macroAssembler_aarch64.cpp revision 13184:7903df1b0c4f
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26#include <sys/types.h>
27
28#include "precompiled.hpp"
29#include "asm/assembler.hpp"
30#include "asm/assembler.inline.hpp"
31#include "interpreter/interpreter.hpp"
32
33#include "compiler/disassembler.hpp"
34#include "memory/resourceArea.hpp"
35#include "nativeInst_aarch64.hpp"
36#include "oops/klass.inline.hpp"
37#include "oops/oop.inline.hpp"
38#include "opto/compile.hpp"
39#include "opto/intrinsicnode.hpp"
40#include "opto/node.hpp"
41#include "prims/jvm.h"
42#include "runtime/biasedLocking.hpp"
43#include "runtime/icache.hpp"
44#include "runtime/interfaceSupport.hpp"
45#include "runtime/sharedRuntime.hpp"
46#include "runtime/thread.hpp"
47
48#if INCLUDE_ALL_GCS
49#include "gc/g1/g1CollectedHeap.inline.hpp"
50#include "gc/g1/g1SATBCardTableModRefBS.hpp"
51#include "gc/g1/heapRegion.hpp"
52#endif
53
54#ifdef PRODUCT
55#define BLOCK_COMMENT(str) /* nothing */
56#define STOP(error) stop(error)
57#else
58#define BLOCK_COMMENT(str) block_comment(str)
59#define STOP(error) block_comment(error); stop(error)
60#endif
61
62#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
63
64// Patch any kind of instruction; there may be several instructions.
65// Return the total length (in bytes) of the instructions.
66int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
67  int instructions = 1;
68  assert((uint64_t)target < (1ul << 48), "48-bit overflow in address constant");
69  long offset = (target - branch) >> 2;
70  unsigned insn = *(unsigned*)branch;
71  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b111011) == 0b011000) {
72    // Load register (literal)
73    Instruction_aarch64::spatch(branch, 23, 5, offset);
74  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
75    // Unconditional branch (immediate)
76    Instruction_aarch64::spatch(branch, 25, 0, offset);
77  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
78    // Conditional branch (immediate)
79    Instruction_aarch64::spatch(branch, 23, 5, offset);
80  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
81    // Compare & branch (immediate)
82    Instruction_aarch64::spatch(branch, 23, 5, offset);
83  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
84    // Test & branch (immediate)
85    Instruction_aarch64::spatch(branch, 18, 5, offset);
86  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
87    // PC-rel. addressing
88    offset = target-branch;
89    int shift = Instruction_aarch64::extract(insn, 31, 31);
90    if (shift) {
91      u_int64_t dest = (u_int64_t)target;
92      uint64_t pc_page = (uint64_t)branch >> 12;
93      uint64_t adr_page = (uint64_t)target >> 12;
94      unsigned offset_lo = dest & 0xfff;
95      offset = adr_page - pc_page;
96
97      // We handle 4 types of PC relative addressing
98      //   1 - adrp    Rx, target_page
99      //       ldr/str Ry, [Rx, #offset_in_page]
100      //   2 - adrp    Rx, target_page
101      //       add     Ry, Rx, #offset_in_page
102      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
103      //       movk    Rx, #imm16<<32
104      //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
105      // In the first 3 cases we must check that Rx is the same in the adrp and the
106      // subsequent ldr/str, add or movk instruction. Otherwise we could accidentally end
107      // up treating a type 4 relocation as a type 1, 2 or 3 just because it happened
108      // to be followed by a random unrelated ldr/str, add or movk instruction.
109      //
110      unsigned insn2 = ((unsigned*)branch)[1];
111      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
112                Instruction_aarch64::extract(insn, 4, 0) ==
113                        Instruction_aarch64::extract(insn2, 9, 5)) {
114        // Load/store register (unsigned immediate)
115        unsigned size = Instruction_aarch64::extract(insn2, 31, 30);
116        Instruction_aarch64::patch(branch + sizeof (unsigned),
117                                    21, 10, offset_lo >> size);
118        guarantee(((dest >> size) << size) == dest, "misaligned target");
119        instructions = 2;
120      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
121                Instruction_aarch64::extract(insn, 4, 0) ==
122                        Instruction_aarch64::extract(insn2, 4, 0)) {
123        // add (immediate)
124        Instruction_aarch64::patch(branch + sizeof (unsigned),
125                                   21, 10, offset_lo);
126        instructions = 2;
127      } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
128                   Instruction_aarch64::extract(insn, 4, 0) ==
129                     Instruction_aarch64::extract(insn2, 4, 0)) {
130        // movk #imm16<<32
131        Instruction_aarch64::patch(branch + 4, 20, 5, (uint64_t)target >> 32);
132        long dest = ((long)target & 0xffffffffL) | ((long)branch & 0xffff00000000L);
133        long pc_page = (long)branch >> 12;
134        long adr_page = (long)dest >> 12;
135        offset = adr_page - pc_page;
136        instructions = 2;
137      }
138    }
139    int offset_lo = offset & 3;
140    offset >>= 2;
141    Instruction_aarch64::spatch(branch, 23, 5, offset);
142    Instruction_aarch64::patch(branch, 30, 29, offset_lo);
143  } else if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010100) {
144    u_int64_t dest = (u_int64_t)target;
145    // Move wide constant
146    assert(nativeInstruction_at(branch+4)->is_movk(), "wrong insns in patch");
147    assert(nativeInstruction_at(branch+8)->is_movk(), "wrong insns in patch");
148    Instruction_aarch64::patch(branch, 20, 5, dest & 0xffff);
149    Instruction_aarch64::patch(branch+4, 20, 5, (dest >>= 16) & 0xffff);
150    Instruction_aarch64::patch(branch+8, 20, 5, (dest >>= 16) & 0xffff);
151    assert(target_addr_for_insn(branch) == target, "should be");
152    instructions = 3;
153  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
154             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
155    // nothing to do
156    assert(target == 0, "did not expect to relocate target for polling page load");
157  } else {
158    ShouldNotReachHere();
159  }
160  return instructions * NativeInstruction::instruction_size;
161}
162
163int MacroAssembler::patch_oop(address insn_addr, address o) {
164  int instructions;
165  unsigned insn = *(unsigned*)insn_addr;
166  assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
167
168  // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
169  // narrow OOPs by setting the upper 16 bits in the first
170  // instruction.
171  if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
172    // Move narrow OOP
173    narrowOop n = oopDesc::encode_heap_oop((oop)o);
174    Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
175    Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
176    instructions = 2;
177  } else {
178    // Move wide OOP
179    assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
180    uintptr_t dest = (uintptr_t)o;
181    Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
182    Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
183    Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
184    instructions = 3;
185  }
186  return instructions * NativeInstruction::instruction_size;
187}
188
189int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
190  // Metatdata pointers are either narrow (32 bits) or wide (48 bits).
191  // We encode narrow ones by setting the upper 16 bits in the first
192  // instruction.
193  NativeInstruction *insn = nativeInstruction_at(insn_addr);
194  assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
195         nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
196
197  Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
198  Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
199  return 2 * NativeInstruction::instruction_size;
200}
201
202address MacroAssembler::target_addr_for_insn(address insn_addr, unsigned insn) {
203  long offset = 0;
204  if ((Instruction_aarch64::extract(insn, 29, 24) & 0b011011) == 0b00011000) {
205    // Load register (literal)
206    offset = Instruction_aarch64::sextract(insn, 23, 5);
207    return address(((uint64_t)insn_addr + (offset << 2)));
208  } else if (Instruction_aarch64::extract(insn, 30, 26) == 0b00101) {
209    // Unconditional branch (immediate)
210    offset = Instruction_aarch64::sextract(insn, 25, 0);
211  } else if (Instruction_aarch64::extract(insn, 31, 25) == 0b0101010) {
212    // Conditional branch (immediate)
213    offset = Instruction_aarch64::sextract(insn, 23, 5);
214  } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011010) {
215    // Compare & branch (immediate)
216    offset = Instruction_aarch64::sextract(insn, 23, 5);
217   } else if (Instruction_aarch64::extract(insn, 30, 25) == 0b011011) {
218    // Test & branch (immediate)
219    offset = Instruction_aarch64::sextract(insn, 18, 5);
220  } else if (Instruction_aarch64::extract(insn, 28, 24) == 0b10000) {
221    // PC-rel. addressing
222    offset = Instruction_aarch64::extract(insn, 30, 29);
223    offset |= Instruction_aarch64::sextract(insn, 23, 5) << 2;
224    int shift = Instruction_aarch64::extract(insn, 31, 31) ? 12 : 0;
225    if (shift) {
226      offset <<= shift;
227      uint64_t target_page = ((uint64_t)insn_addr) + offset;
228      target_page &= ((uint64_t)-1) << shift;
229      // Return the target address for the following sequences
230      //   1 - adrp    Rx, target_page
231      //       ldr/str Ry, [Rx, #offset_in_page]
232      //   2 - adrp    Rx, target_page
233      //       add     Ry, Rx, #offset_in_page
234      //   3 - adrp    Rx, target_page (page aligned reloc, offset == 0)
235      //       movk    Rx, #imm12<<32
236      //   4 - adrp    Rx, target_page (page aligned reloc, offset == 0)
237      //
238      // In the first two cases  we check that the register is the same and
239      // return the target_page + the offset within the page.
240      // Otherwise we assume it is a page aligned relocation and return
241      // the target page only.
242      //
243      unsigned insn2 = ((unsigned*)insn_addr)[1];
244      if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
245                Instruction_aarch64::extract(insn, 4, 0) ==
246                        Instruction_aarch64::extract(insn2, 9, 5)) {
247        // Load/store register (unsigned immediate)
248        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
249        unsigned int size = Instruction_aarch64::extract(insn2, 31, 30);
250        return address(target_page + (byte_offset << size));
251      } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
252                Instruction_aarch64::extract(insn, 4, 0) ==
253                        Instruction_aarch64::extract(insn2, 4, 0)) {
254        // add (immediate)
255        unsigned int byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
256        return address(target_page + byte_offset);
257      } else {
258        if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110  &&
259               Instruction_aarch64::extract(insn, 4, 0) ==
260                 Instruction_aarch64::extract(insn2, 4, 0)) {
261          target_page = (target_page & 0xffffffff) |
262                         ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
263        }
264        return (address)target_page;
265      }
266    } else {
267      ShouldNotReachHere();
268    }
269  } else if (Instruction_aarch64::extract(insn, 31, 23) == 0b110100101) {
270    u_int32_t *insns = (u_int32_t *)insn_addr;
271    // Move wide constant: movz, movk, movk.  See movptr().
272    assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
273    assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
274    return address(u_int64_t(Instruction_aarch64::extract(insns[0], 20, 5))
275                   + (u_int64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
276                   + (u_int64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
277  } else if (Instruction_aarch64::extract(insn, 31, 22) == 0b1011100101 &&
278             Instruction_aarch64::extract(insn, 4, 0) == 0b11111) {
279    return 0;
280  } else {
281    ShouldNotReachHere();
282  }
283  return address(((uint64_t)insn_addr + (offset << 2)));
284}
285
286void MacroAssembler::serialize_memory(Register thread, Register tmp) {
287  dsb(Assembler::SY);
288}
289
290
291void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
292  // we must set sp to zero to clear frame
293  str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
294
295  // must clear fp, so that compiled frames are not confused; it is
296  // possible that we need it only for debugging
297  if (clear_fp) {
298    str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
299  }
300
301  // Always clear the pc because it could have been set by make_walkable()
302  str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
303}
304
305// Calls to C land
306//
307// When entering C land, the rfp, & resp of the last Java frame have to be recorded
308// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
309// has to be reset to 0. This is required to allow proper stack traversal.
