offset) {
1267  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1268  int stackElementSize = Interpreter::stackElementSize;
1269  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1270#ifdef ASSERT
1271  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1272  assert(offset1 - offset == stackElementSize, "correct arithmetic");
1273#endif
1274  if (arg_slot.is_constant()) {
1275    return Address(esp, arg_slot.as_constant() * stackElementSize
1276                   + offset);
1277  } else {
1278    add(rscratch1, esp, arg_slot.as_register(),
1279        ext::uxtx, exact_log2(stackElementSize));
1280    return Address(rscratch1, offset);
1281  }
1282}
1283
1284void MacroAssembler::call_VM_leaf_base(address entry_point,
1285                                       int number_of_arguments,
1286                                       Label *retaddr) {
1287  call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1288}
1289
1290void MacroAssembler::call_VM_leaf_base1(address entry_point,
1291                                        int number_of_gp_arguments,
1292                                        int number_of_fp_arguments,
1293                                        ret_type type,
1294                                        Label *retaddr) {
1295  Label E, L;
1296
1297  stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1298
1299  // We add 1 to number_of_arguments because the thread in arg0 is
1300  // not counted
1301  mov(rscratch1, entry_point);
1302  blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1303  if (retaddr)
1304    bind(*retaddr);
1305
1306  ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1307  maybe_isb();
1308}
1309
1310void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1311  call_VM_leaf_base(entry_point, number_of_arguments);
1312}
1313
1314void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1315  pass_arg0(this, arg_0);
1316  call_VM_leaf_base(entry_point, 1);
1317}
1318
1319void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1320  pass_arg0(this, arg_0);
1321  pass_arg1(this, arg_1);
1322  call_VM_leaf_base(entry_point, 2);
1323}
1324
1325void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1326                                  Register arg_1, Register arg_2) {
1327  pass_arg0(this, arg_0);
1328  pass_arg1(this, arg_1);
1329  pass_arg2(this, arg_2);
1330  call_VM_leaf_base(entry_point, 3);
1331}
1332
1333void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1334  pass_arg0(this, arg_0);
1335  MacroAssembler::call_VM_leaf_base(entry_point, 1);
1336}
1337
1338void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1339
1340  assert(arg_0 != c_rarg1, "smashed arg");
1341  pass_arg1(this, arg_1);
1342  pass_arg0(this, arg_0);
1343  MacroAssembler::call_VM_leaf_base(entry_point, 2);
1344}
1345
1346void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1347  assert(arg_0 != c_rarg2, "smashed arg");
1348  assert(arg_1 != c_rarg2, "smashed arg");
1349  pass_arg2(this, arg_2);
1350  assert(arg_0 != c_rarg1, "smashed arg");
1351  pass_arg1(this, arg_1);
1352  pass_arg0(this, arg_0);
1353  MacroAssembler::call_VM_leaf_base(entry_point, 3);
1354}
1355
1356void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1357  assert(arg_0 != c_rarg3, "smashed arg");
1358  assert(arg_1 != c_rarg3, "smashed arg");
1359  assert(arg_2 != c_rarg3, "smashed arg");
1360  pass_arg3(this, arg_3);
1361  assert(arg_0 != c_rarg2, "smashed arg");
1362  assert(arg_1 != c_rarg2, "smashed arg");
1363  pass_arg2(this, arg_2);
1364  assert(arg_0 != c_rarg1, "smashed arg");
1365  pass_arg1(this, arg_1);
1366  pass_arg0(this, arg_0);
1367  MacroAssembler::call_VM_leaf_base(entry_point, 4);
1368}
1369
1370void MacroAssembler::null_check(Register reg, int offset) {
1371  if (needs_explicit_null_check(offset)) {
1372    // provoke OS NULL exception if reg = NULL by
1373    // accessing M[reg] w/o changing any registers
1374    // NOTE: this is plenty to provoke a segv
1375    ldr(zr, Address(reg));
1376  } else {
1377    // nothing to do, (later) access of M[reg + offset]
1378    // will provoke OS NULL exception if reg = NULL
1379  }
1380}
1381
1382// MacroAssembler protected routines needed to implement
1383// public methods
1384
1385void MacroAssembler::mov(Register r, Address dest) {
1386  code_section()->relocate(pc(), dest.rspec());
1387  u_int64_t imm64 = (u_int64_t)dest.target();
1388  movptr(r, imm64);
1389}
1390
1391// Move a constant pointer into r.  In AArch64 mode the virtual
1392// address space is 48 bits in size, so we only need three
1393// instructions to create a patchable instruction sequence that can
1394// reach anywhere.
1395void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1396#ifndef PRODUCT
1397  {
1398    char buffer[64];
1399    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1400    block_comment(buffer);
1401  }
1402#endif
1403  assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1404  movz(r, imm64 & 0xffff);
1405  imm64 >>= 16;
1406  movk(r, imm64 & 0xffff, 16);
1407  imm64 >>= 16;
1408  movk(r, imm64 & 0xffff, 32);
1409}
1410
1411void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1412{
1413#ifndef PRODUCT
1414  {
1415    char buffer[64];
1416    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1417    block_comment(buffer);
1418  }
1419#endif
1420  if (operand_valid_for_logical_immediate(false, imm64)) {
1421    orr(dst, zr, imm64);
1422  } else {
1423    // we can use a combination of MOVZ or MOVN with
1424    // MOVK to build up the constant
1425    u_int64_t imm_h[4];
1426    int zero_count = 0;
1427    int neg_count = 0;
1428    int i;
1429    for (i = 0; i < 4; i++) {
1430      imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1431      if (imm_h[i] == 0) {
1432        zero_count++;
1433      } else if (imm_h[i] == 0xffffL) {
1434        neg_count++;
1435      }
1436    }
1437    if (zero_count == 4) {
1438      // one MOVZ will do
1439      movz(dst, 0);
1440    } else if (neg_count == 4) {
1441      // one MOVN will do
1442      movn(dst, 0);
1443    } else if (zero_count == 3) {
1444      for (i = 0; i < 4; i++) {
1445        if (imm_h[i] != 0L) {
1446          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1447          break;
1448        }
1449      }
1450    } else if (neg_count == 3) {
1451      // one MOVN will do
1452      for (int i = 0; i < 4; i++) {
1453        if (imm_h[i] != 0xffffL) {
1454          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1455          break;
1456        }
1457      }
1458    } else if (zero_count == 2) {
1459      // one MOVZ and one MOVK will do
1460      for (i = 0; i < 3; i++) {
1461        if (imm_h[i] != 0L) {
1462          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1463          i++;
1464          break;
1465        }
1466      }
1467      for (;i < 4; i++) {
1468        if (imm_h[i] != 0L) {
1469          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1470        }
1471      }
1472    } else if (neg_count == 2) {
1473      // one MOVN and one MOVK will do
1474      for (i = 0; i < 4; i++) {
1475        if (imm_h[i] != 0xffffL) {
1476          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1477          i++;
1478          break;
1479        }
1480      }
1481      for (;i < 4; i++) {
1482        if (imm_h[i] != 0xffffL) {
1483          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1484        }
1485      }
1486    } else if (zero_count == 1) {
1487      // one MOVZ and two MOVKs will do
1488      for (i = 0; i < 4; i++) {
1489        if (imm_h[i] != 0L) {
1490          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1491          i++;
1492          break;
1493        }
1494      }
1495      for (;i < 4; i++) {
1496        if (imm_h[i] != 0x0L) {
1497          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1498        }
1499      }
1500    } else if (neg_count == 1) {
1501      // one MOVN and two MOVKs will do
1502      for (i = 0; i < 4; i++) {
1503        if (imm_h[i] != 0xffffL) {
1504          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1505          i++;
1506          break;
1507        }
1508      }
1509      for (;i < 4; i++) {
1510        if (imm_h[i] != 0xffffL) {
1511          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1512        }
1513      }
1514    } else {
1515      // use a MOVZ and 3 MOVKs (makes it easier to debug)
1516      movz(dst, (u_int32_t)imm_h[0], 0);
1517      for (i = 1; i < 4; i++) {
1518        movk(dst, (u_int32_t)imm_h[i], (i << 4));
1519      }
1520    }
1521  }
1522}
1523
1524void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1525{
1526#ifndef PRODUCT
1527    {
1528      char buffer[64];
1529      snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1530      block_comment(buffer);
1531    }
1532#endif
1533  if (operand_valid_for_logical_immediate(true, imm32)) {
1534    orrw(dst, zr, imm32);
1535  } else {
1536    // we can use MOVZ, MOVN or two calls to MOVK to build up the
1537    // constant
1538    u_int32_t imm_h[2];
1539    imm_h[0] = imm32 & 0xffff;
1540    imm_h[1] = ((imm32 >> 16) & 0xffff);
1541    if (imm_h[0] == 0) {
1542      movzw(dst, imm_h[1], 16);
1543    } else if (imm_h[0] == 0xffff) {
1544      movnw(dst, imm_h[1] ^ 0xffff, 16);
1545    } else if (imm_h[1] == 0) {
1546      movzw(dst, imm_h[0], 0);
1547    } else if (imm_h[1] == 0xffff) {
1548      movnw(dst, imm_h[0] ^ 0xffff, 0);
1549    } else {
1550      // use a MOVZ and MOVK (makes it easier to debug)
1551      movzw(dst, imm_h[0], 0);
1552      movkw(dst, imm_h[1], 16);
1553    }
1554  }
1555}
1556
1557// Form an address from base + offset in Rd.  Rd may or may
1558// not actually be used: you must use the Address that is returned.
1559// It is up to you to ensure that the shift provided matches the size
1560// of your data.
1561Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1562  if (Address::offset_ok_for_immed(byte_offset, shift))
1563    // It fits; no need for any heroics
1564    return Address(base, byte_offset);
1565
1566  // Don't do anything clever with negative or misaligned offsets
1567  unsigned mask = (1 << shift) - 1;
1568  if (byte_offset < 0 || byte_offset & mask) {
1569    mov(Rd, byte_offset);
1570    add(Rd, base, Rd);
1571    return Address(Rd);
1572  }
1573
1574  // See if we can do this with two 12-bit offsets
1575  {
1576    unsigned long word_offset = byte_offset >> shift;
1577    unsigned long masked_offset = word_offset & 0xfff000;
1578    if (Address::offset_ok_for_immed(word_offset - masked_offset)
1579        && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1580      add(Rd, base, masked_offset << shift);
1581      word_offset -= masked_offset;
1582      return Address(Rd, word_offset << shift);
1583    }
1584  }
1585
1586  // Do it the hard way
1587  mov(Rd, byte_offset);
1588  add(Rd, base, Rd);
1589  return Address(Rd);
1590}
1591
1592void MacroAssembler::atomic_incw(Register counter_addr, Register tmp) {
1593  Label retry_load;
1594  bind(retry_load);
1595  // flush and load exclusive from the memory location
1596  ldxrw(tmp, counter_addr);
1597  addw(tmp, tmp, 1);
1598  // if we store+flush with no intervening write tmp wil be zero
1599  stxrw(tmp, tmp, counter_addr);
1600  cbnzw(tmp, retry_load);
1601}
1602
1603
1604int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1605                                    bool want_remainder, Register scratch)
1606{
1607  // Full implementation of Java idiv and irem.  The function
1608  // returns the (pc) offset of the div instruction - may be needed
1609  // for implicit exceptions.
1610  //
1611  // constraint : ra/rb =/= scratch
1612  //         normal case
1613  //
1614  // input : ra: dividend
1615  //         rb: divisor
1616  //
1617  // result: either
1618  //         quotient  (= ra idiv rb)
1619  //         remainder (= ra irem rb)
1620
1621  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1622
1623  int idivl_offset = offset();
1624  if (! want_remainder) {
1625    sdivw(result, ra, rb);
1626  } else {
1627    sdivw(scratch, ra, rb);
1628    msubw(result, scratch, rb, ra);
1629  }
1630
1631  return idivl_offset;
1632}
1633
1634int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1635                                    bool want_remainder, Register scratch)
1636{
1637  // Full implementation of Java ldiv and lrem.  The function
1638  // returns the (pc) offset of the div instruction - may be needed
1639  // for implicit exceptions.
1640  //
1641  // constraint : ra/rb =/= scratch
1642  //         normal case
1643  //
1644  // input : ra: dividend
1645  //         rb: divisor
1646  //
1647  // result: either
1648  //         quotient  (= ra idiv rb)
1649  //         remainder (= ra irem rb)
1650
1651  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1652
1653  int idivq_offset = offset();
1654  if (! want_remainder) {
1655    sdiv(result, ra, rb);
1656  } else {
1657    sdiv(scratch, ra, rb);
1658    msub(result, scratch, rb, ra);
1659  }
1660
1661  return idivq_offset;
1662}
1663
1664// MacroAssembler routines found actually to be needed
1665
1666void MacroAssembler::push(Register src)
1667{
1668  str(src, Address(pre(esp, -1 * wordSize)));
1669}
1670
1671void MacroAssembler::pop(Register dst)
1672{
1673  ldr(dst, Address(post(esp, 1 * wordSize)));
1674}
1675
1676// Note: load_unsigned_short used to be called load_unsigned_word.