310void MacroAssembler::set_last_Java_frame(Register last_java_sp,
311                                         Register last_java_fp,
312                                         Register last_java_pc,
313                                         Register scratch) {
314
315  if (last_java_pc->is_valid()) {
316      str(last_java_pc, Address(rthread,
317                                JavaThread::frame_anchor_offset()
318                                + JavaFrameAnchor::last_Java_pc_offset()));
319    }
320
321  // determine last_java_sp register
322  if (last_java_sp == sp) {
323    mov(scratch, sp);
324    last_java_sp = scratch;
325  } else if (!last_java_sp->is_valid()) {
326    last_java_sp = esp;
327  }
328
329  str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
330
331  // last_java_fp is optional
332  if (last_java_fp->is_valid()) {
333    str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
334  }
335}
336
337void MacroAssembler::set_last_Java_frame(Register last_java_sp,
338                                         Register last_java_fp,
339                                         address  last_java_pc,
340                                         Register scratch) {
341  if (last_java_pc != NULL) {
342    adr(scratch, last_java_pc);
343  } else {
344    // FIXME: This is almost never correct.  We should delete all
345    // cases of set_last_Java_frame with last_java_pc=NULL and use the
346    // correct return address instead.
347    adr(scratch, pc());
348  }
349
350  str(scratch, Address(rthread,
351                       JavaThread::frame_anchor_offset()
352                       + JavaFrameAnchor::last_Java_pc_offset()));
353
354  set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
355}
356
357void MacroAssembler::set_last_Java_frame(Register last_java_sp,
358                                         Register last_java_fp,
359                                         Label &L,
360                                         Register scratch) {
361  if (L.is_bound()) {
362    set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
363  } else {
364    InstructionMark im(this);
365    L.add_patch_at(code(), locator());
366    set_last_Java_frame(last_java_sp, last_java_fp, (address)NULL, scratch);
367  }
368}
369
370void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
371  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
372  assert(CodeCache::find_blob(entry.target()) != NULL,
373         "destination of far call not found in code cache");
374  if (far_branches()) {
375    unsigned long offset;
376    // We can use ADRP here because we know that the total size of
377    // the code cache cannot exceed 2Gb.
378    adrp(tmp, entry, offset);
379    add(tmp, tmp, offset);
380    if (cbuf) cbuf->set_insts_mark();
381    blr(tmp);
382  } else {
383    if (cbuf) cbuf->set_insts_mark();
384    bl(entry);
385  }
386}
387
388void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
389  assert(ReservedCodeCacheSize < 4*G, "branch out of range");
390  assert(CodeCache::find_blob(entry.target()) != NULL,
391         "destination of far call not found in code cache");
392  if (far_branches()) {
393    unsigned long offset;
394    // We can use ADRP here because we know that the total size of
395    // the code cache cannot exceed 2Gb.
396    adrp(tmp, entry, offset);
397    add(tmp, tmp, offset);
398    if (cbuf) cbuf->set_insts_mark();
399    br(tmp);
400  } else {
401    if (cbuf) cbuf->set_insts_mark();
402    b(entry);
403  }
404}
405
406void MacroAssembler::reserved_stack_check() {
407    // testing if reserved zone needs to be enabled
408    Label no_reserved_zone_enabling;
409
410    ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
411    cmp(sp, rscratch1);
412    br(Assembler::LO, no_reserved_zone_enabling);
413
414    enter();   // LR and FP are live.
415    lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
416    mov(c_rarg0, rthread);
417    blr(rscratch1);
418    leave();
419
420    // We have already removed our own frame.
421    // throw_delayed_StackOverflowError will think that it's been
422    // called by our caller.
423    lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
424    br(rscratch1);
425    should_not_reach_here();
426
427    bind(no_reserved_zone_enabling);
428}
429
430int MacroAssembler::biased_locking_enter(Register lock_reg,
431                                         Register obj_reg,
432                                         Register swap_reg,
433                                         Register tmp_reg,
434                                         bool swap_reg_contains_mark,
435                                         Label& done,
436                                         Label* slow_case,
437                                         BiasedLockingCounters* counters) {
438  assert(UseBiasedLocking, "why call this otherwise?");
439  assert_different_registers(lock_reg, obj_reg, swap_reg);
440
441  if (PrintBiasedLockingStatistics && counters == NULL)
442    counters = BiasedLocking::counters();
443
444  assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, rscratch1, rscratch2, noreg);
445  assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
446  Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
447  Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
448  Address saved_mark_addr(lock_reg, 0);
449
450  // Biased locking
451  // See whether the lock is currently biased toward our thread and
452  // whether the epoch is still valid
453  // Note that the runtime guarantees sufficient alignment of JavaThread
454  // pointers to allow age to be placed into low bits
455  // First check to see whether biasing is even enabled for this object
456  Label cas_label;
457  int null_check_offset = -1;
458  if (!swap_reg_contains_mark) {
459    null_check_offset = offset();
460    ldr(swap_reg, mark_addr);
461  }
462  andr(tmp_reg, swap_reg, markOopDesc::biased_lock_mask_in_place);
463  cmp(tmp_reg, markOopDesc::biased_lock_pattern);
464  br(Assembler::NE, cas_label);
465  // The bias pattern is present in the object's header. Need to check
466  // whether the bias owner and the epoch are both still current.
467  load_prototype_header(tmp_reg, obj_reg);
468  orr(tmp_reg, tmp_reg, rthread);
469  eor(tmp_reg, swap_reg, tmp_reg);
470  andr(tmp_reg, tmp_reg, ~((int) markOopDesc::age_mask_in_place));
471  if (counters != NULL) {
472    Label around;
473    cbnz(tmp_reg, around);
474    atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, rscratch1, rscratch2);
475    b(done);
476    bind(around);
477  } else {
478    cbz(tmp_reg, done);
479  }
480
481  Label try_revoke_bias;
482  Label try_rebias;
483
484  // At this point we know that the header has the bias pattern and
485  // that we are not the bias owner in the current epoch. We need to
486  // figure out more details about the state of the header in order to
487  // know what operations can be legally performed on the object's
488  // header.
489
490  // If the low three bits in the xor result aren't clear, that means
491  // the prototype header is no longer biased and we have to revoke
492  // the bias on this object.
493  andr(rscratch1, tmp_reg, markOopDesc::biased_lock_mask_in_place);
494  cbnz(rscratch1, try_revoke_bias);
495
496  // Biasing is still enabled for this data type. See whether the
497  // epoch of the current bias is still valid, meaning that the epoch
498  // bits of the mark word are equal to the epoch bits of the
499  // prototype header. (Note that the prototype header's epoch bits
500  // only change at a safepoint.) If not, attempt to rebias the object
501  // toward the current thread. Note that we must be absolutely sure
502  // that the current epoch is invalid in order to do this because
503  // otherwise the manipulations it performs on the mark word are
504  // illegal.
505  andr(rscratch1, tmp_reg, markOopDesc::epoch_mask_in_place);
506  cbnz(rscratch1, try_rebias);
507
508  // The epoch of the current bias is still valid but we know nothing
509  // about the owner; it might be set or it might be clear. Try to
510  // acquire the bias of the object using an atomic operation. If this
511  // fails we will go in to the runtime to revoke the object's bias.
512  // Note that we first construct the presumed unbiased header so we
513  // don't accidentally blow away another thread's valid bias.
514  {
515    Label here;
516    mov(rscratch1, markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
517    andr(swap_reg, swap_reg, rscratch1);
518    orr(tmp_reg, swap_reg, rthread);
519    cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
520    // If the biasing toward our thread failed, this means that
521    // another thread succeeded in biasing it toward itself and we
522    // need to revoke that bias. The revocation will occur in the
523    // interpreter runtime in the slow case.
524    bind(here);
525    if (counters != NULL) {
526      atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
527                  tmp_reg, rscratch1, rscratch2);
528    }
529  }
530  b(done);
531
532  bind(try_rebias);
533  // At this point we know the epoch has expired, meaning that the
534  // current "bias owner", if any, is actually invalid. Under these
535  // circumstances _only_, we are allowed to use the current header's
536  // value as the comparison value when doing the cas to acquire the
537  // bias in the current epoch. In other words, we allow transfer of
538  // the bias from one thread to another directly in this situation.
539  //
540  // FIXME: due to a lack of registers we currently blow away the age
541  // bits in this situation. Should attempt to preserve them.
542  {
543    Label here;
544    load_prototype_header(tmp_reg, obj_reg);
545    orr(tmp_reg, rthread, tmp_reg);
546    cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, slow_case);
547    // If the biasing toward our thread failed, then another thread
548    // succeeded in biasing it toward itself and we need to revoke that
549    // bias. The revocation will occur in the runtime in the slow case.
550    bind(here);
551    if (counters != NULL) {
552      atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
553                  tmp_reg, rscratch1, rscratch2);
554    }
555  }
556  b(done);
557
558  bind(try_revoke_bias);
559  // The prototype mark in the klass doesn't have the bias bit set any
560  // more, indicating that objects of this data type are not supposed
561  // to be biased any more. We are going to try to reset the mark of
562  // this object to the prototype value and fall through to the
563  // CAS-based locking scheme. Note that if our CAS fails, it means
564  // that another thread raced us for the privilege of revoking the
565  // bias of this particular object, so it's okay to continue in the
566  // normal locking code.
567  //
568  // FIXME: due to a lack of registers we currently blow away the age
569  // bits in this situation. Should attempt to preserve them.
570  {
571    Label here, nope;
572    load_prototype_header(tmp_reg, obj_reg);
573    cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, rscratch1, here, &nope);
574    bind(here);
575
576    // Fall through to the normal CAS-based lock, because no matter what
577    // the result of the above CAS, some thread must have succeeded in
578    // removing the bias bit from the object's header.
579    if (counters != NULL) {
580      atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()), tmp_reg,
581                  rscratch1, rscratch2);
582    }
583    bind(nope);
584  }
585
586  bind(cas_label);
587
588  return null_check_offset;
589}
590
591void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
592  assert(UseBiasedLocking, "why call this otherwise?");
593
594  // Check for biased locking unlock case, which is a no-op
595  // Note: we do not have to check the thread ID for two reasons.
596  // First, the interpreter checks for IllegalMonitorStateException at
597  // a higher level. Second, if the bias was revoked while we held the
598  // lock, the object could not be rebiased toward another thread, so
599  // the bias bit would be clear.
600  ldr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
601  andr(temp_reg, temp_reg, markOopDesc::biased_lock_mask_in_place);
602  cmp(temp_reg, markOopDesc::biased_lock_pattern);
603  br(Assembler::EQ, done);
604}
605
606static void pass_arg0(MacroAssembler* masm, Register arg) {
607  if (c_rarg0 != arg ) {
608    masm->mov(c_rarg0, arg);
609  }
610}
611
612static void pass_arg1(MacroAssembler* masm, Register arg) {
613  if (c_rarg1 != arg ) {
614    masm->mov(c_rarg1, arg);
615  }
616}
617
618static void pass_arg2(MacroAssembler* masm, Register arg) {
619  if (c_rarg2 != arg ) {
620    masm->mov(c_rarg2, arg);
621  }
622}
623
624static void pass_arg3(MacroAssembler* masm, Register arg) {
625  if (c_rarg3 != arg ) {
626    masm->mov(c_rarg3, arg);
627  }
628}
629
630void MacroAssembler::call_VM_base(Register oop_result,
631                                  Register java_thread,
632                                  Register last_java_sp,
633                                  address  entry_point,
634                                  int      number_of_arguments,
635                                  bool     check_exceptions) {
636   // determine java_thread register
637  if (!java_thread->is_valid()) {
638    java_thread = rthread;
639  }
640
641  // determine last_java_sp register
642  if (!last_java_sp->is_valid()) {
643    last_java_sp = esp;
644  }
645
646  // debugging support
647  assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
648  assert(java_thread == rthread, "unexpected register");
649#ifdef ASSERT
650  // TraceBytecodes does not use r12 but saves it over the call, so don't verify
651  // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
652#endif // ASSERT
653
654  assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
655  assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
656
657  // push java thread (becomes first argument of C function)
658
659  mov(c_rarg0, java_thread);
660
661  // set last Java frame before call
662  assert(last_java_sp != rfp, "can't use rfp");
663
664  Label l;
665  set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
666
667  // do the call, remove parameters
668  MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
669
670  // reset last Java frame
671  // Only interpreter should have to clear fp
672  reset_last_Java_frame(true);
673
674   // C++ interp handles this in the interpreter
675  check_and_handle_popframe(java_thread);
676  check_and_handle_earlyret(java_thread);
677
678  if (check_exceptions) {
679    // check for pending exceptions (java_thread is set upon return)
680    ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
681    Label ok;
682    cbz(rscratch1, ok);
683    lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
684    br(rscratch1);
685    bind(ok);
686  }
687
688  // get oop result if there is one and reset the value in the thread
689  if (oop_result->is_valid()) {
690    get_vm_result(oop_result, java_thread);
691  }
692}
693
694void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
695  call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
696}
697
698// Maybe emit a call via a trampoline.  If the code cache is small
699// trampolines won't be emitted.
700
701address MacroAssembler::trampoline_call(Address entry, CodeBuffer *cbuf) {
702  assert(JavaThread::current()->is_Compiler_thread(), "just checking");
703  assert(entry.rspec().type() == relocInfo::runtime_call_type
704         || entry.rspec().type() == relocInfo::opt_virtual_call_type
705         || entry.rspec().type() == relocInfo::static_call_type
706         || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
707
708  unsigned int start_offset = offset();
709  if (far_branches() && !Compile::current()->in_scratch_emit_size()) {
710    address stub = emit_trampoline_stub(start_offset, entry.target());
711    if (stub == NULL) {
712      return NULL; // CodeCache is full
713    }
714  }
715
716  if (cbuf) cbuf->set_insts_mark();
717  relocate(entry.rspec());
718  if (!far_branches()) {
719    bl(entry.target());
720  } else {
721    bl(pc());
722  }
723  // just need to return a non-null address
724  return pc();
725}
726
727
728// Emit a trampoline stub for a call to a target which is too far away.
729//
730// code sequences:
731//
732// call-site:
733//   branch-and-link to <destination> or <trampoline stub>
734//
735// Related trampoline stub for this call site in the stub section:
736//   load the call target from the constant pool
737//   branch (LR still points to the call site above)
738
739address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
740                                             address dest) {
741  address stub = start_a_stub(Compile::MAX_stubs_size/2);
742  if (stub == NULL) {
743    return NULL;  // CodeBuffer::expand failed
744  }
745
746  // Create a trampoline stub relocation which relates this trampoline stub
747  // with the call instruction at insts_call_instruction_offset in the
748  // instructions code-section.
749  align(wordSize);
750  relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
751                                            + insts_call_instruction_offset));
752  const int stub_start_offset = offset();
753
754  // Now, create the trampoline stub's code:
755  // - load the call
756  // - call
757  Label target;
758  ldr(rscratch1, target);
759  br(rscratch1);
760  bind(target);
761  assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
762         "should be");
763  emit_int64((int64_t)dest);
764
765  const address stub_start_addr = addr_at(stub_start_offset);
766
767  assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
768
769  end_a_stub();
770  return stub;
771}
772
773address MacroAssembler::ic_call(address entry, jint method_index) {
774  RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
775  // address const_ptr = long_constant((jlong)Universe::non_oop_word());
776  // unsigned long offset;
777  // ldr_constant(rscratch2, const_ptr);
778  movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
779  return trampoline_call(Address(entry, rh));
780}
781
782// Implementation of call_VM versions
783
784void MacroAssembler::call_VM(Register oop_result,
785                             address entry_point,
786                             bool check_exceptions) {
787  call_VM_helper(oop_result, entry_point, 0, check_exceptions);
788}
789
790void MacroAssembler::call_VM(Register oop_result,
791                             address entry_point,
792                             Register arg_1,
793                             bool check_exceptions) {
794  pass_arg1(this, arg_1);
795  call_VM_helper(oop_result, entry_point, 1, check_exceptions);
796}
797
798void MacroAssembler::call_VM(Register oop_result,
799                             address entry_point,
800                             Register arg_1,
801                             Register arg_2,
802                             bool check_exceptions) {
803  assert(arg_1 != c_rarg2, "smashed arg");
804  pass_arg2(this, arg_2);
805  pass_arg1(this, arg_1);
806  call_VM_helper(oop_result, entry_point, 2, check_exceptions);
807}
808
809void MacroAssembler::call_VM(Register oop_result,
810                             address entry_point,
811                             Register arg_1,
812                             Register arg_2,
813                             Register arg_3,
814                             bool check_exceptions) {
815  assert(arg_1 != c_rarg3, "smashed arg");
816  assert(arg_2 != c_rarg3, "smashed arg");
817  pass_arg3(this, arg_3);
818
819  assert(arg_1 != c_rarg2, "smashed arg");
820  pass_arg2(this, arg_2);
821
822  pass_arg1(this, arg_1);
823  call_VM_helper(oop_result, entry_point, 3, check_exceptions);
824}
825
826void MacroAssembler::call_VM(Register oop_result,
827                             Register last_java_sp,
828                             address entry_point,
829                             int number_of_arguments,
830                             bool check_exceptions) {
831  call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
832}
833
834void MacroAssembler::call_VM(Register oop_result,
835                             Register last_java_sp,
836                             address entry_point,
837                             Register arg_1,
838                             bool check_exceptions) {
839  pass_arg1(this, arg_1);
840  call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
841}
842
843void MacroAssembler::call_VM(Register oop_result,
844                             Register last_java_sp,
845                             address entry_point,
846                             Register arg_1,
847                             Register arg_2,
848                             bool check_exceptions) {
849
850  assert(arg_1 != c_rarg2, "smashed arg");
851  pass_arg2(this, arg_2);
852  pass_arg1(this, arg_1);
853  call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
854}
855
856void MacroAssembler::call_VM(Register oop_result,
857                             Register last_java_sp,
858                             address entry_point,
859                             Register arg_1,
860                             Register arg_2,
861                             Register arg_3,
862                             bool check_exceptions) {
863  assert(arg_1 != c_rarg3, "smashed arg");
864  assert(arg_2 != c_rarg3, "smashed arg");
865  pass_arg3(this, arg_3);
866  assert(arg_1 != c_rarg2, "smashed arg");
867  pass_arg2(this, arg_2);
868  pass_arg1(this, arg_1);
869  call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
870}
871
872
873void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
874  ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
875  str(zr, Address(java_thread, JavaThread::vm_result_offset()));
876  verify_oop(oop_result, "broken oop in call_VM_base");
877}
878
879void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
880  ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
881  str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
882}
883
884void MacroAssembler::align(int modulus) {
885  while (offset() % modulus != 0) nop();
886}
887
888// these are no-ops overridden by InterpreterMacroAssembler
889
890void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
891
892void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
893
894
895RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
896                                                      Register tmp,
897                                                      int offset) {
898  intptr_t value = *delayed_value_addr;
899  if (value != 0)
900    return RegisterOrConstant(value + offset);
901
902  // load indirectly to solve generation ordering problem
903  ldr(tmp, ExternalAddress((address) delayed_value_addr));
904
905  if (offset != 0)
906    add(tmp, tmp, offset);
907
908  return RegisterOrConstant(tmp);
909}
910
911
912void MacroAssembler:: notify(int type) {
913  if (type == bytecode_start) {
914    // set_last_Java_frame(esp, rfp, (address)NULL);
915    Assembler:: notify(type);
916    // reset_last_Java_frame(true);
917  }
918  else
919    Assembler:: notify(type);
920}
921
922// Look up the method for a megamorphic invokeinterface call.
923// The target method is determined by <intf_klass, itable_index>.
924// The receiver klass is in recv_klass.
925// On success, the result will be in method_result, and execution falls through.
926// On failure, execution transfers to the given label.
927void MacroAssembler::lookup_interface_method(Register recv_klass,
928                                             Register intf_klass,
929                                             RegisterOrConstant itable_index,
930                                             Register method_result,
931                                             Register scan_temp,
932                                             Label& L_no_such_interface) {
933  assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
934  assert(itable_index.is_constant() || itable_index.as_register() == method_result,
935         "caller must use same register for non-constant itable index as for method");
936
937  // Compute start of first itableOffsetEntry (which is at the end of the vtable)
938  int vtable_base = in_bytes(Klass::vtable_start_offset());
939  int itentry_off = itableMethodEntry::method_offset_in_bytes();
940  int scan_step   = itableOffsetEntry::size() * wordSize;
941  int vte_size    = vtableEntry::size_in_bytes();
942  assert(vte_size == wordSize, "else adjust times_vte_scale");
943
944  ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
945
946  // %%% Could store the aligned, prescaled offset in the klassoop.
947  // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
948  lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
949  add(scan_temp, scan_temp, vtable_base);
950
951  // Adjust recv_klass by scaled itable_index, so we can free itable_index.
952  assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
953  // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
954  lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
955  if (itentry_off)
956    add(recv_klass, recv_klass, itentry_off);
957
958  // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
959  //   if (scan->interface() == intf) {
960  //     result = (klass + scan->offset() + itable_index);
961  //   }
962  // }
963  Label search, found_method;
964
965  for (int peel = 1; peel >= 0; peel--) {
966    ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
967    cmp(intf_klass, method_result);
968
969    if (peel) {
970      br(Assembler::EQ, found_method);
971    } else {
972      br(Assembler::NE, search);
973      // (invert the test to fall through to found_method...)
974    }
975
976    if (!peel)  break;
977
978    bind(search);
979
980    // Check that the previous entry is non-null.  A null entry means that
981    // the receiver class doesn't implement the interface, and wasn't the
982    // same as when the caller was compiled.
983    cbz(method_result, L_no_such_interface);
984    add(scan_temp, scan_temp, scan_step);
985  }
986
987  bind(found_method);
988
989  // Got a hit.
990  ldr(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
991  ldr(method_result, Address(recv_klass, scan_temp));
992}
993
994// virtual method calling
995void MacroAssembler::lookup_virtual_method(Register recv_klass,
996                                           RegisterOrConstant vtable_index,
997                                           Register method_result) {
998  const int base = in_bytes(Klass::vtable_start_offset());
999  assert(vtableEntry::size() * wordSize == 8,
1000         "adjust the scaling in the code below");
1001  int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
1002
1003  if (vtable_index.is_register()) {
1004    lea(method_result, Address(recv_klass,
1005                               vtable_index.as_register(),
1006                               Address::lsl(LogBytesPerWord)));
1007    ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1008  } else {
1009    vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1010    ldr(method_result, Address(recv_klass, vtable_offset_in_bytes));
1011  }
1012}
1013
1014void MacroAssembler::check_klass_subtype(Register sub_klass,
1015                           Register super_klass,
1016                           Register temp_reg,
1017                           Label& L_success) {
1018  Label L_failure;
1019  check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
1020  check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
1021  bind(L_failure);
1022}
1023
1024
1025void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1026                                                   Register super_klass,
1027                                                   Register temp_reg,
1028                                                   Label* L_success,
1029                                                   Label* L_failure,
1030                                                   Label* L_slow_path,
1031                                        RegisterOrConstant super_check_offset) {
1032  assert_different_registers(sub_klass, super_klass, temp_reg);
1033  bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1034  if (super_check_offset.is_register()) {
1035    assert_different_registers(sub_klass, super_klass,
1036                               super_check_offset.as_register());
1037  } else if (must_load_sco) {
1038    assert(temp_reg != noreg, "supply either a temp or a register offset");
1039  }
1040
1041  Label L_fallthrough;
1042  int label_nulls = 0;
1043  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1044  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1045  if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
1046  assert(label_nulls <= 1, "at most one NULL in the batch");
1047
1048  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1049  int sco_offset = in_bytes(Klass::super_check_offset_offset());
1050  Address super_check_offset_addr(super_klass, sco_offset);
1051
1052  // Hacked jmp, which may only be used just before L_fallthrough.