1677int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1678  int off = offset();
1679  ldrh(dst, src);
1680  return off;
1681}
1682
1683int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1684  int off = offset();
1685  ldrb(dst, src);
1686  return off;
1687}
1688
1689int MacroAssembler::load_signed_short(Register dst, Address src) {
1690  int off = offset();
1691  ldrsh(dst, src);
1692  return off;
1693}
1694
1695int MacroAssembler::load_signed_byte(Register dst, Address src) {
1696  int off = offset();
1697  ldrsb(dst, src);
1698  return off;
1699}
1700
1701int MacroAssembler::load_signed_short32(Register dst, Address src) {
1702  int off = offset();
1703  ldrshw(dst, src);
1704  return off;
1705}
1706
1707int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1708  int off = offset();
1709  ldrsbw(dst, src);
1710  return off;
1711}
1712
1713void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1714  switch (size_in_bytes) {
1715  case  8:  ldr(dst, src); break;
1716  case  4:  ldrw(dst, src); break;
1717  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1718  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1719  default:  ShouldNotReachHere();
1720  }
1721}
1722
1723void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1724  switch (size_in_bytes) {
1725  case  8:  str(src, dst); break;
1726  case  4:  strw(src, dst); break;
1727  case  2:  strh(src, dst); break;
1728  case  1:  strb(src, dst); break;
1729  default:  ShouldNotReachHere();
1730  }
1731}
1732
1733void MacroAssembler::decrementw(Register reg, int value)
1734{
1735  if (value < 0)  { incrementw(reg, -value);      return; }
1736  if (value == 0) {                               return; }
1737  if (value < (1 << 12)) { subw(reg, reg, value); return; }
1738  /* else */ {
1739    guarantee(reg != rscratch2, "invalid dst for register decrement");
1740    movw(rscratch2, (unsigned)value);
1741    subw(reg, reg, rscratch2);
1742  }
1743}
1744
1745void MacroAssembler::decrement(Register reg, int value)
1746{
1747  if (value < 0)  { increment(reg, -value);      return; }
1748  if (value == 0) {                              return; }
1749  if (value < (1 << 12)) { sub(reg, reg, value); return; }
1750  /* else */ {
1751    assert(reg != rscratch2, "invalid dst for register decrement");
1752    mov(rscratch2, (unsigned long)value);
1753    sub(reg, reg, rscratch2);
1754  }
1755}
1756
1757void MacroAssembler::decrementw(Address dst, int value)
1758{
1759  assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1760  ldrw(rscratch1, dst);
1761  decrementw(rscratch1, value);
1762  strw(rscratch1, dst);
1763}
1764
1765void MacroAssembler::decrement(Address dst, int value)
1766{
1767  assert(!dst.uses(rscratch1), "invalid address for decrement");
1768  ldr(rscratch1, dst);
1769  decrement(rscratch1, value);
1770  str(rscratch1, dst);
1771}
1772
1773void MacroAssembler::incrementw(Register reg, int value)
1774{
1775  if (value < 0)  { decrementw(reg, -value);      return; }
1776  if (value == 0) {                               return; }
1777  if (value < (1 << 12)) { addw(reg, reg, value); return; }
1778  /* else */ {
1779    assert(reg != rscratch2, "invalid dst for register increment");
1780    movw(rscratch2, (unsigned)value);
1781    addw(reg, reg, rscratch2);
1782  }
1783}
1784
1785void MacroAssembler::increment(Register reg, int value)
1786{
1787  if (value < 0)  { decrement(reg, -value);      return; }
1788  if (value == 0) {                              return; }
1789  if (value < (1 << 12)) { add(reg, reg, value); return; }
1790  /* else */ {
1791    assert(reg != rscratch2, "invalid dst for register increment");
1792    movw(rscratch2, (unsigned)value);
1793    add(reg, reg, rscratch2);
1794  }
1795}
1796
1797void MacroAssembler::incrementw(Address dst, int value)
1798{
1799  assert(!dst.uses(rscratch1), "invalid dst for address increment");
1800  ldrw(rscratch1, dst);
1801  incrementw(rscratch1, value);
1802  strw(rscratch1, dst);
1803}
1804
1805void MacroAssembler::increment(Address dst, int value)
1806{
1807  assert(!dst.uses(rscratch1), "invalid dst for address increment");
1808  ldr(rscratch1, dst);
1809  increment(rscratch1, value);
1810  str(rscratch1, dst);
1811}
1812
1813
1814void MacroAssembler::pusha() {
1815  push(0x7fffffff, sp);
1816}
1817
1818void MacroAssembler::popa() {
1819  pop(0x7fffffff, sp);
1820}
1821
1822// Push lots of registers in the bit set supplied.  Don't push sp.
1823// Return the number of words pushed
1824int MacroAssembler::push(unsigned int bitset, Register stack) {
1825  int words_pushed = 0;
1826
1827  // Scan bitset to accumulate register pairs
1828  unsigned char regs[32];
1829  int count = 0;
1830  for (int reg = 0; reg <= 30; reg++) {
1831    if (1 & bitset)
1832      regs[count++] = reg;
1833    bitset >>= 1;
1834  }
1835  regs[count++] = zr->encoding_nocheck();
1836  count &= ~1;  // Only push an even nuber of regs
1837
1838  if (count) {
1839    stp(as_Register(regs[0]), as_Register(regs[1]),
1840       Address(pre(stack, -count * wordSize)));
1841    words_pushed += 2;
1842  }
1843  for (int i = 2; i < count; i += 2) {
1844    stp(as_Register(regs[i]), as_Register(regs[i+1]),
1845       Address(stack, i * wordSize));
1846    words_pushed += 2;
1847  }
1848
1849  assert(words_pushed == count, "oops, pushed != count");
1850
1851  return count;
1852}
1853
1854int MacroAssembler::pop(unsigned int bitset, Register stack) {
1855  int words_pushed = 0;
1856
1857  // Scan bitset to accumulate register pairs
1858  unsigned char regs[32];
1859  int count = 0;
1860  for (int reg = 0; reg <= 30; reg++) {
1861    if (1 & bitset)
1862      regs[count++] = reg;
1863    bitset >>= 1;
1864  }
1865  regs[count++] = zr->encoding_nocheck();
1866  count &= ~1;
1867
1868  for (int i = 2; i < count; i += 2) {
1869    ldp(as_Register(regs[i]), as_Register(regs[i+1]),
1870       Address(stack, i * wordSize));
1871    words_pushed += 2;
1872  }
1873  if (count) {
1874    ldp(as_Register(regs[0]), as_Register(regs[1]),
1875       Address(post(stack, count * wordSize)));
1876    words_pushed += 2;
1877  }
1878
1879  assert(words_pushed == count, "oops, pushed != count");
1880
1881  return count;
1882}
1883#ifdef ASSERT
1884void MacroAssembler::verify_heapbase(const char* msg) {
1885#if 0
1886  assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
1887  assert (Universe::heap() != NULL, "java heap should be initialized");
1888  if (CheckCompressedOops) {
1889    Label ok;
1890    push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
1891    cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1892    br(Assembler::EQ, ok);
1893    stop(msg);
1894    bind(ok);
1895    pop(1 << rscratch1->encoding(), sp);
1896  }
1897#endif
1898}
1899#endif
1900
1901void MacroAssembler::stop(const char* msg) {
1902  address ip = pc();
1903  pusha();
1904  mov(c_rarg0, (address)msg);
1905  mov(c_rarg1, (address)ip);
1906  mov(c_rarg2, sp);
1907  mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
1908  // call(c_rarg3);
1909  blrt(c_rarg3, 3, 0, 1);
1910  hlt(0);
1911}
1912
1913// If a constant does not fit in an immediate field, generate some
1914// number of MOV instructions and then perform the operation.
1915void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1916                                           add_sub_imm_insn insn1,
1917                                           add_sub_reg_insn insn2) {
1918  assert(Rd != zr, "Rd = zr and not setting flags?");
1919  if (operand_valid_for_add_sub_immediate((int)imm)) {
1920    (this->*insn1)(Rd, Rn, imm);
1921  } else {
1922    if (uabs(imm) < (1 << 24)) {
1923       (this->*insn1)(Rd, Rn, imm & -(1 << 12));
1924       (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
1925    } else {
1926       assert_different_registers(Rd, Rn);
1927       mov(Rd, (uint64_t)imm);
1928       (this->*insn2)(Rd, Rn, Rd, LSL, 0);
1929    }
1930  }
1931}
1932
1933// Seperate vsn which sets the flags. Optimisations are more restricted
1934// because we must set the flags correctly.
1935void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1936                                           add_sub_imm_insn insn1,
1937                                           add_sub_reg_insn insn2) {
1938  if (operand_valid_for_add_sub_immediate((int)imm)) {
1939    (this->*insn1)(Rd, Rn, imm);
1940  } else {
1941    assert_different_registers(Rd, Rn);
1942    assert(Rd != zr, "overflow in immediate operand");
1943    mov(Rd, (uint64_t)imm);
1944    (this->*insn2)(Rd, Rn, Rd, LSL, 0);
1945  }
1946}
1947
1948
1949void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
1950  if (increment.is_register()) {
1951    add(Rd, Rn, increment.as_register());
1952  } else {
1953    add(Rd, Rn, increment.as_constant());
1954  }
1955}
1956
1957void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
1958  if (increment.is_register()) {
1959    addw(Rd, Rn, increment.as_register());
1960  } else {
1961    addw(Rd, Rn, increment.as_constant());
1962  }
1963}
1964
1965void MacroAssembler::reinit_heapbase()
1966{
1967  if (UseCompressedOops) {
1968    if (Universe::is_fully_initialized()) {
1969      mov(rheapbase, Universe::narrow_ptrs_base());
1970    } else {
1971      lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1972      ldr(rheapbase, Address(rheapbase));
1973    }
1974  }
1975}
1976
1977// this simulates the behaviour of the x86 cmpxchg instruction using a
1978// load linked/store conditional pair. we use the acquire/release
1979// versions of these instructions so that we flush pending writes as
1980// per Java semantics.
1981
1982// n.b the x86 version assumes the old value to be compared against is
1983// in rax and updates rax with the value located in memory if the
1984// cmpxchg fails. we supply a register for the old value explicitly
1985
1986// the aarch64 load linked/store conditional instructions do not
1987// accept an offset. so, unlike x86, we must provide a plain register
1988// to identify the memory word to be compared/exchanged rather than a
1989// register+offset Address.
1990
1991void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1992                                Label &succeed, Label *fail) {
1993  // oldv holds comparison value
1994  // newv holds value to write in exchange
1995  // addr identifies memory word to compare against/update
1996  // tmp returns 0/1 for success/failure
1997  Label retry_load, nope;
1998
1999  bind(retry_load);
2000  // flush and load exclusive from the memory location
2001  // and fail if it is not what we expect
2002  ldaxr(tmp, addr);
2003  cmp(tmp, oldv);
2004  br(Assembler::NE, nope);
2005  // if we store+flush with no intervening write tmp wil be zero
2006  stlxr(tmp, newv, addr);
2007  cbzw(tmp, succeed);
2008  // retry so we only ever return after a load fails to compare
2009  // ensures we don't return a stale value after a failed write.
2010  b(retry_load);
2011  // if the memory word differs we return it in oldv and signal a fail
2012  bind(nope);
2013  membar(AnyAny);
2014  mov(oldv, tmp);
2015  if (fail)
2016    b(*fail);
2017}
2018
2019void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2020                                Label &succeed, Label *fail) {
2021  // oldv holds comparison value
2022  // newv holds value to write in exchange
2023  // addr identifies memory word to compare against/update
2024  // tmp returns 0/1 for success/failure
2025  Label retry_load, nope;
2026
2027  bind(retry_load);
2028  // flush and load exclusive from the memory location
2029  // and fail if it is not what we expect
2030  ldaxrw(tmp, addr);
2031  cmp(tmp, oldv);
2032  br(Assembler::NE, nope);
2033  // if we store+flush with no intervening write tmp wil be zero
2034  stlxrw(tmp, newv, addr);
2035  cbzw(tmp, succeed);
2036  // retry so we only ever return after a load fails to compare
2037  // ensures we don't return a stale value after a failed write.