1053#define final_jmp(label)                                                \
1054  if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1055  else                            b(label)                /*omit semi*/
1056
1057  // If the pointers are equal, we are done (e.g., String[] elements).
1058  // This self-check enables sharing of secondary supertype arrays among
1059  // non-primary types such as array-of-interface.  Otherwise, each such
1060  // type would need its own customized SSA.
1061  // We move this check to the front of the fast path because many
1062  // type checks are in fact trivially successful in this manner,
1063  // so we get a nicely predicted branch right at the start of the check.
1064  cmp(sub_klass, super_klass);
1065  br(Assembler::EQ, *L_success);
1066
1067  // Check the supertype display:
1068  if (must_load_sco) {
1069    ldrw(temp_reg, super_check_offset_addr);
1070    super_check_offset = RegisterOrConstant(temp_reg);
1071  }
1072  Address super_check_addr(sub_klass, super_check_offset);
1073  ldr(rscratch1, super_check_addr);
1074  cmp(super_klass, rscratch1); // load displayed supertype
1075
1076  // This check has worked decisively for primary supers.
1077  // Secondary supers are sought in the super_cache ('super_cache_addr').
1078  // (Secondary supers are interfaces and very deeply nested subtypes.)
1079  // This works in the same check above because of a tricky aliasing
1080  // between the super_cache and the primary super display elements.
1081  // (The 'super_check_addr' can address either, as the case requires.)
1082  // Note that the cache is updated below if it does not help us find
1083  // what we need immediately.
1084  // So if it was a primary super, we can just fail immediately.
1085  // Otherwise, it's the slow path for us (no success at this point).
1086
1087  if (super_check_offset.is_register()) {
1088    br(Assembler::EQ, *L_success);
1089    cmp(super_check_offset.as_register(), sc_offset);
1090    if (L_failure == &L_fallthrough) {
1091      br(Assembler::EQ, *L_slow_path);
1092    } else {
1093      br(Assembler::NE, *L_failure);
1094      final_jmp(*L_slow_path);
1095    }
1096  } else if (super_check_offset.as_constant() == sc_offset) {
1097    // Need a slow path; fast failure is impossible.
1098    if (L_slow_path == &L_fallthrough) {
1099      br(Assembler::EQ, *L_success);
1100    } else {
1101      br(Assembler::NE, *L_slow_path);
1102      final_jmp(*L_success);
1103    }
1104  } else {
1105    // No slow path; it's a fast decision.
1106    if (L_failure == &L_fallthrough) {
1107      br(Assembler::EQ, *L_success);
1108    } else {
1109      br(Assembler::NE, *L_failure);
1110      final_jmp(*L_success);
1111    }
1112  }
1113
1114  bind(L_fallthrough);
1115
1116#undef final_jmp
1117}
1118
1119// These two are taken from x86, but they look generally useful
1120
1121// scans count pointer sized words at [addr] for occurence of value,
1122// generic
1123void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1124                                Register scratch) {
1125  Label Lloop, Lexit;
1126  cbz(count, Lexit);
1127  bind(Lloop);
1128  ldr(scratch, post(addr, wordSize));
1129  cmp(value, scratch);
1130  br(EQ, Lexit);
1131  sub(count, count, 1);
1132  cbnz(count, Lloop);
1133  bind(Lexit);
1134}
1135
1136// scans count 4 byte words at [addr] for occurence of value,
1137// generic
1138void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1139                                Register scratch) {
1140  Label Lloop, Lexit;
1141  cbz(count, Lexit);
1142  bind(Lloop);
1143  ldrw(scratch, post(addr, wordSize));
1144  cmpw(value, scratch);
1145  br(EQ, Lexit);
1146  sub(count, count, 1);
1147  cbnz(count, Lloop);
1148  bind(Lexit);
1149}
1150
1151void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1152                                                   Register super_klass,
1153                                                   Register temp_reg,
1154                                                   Register temp2_reg,
1155                                                   Label* L_success,
1156                                                   Label* L_failure,
1157                                                   bool set_cond_codes) {
1158  assert_different_registers(sub_klass, super_klass, temp_reg);
1159  if (temp2_reg != noreg)
1160    assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1161#define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1162
1163  Label L_fallthrough;
1164  int label_nulls = 0;
1165  if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
1166  if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
1167  assert(label_nulls <= 1, "at most one NULL in the batch");
1168
1169  // a couple of useful fields in sub_klass:
1170  int ss_offset = in_bytes(Klass::secondary_supers_offset());
1171  int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1172  Address secondary_supers_addr(sub_klass, ss_offset);
1173  Address super_cache_addr(     sub_klass, sc_offset);
1174
1175  BLOCK_COMMENT("check_klass_subtype_slow_path");
1176
1177  // Do a linear scan of the secondary super-klass chain.
1178  // This code is rarely used, so simplicity is a virtue here.
1179  // The repne_scan instruction uses fixed registers, which we must spill.
1180  // Don't worry too much about pre-existing connections with the input regs.
1181
1182  assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1183  assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1184
1185  // Get super_klass value into r0 (even if it was in r5 or r2).
1186  RegSet pushed_registers;
1187  if (!IS_A_TEMP(r2))    pushed_registers += r2;
1188  if (!IS_A_TEMP(r5))    pushed_registers += r5;
1189
1190  if (super_klass != r0 || UseCompressedOops) {
1191    if (!IS_A_TEMP(r0))   pushed_registers += r0;
1192  }
1193
1194  push(pushed_registers, sp);
1195
1196#ifndef PRODUCT
1197  mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1198  Address pst_counter_addr(rscratch2);
1199  ldr(rscratch1, pst_counter_addr);
1200  add(rscratch1, rscratch1, 1);
1201  str(rscratch1, pst_counter_addr);
1202#endif //PRODUCT
1203
1204  // We will consult the secondary-super array.
1205  ldr(r5, secondary_supers_addr);
1206  // Load the array length.
1207  ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1208  // Skip to start of data.
1209  add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1210
1211  cmp(sp, zr); // Clear Z flag; SP is never zero
1212  // Scan R2 words at [R5] for an occurrence of R0.
1213  // Set NZ/Z based on last compare.
1214  repne_scan(r5, r0, r2, rscratch1);
1215
1216  // Unspill the temp. registers:
1217  pop(pushed_registers, sp);
1218
1219  br(Assembler::NE, *L_failure);
1220
1221  // Success.  Cache the super we found and proceed in triumph.
1222  str(super_klass, super_cache_addr);
1223
1224  if (L_success != &L_fallthrough) {
1225    b(*L_success);
1226  }
1227
1228#undef IS_A_TEMP
1229
1230  bind(L_fallthrough);
1231}
1232
1233
1234void MacroAssembler::verify_oop(Register reg, const char* s) {
1235  if (!VerifyOops) return;
1236
1237  // Pass register number to verify_oop_subroutine
1238  const char* b = NULL;
1239  {
1240    ResourceMark rm;
1241    stringStream ss;
1242    ss.print("verify_oop: %s: %s", reg->name(), s);
1243    b = code_string(ss.as_string());
1244  }
1245  BLOCK_COMMENT("verify_oop {");
1246
1247  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1248  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1249
1250  mov(r0, reg);
1251  mov(rscratch1, (address)b);
1252
1253  // call indirectly to solve generation ordering problem
1254  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1255  ldr(rscratch2, Address(rscratch2));
1256  blr(rscratch2);
1257
1258  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1259  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1260
1261  BLOCK_COMMENT("} verify_oop");
1262}
1263
1264void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
1265  if (!VerifyOops) return;
1266
1267  const char* b = NULL;
1268  {
1269    ResourceMark rm;
1270    stringStream ss;
1271    ss.print("verify_oop_addr: %s", s);
1272    b = code_string(ss.as_string());
1273  }
1274  BLOCK_COMMENT("verify_oop_addr {");
1275
1276  stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1277  stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1278
1279  // addr may contain sp so we will have to adjust it based on the
1280  // pushes that we just did.
1281  if (addr.uses(sp)) {
1282    lea(r0, addr);
1283    ldr(r0, Address(r0, 4 * wordSize));
1284  } else {
1285    ldr(r0, addr);
1286  }
1287  mov(rscratch1, (address)b);
1288
1289  // call indirectly to solve generation ordering problem
1290  lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1291  ldr(rscratch2, Address(rscratch2));
1292  blr(rscratch2);
1293
1294  ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1295  ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1296
1297  BLOCK_COMMENT("} verify_oop_addr");
1298}
1299
1300Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1301                                         int extra_slot_offset) {
1302  // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1303  int stackElementSize = Interpreter::stackElementSize;
1304  int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1305#ifdef ASSERT
1306  int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1307  assert(offset1 - offset == stackElementSize, "correct arithmetic");
1308#endif
1309  if (arg_slot.is_constant()) {
1310    return Address(esp, arg_slot.as_constant() * stackElementSize
1311                   + offset);
1312  } else {
1313    add(rscratch1, esp, arg_slot.as_register(),
1314        ext::uxtx, exact_log2(stackElementSize));
1315    return Address(rscratch1, offset);
1316  }
1317}
1318
1319void MacroAssembler::call_VM_leaf_base(address entry_point,
1320                                       int number_of_arguments,
1321                                       Label *retaddr) {
1322  call_VM_leaf_base1(entry_point, number_of_arguments, 0, ret_type_integral, retaddr);
1323}
1324
1325void MacroAssembler::call_VM_leaf_base1(address entry_point,
1326                                        int number_of_gp_arguments,
1327                                        int number_of_fp_arguments,
1328                                        ret_type type,
1329                                        Label *retaddr) {
1330  Label E, L;
1331
1332  stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1333
1334  // We add 1 to number_of_arguments because the thread in arg0 is
1335  // not counted
1336  mov(rscratch1, entry_point);
1337  blrt(rscratch1, number_of_gp_arguments + 1, number_of_fp_arguments, type);
1338  if (retaddr)
1339    bind(*retaddr);
1340
1341  ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1342  maybe_isb();
1343}
1344
1345void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1346  call_VM_leaf_base(entry_point, number_of_arguments);
1347}
1348
1349void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1350  pass_arg0(this, arg_0);
1351  call_VM_leaf_base(entry_point, 1);
1352}
1353
1354void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1355  pass_arg0(this, arg_0);
1356  pass_arg1(this, arg_1);
1357  call_VM_leaf_base(entry_point, 2);
1358}
1359
1360void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1361                                  Register arg_1, Register arg_2) {
1362  pass_arg0(this, arg_0);
1363  pass_arg1(this, arg_1);
1364  pass_arg2(this, arg_2);
1365  call_VM_leaf_base(entry_point, 3);
1366}
1367
1368void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1369  pass_arg0(this, arg_0);
1370  MacroAssembler::call_VM_leaf_base(entry_point, 1);
1371}
1372
1373void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1374
1375  assert(arg_0 != c_rarg1, "smashed arg");
1376  pass_arg1(this, arg_1);
1377  pass_arg0(this, arg_0);
1378  MacroAssembler::call_VM_leaf_base(entry_point, 2);
1379}
1380
1381void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1382  assert(arg_0 != c_rarg2, "smashed arg");
1383  assert(arg_1 != c_rarg2, "smashed arg");
1384  pass_arg2(this, arg_2);
1385  assert(arg_0 != c_rarg1, "smashed arg");
1386  pass_arg1(this, arg_1);
1387  pass_arg0(this, arg_0);
1388  MacroAssembler::call_VM_leaf_base(entry_point, 3);
1389}
1390
1391void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1392  assert(arg_0 != c_rarg3, "smashed arg");
1393  assert(arg_1 != c_rarg3, "smashed arg");
1394  assert(arg_2 != c_rarg3, "smashed arg");
1395  pass_arg3(this, arg_3);
1396  assert(arg_0 != c_rarg2, "smashed arg");
1397  assert(arg_1 != c_rarg2, "smashed arg");
1398  pass_arg2(this, arg_2);
1399  assert(arg_0 != c_rarg1, "smashed arg");
1400  pass_arg1(this, arg_1);
1401  pass_arg0(this, arg_0);
1402  MacroAssembler::call_VM_leaf_base(entry_point, 4);
1403}
1404
1405void MacroAssembler::null_check(Register reg, int offset) {
1406  if (needs_explicit_null_check(offset)) {
1407    // provoke OS NULL exception if reg = NULL by
1408    // accessing M[reg] w/o changing any registers
1409    // NOTE: this is plenty to provoke a segv
1410    ldr(zr, Address(reg));
1411  } else {
1412    // nothing to do, (later) access of M[reg + offset]
1413    // will provoke OS NULL exception if reg = NULL
1414  }
1415}
1416
1417// MacroAssembler protected routines needed to implement
1418// public methods
1419
1420void MacroAssembler::mov(Register r, Address dest) {
1421  code_section()->relocate(pc(), dest.rspec());
1422  u_int64_t imm64 = (u_int64_t)dest.target();
1423  movptr(r, imm64);
1424}
1425
1426// Move a constant pointer into r.  In AArch64 mode the virtual
1427// address space is 48 bits in size, so we only need three
1428// instructions to create a patchable instruction sequence that can
1429// reach anywhere.
1430void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1431#ifndef PRODUCT
1432  {
1433    char buffer[64];
1434    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1435    block_comment(buffer);
1436  }
1437#endif
1438  assert(imm64 < (1ul << 48), "48-bit overflow in address constant");
1439  movz(r, imm64 & 0xffff);
1440  imm64 >>= 16;
1441  movk(r, imm64 & 0xffff, 16);
1442  imm64 >>= 16;
1443  movk(r, imm64 & 0xffff, 32);
1444}
1445
1446// Macro to mov replicated immediate to vector register.
1447//  Vd will get the following values for different arrangements in T
1448//   imm32 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1449//   imm32 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1450//   imm32 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1451//   imm32 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1452//   imm32 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1453//   imm32 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1454//   T1D/T2D: invalid
1455void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32) {
1456  assert(T != T1D && T != T2D, "invalid arrangement");
1457  if (T == T8B || T == T16B) {
1458    assert((imm32 & ~0xff) == 0, "extraneous bits in unsigned imm32 (T8B/T16B)");
1459    movi(Vd, T, imm32 & 0xff, 0);
1460    return;
1461  }
1462  u_int32_t nimm32 = ~imm32;
1463  if (T == T4H || T == T8H) {
1464    assert((imm32  & ~0xffff) == 0, "extraneous bits in unsigned imm32 (T4H/T8H)");
1465    imm32 &= 0xffff;
1466    nimm32 &= 0xffff;
1467  }
1468  u_int32_t x = imm32;
1469  int movi_cnt = 0;
1470  int movn_cnt = 0;
1471  while (x) { if (x & 0xff) movi_cnt++; x >>= 8; }
1472  x = nimm32;
1473  while (x) { if (x & 0xff) movn_cnt++; x >>= 8; }
1474  if (movn_cnt < movi_cnt) imm32 = nimm32;
1475  unsigned lsl = 0;
1476  while (imm32 && (imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1477  if (movn_cnt < movi_cnt)
1478    mvni(Vd, T, imm32 & 0xff, lsl);
1479  else
1480    movi(Vd, T, imm32 & 0xff, lsl);
1481  imm32 >>= 8; lsl += 8;
1482  while (imm32) {
1483    while ((imm32 & 0xff) == 0) { lsl += 8; imm32 >>= 8; }
1484    if (movn_cnt < movi_cnt)
1485      bici(Vd, T, imm32 & 0xff, lsl);
1486    else
1487      orri(Vd, T, imm32 & 0xff, lsl);
1488    lsl += 8; imm32 >>= 8;
1489  }
1490}
1491
1492void MacroAssembler::mov_immediate64(Register dst, u_int64_t imm64)
1493{
1494#ifndef PRODUCT
1495  {
1496    char buffer[64];
1497    snprintf(buffer, sizeof(buffer), "0x%"PRIX64, imm64);
1498    block_comment(buffer);
1499  }
1500#endif
1501  if (operand_valid_for_logical_immediate(false, imm64)) {
1502    orr(dst, zr, imm64);
1503  } else {
1504    // we can use a combination of MOVZ or MOVN with
1505    // MOVK to build up the constant
1506    u_int64_t imm_h[4];
1507    int zero_count = 0;
1508    int neg_count = 0;
1509    int i;
1510    for (i = 0; i < 4; i++) {
1511      imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1512      if (imm_h[i] == 0) {
1513        zero_count++;
1514      } else if (imm_h[i] == 0xffffL) {
1515        neg_count++;
1516      }
1517    }
1518    if (zero_count == 4) {
1519      // one MOVZ will do
1520      movz(dst, 0);
1521    } else if (neg_count == 4) {
1522      // one MOVN will do
1523      movn(dst, 0);
1524    } else if (zero_count == 3) {
1525      for (i = 0; i < 4; i++) {
1526        if (imm_h[i] != 0L) {
1527          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1528          break;
1529        }
1530      }
1531    } else if (neg_count == 3) {
1532      // one MOVN will do
1533      for (int i = 0; i < 4; i++) {
1534        if (imm_h[i] != 0xffffL) {
1535          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1536          break;
1537        }
1538      }
1539    } else if (zero_count == 2) {
1540      // one MOVZ and one MOVK will do
1541      for (i = 0; i < 3; i++) {
1542        if (imm_h[i] != 0L) {
1543          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1544          i++;
1545          break;
1546        }
1547      }
1548      for (;i < 4; i++) {
1549        if (imm_h[i] != 0L) {
1550          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1551        }
1552      }
1553    } else if (neg_count == 2) {
1554      // one MOVN and one MOVK will do
1555      for (i = 0; i < 4; i++) {
1556        if (imm_h[i] != 0xffffL) {
1557          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1558          i++;
1559          break;
1560        }
1561      }
1562      for (;i < 4; i++) {
1563        if (imm_h[i] != 0xffffL) {
1564          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1565        }
1566      }
1567    } else if (zero_count == 1) {
1568      // one MOVZ and two MOVKs will do
1569      for (i = 0; i < 4; i++) {
1570        if (imm_h[i] != 0L) {
1571          movz(dst, (u_int32_t)imm_h[i], (i << 4));
1572          i++;
1573          break;
1574        }
1575      }
1576      for (;i < 4; i++) {
1577        if (imm_h[i] != 0x0L) {
1578          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1579        }
1580      }
1581    } else if (neg_count == 1) {
1582      // one MOVN and two MOVKs will do
1583      for (i = 0; i < 4; i++) {
1584        if (imm_h[i] != 0xffffL) {
1585          movn(dst, (u_int32_t)imm_h[i] ^ 0xffffL, (i << 4));
1586          i++;
1587          break;
1588        }
1589      }
1590      for (;i < 4; i++) {
1591        if (imm_h[i] != 0xffffL) {
1592          movk(dst, (u_int32_t)imm_h[i], (i << 4));
1593        }
1594      }
1595    } else {
1596      // use a MOVZ and 3 MOVKs (makes it easier to debug)
1597      movz(dst, (u_int32_t)imm_h[0], 0);
1598      for (i = 1; i < 4; i++) {
1599        movk(dst, (u_int32_t)imm_h[i], (i << 4));
1600      }
1601    }
1602  }
1603}
1604
1605void MacroAssembler::mov_immediate32(Register dst, u_int32_t imm32)
1606{
1607#ifndef PRODUCT
1608    {
1609      char buffer[64];
1610      snprintf(buffer, sizeof(buffer), "0x%"PRIX32, imm32);
1611      block_comment(buffer);
1612    }
1613#endif
1614  if (operand_valid_for_logical_immediate(true, imm32)) {
1615    orrw(dst, zr, imm32);
1616  } else {
1617    // we can use MOVZ, MOVN or two calls to MOVK to build up the
1618    // constant
1619    u_int32_t imm_h[2];
1620    imm_h[0] = imm32 & 0xffff;
1621    imm_h[1] = ((imm32 >> 16) & 0xffff);
1622    if (imm_h[0] == 0) {
1623      movzw(dst, imm_h[1], 16);
1624    } else if (imm_h[0] == 0xffff) {
1625      movnw(dst, imm_h[1] ^ 0xffff, 16);
1626    } else if (imm_h[1] == 0) {
1627      movzw(dst, imm_h[0], 0);
1628    } else if (imm_h[1] == 0xffff) {
1629      movnw(dst, imm_h[0] ^ 0xffff, 0);
1630    } else {
1631      // use a MOVZ and MOVK (makes it easier to debug)
1632      movzw(dst, imm_h[0], 0);
1633      movkw(dst, imm_h[1], 16);
1634    }
1635  }
1636}
1637
1638// Form an address from base + offset in Rd.  Rd may or may
1639// not actually be used: you must use the Address that is returned.
1640// It is up to you to ensure that the shift provided matches the size
1641// of your data.
1642Address MacroAssembler::form_address(Register Rd, Register base, long byte_offset, int shift) {
1643  if (Address::offset_ok_for_immed(byte_offset, shift))
1644    // It fits; no need for any heroics
1645    return Address(base, byte_offset);
1646
1647  // Don't do anything clever with negative or misaligned offsets
1648  unsigned mask = (1 << shift) - 1;
1649  if (byte_offset < 0 || byte_offset & mask) {
1650    mov(Rd, byte_offset);
1651    add(Rd, base, Rd);
1652    return Address(Rd);
1653  }
1654
1655  // See if we can do this with two 12-bit offsets
1656  {
1657    unsigned long word_offset = byte_offset >> shift;
1658    unsigned long masked_offset = word_offset & 0xfff000;
1659    if (Address::offset_ok_for_immed(word_offset - masked_offset)
1660        && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1661      add(Rd, base, masked_offset << shift);
1662      word_offset -= masked_offset;
1663      return Address(Rd, word_offset << shift);
1664    }
1665  }
1666
1667  // Do it the hard way
1668  mov(Rd, byte_offset);
1669  add(Rd, base, Rd);
1670  return Address(Rd);
1671}
1672
1673void MacroAssembler::atomic_incw(Register counter_addr, Register tmp, Register tmp2) {
1674  if (UseLSE) {
1675    mov(tmp, 1);
1676    ldadd(Assembler::word, tmp, zr, counter_addr);
1677    return;
1678  }
1679  Label retry_load;
1680  if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
1681    prfm(Address(counter_addr), PSTL1STRM);
1682  bind(retry_load);
1683  // flush and load exclusive from the memory location
1684  ldxrw(tmp, counter_addr);
1685  addw(tmp, tmp, 1);
1686  // if we store+flush with no intervening write tmp wil be zero
1687  stxrw(tmp2, tmp, counter_addr);
1688  cbnzw(tmp2, retry_load);
1689}
1690
1691
1692int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
1693                                    bool want_remainder, Register scratch)
1694{
1695  // Full implementation of Java idiv and irem.  The function
1696  // returns the (pc) offset of the div instruction - may be needed
1697  // for implicit exceptions.
1698  //
1699  // constraint : ra/rb =/= scratch
1700  //         normal case
1701  //
1702  // input : ra: dividend
1703  //         rb: divisor
1704  //
1705  // result: either
1706  //         quotient  (= ra idiv rb)
1707  //         remainder (= ra irem rb)
1708
1709  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1710
1711  int idivl_offset = offset();
1712  if (! want_remainder) {
1713    sdivw(result, ra, rb);
1714  } else {
1715    sdivw(scratch, ra, rb);
1716    Assembler::msubw(result, scratch, rb, ra);
1717  }
1718
1719  return idivl_offset;
1720}
1721
1722int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
1723                                    bool want_remainder, Register scratch)
1724{
1725  // Full implementation of Java ldiv and lrem.  The function
1726  // returns the (pc) offset of the div instruction - may be needed
1727  // for implicit exceptions.