2038  b(retry_load);
2039  // if the memory word differs we return it in oldv and signal a fail
2040  bind(nope);
2041  membar(AnyAny);
2042  mov(oldv, tmp);
2043  if (fail)
2044    b(*fail);
2045}
2046
2047static bool different(Register a, RegisterOrConstant b, Register c) {
2048  if (b.is_constant())
2049    return a != c;
2050  else
2051    return a != b.as_register() && a != c && b.as_register() != c;
2052}
2053
2054#define ATOMIC_OP(LDXR, OP, STXR)                                       \
2055void MacroAssembler::atomic_##OP(Register prev, RegisterOrConstant incr, Register addr) { \
2056  Register result = rscratch2;                                          \
2057  if (prev->is_valid())                                                 \
2058    result = different(prev, incr, addr) ? prev : rscratch2;            \
2059                                                                        \
2060  Label retry_load;                                                     \
2061  bind(retry_load);                                                     \
2062  LDXR(result, addr);                                                   \
2063  OP(rscratch1, result, incr);                                          \
2064  STXR(rscratch1, rscratch1, addr);                                     \
2065  cbnzw(rscratch1, retry_load);                                         \
2066  if (prev->is_valid() && prev != result)                               \
2067    mov(prev, result);                                                  \
2068}
2069
2070ATOMIC_OP(ldxr, add, stxr)
2071ATOMIC_OP(ldxrw, addw, stxrw)
2072
2073#undef ATOMIC_OP
2074
2075#define ATOMIC_XCHG(OP, LDXR, STXR)                                     \
2076void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2077  Register result = rscratch2;                                          \
2078  if (prev->is_valid())                                                 \
2079    result = different(prev, newv, addr) ? prev : rscratch2;            \
2080                                                                        \
2081  Label retry_load;                                                     \
2082  bind(retry_load);                                                     \
2083  LDXR(result, addr);                                                   \
2084  STXR(rscratch1, newv, addr);                                          \
2085  cbnzw(rscratch1, retry_load);                                         \
2086  if (prev->is_valid() && prev != result)                               \
2087    mov(prev, result);                                                  \
2088}
2089
2090ATOMIC_XCHG(xchg, ldxr, stxr)
2091ATOMIC_XCHG(xchgw, ldxrw, stxrw)
2092
2093#undef ATOMIC_XCHG
2094
2095void MacroAssembler::incr_allocated_bytes(Register thread,
2096                                          Register var_size_in_bytes,
2097                                          int con_size_in_bytes,
2098                                          Register t1) {
2099  if (!thread->is_valid()) {
2100    thread = rthread;
2101  }
2102  assert(t1->is_valid(), "need temp reg");
2103
2104  ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2105  if (var_size_in_bytes->is_valid()) {
2106    add(t1, t1, var_size_in_bytes);
2107  } else {
2108    add(t1, t1, con_size_in_bytes);
2109  }
2110  str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2111}
2112
2113#ifndef PRODUCT
2114extern "C" void findpc(intptr_t x);
2115#endif
2116
2117void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2118{
2119  // In order to get locks to work, we need to fake a in_VM state
2120  if (ShowMessageBoxOnError ) {
2121    JavaThread* thread = JavaThread::current();
2122    JavaThreadState saved_state = thread->thread_state();
2123    thread->set_thread_state(_thread_in_vm);
2124#ifndef PRODUCT
2125    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2126      ttyLocker ttyl;
2127      BytecodeCounter::print();
2128    }
2129#endif
2130    if (os::message_box(msg, "Execution stopped, print registers?")) {
2131      ttyLocker ttyl;
2132      tty->print_cr(" pc = 0x%016lx", pc);
2133#ifndef PRODUCT
2134      tty->cr();
2135      findpc(pc);
2136      tty->cr();
2137#endif
2138      tty->print_cr(" r0 = 0x%016lx", regs[0]);
2139      tty->print_cr(" r1 = 0x%016lx", regs[1]);
2140      tty->print_cr(" r2 = 0x%016lx", regs[2]);
2141      tty->print_cr(" r3 = 0x%016lx", regs[3]);
2142      tty->print_cr(" r4 = 0x%016lx", regs[4]);
2143      tty->print_cr(" r5 = 0x%016lx", regs[5]);
2144      tty->print_cr(" r6 = 0x%016lx", regs[6]);
2145      tty->print_cr(" r7 = 0x%016lx", regs[7]);
2146      tty->print_cr(" r8 = 0x%016lx", regs[8]);
2147      tty->print_cr(" r9 = 0x%016lx", regs[9]);
2148      tty->print_cr("r10 = 0x%016lx", regs[10]);
2149      tty->print_cr("r11 = 0x%016lx", regs[11]);
2150      tty->print_cr("r12 = 0x%016lx", regs[12]);
2151      tty->print_cr("r13 = 0x%016lx", regs[13]);
2152      tty->print_cr("r14 = 0x%016lx", regs[14]);
2153      tty->print_cr("r15 = 0x%016lx", regs[15]);
2154      tty->print_cr("r16 = 0x%016lx", regs[16]);
2155      tty->print_cr("r17 = 0x%016lx", regs[17]);
2156      tty->print_cr("r18 = 0x%016lx", regs[18]);
2157      tty->print_cr("r19 = 0x%016lx", regs[19]);
2158      tty->print_cr("r20 = 0x%016lx", regs[20]);
2159      tty->print_cr("r21 = 0x%016lx", regs[21]);
2160      tty->print_cr("r22 = 0x%016lx", regs[22]);
2161      tty->print_cr("r23 = 0x%016lx", regs[23]);
2162      tty->print_cr("r24 = 0x%016lx", regs[24]);
2163      tty->print_cr("r25 = 0x%016lx", regs[25]);
2164      tty->print_cr("r26 = 0x%016lx", regs[26]);
2165      tty->print_cr("r27 = 0x%016lx", regs[27]);
2166      tty->print_cr("r28 = 0x%016lx", regs[28]);
2167      tty->print_cr("r30 = 0x%016lx", regs[30]);
2168      tty->print_cr("r31 = 0x%016lx", regs[31]);
2169      BREAKPOINT;
2170    }
2171    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2172  } else {
2173    ttyLocker ttyl;
2174    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2175                    msg);
2176    assert(false, err_msg("DEBUG MESSAGE: %s", msg));
2177  }
2178}
2179
2180#ifdef BUILTIN_SIM
2181// routine to generate an x86 prolog for a stub function which
2182// bootstraps into the generated ARM code which directly follows the
2183// stub
2184//
2185// the argument encodes the number of general and fp registers
2186// passed by the caller and the callng convention (currently just
2187// the number of general registers and assumes C argument passing)
2188
2189extern "C" {
2190int aarch64_stub_prolog_size();
2191void aarch64_stub_prolog();
2192void aarch64_prolog();
2193}
2194
2195void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2196                                   address *prolog_ptr)
2197{
2198  int calltype = (((ret_type & 0x3) << 8) |
2199                  ((fp_arg_count & 0xf) << 4) |
2200                  (gp_arg_count & 0xf));
2201
2202  // the addresses for the x86 to ARM entry code we need to use
2203  address start = pc();
2204  // printf("start = %lx\n", start);
2205  int byteCount =  aarch64_stub_prolog_size();
2206  // printf("byteCount = %x\n", byteCount);
2207  int instructionCount = (byteCount + 3)/ 4;
2208  // printf("instructionCount = %x\n", instructionCount);
2209  for (int i = 0; i < instructionCount; i++) {
2210    nop();
2211  }
2212
2213  memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2214
2215  // write the address of the setup routine and the call format at the
2216  // end of into the copied code
2217  u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2218  if (prolog_ptr)
2219    patch_end[-2] = (u_int64_t)prolog_ptr;
2220  patch_end[-1] = calltype;
2221}
2222#endif
2223
2224void MacroAssembler::push_CPU_state() {
2225    push(0x3fffffff, sp);         // integer registers except lr & sp
2226
2227    for (int i = 30; i >= 0; i -= 2)
2228      stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2229           Address(pre(sp, -2 * wordSize)));
2230}
2231
2232void MacroAssembler::pop_CPU_state() {
2233  for (int i = 0; i < 32; i += 2)
2234    ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2235         Address(post(sp, 2 * wordSize)));
2236
2237  pop(0x3fffffff, sp);         // integer registers except lr & sp
2238}
2239
2240/**
2241 * Helpers for multiply_to_len().
2242 */
2243void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2244                                     Register src1, Register src2) {
2245  adds(dest_lo, dest_lo, src1);
2246  adc(dest_hi, dest_hi, zr);
2247  adds(dest_lo, dest_lo, src2);
2248  adc(final_dest_hi, dest_hi, zr);
2249}
2250
2251// Generate an address from (r + r1 extend offset).  "size" is the
2252// size of the operand.  The result may be in rscratch2.
2253Address MacroAssembler::offsetted_address(Register r, Register r1,
2254                                          Address::extend ext, int offset, int size) {
2255  if (offset || (ext.shift() % size != 0)) {
2256    lea(rscratch2, Address(r, r1, ext));
2257    return Address(rscratch2, offset);
2258  } else {
2259    return Address(r, r1, ext);
2260  }
2261}
2262
2263/**
2264 * Multiply 64 bit by 64 bit first loop.
2265 */
2266void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2267                                           Register y, Register y_idx, Register z,
2268                                           Register carry, Register product,
2269                                           Register idx, Register kdx) {
2270  //
2271  //  jlong carry, x[], y[], z[];
2272  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2273  //    huge_128 product = y[idx] * x[xstart] + carry;
2274  //    z[kdx] = (jlong)product;
2275  //    carry  = (jlong)(product >>> 64);
2276  //  }
2277  //  z[xstart] = carry;
2278  //
2279
2280  Label L_first_loop, L_first_loop_exit;
2281  Label L_one_x, L_one_y, L_multiply;
2282
2283  subsw(xstart, xstart, 1);
2284  br(Assembler::MI, L_one_x);
2285
2286  lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2287  ldr(x_xstart, Address(rscratch1));
2288  ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2289
2290  bind(L_first_loop);
2291  subsw(idx, idx, 1);
2292  br(Assembler::MI, L_first_loop_exit);
2293  subsw(idx, idx, 1);
2294  br(Assembler::MI, L_one_y);
2295  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2296  ldr(y_idx, Address(rscratch1));
2297  ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2298  bind(L_multiply);
2299
2300  // AArch64 has a multiply-accumulate instruction that we can't use
2301  // here because it has no way to process carries, so we have to use
2302  // separate add and adc instructions.  Bah.
2303  umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2304  mul(product, x_xstart, y_idx);
2305  adds(product, product, carry);
2306  adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2307
2308  subw(kdx, kdx, 2);
2309  ror(product, product, 32); // back to big-endian
2310  str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2311
2312  b(L_first_loop);
2313
2314  bind(L_one_y);
2315  ldrw(y_idx, Address(y,  0));
2316  b(L_multiply);
2317
2318  bind(L_one_x);
2319  ldrw(x_xstart, Address(x,  0));
2320  b(L_first_loop);
2321
2322  bind(L_first_loop_exit);
2323}
2324
2325/**
2326 * Multiply 128 bit by 128. Unrolled inner loop.
2327 *
2328 */
2329void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2330                                             Register carry, Register carry2,
2331                                             Register idx, Register jdx,
2332                                             Register yz_idx1, Register yz_idx2,
2333                                             Register tmp, Register tmp3, Register tmp4,
2334                                             Register tmp6, Register product_hi) {
2335
2336  //   jlong carry, x[], y[], z[];
2337  //   int kdx = ystart+1;
2338  //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2339  //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2340  //     jlong carry2  = (jlong)(tmp3 >>> 64);
2341  //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2342  //     carry  = (jlong)(tmp4 >>> 64);
2343  //     z[kdx+idx+1] = (jlong)tmp3;
2344  //     z[kdx+idx] = (jlong)tmp4;
2345  //   }
2346  //   idx += 2;
2347  //   if (idx > 0) {
2348  //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2349  //     z[kdx+idx] = (jlong)yz_idx1;
2350  //     carry  = (jlong)(yz_idx1 >>> 64);
2351  //   }
2352  //
2353
2354  Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2355
2356  lsrw(jdx, idx, 2);
2357
2358  bind(L_third_loop);
2359
2360  subsw(jdx, jdx, 1);
2361  br(Assembler::MI, L_third_loop_exit);
2362  subw(idx, idx, 4);
2363
2364  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2365
2366  ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2367
2368  lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2369
2370  ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2371  ror(yz_idx2, yz_idx2, 32);
2372
2373  ldp(rscratch2, rscratch1, Address(tmp6, 0));
2374
2375  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2376  umulh(tmp4, product_hi, yz_idx1);
2377
2378  ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2379  ror(rscratch2, rscratch2, 32);
2380
2381  mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2382  umulh(carry2, product_hi, yz_idx2);
2383
2384  // propagate sum of both multiplications into carry:tmp4:tmp3
2385  adds(tmp3, tmp3, carry);
2386  adc(tmp4, tmp4, zr);
2387  adds(tmp3, tmp3, rscratch1);
2388  adcs(tmp4, tmp4, tmp);
2389  adc(carry, carry2, zr);
2390  adds(tmp4, tmp4, rscratch2);
2391  adc(carry, carry, zr);
2392
2393  ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2394  ror(tmp4, tmp4, 32);
2395  stp(tmp4, tmp3, Address(tmp6, 0));
2396
2397  b(L_third_loop);
2398  bind (L_third_loop_exit);
2399
2400  andw (idx, idx, 0x3);
2401  cbz(idx, L_post_third_loop_done);
2402
2403  Label L_check_1;
2404  subsw(idx, idx, 2);
2405  br(Assembler::MI, L_check_1);
2406
2407  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2408  ldr(yz_idx1, Address(rscratch1, 0));
2409  ror(yz_idx1, yz_idx1, 32);
2410  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2411  umulh(tmp4, product_hi, yz_idx1);
2412  lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2413  ldr(yz_idx2, Address(rscratch1, 0));
2414  ror(yz_idx2, yz_idx2, 32);
2415
2416  add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2417
2418  ror(tmp3, tmp3, 32);
2419  str(tmp3, Address(rscratch1, 0));
2420
2421  bind (L_check_1);
2422
2423  andw (idx, idx, 0x1);
2424  subsw(idx, idx, 1);
2425  br(Assembler::MI, L_post_third_loop_done);
2426  ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2427  mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2428  umulh(carry2, tmp4, product_hi);
2429  ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2430
2431  add2_with_carry(carry2, tmp3, tmp4, carry);
2432
2433  strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2434  extr(carry, carry2, tmp3, 32);
2435
2436  bind(L_post_third_loop_done);
2437}
2438
2439/**
2440 * Code for BigInteger::multiplyToLen() instrinsic.
2441 *
2442 * r0: x
2443 * r1: xlen
2444 * r2: y
2445 * r3: ylen
2446 * r4:  z
2447 * r5: zlen
2448 * r10: tmp1
2449 * r11: tmp2
2450 * r12: tmp3
2451 * r13: tmp4
2452 * r14: tmp5
2453 * r15: tmp6
2454 * r16: tmp7
2455 *
2456 */
2457void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2458                                     Register z, Register zlen,
2459                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2460                                     Register tmp5, Register tmp6, Register product_hi) {
2461
2462  assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2463
2464  const Register idx = tmp1;
2465  const Register kdx = tmp2;
2466  const Register xstart = tmp3;
2467
2468  const Register y_idx = tmp4;
2469  const Register carry = tmp5;
2470  const Register product  = xlen;
2471  const Register x_xstart = zlen;  // reuse register
2472
2473  // First Loop.