1728  //
1729  // constraint : ra/rb =/= scratch
1730  //         normal case
1731  //
1732  // input : ra: dividend
1733  //         rb: divisor
1734  //
1735  // result: either
1736  //         quotient  (= ra idiv rb)
1737  //         remainder (= ra irem rb)
1738
1739  assert(ra != scratch && rb != scratch, "reg cannot be scratch");
1740
1741  int idivq_offset = offset();
1742  if (! want_remainder) {
1743    sdiv(result, ra, rb);
1744  } else {
1745    sdiv(scratch, ra, rb);
1746    Assembler::msub(result, scratch, rb, ra);
1747  }
1748
1749  return idivq_offset;
1750}
1751
1752void MacroAssembler::membar(Membar_mask_bits order_constraint) {
1753  address prev = pc() - NativeMembar::instruction_size;
1754  if (prev == code()->last_membar()) {
1755    NativeMembar *bar = NativeMembar_at(prev);
1756    // We are merging two memory barrier instructions.  On AArch64 we
1757    // can do this simply by ORing them together.
1758    bar->set_kind(bar->get_kind() | order_constraint);
1759    BLOCK_COMMENT("merged membar");
1760  } else {
1761    code()->set_last_membar(pc());
1762    dmb(Assembler::barrier(order_constraint));
1763  }
1764}
1765
1766// MacroAssembler routines found actually to be needed
1767
1768void MacroAssembler::push(Register src)
1769{
1770  str(src, Address(pre(esp, -1 * wordSize)));
1771}
1772
1773void MacroAssembler::pop(Register dst)
1774{
1775  ldr(dst, Address(post(esp, 1 * wordSize)));
1776}
1777
1778// Note: load_unsigned_short used to be called load_unsigned_word.
1779int MacroAssembler::load_unsigned_short(Register dst, Address src) {
1780  int off = offset();
1781  ldrh(dst, src);
1782  return off;
1783}
1784
1785int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
1786  int off = offset();
1787  ldrb(dst, src);
1788  return off;
1789}
1790
1791int MacroAssembler::load_signed_short(Register dst, Address src) {
1792  int off = offset();
1793  ldrsh(dst, src);
1794  return off;
1795}
1796
1797int MacroAssembler::load_signed_byte(Register dst, Address src) {
1798  int off = offset();
1799  ldrsb(dst, src);
1800  return off;
1801}
1802
1803int MacroAssembler::load_signed_short32(Register dst, Address src) {
1804  int off = offset();
1805  ldrshw(dst, src);
1806  return off;
1807}
1808
1809int MacroAssembler::load_signed_byte32(Register dst, Address src) {
1810  int off = offset();
1811  ldrsbw(dst, src);
1812  return off;
1813}
1814
1815void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
1816  switch (size_in_bytes) {
1817  case  8:  ldr(dst, src); break;
1818  case  4:  ldrw(dst, src); break;
1819  case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
1820  case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
1821  default:  ShouldNotReachHere();
1822  }
1823}
1824
1825void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
1826  switch (size_in_bytes) {
1827  case  8:  str(src, dst); break;
1828  case  4:  strw(src, dst); break;
1829  case  2:  strh(src, dst); break;
1830  case  1:  strb(src, dst); break;
1831  default:  ShouldNotReachHere();
1832  }
1833}
1834
1835void MacroAssembler::decrementw(Register reg, int value)
1836{
1837  if (value < 0)  { incrementw(reg, -value);      return; }
1838  if (value == 0) {                               return; }
1839  if (value < (1 << 12)) { subw(reg, reg, value); return; }
1840  /* else */ {
1841    guarantee(reg != rscratch2, "invalid dst for register decrement");
1842    movw(rscratch2, (unsigned)value);
1843    subw(reg, reg, rscratch2);
1844  }
1845}
1846
1847void MacroAssembler::decrement(Register reg, int value)
1848{
1849  if (value < 0)  { increment(reg, -value);      return; }
1850  if (value == 0) {                              return; }
1851  if (value < (1 << 12)) { sub(reg, reg, value); return; }
1852  /* else */ {
1853    assert(reg != rscratch2, "invalid dst for register decrement");
1854    mov(rscratch2, (unsigned long)value);
1855    sub(reg, reg, rscratch2);
1856  }
1857}
1858
1859void MacroAssembler::decrementw(Address dst, int value)
1860{
1861  assert(!dst.uses(rscratch1), "invalid dst for address decrement");
1862  ldrw(rscratch1, dst);
1863  decrementw(rscratch1, value);
1864  strw(rscratch1, dst);
1865}
1866
1867void MacroAssembler::decrement(Address dst, int value)
1868{
1869  assert(!dst.uses(rscratch1), "invalid address for decrement");
1870  ldr(rscratch1, dst);
1871  decrement(rscratch1, value);
1872  str(rscratch1, dst);
1873}
1874
1875void MacroAssembler::incrementw(Register reg, int value)
1876{
1877  if (value < 0)  { decrementw(reg, -value);      return; }
1878  if (value == 0) {                               return; }
1879  if (value < (1 << 12)) { addw(reg, reg, value); return; }
1880  /* else */ {
1881    assert(reg != rscratch2, "invalid dst for register increment");
1882    movw(rscratch2, (unsigned)value);
1883    addw(reg, reg, rscratch2);
1884  }
1885}
1886
1887void MacroAssembler::increment(Register reg, int value)
1888{
1889  if (value < 0)  { decrement(reg, -value);      return; }
1890  if (value == 0) {                              return; }
1891  if (value < (1 << 12)) { add(reg, reg, value); return; }
1892  /* else */ {
1893    assert(reg != rscratch2, "invalid dst for register increment");
1894    movw(rscratch2, (unsigned)value);
1895    add(reg, reg, rscratch2);
1896  }
1897}
1898
1899void MacroAssembler::incrementw(Address dst, int value)
1900{
1901  assert(!dst.uses(rscratch1), "invalid dst for address increment");
1902  ldrw(rscratch1, dst);
1903  incrementw(rscratch1, value);
1904  strw(rscratch1, dst);
1905}
1906
1907void MacroAssembler::increment(Address dst, int value)
1908{
1909  assert(!dst.uses(rscratch1), "invalid dst for address increment");
1910  ldr(rscratch1, dst);
1911  increment(rscratch1, value);
1912  str(rscratch1, dst);
1913}
1914
1915
1916void MacroAssembler::pusha() {
1917  push(0x7fffffff, sp);
1918}
1919
1920void MacroAssembler::popa() {
1921  pop(0x7fffffff, sp);
1922}
1923
1924// Push lots of registers in the bit set supplied.  Don't push sp.
1925// Return the number of words pushed
1926int MacroAssembler::push(unsigned int bitset, Register stack) {
1927  int words_pushed = 0;
1928
1929  // Scan bitset to accumulate register pairs
1930  unsigned char regs[32];
1931  int count = 0;
1932  for (int reg = 0; reg <= 30; reg++) {
1933    if (1 & bitset)
1934      regs[count++] = reg;
1935    bitset >>= 1;
1936  }
1937  regs[count++] = zr->encoding_nocheck();
1938  count &= ~1;  // Only push an even nuber of regs
1939
1940  if (count) {
1941    stp(as_Register(regs[0]), as_Register(regs[1]),
1942       Address(pre(stack, -count * wordSize)));
1943    words_pushed += 2;
1944  }
1945  for (int i = 2; i < count; i += 2) {
1946    stp(as_Register(regs[i]), as_Register(regs[i+1]),
1947       Address(stack, i * wordSize));
1948    words_pushed += 2;
1949  }
1950
1951  assert(words_pushed == count, "oops, pushed != count");
1952
1953  return count;
1954}
1955
1956int MacroAssembler::pop(unsigned int bitset, Register stack) {
1957  int words_pushed = 0;
1958
1959  // Scan bitset to accumulate register pairs
1960  unsigned char regs[32];
1961  int count = 0;
1962  for (int reg = 0; reg <= 30; reg++) {
1963    if (1 & bitset)
1964      regs[count++] = reg;
1965    bitset >>= 1;
1966  }
1967  regs[count++] = zr->encoding_nocheck();
1968  count &= ~1;
1969
1970  for (int i = 2; i < count; i += 2) {
1971    ldp(as_Register(regs[i]), as_Register(regs[i+1]),
1972       Address(stack, i * wordSize));
1973    words_pushed += 2;
1974  }
1975  if (count) {
1976    ldp(as_Register(regs[0]), as_Register(regs[1]),
1977       Address(post(stack, count * wordSize)));
1978    words_pushed += 2;
1979  }
1980
1981  assert(words_pushed == count, "oops, pushed != count");
1982
1983  return count;
1984}
1985#ifdef ASSERT
1986void MacroAssembler::verify_heapbase(const char* msg) {
1987#if 0
1988  assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
1989  assert (Universe::heap() != NULL, "java heap should be initialized");
1990  if (CheckCompressedOops) {
1991    Label ok;
1992    push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
1993    cmpptr(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
1994    br(Assembler::EQ, ok);
1995    stop(msg);
1996    bind(ok);
1997    pop(1 << rscratch1->encoding(), sp);
1998  }
1999#endif
2000}
2001#endif
2002
2003void MacroAssembler::stop(const char* msg) {
2004  address ip = pc();
2005  pusha();
2006  mov(c_rarg0, (address)msg);
2007  mov(c_rarg1, (address)ip);
2008  mov(c_rarg2, sp);
2009  mov(c_rarg3, CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
2010  // call(c_rarg3);
2011  blrt(c_rarg3, 3, 0, 1);
2012  hlt(0);
2013}
2014
2015void MacroAssembler::unimplemented(const char* what) {
2016  char* b = new char[1024];
2017  jio_snprintf(b, 1024, "unimplemented: %s", what);
2018  stop(b);
2019}
2020
2021// If a constant does not fit in an immediate field, generate some
2022// number of MOV instructions and then perform the operation.
2023void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
2024                                           add_sub_imm_insn insn1,
2025                                           add_sub_reg_insn insn2) {
2026  assert(Rd != zr, "Rd = zr and not setting flags?");
2027  if (operand_valid_for_add_sub_immediate((int)imm)) {
2028    (this->*insn1)(Rd, Rn, imm);
2029  } else {
2030    if (uabs(imm) < (1 << 24)) {
2031       (this->*insn1)(Rd, Rn, imm & -(1 << 12));
2032       (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
2033    } else {
2034       assert_different_registers(Rd, Rn);
2035       mov(Rd, (uint64_t)imm);
2036       (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2037    }
2038  }
2039}
2040
2041// Seperate vsn which sets the flags. Optimisations are more restricted
2042// because we must set the flags correctly.
2043void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
2044                                           add_sub_imm_insn insn1,
2045                                           add_sub_reg_insn insn2) {
2046  if (operand_valid_for_add_sub_immediate((int)imm)) {
2047    (this->*insn1)(Rd, Rn, imm);
2048  } else {
2049    assert_different_registers(Rd, Rn);
2050    assert(Rd != zr, "overflow in immediate operand");
2051    mov(Rd, (uint64_t)imm);
2052    (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2053  }
2054}
2055
2056
2057void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2058  if (increment.is_register()) {
2059    add(Rd, Rn, increment.as_register());
2060  } else {
2061    add(Rd, Rn, increment.as_constant());
2062  }
2063}
2064
2065void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2066  if (increment.is_register()) {
2067    addw(Rd, Rn, increment.as_register());
2068  } else {
2069    addw(Rd, Rn, increment.as_constant());
2070  }
2071}
2072
2073void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2074  if (decrement.is_register()) {
2075    sub(Rd, Rn, decrement.as_register());
2076  } else {
2077    sub(Rd, Rn, decrement.as_constant());
2078  }
2079}
2080
2081void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2082  if (decrement.is_register()) {
2083    subw(Rd, Rn, decrement.as_register());
2084  } else {
2085    subw(Rd, Rn, decrement.as_constant());
2086  }
2087}
2088
2089void MacroAssembler::reinit_heapbase()
2090{
2091  if (UseCompressedOops) {
2092    if (Universe::is_fully_initialized()) {
2093      mov(rheapbase, Universe::narrow_ptrs_base());
2094    } else {
2095      lea(rheapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
2096      ldr(rheapbase, Address(rheapbase));
2097    }
2098  }
2099}
2100
2101// this simulates the behaviour of the x86 cmpxchg instruction using a
2102// load linked/store conditional pair. we use the acquire/release
2103// versions of these instructions so that we flush pending writes as
2104// per Java semantics.
2105
2106// n.b the x86 version assumes the old value to be compared against is
2107// in rax and updates rax with the value located in memory if the
2108// cmpxchg fails. we supply a register for the old value explicitly
2109
2110// the aarch64 load linked/store conditional instructions do not
2111// accept an offset. so, unlike x86, we must provide a plain register
2112// to identify the memory word to be compared/exchanged rather than a
2113// register+offset Address.
2114
2115void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2116                                Label &succeed, Label *fail) {
2117  // oldv holds comparison value
2118  // newv holds value to write in exchange
2119  // addr identifies memory word to compare against/update
2120  if (UseLSE) {
2121    mov(tmp, oldv);
2122    casal(Assembler::xword, oldv, newv, addr);
2123    cmp(tmp, oldv);
2124    br(Assembler::EQ, succeed);
2125    membar(AnyAny);
2126  } else {
2127    Label retry_load, nope;
2128    if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2129      prfm(Address(addr), PSTL1STRM);
2130    bind(retry_load);
2131    // flush and load exclusive from the memory location
2132    // and fail if it is not what we expect
2133    ldaxr(tmp, addr);
2134    cmp(tmp, oldv);
2135    br(Assembler::NE, nope);
2136    // if we store+flush with no intervening write tmp wil be zero
2137    stlxr(tmp, newv, addr);
2138    cbzw(tmp, succeed);
2139    // retry so we only ever return after a load fails to compare
2140    // ensures we don't return a stale value after a failed write.
2141    b(retry_load);
2142    // if the memory word differs we return it in oldv and signal a fail
2143    bind(nope);
2144    membar(AnyAny);
2145    mov(oldv, tmp);
2146  }
2147  if (fail)
2148    b(*fail);
2149}
2150
2151void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
2152                                        Label &succeed, Label *fail) {
2153  assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
2154  cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
2155}
2156
2157void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2158                                Label &succeed, Label *fail) {
2159  // oldv holds comparison value
2160  // newv holds value to write in exchange
2161  // addr identifies memory word to compare against/update
2162  // tmp returns 0/1 for success/failure
2163  if (UseLSE) {
2164    mov(tmp, oldv);
2165    casal(Assembler::word, oldv, newv, addr);
2166    cmp(tmp, oldv);
2167    br(Assembler::EQ, succeed);
2168    membar(AnyAny);
2169  } else {
2170    Label retry_load, nope;
2171    if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2172      prfm(Address(addr), PSTL1STRM);
2173    bind(retry_load);
2174    // flush and load exclusive from the memory location
2175    // and fail if it is not what we expect
2176    ldaxrw(tmp, addr);
2177    cmp(tmp, oldv);
2178    br(Assembler::NE, nope);
2179    // if we store+flush with no intervening write tmp wil be zero
2180    stlxrw(tmp, newv, addr);
2181    cbzw(tmp, succeed);
2182    // retry so we only ever return after a load fails to compare
2183    // ensures we don't return a stale value after a failed write.
2184    b(retry_load);
2185    // if the memory word differs we return it in oldv and signal a fail
2186    bind(nope);
2187    membar(AnyAny);
2188    mov(oldv, tmp);
2189  }
2190  if (fail)
2191    b(*fail);
2192}
2193
2194// A generic CAS; success or failure is in the EQ flag.  A weak CAS
2195// doesn't retry and may fail spuriously.  If the oldval is wanted,
2196// Pass a register for the result, otherwise pass noreg.
2197
2198// Clobbers rscratch1
2199void MacroAssembler::cmpxchg(Register addr, Register expected,
2200                             Register new_val,
2201                             enum operand_size size,
2202                             bool acquire, bool release,
2203                             bool weak,
2204                             Register result) {
2205  if (result == noreg)  result = rscratch1;
2206  if (UseLSE) {
2207    mov(result, expected);
2208    lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
2209    cmp(result, expected);
2210  } else {
2211    BLOCK_COMMENT("cmpxchg {");
2212    Label retry_load, done;
2213    if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))
2214      prfm(Address(addr), PSTL1STRM);
2215    bind(retry_load);
2216    load_exclusive(result, addr, size, acquire);
2217    if (size == xword)
2218      cmp(result, expected);
2219    else
2220      cmpw(result, expected);
2221    br(Assembler::NE, done);
2222    store_exclusive(rscratch1, new_val, addr, size, release);
2223    if (weak) {
2224      cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
2225    } else {
2226      cbnzw(rscratch1, retry_load);
2227    }
2228    bind(done);
2229    BLOCK_COMMENT("} cmpxchg");
2230  }
2231}
2232
2233static bool different(Register a, RegisterOrConstant b, Register c) {
2234  if (b.is_constant())
2235    return a != c;
2236  else
2237    return a != b.as_register() && a != c && b.as_register() != c;
2238}
2239
2240#define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
2241void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
2242  if (UseLSE) {                                                         \
2243    prev = prev->is_valid() ? prev : zr;                                \
2244    if (incr.is_register()) {                                           \
2245      AOP(sz, incr.as_register(), prev, addr);                          \
2246    } else {                                                            \
2247      mov(rscratch2, incr.as_constant());                               \
2248      AOP(sz, rscratch2, prev, addr);                                   \
2249    }                                                                   \
2250    return;                                                             \
2251  }                                                                     \
2252  Register result = rscratch2;                                          \
2253  if (prev->is_valid())                                                 \
2254    result = different(prev, incr, addr) ? prev : rscratch2;            \
2255                                                                        \
2256  Label retry_load;                                                     \
2257  if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2258    prfm(Address(addr), PSTL1STRM);                                     \
2259  bind(retry_load);                                                     \
2260  LDXR(result, addr);                                                   \
2261  OP(rscratch1, result, incr);                                          \
2262  STXR(rscratch2, rscratch1, addr);                                     \
2263  cbnzw(rscratch2, retry_load);                                         \
2264  if (prev->is_valid() && prev != result) {                             \
2265    IOP(prev, rscratch1, incr);                                         \
2266  }                                                                     \
2267}
2268
2269ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
2270ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2271ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
2272ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
2273
2274#undef ATOMIC_OP
2275
2276#define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
2277void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2278  if (UseLSE) {                                                         \
2279    prev = prev->is_valid() ? prev : zr;                                \
2280    AOP(sz, newv, prev, addr);                                          \
2281    return;                                                             \
2282  }                                                                     \
2283  Register result = rscratch2;                                          \
2284  if (prev->is_valid())                                                 \
2285    result = different(prev, newv, addr) ? prev : rscratch2;            \
2286                                                                        \
2287  Label retry_load;                                                     \
2288  if ((VM_Version::features() & VM_Version::CPU_STXR_PREFETCH))         \
2289    prfm(Address(addr), PSTL1STRM);                                     \
2290  bind(retry_load);                                                     \
2291  LDXR(result, addr);                                                   \
2292  STXR(rscratch1, newv, addr);                                          \
2293  cbnzw(rscratch1, retry_load);                                         \
2294  if (prev->is_valid() && prev != result)                               \
2295    mov(prev, result);                                                  \
2296}
2297
2298ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
2299ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
2300ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
2301ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
2302
2303#undef ATOMIC_XCHG
2304
2305void MacroAssembler::incr_allocated_bytes(Register thread,
2306                                          Register var_size_in_bytes,
2307                                          int con_size_in_bytes,
2308                                          Register t1) {
2309  if (!thread->is_valid()) {
2310    thread = rthread;
2311  }
2312  assert(t1->is_valid(), "need temp reg");
2313
2314  ldr(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2315  if (var_size_in_bytes->is_valid()) {
2316    add(t1, t1, var_size_in_bytes);
2317  } else {
2318    add(t1, t1, con_size_in_bytes);
2319  }
2320  str(t1, Address(thread, in_bytes(JavaThread::allocated_bytes_offset())));
2321}
2322
2323#ifndef PRODUCT
2324extern "C" void findpc(intptr_t x);
2325#endif
2326
2327void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2328{
2329  // In order to get locks to work, we need to fake a in_VM state
2330  if (ShowMessageBoxOnError ) {
2331    JavaThread* thread = JavaThread::current();
2332    JavaThreadState saved_state = thread->thread_state();
2333    thread->set_thread_state(_thread_in_vm);
2334#ifndef PRODUCT
2335    if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2336      ttyLocker ttyl;
2337      BytecodeCounter::print();
2338    }
2339#endif
2340    if (os::message_box(msg, "Execution stopped, print registers?")) {
2341      ttyLocker ttyl;
2342      tty->print_cr(" pc = 0x%016lx", pc);
2343#ifndef PRODUCT
2344      tty->cr();
2345      findpc(pc);
2346      tty->cr();
2347#endif
2348      tty->print_cr(" r0 = 0x%016lx", regs[0]);
2349      tty->print_cr(" r1 = 0x%016lx", regs[1]);
2350      tty->print_cr(" r2 = 0x%016lx", regs[2]);
2351      tty->print_cr(" r3 = 0x%016lx", regs[3]);
2352      tty->print_cr(" r4 = 0x%016lx", regs[4]);
2353      tty->print_cr(" r5 = 0x%016lx", regs[5]);
2354      tty->print_cr(" r6 = 0x%016lx", regs[6]);
2355      tty->print_cr(" r7 = 0x%016lx", regs[7]);
2356      tty->print_cr(" r8 = 0x%016lx", regs[8]);
2357      tty->print_cr(" r9 = 0x%016lx", regs[9]);
2358      tty->print_cr("r10 = 0x%016lx", regs[10]);
2359      tty->print_cr("r11 = 0x%016lx", regs[11]);
2360      tty->print_cr("r12 = 0x%016lx", regs[12]);
2361      tty->print_cr("r13 = 0x%016lx", regs[13]);
2362      tty->print_cr("r14 = 0x%016lx", regs[14]);
2363      tty->print_cr("r15 = 0x%016lx", regs[15]);
2364      tty->print_cr("r16 = 0x%016lx", regs[16]);
2365      tty->print_cr("r17 = 0x%016lx", regs[17]);
2366      tty->print_cr("r18 = 0x%016lx", regs[18]);
2367      tty->print_cr("r19 = 0x%016lx", regs[19]);
2368      tty->print_cr("r20 = 0x%016lx", regs[20]);
2369      tty->print_cr("r21 = 0x%016lx", regs[21]);
2370      tty->print_cr("r22 = 0x%016lx", regs[22]);
2371      tty->print_cr("r23 = 0x%016lx", regs[23]);
2372      tty->print_cr("r24 = 0x%016lx", regs[24]);
2373      tty->print_cr("r25 = 0x%016lx", regs[25]);
2374      tty->print_cr("r26 = 0x%016lx", regs[26]);
2375      tty->print_cr("r27 = 0x%016lx", regs[27]);
2376      tty->print_cr("r28 = 0x%016lx", regs[28]);
2377      tty->print_cr("r30 = 0x%016lx", regs[30]);
2378      tty->print_cr("r31 = 0x%016lx", regs[31]);
2379      BREAKPOINT;
2380    }
2381    ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
2382  } else {
2383    ttyLocker ttyl;
2384    ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
2385                    msg);
2386    assert(false, "DEBUG MESSAGE: %s", msg);
2387  }
2388}
2389
2390#ifdef BUILTIN_SIM
2391// routine to generate an x86 prolog for a stub function which
2392// bootstraps into the generated ARM code which directly follows the
2393// stub
2394//
2395// the argument encodes the number of general and fp registers
2396// passed by the caller and the callng convention (currently just
2397// the number of general registers and assumes C argument passing)
2398
2399extern "C" {
2400int aarch64_stub_prolog_size();
2401void aarch64_stub_prolog();
2402void aarch64_prolog();
2403}
2404
2405void MacroAssembler::c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type,
2406                                   address *prolog_ptr)
2407{
2408  int calltype = (((ret_type & 0x3) << 8) |
2409                  ((fp_arg_count & 0xf) << 4) |
2410                  (gp_arg_count & 0xf));
2411
2412  // the addresses for the x86 to ARM entry code we need to use
2413  address start = pc();
2414  // printf("start = %lx\n", start);
2415  int byteCount =  aarch64_stub_prolog_size();
2416  // printf("byteCount = %x\n", byteCount);
2417  int instructionCount = (byteCount + 3)/ 4;
2418  // printf("instructionCount = %x\n", instructionCount);
2419  for (int i = 0; i < instructionCount; i++) {
2420    nop();
2421  }
2422
2423  memcpy(start, (void*)aarch64_stub_prolog, byteCount);
2424
2425  // write the address of the setup routine and the call format at the
2426  // end of into the copied code
2427  u_int64_t *patch_end = (u_int64_t *)(start + byteCount);
2428  if (prolog_ptr)
2429    patch_end[-2] = (u_int64_t)prolog_ptr;
2430  patch_end[-1] = calltype;
2431}
2432#endif
2433
2434void MacroAssembler::push_call_clobbered_registers() {
2435  push(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2436
2437  // Push v0-v7, v16-v31.