2474  //
2475  //  final static long LONG_MASK = 0xffffffffL;
2476  //  int xstart = xlen - 1;
2477  //  int ystart = ylen - 1;
2478  //  long carry = 0;
2479  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2480  //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2481  //    z[kdx] = (int)product;
2482  //    carry = product >>> 32;
2483  //  }
2484  //  z[xstart] = (int)carry;
2485  //
2486
2487  movw(idx, ylen);      // idx = ylen;
2488  movw(kdx, zlen);      // kdx = xlen+ylen;
2489  mov(carry, zr);       // carry = 0;
2490
2491  Label L_done;
2492
2493  movw(xstart, xlen);
2494  subsw(xstart, xstart, 1);
2495  br(Assembler::MI, L_done);
2496
2497  multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
2498
2499  Label L_second_loop;
2500  cbzw(kdx, L_second_loop);
2501
2502  Label L_carry;
2503  subw(kdx, kdx, 1);
2504  cbzw(kdx, L_carry);
2505
2506  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2507  lsr(carry, carry, 32);
2508  subw(kdx, kdx, 1);
2509
2510  bind(L_carry);
2511  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2512
2513  // Second and third (nested) loops.
2514  //
2515  // for (int i = xstart-1; i >= 0; i--) { // Second loop
2516  //   carry = 0;
2517  //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
2518  //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
2519  //                    (z[k] & LONG_MASK) + carry;
2520  //     z[k] = (int)product;
2521  //     carry = product >>> 32;
2522  //   }
2523  //   z[i] = (int)carry;
2524  // }
2525  //
2526  // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
2527
2528  const Register jdx = tmp1;
2529
2530  bind(L_second_loop);
2531  mov(carry, zr);                // carry = 0;
2532  movw(jdx, ylen);               // j = ystart+1
2533
2534  subsw(xstart, xstart, 1);      // i = xstart-1;
2535  br(Assembler::MI, L_done);
2536
2537  str(z, Address(pre(sp, -4 * wordSize)));
2538
2539  Label L_last_x;
2540  lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
2541  subsw(xstart, xstart, 1);       // i = xstart-1;
2542  br(Assembler::MI, L_last_x);
2543
2544  lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
2545  ldr(product_hi, Address(rscratch1));
2546  ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
2547
2548  Label L_third_loop_prologue;
2549  bind(L_third_loop_prologue);
2550
2551  str(ylen, Address(sp, wordSize));
2552  stp(x, xstart, Address(sp, 2 * wordSize));
2553  multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
2554                          tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
2555  ldp(z, ylen, Address(post(sp, 2 * wordSize)));
2556  ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
2557
2558  addw(tmp3, xlen, 1);
2559  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2560  subsw(tmp3, tmp3, 1);
2561  br(Assembler::MI, L_done);
2562
2563  lsr(carry, carry, 32);
2564  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2565  b(L_second_loop);
2566
2567  // Next infrequent code is moved outside loops.
2568  bind(L_last_x);
2569  ldrw(product_hi, Address(x,  0));
2570  b(L_third_loop_prologue);
2571
2572  bind(L_done);
2573}
2574
2575/**
2576 * Emits code to update CRC-32 with a byte value according to constants in table
2577 *
2578 * @param [in,out]crc   Register containing the crc.
2579 * @param [in]val       Register containing the byte to fold into the CRC.
2580 * @param [in]table     Register containing the table of crc constants.
2581 *
2582 * uint32_t crc;
2583 * val = crc_table[(val ^ crc) & 0xFF];
2584 * crc = val ^ (crc >> 8);
2585 *
2586 */
2587void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
2588  eor(val, val, crc);
2589  andr(val, val, 0xff);
2590  ldrw(val, Address(table, val, Address::lsl(2)));
2591  eor(crc, val, crc, Assembler::LSR, 8);
2592}
2593
2594/**
2595 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
2596 *
2597 * @param [in,out]crc   Register containing the crc.
2598 * @param [in]v         Register containing the 32-bit to fold into the CRC.
2599 * @param [in]table0    Register containing table 0 of crc constants.
2600 * @param [in]table1    Register containing table 1 of crc constants.
2601 * @param [in]table2    Register containing table 2 of crc constants.
2602 * @param [in]table3    Register containing table 3 of crc constants.
2603 *
2604 * uint32_t crc;
2605 *   v = crc ^ v
2606 *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
2607 *
2608 */
2609void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
2610        Register table0, Register table1, Register table2, Register table3,
2611        bool upper) {
2612  eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
2613  uxtb(tmp, v);
2614  ldrw(crc, Address(table3, tmp, Address::lsl(2)));
2615  ubfx(tmp, v, 8, 8);
2616  ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
2617  eor(crc, crc, tmp);
2618  ubfx(tmp, v, 16, 8);
2619  ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
2620  eor(crc, crc, tmp);
2621  ubfx(tmp, v, 24, 8);
2622  ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
2623  eor(crc, crc, tmp);
2624}
2625
2626/**
2627 * @param crc   register containing existing CRC (32-bit)
2628 * @param buf   register pointing to input byte buffer (byte*)
2629 * @param len   register containing number of bytes
2630 * @param table register that will contain address of CRC table
2631 * @param tmp   scratch register
2632 */
2633void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
2634        Register table0, Register table1, Register table2, Register table3,
2635        Register tmp, Register tmp2, Register tmp3) {
2636  Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
2637  unsigned long offset;
2638
2639    ornw(crc, zr, crc);
2640
2641  if (UseCRC32) {
2642    Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2643
2644      subs(len, len, 64);
2645      br(Assembler::GE, CRC_by64_loop);
2646      adds(len, len, 64-4);
2647      br(Assembler::GE, CRC_by4_loop);
2648      adds(len, len, 4);
2649      br(Assembler::GT, CRC_by1_loop);
2650      b(L_exit);
2651
2652    BIND(CRC_by4_loop);
2653      ldrw(tmp, Address(post(buf, 4)));
2654      subs(len, len, 4);
2655      crc32w(crc, crc, tmp);
2656      br(Assembler::GE, CRC_by4_loop);
2657      adds(len, len, 4);
2658      br(Assembler::LE, L_exit);
2659    BIND(CRC_by1_loop);
2660      ldrb(tmp, Address(post(buf, 1)));
2661      subs(len, len, 1);
2662      crc32b(crc, crc, tmp);
2663      br(Assembler::GT, CRC_by1_loop);
2664      b(L_exit);
2665
2666      align(CodeEntryAlignment);
2667    BIND(CRC_by64_loop);
2668      subs(len, len, 64);
2669      ldp(tmp, tmp3, Address(post(buf, 16)));
2670      crc32x(crc, crc, tmp);
2671      crc32x(crc, crc, tmp3);
2672      ldp(tmp, tmp3, Address(post(buf, 16)));
2673      crc32x(crc, crc, tmp);
2674      crc32x(crc, crc, tmp3);
2675      ldp(tmp, tmp3, Address(post(buf, 16)));
2676      crc32x(crc, crc, tmp);
2677      crc32x(crc, crc, tmp3);
2678      ldp(tmp, tmp3, Address(post(buf, 16)));
2679      crc32x(crc, crc, tmp);
2680      crc32x(crc, crc, tmp3);
2681      br(Assembler::GE, CRC_by64_loop);
2682      adds(len, len, 64-4);
2683      br(Assembler::GE, CRC_by4_loop);
2684      adds(len, len, 4);
2685      br(Assembler::GT, CRC_by1_loop);
2686    BIND(L_exit);
2687      ornw(crc, zr, crc);
2688      return;
2689  }
2690
2691    adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2692    if (offset) add(table0, table0, offset);
2693    add(table1, table0, 1*256*sizeof(juint));
2694    add(table2, table0, 2*256*sizeof(juint));
2695    add(table3, table0, 3*256*sizeof(juint));
2696
2697  if (UseNeon) {
2698      cmp(len, 64);
2699      br(Assembler::LT, L_by16);
2700      eor(v16, T16B, v16, v16);
2701
2702    Label L_fold;
2703
2704      add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
2705
2706      ld1(v0, v1, T2D, post(buf, 32));
2707      ld1r(v4, T2D, post(tmp, 8));
2708      ld1r(v5, T2D, post(tmp, 8));
2709      ld1r(v6, T2D, post(tmp, 8));
2710      ld1r(v7, T2D, post(tmp, 8));
2711      mov(v16, T4S, 0, crc);
2712
2713      eor(v0, T16B, v0, v16);
2714      sub(len, len, 64);
2715
2716    BIND(L_fold);
2717      pmull(v22, T8H, v0, v5, T8B);
2718      pmull(v20, T8H, v0, v7, T8B);
2719      pmull(v23, T8H, v0, v4, T8B);
2720      pmull(v21, T8H, v0, v6, T8B);
2721
2722      pmull2(v18, T8H, v0, v5, T16B);
2723      pmull2(v16, T8H, v0, v7, T16B);
2724      pmull2(v19, T8H, v0, v4, T16B);
2725      pmull2(v17, T8H, v0, v6, T16B);
2726
2727      uzp1(v24, v20, v22, T8H);
2728      uzp2(v25, v20, v22, T8H);
2729      eor(v20, T16B, v24, v25);
2730
2731      uzp1(v26, v16, v18, T8H);
2732      uzp2(v27, v16, v18, T8H);
2733      eor(v16, T16B, v26, v27);
2734
2735      ushll2(v22, T4S, v20, T8H, 8);
2736      ushll(v20, T4S, v20, T4H, 8);
2737
2738      ushll2(v18, T4S, v16, T8H, 8);
2739      ushll(v16, T4S, v16, T4H, 8);
2740
2741      eor(v22, T16B, v23, v22);
2742      eor(v18, T16B, v19, v18);
2743      eor(v20, T16B, v21, v20);
2744      eor(v16, T16B, v17, v16);
2745
2746      uzp1(v17, v16, v20, T2D);
2747      uzp2(v21, v16, v20, T2D);
2748      eor(v17, T16B, v17, v21);
2749
2750      ushll2(v20, T2D, v17, T4S, 16);
2751      ushll(v16, T2D, v17, T2S, 16);
2752
2753      eor(v20, T16B, v20, v22);
2754      eor(v16, T16B, v16, v18);
2755
2756      uzp1(v17, v20, v16, T2D);
2757      uzp2(v21, v20, v16, T2D);
2758      eor(v28, T16B, v17, v21);
2759
2760      pmull(v22, T8H, v1, v5, T8B);
2761      pmull(v20, T8H, v1, v7, T8B);
2762      pmull(v23, T8H, v1, v4, T8B);
2763      pmull(v21, T8H, v1, v6, T8B);
2764
2765      pmull2(v18, T8H, v1, v5, T16B);
2766      pmull2(v16, T8H, v1, v7, T16B);
2767      pmull2(v19, T8H, v1, v4, T16B);
2768      pmull2(v17, T8H, v1, v6, T16B);
2769
2770      ld1(v0, v1, T2D, post(buf, 32));
2771
2772      uzp1(v24, v20, v22, T8H);
2773      uzp2(v25, v20, v22, T8H);
2774      eor(v20, T16B, v24, v25);
2775
2776      uzp1(v26, v16, v18, T8H);
2777      uzp2(v27, v16, v18, T8H);
2778      eor(v16, T16B, v26, v27);
2779
2780      ushll2(v22, T4S, v20, T8H, 8);
2781      ushll(v20, T4S, v20, T4H, 8);
2782
2783      ushll2(v18, T4S, v16, T8H, 8);
2784      ushll(v16, T4S, v16, T4H, 8);
2785
2786      eor(v22, T16B, v23, v22);
2787      eor(v18, T16B, v19, v18);
2788      eor(v20, T16B, v21, v20);
2789      eor(v16, T16B, v17, v16);
2790
2791      uzp1(v17, v16, v20, T2D);
2792      uzp2(v21, v16, v20, T2D);
2793      eor(v16, T16B, v17, v21);
2794
2795      ushll2(v20, T2D, v16, T4S, 16);
2796      ushll(v16, T2D, v16, T2S, 16);
2797
2798      eor(v20, T16B, v22, v20);
2799      eor(v16, T16B, v16, v18);
2800
2801      uzp1(v17, v20, v16, T2D);
2802      uzp2(v21, v20, v16, T2D);
2803      eor(v20, T16B, v17, v21);
2804
2805      shl(v16, v28, T2D, 1);
2806      shl(v17, v20, T2D, 1);
2807
2808      eor(v0, T16B, v0, v16);
2809      eor(v1, T16B, v1, v17);
2810
2811      subs(len, len, 32);
2812      br(Assembler::GE, L_fold);
2813
2814      mov(crc, 0);
2815      mov(tmp, v0, T1D, 0);
2816      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2817      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2818      mov(tmp, v0, T1D, 1);
2819      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2820      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2821      mov(tmp, v1, T1D, 0);
2822      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2823      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2824      mov(tmp, v1, T1D, 1);
2825      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2826      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2827
2828      add(len, len, 32);
2829  }
2830
2831  BIND(L_by16);
2832    subs(len, len, 16);
2833    br(Assembler::GE, L_by16_loop);
2834    adds(len, len, 16-4);
2835    br(Assembler::GE, L_by4_loop);
2836    adds(len, len, 4);
2837    br(Assembler::GT, L_by1_loop);
2838    b(L_exit);
2839
2840  BIND(L_by4_loop);
2841    ldrw(tmp, Address(post(buf, 4)));
2842    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
2843    subs(len, len, 4);
2844    br(Assembler::GE, L_by4_loop);
2845    adds(len, len, 4);
2846    br(Assembler::LE, L_exit);
2847  BIND(L_by1_loop);
2848    subs(len, len, 1);
2849    ldrb(tmp, Address(post(buf, 1)));
2850    update_byte_crc32(crc, tmp, table0);
2851    br(Assembler::GT, L_by1_loop);
2852    b(L_exit);
2853
2854    align(CodeEntryAlignment);
2855  BIND(L_by16_loop);
2856    subs(len, len, 16);
2857    ldp(tmp, tmp3, Address(post(buf, 16)));
2858    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
2859    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
2860    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
2861    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
2862    br(Assembler::GE, L_by16_loop);
2863    adds(len, len, 16-4);
2864    br(Assembler::GE, L_by4_loop);
2865    adds(len, len, 4);
2866    br(Assembler::GT, L_by1_loop);
2867  BIND(L_exit);
2868    ornw(crc, zr, crc);
2869}
2870
2871SkipIfEqual::SkipIfEqual(
2872    MacroAssembler* masm, const bool* flag_addr, bool value) {
2873  _masm = masm;
2874  unsigned long offset;
2875  _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
2876  _masm->ldrb(rscratch1, Address(rscratch1, offset));
2877  _masm->cbzw(rscratch1, _label);
2878}
2879
2880SkipIfEqual::~SkipIfEqual() {
2881  _masm->bind(_label);
2882}
2883
2884void MacroAssembler::cmpptr(Register src1, Address src2) {
2885  unsigned long offset;
2886  adrp(rscratch1, src2, offset);
2887  ldr(rscratch1, Address(rscratch1, offset));
2888  cmp(src1, rscratch1);
2889}
2890
2891void MacroAssembler::store_check(Register obj) {
2892  // Does a store check for the oop in register obj. The content of
2893  // register obj is destroyed afterwards.
2894  store_check_part_1(obj);
2895  store_check_part_2(obj);
2896}
2897
2898void MacroAssembler::store_check(Register obj, Address dst) {
2899  store_check(obj);
2900}
2901
2902
2903// split the store check operation so that other instructions can be scheduled inbetween
2904void MacroAssembler::store_check_part_1(Register obj) {
2905  BarrierSet* bs = Universe::heap()->barrier_set();
2906  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
2907  lsr(obj, obj, CardTableModRefBS::card_shift);
2908}
2909
2910void MacroAssembler::store_check_part_2(Register obj) {
2911  BarrierSet* bs = Universe::heap()->barrier_set();
2912  assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
2913  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
2914  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
2915
2916  // The calculation for byte_map_base is as follows:
2917  // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
2918  // So this essentially converts an address to a displacement and
2919  // it will never need to be relocated.
2920
2921  // FIXME: It's not likely that disp will fit into an offset so we
2922  // don't bother to check, but it could save an instruction.
2923  intptr_t disp = (intptr_t) ct->byte_map_base;
2924  mov(rscratch1, disp);
2925  strb(zr, Address(obj, rscratch1));
2926}
2927
2928void MacroAssembler::load_klass(Register dst, Register src) {
2929  if (UseCompressedClassPointers) {
2930    ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
2931    decode_klass_not_null(dst);
2932  } else {
2933    ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
2934  }
2935}
2936
2937void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
2938  if (UseCompressedClassPointers) {
2939    ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
2940    if (Universe::narrow_klass_base() == NULL) {
2941      cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
2942      return;
2943    } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
2944               && Universe::narrow_klass_shift() == 0) {
2945      // Only the bottom 32 bits matter
2946      cmpw(trial_klass, tmp);
2947      return;
2948    }
2949    decode_klass_not_null(tmp);
2950  } else {
2951    ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
2952  }
2953  cmp(trial_klass, tmp);
2954}
2955
2956void MacroAssembler::load_prototype_header(Register dst, Register src) {
2957  load_klass(dst, src);
2958  ldr(dst, Address(dst, Klass::prototype_header_offset()));
2959}
2960
2961void MacroAssembler::store_klass(Register dst, Register src) {
2962  // FIXME: Should this be a store release?  concurrent gcs assumes
2963  // klass length is valid if klass field is not null.
2964  if (UseCompressedClassPointers) {
2965    encode_klass_not_null(src);
2966    strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
2967  } else {
2968    str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
2969  }
2970}
2971
2972void MacroAssembler::store_klass_gap(Register dst, Register src) {
2973  if (UseCompressedClassPointers) {
2974    // Store to klass gap in destination
2975    strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
2976  }
2977}
2978
2979// Algorithm must match oop.inline.hpp encode_heap_oop.
2980void MacroAssembler::encode_heap_oop(Register d, Register s) {
2981#ifdef ASSERT
2982  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
2983#endif
2984  verify_oop(s, "broken oop in encode_heap_oop");
2985  if (Universe::narrow_oop_base() == NULL) {
2986    if (Universe::narrow_oop_shift() != 0) {
2987      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
2988      lsr(d, s, LogMinObjAlignmentInBytes);
2989    } else {
2990      mov(d, s);
2991    }
2992  } else {
2993    subs(d, s, rheapbase);
2994    csel(d, d, zr, Assembler::HS);
2995    lsr(d, d, LogMinObjAlignmentInBytes);
2996
2997    /*  Old algorithm: is this any worse?
2998    Label nonnull;
2999    cbnz(r, nonnull);
3000    sub(r, r, rheapbase);
3001    bind(nonnull);
3002    lsr(r, r, LogMinObjAlignmentInBytes);
3003    */
3004  }
3005}
3006
3007void MacroAssembler::encode_heap_oop_not_null(Register r) {
3008#ifdef ASSERT
3009  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3010  if (CheckCompressedOops) {
3011    Label ok;
3012    cbnz(r, ok);
3013    stop("null oop passed to encode_heap_oop_not_null");
3014    bind(ok);
3015  }
3016#endif
3017  verify_oop(r, "broken oop in encode_heap_oop_not_null");
3018  if (Universe::narrow_oop_base() != NULL) {
3019    sub(r, r, rheapbase);
3020  }
3021  if (Universe::narrow_oop_shift() != 0) {
3022    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3023    lsr(r, r, LogMinObjAlignmentInBytes);
3024  }
3025}
3026
3027void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3028#ifdef ASSERT
3029  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3030  if (CheckCompressedOops) {
3031    Label ok;
3032    cbnz(src, ok);
3033    stop("null oop passed to encode_heap_oop_not_null2");
3034    bind(ok);
3035  }
3036#endif
3037  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3038
3039  Register data = src;
3040  if (Universe::narrow_oop_base() != NULL) {
3041    sub(dst, src, rheapbase);
3042    data = dst;
3043  }
3044  if (Universe::narrow_oop_shift() != 0) {
3045    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3046    lsr(dst, data, LogMinObjAlignmentInBytes);
3047    data = dst;
3048  }
3049  if (data == src)
3050    mov(dst, src);
3051}
3052
3053void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3054#ifdef ASSERT
3055  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3056#endif
3057  if (Universe::narrow_oop_base() == NULL) {
3058    if (Universe::narrow_oop_shift() != 0 || d != s) {
3059      lsl(d, s, Universe::narrow_oop_shift());
3060    }
3061  } else {
3062    Label done;
3063    if (d != s)
3064      mov(d, s);
3065    cbz(s, done);
3066    add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3067    bind(done);
3068  }
3069  verify_oop(d, "broken oop in decode_heap_oop");
3070}
3071
3072void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3073  assert (UseCompressedOops, "should only be used for compressed headers");
3074  assert (Universe::heap() != NULL, "java heap should be initialized");
3075  // Cannot assert, unverified entry point counts instructions (see .ad file)
3076  // vtableStubs also counts instructions in pd_code_size_limit.
3077  // Also do not verify_oop as this is called by verify_oop.
3078  if (Universe::narrow_oop_shift() != 0) {
3079    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3080    if (Universe::narrow_oop_base() != NULL) {
3081      add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3082    } else {
3083      add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3084    }
3085  } else {
3086    assert (Universe::narrow_oop_base() == NULL, "sanity");
3087  }
3088}
3089
3090void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3091  assert (UseCompressedOops, "should only be used for compressed headers");
3092  assert (Universe::heap() != NULL, "java heap should be initialized");
3093  // Cannot assert, unverified entry point counts instructions (see .ad file)
3094  // vtableStubs also counts instructions in pd_code_size_limit.
3095  // Also do not verify_oop as this is called by verify_oop.
3096  if (Universe::narrow_oop_shift() != 0) {
3097    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3098    if (Universe::narrow_oop_base() != NULL) {
3099      add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3100    } else {
3101      add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3102    }
3103  } else {
3104    assert (Universe::narrow_oop_base() == NULL, "sanity");
3105    if (dst != src) {
3106      mov(dst, src);
3107    }
3108  }
3109}
3110
3111void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3112  if (Universe::narrow_klass_base() == NULL) {
3113    if (Universe::narrow_klass_shift() != 0) {
3114      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3115      lsr(dst, src, LogKlassAlignmentInBytes);
3116    } else {
3117      if (dst != src) mov(dst, src);
3118    }
3119    return;
3120  }
3121
3122  if (use_XOR_for_compressed_class_base) {
3123    if (Universe::narrow_klass_shift() != 0) {
3124      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3125      lsr(dst, dst, LogKlassAlignmentInBytes);
3126    } else {
3127      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3128    }
3129    return;
3130  }
3131
3132  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3133      && Universe::narrow_klass_shift() == 0) {
3134    movw(dst, src);
3135    return;
3136  }
3137
3138#ifdef ASSERT
3139  verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3140#endif
3141
3142  Register rbase = dst;
3143  if (dst == src) rbase = rheapbase;
3144  mov(rbase, (uint64_t)Universe::narrow_klass_base());
3145  sub(dst, src, rbase);
3146  if (Universe::narrow_klass_shift() != 0) {
3147    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3148    lsr(dst, dst, LogKlassAlignmentInBytes);
3149  }
3150  if (dst == src) reinit_heapbase();
3151}
3152
3153void MacroAssembler::encode_klass_not_null(Register r) {
3154  encode_klass_not_null(r, r);
3155}
3156
3157void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3158  Register rbase = dst;
3159  assert (UseCompressedClassPointers, "should only be used for compressed headers");
3160
3161  if (Universe::narrow_klass_base() == NULL) {
3162    if (Universe::narrow_klass_shift() != 0) {
3163      assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3164      lsl(dst, src, LogKlassAlignmentInBytes);
3165    } else {
3166      if (dst != src) mov(dst, src);
3167    }
3168    return;
3169  }
3170
3171  if (use_XOR_for_compressed_class_base) {
3172    if (Universe::narrow_klass_shift() != 0) {
3173      lsl(dst, src, LogKlassAlignmentInBytes);
3174      eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3175    } else {
3176      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3177    }
3178    return;
3179  }
3180
3181  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3182      && Universe::narrow_klass_shift() == 0) {
3183    if (dst != src)
3184      movw(dst, src);
3185    movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3186    return;
3187  }
3188
3189  // Cannot assert, unverified entry point counts instructions (see .ad file)
3190  // vtableStubs also counts instructions in pd_code_size_limit.
3191  // Also do not verify_oop as this is called by verify_oop.
3192  if (dst == src) rbase = rheapbase;
3193  mov(rbase, (uint64_t)Universe::narrow_klass_base());
3194  if (Universe::narrow_klass_shift() != 0) {
3195    assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3196    add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3197  } else {
3198    add(dst, rbase, src);
3199  }
3200  if (dst == src) reinit_heapbase();
3201}
3202
3203void  MacroAssembler::decode_klass_not_null(Register r) {
3204  decode_klass_not_null(r, r);
3205}
3206
3207void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3208  assert (UseCompressedOops, "should only be used for compressed oops");
3209  assert (Universe::heap() != NULL, "java heap should be initialized");
3210  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3211
3212  int oop_index = oop_recorder()->find_index(obj);
3213  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3214
3215  InstructionMark im(this);
3216  RelocationHolder rspec = oop_Relocation::spec(oop_index);
3217  code_section()->relocate(inst_mark(), rspec);
3218  movz(dst, 0xDEAD, 16);
3219  movk(dst, 0xBEEF);
3220}
3221
3222void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3223  assert (UseCompressedClassPointers, "should only be used for compressed headers");
3224  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3225  int index = oop_recorder()->find_index(k);
3226  assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3227
3228  InstructionMark im(this);
3229  RelocationHolder rspec = metadata_Relocation::spec(index);
3230  code_section()->relocate(inst_mark(), rspec);
3231  narrowKlass nk = Klass::encode_klass(k);
3232  movz(dst, (nk >> 16), 16);
3233  movk(dst, nk & 0xffff);
3234}
3235
3236void MacroAssembler::load_heap_oop(Register dst, Address src)
3237{
3238  if (UseCompressedOops) {
3239    ldrw(dst, src);
3240    decode_heap_oop(dst);
3241  } else {
3242    ldr(dst, src);
3243  }
3244}
3245
3246void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
3247{
3248  if (UseCompressedOops) {
3249    ldrw(dst, src);
3250    decode_heap_oop_not_null(dst);
3251  } else {
3252    ldr(dst, src);
3253  }
3254}
3255
3256void MacroAssembler::store_heap_oop(Address dst, Register src) {
3257  if (UseCompressedOops) {
3258    assert(!dst.uses(src), "not enough registers");
3259    encode_heap_oop(src);
3260    strw(src, dst);
3261  } else
3262    str(src, dst);
3263}
3264
3265// Used for storing NULLs.
3266void MacroAssembler::store_heap_oop_null(Address dst) {
3267  if (UseCompressedOops) {
3268    strw(zr, dst);
3269  } else
3270    str(zr, dst);
3271}
3272
3273#if INCLUDE_ALL_GCS
3274void MacroAssembler::g1_write_barrier_pre(Register obj,
3275                                          Register pre_val,
3276                                          Register thread,
3277                                          Register tmp,
3278                                          bool tosca_live,
3279                                          bool expand_call) {
3280  // If expand_call is true then we expand the call_VM_leaf macro
3281  // directly to skip generating the check by
3282  // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3283
3284  assert(thread == rthread, "must be");
3285
3286  Label done;
3287  Label runtime;
3288
3289  assert(pre_val != noreg, "check this code");
3290
3291  if (obj != noreg)
3292    assert_different_registers(obj, pre_val, tmp);
3293
3294  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3295                                       PtrQueue::byte_offset_of_active()));
3296  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3297                                       PtrQueue::byte_offset_of_index()));
3298  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3299                                       PtrQueue::byte_offset_of_buf()));
3300
3301
3302  // Is marking active?
3303  if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
3304    ldrw(tmp, in_progress);
3305  } else {
3306    assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
3307    ldrb(tmp, in_progress);
3308  }
3309  cbzw(tmp, done);
3310
3311  // Do we need to load the previous value?
3312  if (obj != noreg) {
3313    load_heap_oop(pre_val, Address(obj, 0));
3314  }
3315
3316  // Is the previous value null?
3317  cbz(pre_val, done);
3318
3319  // Can we store original value in the thread's buffer?
3320  // Is index == 0?
3321  // (The index field is typed as size_t.)
3322
3323  ldr(tmp, index);                      // tmp := *index_adr
3324  cbz(tmp, runtime);                    // tmp == 0?
3325                                        // If yes, goto runtime
3326
3327  sub(tmp, tmp, wordSize);              // tmp := tmp - wordSize
3328  str(tmp, index);                      // *index_adr := tmp
3329  ldr(rscratch1, buffer);
3330  add(tmp, tmp, rscratch1);             // tmp := tmp + *buffer_adr
3331
3332  // Record the previous value
3333  str(pre_val, Address(tmp, 0));
3334  b(done);
3335
3336  bind(runtime);
3337  // save the live input values
3338  push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3339
3340  // Calling the runtime using the regular call_VM_leaf mechanism generates
3341  // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3342  // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
3343  //
3344  // If we care generating the pre-barrier without a frame (e.g. in the
3345  // intrinsified Reference.get() routine) then ebp might be pointing to
3346  // the caller frame and so this check will most likely fail at runtime.
3347  //
3348  // Expanding the call directly bypasses the generation of the check.
3349  // So when we do not have have a full interpreter frame on the stack
3350  // expand_call should be passed true.
3351
3352  if (expand_call) {
3353    assert(pre_val != c_rarg1, "smashed arg");
3354    pass_arg1(this, thread);
3355    pass_arg0(this, pre_val);
3356    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3357  } else {
3358    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3359  }
3360
3361  pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3362
3363  bind(done);
3364}
3365
3366void MacroAssembler::g1_write_barrier_post(Register store_addr,
3367                                           Register new_val,
3368                                           Register thread,
3369                                           Register tmp,
3370                                           Register tmp2) {
3371  assert(thread == rthread, "must be");
3372
3373  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3374                                       PtrQueue::byte_offset_of_index()));
3375  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3376                                       PtrQueue::byte_offset_of_buf()));
3377
3378  BarrierSet* bs = Universe::heap()->barrier_set();
3379  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3380  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3381
3382  Label done;
3383  Label runtime;
3384
3385  // Does store cross heap regions?
3386
3387  eor(tmp, store_addr, new_val);
3388  lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
3389  cbz(tmp, done);
3390
3391  // crosses regions, storing NULL?
3392
3393  cbz(new_val, done);
3394
3395  // storing region crossing non-NULL, is card already dirty?
3396
3397  ExternalAddress cardtable((address) ct->byte_map_base);
3398  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3399  const Register card_addr = tmp;
3400
3401  lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
3402
3403  unsigned long offset;
3404  adrp(tmp2, cardtable, offset);
3405
3406  // get the address of the card
3407  add(card_addr, card_addr, tmp2);
3408  ldrb(tmp2, Address(card_addr, offset));
3409  cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3410  br(Assembler::EQ, done);
3411
3412  assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
3413
3414  membar(Assembler::StoreLoad);
3415
3416  ldrb(tmp2, Address(card_addr, offset));
3417  cbzw(tmp2, done);
3418
3419  // storing a region crossing, non-NULL oop, card is clean.
3420  // dirty card and log.
3421
3422  strb(zr, Address(card_addr, offset));
3423
3424  ldr(rscratch1, queue_index);
3425  cbz(rscratch1, runtime);
3426  sub(rscratch1, rscratch1, wordSize);
3427  str(rscratch1, queue_index);
3428
3429  ldr(tmp2, buffer);
3430  str(card_addr, Address(tmp2, rscratch1));
3431  b(done);
3432
3433  bind(runtime);
3434  // save the live input values
3435  push(store_addr->bit(true) | new_val->bit(true), sp);
3436  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3437  pop(store_addr->bit(true) | new_val->bit(true), sp);
3438
3439  bind(done);
3440}
3441
3442#endif // INCLUDE_ALL_GCS
3443
3444Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
3445  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
3446  int index = oop_recorder()->allocate_metadata_index(obj);
3447  RelocationHolder rspec = metadata_Relocation::spec(index);
3448  return Address((address)obj, rspec);
3449}
3450
3451// Move an oop into a register.  immediate is true if we want
3452// immediate instrcutions, i.e. we are not going to patch this
3453// instruction while the code is being executed by another thread.  In
3454// that case we can use move immediates rather than the constant pool.
3455void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
3456  int oop_index;
3457  if (obj == NULL) {
3458    oop_index = oop_recorder()->allocate_oop_index(obj);
3459  } else {
3460    oop_index = oop_recorder()->find_index(obj);
3461    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3462  }
3463  RelocationHolder rspec = oop_Relocation::spec(oop_index);
3464  if (! immediate) {
3465    address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
3466    ldr_constant(dst, Address(dummy, rspec));
3467  } else
3468    mov(dst, Address((address)obj, rspec));
3469}
3470
3471// Move a metadata address into a register.
3472void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
3473  int oop_index;
3474  if (obj == NULL) {
3475    oop_index = oop_recorder()->allocate_metadata_index(obj);
3476  } else {
3477    oop_index = oop_recorder()->find_index(obj);
3478  }
3479  RelocationHolder rspec = metadata_Relocation::spec(oop_index);
3480  mov(dst, Address((address)obj, rspec));
3481}
3482
3483Address MacroAssembler::constant_oop_address(jobject obj) {
3484  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
3485  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
3486  int oop_index = oop_recorder()->find_index(obj);
3487  return Address((address)obj, oop_Relocation::spec(oop_index));
3488}
3489
3490// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3491void MacroAssembler::tlab_allocate(Register obj,
3492                                   Register var_size_in_bytes,
3493                                   int con_size_in_bytes,
3494                                   Register t1,
3495                                   Register t2,
3496                                   Label& slow_case) {
3497  assert_different_registers(obj, t2);
3498  assert_different_registers(obj, var_size_in_bytes);
3499  Register end = t2;
3500
3501  // verify_tlab();
3502
3503  ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
3504  if (var_size_in_bytes == noreg) {
3505    lea(end, Address(obj, con_size_in_bytes));
3506  } else {
3507    lea(end, Address(obj, var_size_in_bytes));
3508  }
3509  ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
3510  cmp(end, rscratch1);
3511  br(Assembler::HI, slow_case);
3512
3513  // update the tlab top pointer
3514  str(end, Address(rthread, JavaThread::tlab_top_offset()));
3515
3516  // recover var_size_in_bytes if necessary
3517  if (var_size_in_bytes == end) {
3518    sub(var_size_in_bytes, var_size_in_bytes, obj);
3519  }
3520  // verify_tlab();
3521}
3522
3523// Preserves r19, and r3.
3524Register MacroAssembler::tlab_refill(Label& retry,
3525                                     Label& try_eden,
3526                                     Label& slow_case) {
3527  Register top = r0;
3528  Register t1  = r2;
3529  Register t2  = r4;
3530  assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
3531  Label do_refill, discard_tlab;
3532
3533  if (!Universe::heap()->supports_inline_contig_alloc()) {
3534    // No allocation in the shared eden.
3535    b(slow_case);
3536  }
3537
3538  ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3539  ldr(t1,  Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3540
3541  // calculate amount of free space
3542  sub(t1, t1, top);
3543  lsr(t1, t1, LogHeapWordSize);
3544
3545  // Retain tlab and allocate object in shared space if
3546  // the amount free in the tlab is too large to discard.
3547
3548  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3549  cmp(t1, rscratch1);
3550  br(Assembler::LE, discard_tlab);
3551
3552  // Retain
3553  // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3554  mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3555  add(rscratch1, rscratch1, t2);
3556  str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3557
3558  if (TLABStats) {
3559    // increment number of slow_allocations
3560    addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
3561         1, rscratch1);
3562  }
3563  b(try_eden);
3564
3565  bind(discard_tlab);
3566  if (TLABStats) {
3567    // increment number of refills
3568    addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
3569         rscratch1);
3570    // accumulate wastage -- t1 is amount free in tlab
3571    addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
3572         rscratch1);
3573  }
3574
3575  // if tlab is currently allocated (top or end != null) then
3576  // fill [top, end + alignment_reserve) with array object
3577  cbz(top, do_refill);
3578
3579  // set up the mark word
3580  mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3581  str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
3582  // set the length to the remaining space
3583  sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
3584  add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3585  lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
3586  strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
3587  // set klass to intArrayKlass
3588  {
3589    unsigned long offset;
3590    // dubious reloc why not an oop reloc?
3591    adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
3592         offset);
3593    ldr(t1, Address(rscratch1, offset));
3594  }
3595  // store klass last.  concurrent gcs assumes klass length is valid if
3596  // klass field is not null.
3597  store_klass(top, t1);
3598
3599  mov(t1, top);
3600  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3601  sub(t1, t1, rscratch1);
3602  incr_allocated_bytes(rthread, t1, 0, rscratch1);
3603
3604  // refill the tlab with an eden allocation
3605  bind(do_refill);
3606  ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3607  lsl(t1, t1, LogHeapWordSize);
3608  // allocate new tlab, address returned in top
3609  eden_allocate(top, t1, 0, t2, slow_case);
3610
3611  // Check that t1 was preserved in eden_allocate.
3612#ifdef ASSERT
3613  if (UseTLAB) {
3614    Label ok;
3615    Register tsize = r4;
3616    assert_different_registers(tsize, rthread, t1);
3617    str(tsize, Address(pre(sp, -16)));
3618    ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3619    lsl(tsize, tsize, LogHeapWordSize);
3620    cmp(t1, tsize);
3621    br(Assembler::EQ, ok);
3622    STOP("assert(t1 != tlab size)");
3623    should_not_reach_here();
3624
3625    bind(ok);
3626    ldr(tsize, Address(post(sp, 16)));
3627  }
3628#endif
3629  str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3630  str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3631  add(top, top, t1);
3632  sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3633  str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3634  verify_tlab();
3635  b(retry);
3636
3637  return rthread; // for use by caller
3638}
3639
3640// Defines obj, preserves var_size_in_bytes
3641void MacroAssembler::eden_allocate(Register obj,
3642                                   Register var_size_in_bytes,
3643                                   int con_size_in_bytes,
3644                                   Register t1,
3645                                   Label& slow_case) {
3646  assert_different_registers(obj, var_size_in_bytes, t1);
3647  if (!Universe::heap()->supports_inline_contig_alloc()) {
3648    b(slow_case);
3649  } else {
3650    Register end = t1;
3651    Register heap_end = rscratch2;
3652    Label retry;
3653    bind(retry);
3654    {
3655      unsigned long offset;
3656      adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
3657      ldr(heap_end, Address(rscratch1, offset));
3658    }
3659
3660    ExternalAddress heap_top((address) Universe::heap()->top_addr());
3661
3662    // Get the current top of the heap
3663    {
3664      unsigned long offset;
3665      adrp(rscratch1, heap_top, offset);
3666      // Use add() here after ARDP, rather than lea().
3667      // lea() does not generate anything if its offset is zero.
3668      // However, relocs expect to find either an ADD or a load/store
3669      // insn after an ADRP.  add() always generates an ADD insn, even
3670      // for add(Rn, Rn, 0).
3671      add(rscratch1, rscratch1, offset);
3672      ldaxr(obj, rscratch1);
3673    }
3674
3675    // Adjust it my the size of our new object
3676    if (var_size_in_bytes == noreg) {
3677      lea(end, Address(obj, con_size_in_bytes));
3678    } else {
3679      lea(end, Address(obj, var_size_in_bytes));
3680    }
3681
3682    // if end < obj then we wrapped around high memory
3683    cmp(end, obj);
3684    br(Assembler::LO, slow_case);
3685
3686    cmp(end, heap_end);
3687    br(Assembler::HI, slow_case);
3688
3689    // If heap_top hasn't been changed by some other thread, update it.
3690    stlxr(rscratch1, end, rscratch1);
3691    cbnzw(rscratch1, retry);
3692  }
3693}
3694
3695void MacroAssembler::verify_tlab() {
3696#ifdef ASSERT
3697  if (UseTLAB && VerifyOops) {
3698    Label next, ok;
3699
3700    stp(rscratch2, rscratch1, Address(pre(sp, -16)));
3701
3702    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3703    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3704    cmp(rscratch2, rscratch1);
3705    br(Assembler::HS, next);
3706    STOP("assert(top >= start)");
3707    should_not_reach_here();
3708
3709    bind(next);
3710    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3711    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3712    cmp(rscratch2, rscratch1);
3713    br(Assembler::HS, ok);
3714    STOP("assert(top <= end)");
3715    should_not_reach_here();
3716
3717    bind(ok);
3718    ldp(rscratch2, rscratch1, Address(post(sp, 16)));
3719  }
3720#endif
3721}
3722
3723// Writes to stack successive pages until offset reached to check for
3724// stack overflow + shadow pages.  This clobbers tmp.
3725void MacroAssembler::bang_stack_size(Register size, Register tmp) {
3726  assert_different_registers(tmp, size, rscratch1);
3727  mov(tmp, sp);
3728  // Bang stack for total size given plus shadow page size.
3729  // Bang one page at a time because large size can bang beyond yellow and
3730  // red zones.
3731  Label loop;
3732  mov(rscratch1, os::vm_page_size());
3733  bind(loop);
3734  lea(tmp, Address(tmp, -os::vm_page_size()));
3735  subsw(size, size, rscratch1);
3736  str(size, Address(tmp));
3737  br(Assembler::GT, loop);
3738
3739  // Bang down shadow pages too.
3740  // At this point, (tmp-0) is the last address touched, so don't
3741  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
3742  // was post-decremented.)  Skip this address by starting at i=1, and
3743  // touch a few more pages below.  N.B.  It is important to touch all
3744  // the way down to and including i=StackShadowPages.
3745  for (int i = 0; i< StackShadowPages-1; i++) {
3746    // this could be any sized move but this is can be a debugging crumb
3747    // so the bigger the better.
3748    lea(tmp, Address(tmp, -os::vm_page_size()));
3749    str(size, Address(tmp));
3750  }
3751}
3752
3753
3754address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
3755  unsigned long off;
3756  adrp(r, Address(page, rtype), off);
3757  InstructionMark im(this);
3758  code_section()->relocate(inst_mark(), rtype);
3759  ldrw(zr, Address(r, off));
3760  return inst_mark();
3761}
3762
3763address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
3764  InstructionMark im(this);
3765  code_section()->relocate(inst_mark(), rtype);
3766  ldrw(zr, Address(r, 0));
3767  return inst_mark();
3768}
3769
3770void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
3771  relocInfo::relocType rtype = dest.rspec().reloc()->type();
3772  if (uabs(pc() - dest.target()) >= (1LL << 32)) {
3773    guarantee(rtype == relocInfo::none
3774              || rtype == relocInfo::external_word_type
3775              || rtype == relocInfo::poll_type
3776              || rtype == relocInfo::poll_return_type,
3777              "can only use a fixed address with an ADRP");
3778    // Out of range.  This doesn't happen very often, but we have to
3779    // handle it
3780    mov(reg1, dest);
3781    byte_offset = 0;
3782  } else {
3783    InstructionMark im(this);
3784    code_section()->relocate(inst_mark(), dest.rspec());
3785    byte_offset = (uint64_t)dest.target() & 0xfff;
3786    _adrp(reg1, dest.target());
3787  }
3788}
3789
3790  bool MacroAssembler::use_acq_rel_for_volatile_fields() {
3791#ifdef PRODUCT
3792    return false;
3793#else
3794    return UseAcqRelForVolatileFields;
3795#endif
3796  }
3797
3798void MacroAssembler::build_frame(int framesize) {
3799  if (framesize == 0) {
3800    // Is this even possible?
3801    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
3802  } else if (framesize < ((1 << 9) + 2 * wordSize)) {
3803    sub(sp, sp, framesize);
3804    stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
3805  } else {
3806    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
3807    if (framesize < ((1 << 12) + 2 * wordSize))
3808      sub(sp, sp, framesize - 2 * wordSize);
3809    else {
3810      mov(rscratch1, framesize - 2 * wordSize);
3811      sub(sp, sp, rscratch1);
3812    }
3813  }
3814}
3815
3816void MacroAssembler::remove_frame(int framesize) {
3817  if (framesize == 0) {
3818    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
3819  } else if (framesize < ((1 << 9) + 2 * wordSize)) {
3820    ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
3821    add(sp, sp, framesize);
3822  } else {
3823    if (framesize < ((1 << 12) + 2 * wordSize))
3824      add(sp, sp, framesize - 2 * wordSize);
3825    else {
3826      mov(rscratch1, framesize - 2 * wordSize);
3827      add(sp, sp, rscratch1);
3828    }
3829    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
3830  }
3831}
3832
3833
3834// Search for str1 in str2 and return index or -1
3835void MacroAssembler::string_indexof(Register str2, Register str1,
3836                                    Register cnt2, Register cnt1,
3837                                    Register tmp1, Register tmp2,
3838                                    Register tmp3, Register tmp4,
3839                                    int icnt1, Register result) {
3840  Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
3841
3842  Register ch1 = rscratch1;
3843  Register ch2 = rscratch2;
3844  Register cnt1tmp = tmp1;
3845  Register cnt2tmp = tmp2;
3846  Register cnt1_neg = cnt1;
3847  Register cnt2_neg = cnt2;
3848  Register result_tmp = tmp4;
3849
3850  // Note, inline_string_indexOf() generates checks:
3851  // if (substr.count > string.count) return -1;
3852  // if (substr.count == 0) return 0;
3853
3854// We have two strings, a source string in str2, cnt2 and a pattern string
3855// in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
3856
3857// For larger pattern and source we use a simplified Boyer Moore algorithm.
3858// With a small pattern and source we use linear scan.
3859
3860  if (icnt1 == -1) {
3861    cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
3862    ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
3863    br(LO, LINEARSEARCH);       // a byte array.
3864    cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
3865    br(HS, LINEARSEARCH);
3866  }
3867
3868// The Boyer Moore alogorithm is based on the description here:-
3869//
3870// http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
3871//
3872// This describes and algorithm with 2 shift rules. The 'Bad Character' rule
3873// and the 'Good Suffix' rule.
3874//
3875// These rules are essentially heuristics for how far we can shift the
3876// pattern along the search string.
3877//
3878// The implementation here uses the 'Bad Character' rule only because of the
3879// complexity of initialisation for the 'Good Suffix' rule.
3880//
3881// This is also known as the Boyer-Moore-Horspool algorithm:-
3882//
3883// http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
3884//
3885// #define ASIZE 128
3886//
3887//    int bm(unsigned char *x, int m, unsigned char *y, int n) {
3888//       int i, j;
3889//       unsigned c;
3890//       unsigned char bc[ASIZE];
3891//
3892//       /* Preprocessing */
3893//       for (i = 0; i < ASIZE; ++i)
3894//          bc[i] = 0;
3895//       for (i = 0; i < m - 1; ) {
3896//          c = x[i];
3897//          ++i;
3898//          if (c < ASIZE) bc[c] = i;
3899//       }
3900//
3901//       /* Searching */
3902//       j = 0;
3903//       while (j <= n - m) {
3904//          c = y[i+j];
3905//          if (x[m-1] == c)
3906//            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
3907//          if (i < 0) return j;
3908//          if (c < ASIZE)
3909//            j = j - bc[y[j+m-1]] + m;
3910//          else
3911//            j += 1; // Advance by 1 only if char >= ASIZE
3912//       }
3913//    }
3914
3915  if (icnt1 == -1) {
3916    BIND(BM);
3917
3918    Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
3919    Label BMADV, BMMATCH, BMCHECKEND;
3920
3921    Register cnt1end = tmp2;
3922    Register str2end = cnt2;
3923    Register skipch = tmp2;
3924
3925    // Restrict ASIZE to 128 to reduce stack space/initialisation.
3926    // The presence of chars >= ASIZE in the target string does not affect
3927    // performance, but we must be careful not to initialise them in the stack
3928    // array.
3929    // The presence of chars >= ASIZE in the source string may adversely affect
3930    // performance since we can only advance by one when we encounter one.
3931
3932      stp(zr, zr, pre(sp, -128));
3933      for (int i = 1; i < 8; i++)
3934          stp(zr, zr, Address(sp, i*16));
3935
3936      mov(cnt1tmp, 0);
3937      sub(cnt1end, cnt1, 1);
3938    BIND(BCLOOP);
3939      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
3940      cmp(ch1, 128);
3941      add(cnt1tmp, cnt1tmp, 1);
3942      br(HS, BCSKIP);
3943      strb(cnt1tmp, Address(sp, ch1));
3944    BIND(BCSKIP);
3945      cmp(cnt1tmp, cnt1end);
3946      br(LT, BCLOOP);
3947
3948      mov(result_tmp, str2);
3949
3950      sub(cnt2, cnt2, cnt1);
3951      add(str2end, str2, cnt2, LSL, 1);
3952    BIND(BMLOOPSTR2);
3953      sub(cnt1tmp, cnt1, 1);
3954      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
3955      ldrh(skipch, Address(str2, cnt1tmp, Address::lsl(1)));
3956      cmp(ch1, skipch);
3957      br(NE, BMSKIP);
3958      subs(cnt1tmp, cnt1tmp, 1);
3959      br(LT, BMMATCH);
3960    BIND(BMLOOPSTR1);
3961      ldrh(ch1, Address(str1, cnt1tmp, Address::lsl(1)));
3962      ldrh(ch2, Address(str2, cnt1tmp, Address::lsl(1)));
3963      cmp(ch1, ch2);
3964      br(NE, BMSKIP);
3965      subs(cnt1tmp, cnt1tmp, 1);
3966      br(GE, BMLOOPSTR1);
3967    BIND(BMMATCH);
3968      sub(result_tmp, str2, result_tmp);
3969      lsr(result, result_tmp, 1);
3970      add(sp, sp, 128);
3971      b(DONE);
3972    BIND(BMADV);
3973      add(str2, str2, 2);
3974      b(BMCHECKEND);
3975    BIND(BMSKIP);
3976      cmp(skipch, 128);
3977      br(HS, BMADV);
3978      ldrb(ch2, Address(sp, skipch));
3979      add(str2, str2, cnt1, LSL, 1);
3980      sub(str2, str2, ch2, LSL, 1);
3981    BIND(BMCHECKEND);
3982      cmp(str2, str2end);
3983      br(LE, BMLOOPSTR2);
3984      add(sp, sp, 128);
3985      b(NOMATCH);
3986  }
3987
3988  BIND(LINEARSEARCH);
3989  {
3990    Label DO1, DO2, DO3;
3991
3992    Register str2tmp = tmp2;
3993    Register first = tmp3;
3994
3995    if (icnt1 == -1)
3996    {
3997        Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT, LAST_WORD;
3998
3999        cmp(cnt1, 4);
4000        br(LT, DOSHORT);
4001
4002        sub(cnt2, cnt2, cnt1);
4003        sub(cnt1, cnt1, 4);
4004        mov(result_tmp, cnt2);
4005
4006        lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4007        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4008        sub(cnt1_neg, zr, cnt1, LSL, 1);
4009        sub(cnt2_neg, zr, cnt2, LSL, 1);
4010        ldr(first, Address(str1, cnt1_neg));
4011
4012      BIND(FIRST_LOOP);
4013        ldr(ch2, Address(str2, cnt2_neg));
4014        cmp(first, ch2);
4015        br(EQ, STR1_LOOP);
4016      BIND(STR2_NEXT);
4017        adds(cnt2_neg, cnt2_neg, 2);
4018        br(LE, FIRST_LOOP);
4019        b(NOMATCH);
4020
4021      BIND(STR1_LOOP);
4022        adds(cnt1tmp, cnt1_neg, 8);
4023        add(cnt2tmp, cnt2_neg, 8);
4024        br(GE, LAST_WORD);
4025
4026      BIND(STR1_NEXT);
4027        ldr(ch1, Address(str1, cnt1tmp));
4028        ldr(ch2, Address(str2, cnt2tmp));
4029        cmp(ch1, ch2);
4030        br(NE, STR2_NEXT);
4031        adds(cnt1tmp, cnt1tmp, 8);
4032        add(cnt2tmp, cnt2tmp, 8);
4033        br(LT, STR1_NEXT);
4034
4035      BIND(LAST_WORD);
4036        ldr(ch1, Address(str1));
4037        sub(str2tmp, str2, cnt1_neg);         // adjust to corresponding
4038        ldr(ch2, Address(str2tmp, cnt2_neg)); // word in str2
4039        cmp(ch1, ch2);
4040        br(NE, STR2_NEXT);
4041        b(MATCH);
4042
4043      BIND(DOSHORT);
4044        cmp(cnt1, 2);
4045        br(LT, DO1);
4046        br(GT, DO3);
4047    }
4048
4049    if (icnt1 == 4) {
4050      Label CH1_LOOP;
4051
4052        ldr(ch1, str1);
4053        sub(cnt2, cnt2, 4);
4054        mov(result_tmp, cnt2);
4055        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4056        sub(cnt2_neg, zr, cnt2, LSL, 1);
4057
4058      BIND(CH1_LOOP);
4059        ldr(ch2, Address(str2, cnt2_neg));
4060        cmp(ch1, ch2);
4061        br(EQ, MATCH);
4062        adds(cnt2_neg, cnt2_neg, 2);
4063        br(LE, CH1_LOOP);
4064        b(NOMATCH);
4065    }
4066
4067    if (icnt1 == -1 || icnt1 == 2) {
4068      Label CH1_LOOP;
4069
4070      BIND(DO2);
4071        ldrw(ch1, str1);
4072        sub(cnt2, cnt2, 2);
4073        mov(result_tmp, cnt2);
4074        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4075        sub(cnt2_neg, zr, cnt2, LSL, 1);
4076
4077      BIND(CH1_LOOP);
4078        ldrw(ch2, Address(str2, cnt2_neg));
4079        cmp(ch1, ch2);
4080        br(EQ, MATCH);
4081        adds(cnt2_neg, cnt2_neg, 2);
4082        br(LE, CH1_LOOP);
4083        b(NOMATCH);
4084    }
4085
4086    if (icnt1 == -1 || icnt1 == 3) {
4087      Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4088
4089      BIND(DO3);
4090        ldrw(first, str1);
4091        ldrh(ch1, Address(str1, 4));
4092
4093        sub(cnt2, cnt2, 3);
4094        mov(result_tmp, cnt2);
4095        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4096        sub(cnt2_neg, zr, cnt2, LSL, 1);
4097
4098      BIND(FIRST_LOOP);
4099        ldrw(ch2, Address(str2, cnt2_neg));
4100        cmpw(first, ch2);
4101        br(EQ, STR1_LOOP);
4102      BIND(STR2_NEXT);
4103        adds(cnt2_neg, cnt2_neg, 2);
4104        br(LE, FIRST_LOOP);
4105        b(NOMATCH);
4106
4107      BIND(STR1_LOOP);
4108        add(cnt2tmp, cnt2_neg, 4);
4109        ldrh(ch2, Address(str2, cnt2tmp));
4110        cmp(ch1, ch2);
4111        br(NE, STR2_NEXT);
4112        b(MATCH);
4113    }
4114
4115    if (icnt1 == -1 || icnt1 == 1) {
4116      Label CH1_LOOP, HAS_ZERO;
4117      Label DO1_SHORT, DO1_LOOP;
4118
4119      BIND(DO1);
4120        ldrh(ch1, str1);
4121        cmp(cnt2, 4);
4122        br(LT, DO1_SHORT);
4123
4124        orr(ch1, ch1, ch1, LSL, 16);
4125        orr(ch1, ch1, ch1, LSL, 32);
4126
4127        sub(cnt2, cnt2, 4);
4128        mov(result_tmp, cnt2);
4129        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4130        sub(cnt2_neg, zr, cnt2, LSL, 1);
4131
4132        mov(tmp3, 0x0001000100010001);
4133      BIND(CH1_LOOP);
4134        ldr(ch2, Address(str2, cnt2_neg));
4135        eor(ch2, ch1, ch2);
4136        sub(tmp1, ch2, tmp3);
4137        orr(tmp2, ch2, 0x7fff7fff7fff7fff);
4138        bics(tmp1, tmp1, tmp2);
4139        br(NE, HAS_ZERO);
4140        adds(cnt2_neg, cnt2_neg, 8);
4141        br(LT, CH1_LOOP);
4142
4143        cmp(cnt2_neg, 8);
4144        mov(cnt2_neg, 0);
4145        br(LT, CH1_LOOP);
4146        b(NOMATCH);
4147
4148      BIND(HAS_ZERO);
4149        rev(tmp1, tmp1);
4150        clz(tmp1, tmp1);
4151        add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4152        b(MATCH);
4153
4154      BIND(DO1_SHORT);
4155        mov(result_tmp, cnt2);
4156        lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4157        sub(cnt2_neg, zr, cnt2, LSL, 1);
4158      BIND(DO1_LOOP);
4159        ldrh(ch2, Address(str2, cnt2_neg));
4160        cmpw(ch1, ch2);
4161        br(EQ, MATCH);
4162        adds(cnt2_neg, cnt2_neg, 2);
4163        br(LT, DO1_LOOP);
4164    }
4165  }
4166  BIND(NOMATCH);
4167    mov(result, -1);
4168    b(DONE);
4169  BIND(MATCH);
4170    add(result, result_tmp, cnt2_neg, ASR, 1);
4171  BIND(DONE);
4172}
4173
4174// Compare strings.
4175void MacroAssembler::string_compare(Register str1, Register str2,
4176                                    Register cnt1, Register cnt2, Register result,
4177                                    Register tmp1) {
4178  Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4179    NEXT_WORD, DIFFERENCE;
4180
4181  BLOCK_COMMENT("string_compare {");
4182
4183  // Compute the minimum of the string lengths and save the difference.
4184  subsw(tmp1, cnt1, cnt2);
4185  cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4186
4187  // A very short string
4188  cmpw(cnt2, 4);
4189  br(Assembler::LT, SHORT_STRING);
4190
4191  // Check if the strings start at the same location.
4192  cmp(str1, str2);
4193  br(Assembler::EQ, LENGTH_DIFF);
4194
4195  // Compare longwords
4196  {
4197    subw(cnt2, cnt2, 4); // The last longword is a special case
4198
4199    // Move both string pointers to the last longword of their
4200    // strings, negate the remaining count, and convert it to bytes.
4201    lea(str1, Address(str1, cnt2, Address::uxtw(1)));
4202    lea(str2, Address(str2, cnt2, Address::uxtw(1)));
4203    sub(cnt2, zr, cnt2, LSL, 1);
4204
4205    // Loop, loading longwords and comparing them into rscratch2.
4206    bind(NEXT_WORD);
4207    ldr(result, Address(str1, cnt2));
4208    ldr(cnt1, Address(str2, cnt2));
4209    adds(cnt2, cnt2, wordSize);
4210    eor(rscratch2, result, cnt1);
4211    cbnz(rscratch2, DIFFERENCE);
4212    br(Assembler::LT, NEXT_WORD);
4213
4214    // Last longword.  In the case where length == 4 we compare the
4215    // same longword twice, but that's still faster than another
4216    // conditional branch.
4217
4218    ldr(result, Address(str1));
4219    ldr(cnt1, Address(str2));
4220    eor(rscratch2, result, cnt1);
4221    cbz(rscratch2, LENGTH_DIFF);
4222
4223    // Find the first different characters in the longwords and
4224    // compute their difference.
4225    bind(DIFFERENCE);
4226    rev(rscratch2, rscratch2);
4227    clz(rscratch2, rscratch2);
4228    andr(rscratch2, rscratch2, -16);
4229    lsrv(result, result, rscratch2);
4230    uxthw(result, result);
4231    lsrv(cnt1, cnt1, rscratch2);
4232    uxthw(cnt1, cnt1);
4233    subw(result, result, cnt1);
4234    b(DONE);
4235  }
4236
4237  bind(SHORT_STRING);
4238  // Is the minimum length zero?
4239  cbz(cnt2, LENGTH_DIFF);
4240
4241  bind(SHORT_LOOP);
4242  load_unsigned_short(result, Address(post(str1, 2)));
4243  load_unsigned_short(cnt1, Address(post(str2, 2)));
4244  subw(result, result, cnt1);
4245  cbnz(result, DONE);
4246  sub(cnt2, cnt2, 1);
4247  cbnz(cnt2, SHORT_LOOP);
4248
4249  // Strings are equal up to min length.  Return the length difference.
4250  bind(LENGTH_DIFF);
4251  mov(result, tmp1);
4252
4253  // That's it
4254  bind(DONE);
4255
4256  BLOCK_COMMENT("} string_compare");
4257}
4258
4259
4260void MacroAssembler::string_equals(Register str1, Register str2,
4261                                   Register cnt, Register result,
4262                                   Register tmp1) {
4263  Label SAME_CHARS, DONE, SHORT_LOOP, SHORT_STRING,
4264    NEXT_WORD;
4265
4266  const Register tmp2 = rscratch1;
4267  assert_different_registers(str1, str2, cnt, result, tmp1, tmp2, rscratch2);
4268
4269  BLOCK_COMMENT("string_equals {");
4270
4271  // Start by assuming that the strings are not equal.
4272  mov(result, zr);
4273
4274  // A very short string
4275  cmpw(cnt, 4);
4276  br(Assembler::LT, SHORT_STRING);
4277
4278  // Check if the strings start at the same location.
4279  cmp(str1, str2);
4280  br(Assembler::EQ, SAME_CHARS);
4281
4282  // Compare longwords
4283  {
4284    subw(cnt, cnt, 4); // The last longword is a special case
4285
4286    // Move both string pointers to the last longword of their
4287    // strings, negate the remaining count, and convert it to bytes.
4288    lea(str1, Address(str1, cnt, Address::uxtw(1)));
4289    lea(str2, Address(str2, cnt, Address::uxtw(1)));
4290    sub(cnt, zr, cnt, LSL, 1);
4291
4292    // Loop, loading longwords and comparing them into rscratch2.
4293    bind(NEXT_WORD);
4294    ldr(tmp1, Address(str1, cnt));
4295    ldr(tmp2, Address(str2, cnt));
4296    adds(cnt, cnt, wordSize);
4297    eor(rscratch2, tmp1, tmp2);
4298    cbnz(rscratch2, DONE);
4299    br(Assembler::LT, NEXT_WORD);
4300
4301    // Last longword.  In the case where length == 4 we compare the
4302    // same longword twice, but that's still faster than another
4303    // conditional branch.
4304
4305    ldr(tmp1, Address(str1));
4306    ldr(tmp2, Address(str2));
4307    eor(rscratch2, tmp1, tmp2);
4308    cbz(rscratch2, SAME_CHARS);
4309    b(DONE);
4310  }
4311
4312  bind(SHORT_STRING);
4313  // Is the length zero?
4314  cbz(cnt, SAME_CHARS);
4315
4316  bind(SHORT_LOOP);
4317  load_unsigned_short(tmp1, Address(post(str1, 2)));
4318  load_unsigned_short(tmp2, Address(post(str2, 2)));
4319  subw(tmp1, tmp1, tmp2);
4320  cbnz(tmp1, DONE);
4321  sub(cnt, cnt, 1);
4322  cbnz(cnt, SHORT_LOOP);
4323
4324  // Strings are equal.
4325  bind(SAME_CHARS);
4326  mov(result, true);
4327
4328  // That's it
4329  bind(DONE);
4330
4331  BLOCK_COMMENT("} string_equals");
4332}
4333
4334// Compare char[] arrays aligned to 4 bytes
4335void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4336                                        Register result, Register tmp1)
4337{
4338  Register cnt1 = rscratch1;
4339  Register cnt2 = rscratch2;
4340  Register tmp2 = rscratch2;
4341
4342  Label SAME, DIFFER, NEXT, TAIL03, TAIL01;
4343
4344  int length_offset  = arrayOopDesc::length_offset_in_bytes();
4345  int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
4346
4347  BLOCK_COMMENT("char_arrays_equals  {");
4348
4349    // different until proven equal
4350    mov(result, false);
4351
4352    // same array?
4353    cmp(ary1, ary2);
4354    br(Assembler::EQ, SAME);
4355
4356    // ne if either null
4357    cbz(ary1, DIFFER);
4358    cbz(ary2, DIFFER);
4359
4360    // lengths ne?
4361    ldrw(cnt1, Address(ary1, length_offset));
4362    ldrw(cnt2, Address(ary2, length_offset));
4363    cmp(cnt1, cnt2);
4364    br(Assembler::NE, DIFFER);
4365
4366    lea(ary1, Address(ary1, base_offset));
4367    lea(ary2, Address(ary2, base_offset));
4368
4369    subs(cnt1, cnt1, 4);
4370    br(LT, TAIL03);
4371
4372  BIND(NEXT);
4373    ldr(tmp1, Address(post(ary1, 8)));
4374    ldr(tmp2, Address(post(ary2, 8)));
4375    subs(cnt1, cnt1, 4);
4376    eor(tmp1, tmp1, tmp2);
4377    cbnz(tmp1, DIFFER);
4378    br(GE, NEXT);
4379
4380  BIND(TAIL03);  // 0-3 chars left, cnt1 = #chars left - 4
4381    tst(cnt1, 0b10);
4382    br(EQ, TAIL01);
4383    ldrw(tmp1, Address(post(ary1, 4)));
4384    ldrw(tmp2, Address(post(ary2, 4)));
4385    cmp(tmp1, tmp2);
4386    br(NE, DIFFER);
4387  BIND(TAIL01);  // 0-1 chars left
4388    tst(cnt1, 0b01);
4389    br(EQ, SAME);
4390    ldrh(tmp1, ary1);
4391    ldrh(tmp2, ary2);
4392    cmp(tmp1, tmp2);
4393    br(NE, DIFFER);
4394
4395  BIND(SAME);
4396    mov(result, true);
4397  BIND(DIFFER); // result already set
4398
4399  BLOCK_COMMENT("} char_arrays_equals");
4400}
4401
4402// encode char[] to byte[] in ISO_8859_1
4403void MacroAssembler::encode_iso_array(Register src, Register dst,
4404                      Register len, Register result,
4405                      FloatRegister Vtmp1, FloatRegister Vtmp2,
4406                      FloatRegister Vtmp3, FloatRegister Vtmp4)
4407{
4408    Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
4409    Register tmp1 = rscratch1;
4410
4411      mov(result, len); // Save initial len
4412
4413#ifndef BUILTIN_SIM
4414      subs(len, len, 32);
4415      br(LT, LOOP_8);
4416
4417// The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
4418// to convert chars to bytes. These set the 'QC' bit in the FPSR if
4419// any char could not fit in a byte, so clear the FPSR so we can test it.
4420      clear_fpsr();
4421
4422    BIND(NEXT_32);
4423      ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
4424      uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
4425      uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
4426      uqxtn(Vtmp2, T8B, Vtmp3, T8H);
4427      uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
4428      get_fpsr(tmp1);
4429      cbnzw(tmp1, LOOP_8);
4430      st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
4431      subs(len, len, 32);
4432      add(src, src, 64);
4433      br(GE, NEXT_32);
4434
4435    BIND(LOOP_8);
4436      adds(len, len, 32-8);
4437      br(LT, LOOP_1);
4438      clear_fpsr(); // QC may be set from loop above, clear again
4439    BIND(NEXT_8);
4440      ld1(Vtmp1, T8H, src);
4441      uqxtn(Vtmp1, T8B, Vtmp1, T8H);
4442      get_fpsr(tmp1);
4443      cbnzw(tmp1, LOOP_1);
4444      st1(Vtmp1, T8B, post(dst, 8));
4445      subs(len, len, 8);
4446      add(src, src, 16);
4447      br(GE, NEXT_8);
4448
4449    BIND(LOOP_1);
4450      adds(len, len, 8);
4451      br(LE, DONE);
4452#else
4453      cbz(len, DONE);
4454#endif
4455    BIND(NEXT_1);
4456      ldrh(tmp1, Address(post(src, 2)));
4457      tst(tmp1, 0xff00);
4458      br(NE, DONE);
4459      strb(tmp1, Address(post(dst, 1)));
4460      subs(len, len, 1);
4461      br(GT, NEXT_1);
4462
4463    BIND(DONE);
4464      sub(result, result, len); // Return index where we stopped
4465}
4466