2438  for (int i = 30; i >= 0; i -= 2) {
2439    if (i <= v7->encoding() || i >= v16->encoding()) {
2440        stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2441             Address(pre(sp, -2 * wordSize)));
2442    }
2443  }
2444}
2445
2446void MacroAssembler::pop_call_clobbered_registers() {
2447
2448  for (int i = 0; i < 32; i += 2) {
2449    if (i <= v7->encoding() || i >= v16->encoding()) {
2450      ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2451           Address(post(sp, 2 * wordSize)));
2452    }
2453  }
2454
2455  pop(RegSet::range(r0, r18) - RegSet::of(rscratch1, rscratch2), sp);
2456}
2457
2458void MacroAssembler::push_CPU_state(bool save_vectors) {
2459  push(0x3fffffff, sp);         // integer registers except lr & sp
2460
2461  if (!save_vectors) {
2462    for (int i = 30; i >= 0; i -= 2)
2463      stpd(as_FloatRegister(i), as_FloatRegister(i+1),
2464           Address(pre(sp, -2 * wordSize)));
2465  } else {
2466    for (int i = 30; i >= 0; i -= 2)
2467      stpq(as_FloatRegister(i), as_FloatRegister(i+1),
2468           Address(pre(sp, -4 * wordSize)));
2469  }
2470}
2471
2472void MacroAssembler::pop_CPU_state(bool restore_vectors) {
2473  if (!restore_vectors) {
2474    for (int i = 0; i < 32; i += 2)
2475      ldpd(as_FloatRegister(i), as_FloatRegister(i+1),
2476           Address(post(sp, 2 * wordSize)));
2477  } else {
2478    for (int i = 0; i < 32; i += 2)
2479      ldpq(as_FloatRegister(i), as_FloatRegister(i+1),
2480           Address(post(sp, 4 * wordSize)));
2481  }
2482
2483  pop(0x3fffffff, sp);         // integer registers except lr & sp
2484}
2485
2486/**
2487 * Helpers for multiply_to_len().
2488 */
2489void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
2490                                     Register src1, Register src2) {
2491  adds(dest_lo, dest_lo, src1);
2492  adc(dest_hi, dest_hi, zr);
2493  adds(dest_lo, dest_lo, src2);
2494  adc(final_dest_hi, dest_hi, zr);
2495}
2496
2497// Generate an address from (r + r1 extend offset).  "size" is the
2498// size of the operand.  The result may be in rscratch2.
2499Address MacroAssembler::offsetted_address(Register r, Register r1,
2500                                          Address::extend ext, int offset, int size) {
2501  if (offset || (ext.shift() % size != 0)) {
2502    lea(rscratch2, Address(r, r1, ext));
2503    return Address(rscratch2, offset);
2504  } else {
2505    return Address(r, r1, ext);
2506  }
2507}
2508
2509Address MacroAssembler::spill_address(int size, int offset, Register tmp)
2510{
2511  assert(offset >= 0, "spill to negative address?");
2512  // Offset reachable ?
2513  //   Not aligned - 9 bits signed offset
2514  //   Aligned - 12 bits unsigned offset shifted
2515  Register base = sp;
2516  if ((offset & (size-1)) && offset >= (1<<8)) {
2517    add(tmp, base, offset & ((1<<12)-1));
2518    base = tmp;
2519    offset &= -1<<12;
2520  }
2521
2522  if (offset >= (1<<12) * size) {
2523    add(tmp, base, offset & (((1<<12)-1)<<12));
2524    base = tmp;
2525    offset &= ~(((1<<12)-1)<<12);
2526  }
2527
2528  return Address(base, offset);
2529}
2530
2531/**
2532 * Multiply 64 bit by 64 bit first loop.
2533 */
2534void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
2535                                           Register y, Register y_idx, Register z,
2536                                           Register carry, Register product,
2537                                           Register idx, Register kdx) {
2538  //
2539  //  jlong carry, x[], y[], z[];
2540  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2541  //    huge_128 product = y[idx] * x[xstart] + carry;
2542  //    z[kdx] = (jlong)product;
2543  //    carry  = (jlong)(product >>> 64);
2544  //  }
2545  //  z[xstart] = carry;
2546  //
2547
2548  Label L_first_loop, L_first_loop_exit;
2549  Label L_one_x, L_one_y, L_multiply;
2550
2551  subsw(xstart, xstart, 1);
2552  br(Assembler::MI, L_one_x);
2553
2554  lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
2555  ldr(x_xstart, Address(rscratch1));
2556  ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
2557
2558  bind(L_first_loop);
2559  subsw(idx, idx, 1);
2560  br(Assembler::MI, L_first_loop_exit);
2561  subsw(idx, idx, 1);
2562  br(Assembler::MI, L_one_y);
2563  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2564  ldr(y_idx, Address(rscratch1));
2565  ror(y_idx, y_idx, 32); // convert big-endian to little-endian
2566  bind(L_multiply);
2567
2568  // AArch64 has a multiply-accumulate instruction that we can't use
2569  // here because it has no way to process carries, so we have to use
2570  // separate add and adc instructions.  Bah.
2571  umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
2572  mul(product, x_xstart, y_idx);
2573  adds(product, product, carry);
2574  adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
2575
2576  subw(kdx, kdx, 2);
2577  ror(product, product, 32); // back to big-endian
2578  str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
2579
2580  b(L_first_loop);
2581
2582  bind(L_one_y);
2583  ldrw(y_idx, Address(y,  0));
2584  b(L_multiply);
2585
2586  bind(L_one_x);
2587  ldrw(x_xstart, Address(x,  0));
2588  b(L_first_loop);
2589
2590  bind(L_first_loop_exit);
2591}
2592
2593/**
2594 * Multiply 128 bit by 128. Unrolled inner loop.
2595 *
2596 */
2597void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
2598                                             Register carry, Register carry2,
2599                                             Register idx, Register jdx,
2600                                             Register yz_idx1, Register yz_idx2,
2601                                             Register tmp, Register tmp3, Register tmp4,
2602                                             Register tmp6, Register product_hi) {
2603
2604  //   jlong carry, x[], y[], z[];
2605  //   int kdx = ystart+1;
2606  //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
2607  //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
2608  //     jlong carry2  = (jlong)(tmp3 >>> 64);
2609  //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
2610  //     carry  = (jlong)(tmp4 >>> 64);
2611  //     z[kdx+idx+1] = (jlong)tmp3;
2612  //     z[kdx+idx] = (jlong)tmp4;
2613  //   }
2614  //   idx += 2;
2615  //   if (idx > 0) {
2616  //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
2617  //     z[kdx+idx] = (jlong)yz_idx1;
2618  //     carry  = (jlong)(yz_idx1 >>> 64);
2619  //   }
2620  //
2621
2622  Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
2623
2624  lsrw(jdx, idx, 2);
2625
2626  bind(L_third_loop);
2627
2628  subsw(jdx, jdx, 1);
2629  br(Assembler::MI, L_third_loop_exit);
2630  subw(idx, idx, 4);
2631
2632  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2633
2634  ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
2635
2636  lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2637
2638  ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
2639  ror(yz_idx2, yz_idx2, 32);
2640
2641  ldp(rscratch2, rscratch1, Address(tmp6, 0));
2642
2643  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2644  umulh(tmp4, product_hi, yz_idx1);
2645
2646  ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
2647  ror(rscratch2, rscratch2, 32);
2648
2649  mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
2650  umulh(carry2, product_hi, yz_idx2);
2651
2652  // propagate sum of both multiplications into carry:tmp4:tmp3
2653  adds(tmp3, tmp3, carry);
2654  adc(tmp4, tmp4, zr);
2655  adds(tmp3, tmp3, rscratch1);
2656  adcs(tmp4, tmp4, tmp);
2657  adc(carry, carry2, zr);
2658  adds(tmp4, tmp4, rscratch2);
2659  adc(carry, carry, zr);
2660
2661  ror(tmp3, tmp3, 32); // convert little-endian to big-endian
2662  ror(tmp4, tmp4, 32);
2663  stp(tmp4, tmp3, Address(tmp6, 0));
2664
2665  b(L_third_loop);
2666  bind (L_third_loop_exit);
2667
2668  andw (idx, idx, 0x3);
2669  cbz(idx, L_post_third_loop_done);
2670
2671  Label L_check_1;
2672  subsw(idx, idx, 2);
2673  br(Assembler::MI, L_check_1);
2674
2675  lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2676  ldr(yz_idx1, Address(rscratch1, 0));
2677  ror(yz_idx1, yz_idx1, 32);
2678  mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
2679  umulh(tmp4, product_hi, yz_idx1);
2680  lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2681  ldr(yz_idx2, Address(rscratch1, 0));
2682  ror(yz_idx2, yz_idx2, 32);
2683
2684  add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
2685
2686  ror(tmp3, tmp3, 32);
2687  str(tmp3, Address(rscratch1, 0));
2688
2689  bind (L_check_1);
2690
2691  andw (idx, idx, 0x1);
2692  subsw(idx, idx, 1);
2693  br(Assembler::MI, L_post_third_loop_done);
2694  ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
2695  mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
2696  umulh(carry2, tmp4, product_hi);
2697  ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2698
2699  add2_with_carry(carry2, tmp3, tmp4, carry);
2700
2701  strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
2702  extr(carry, carry2, tmp3, 32);
2703
2704  bind(L_post_third_loop_done);
2705}
2706
2707/**
2708 * Code for BigInteger::multiplyToLen() instrinsic.
2709 *
2710 * r0: x
2711 * r1: xlen
2712 * r2: y
2713 * r3: ylen
2714 * r4:  z
2715 * r5: zlen
2716 * r10: tmp1
2717 * r11: tmp2
2718 * r12: tmp3
2719 * r13: tmp4
2720 * r14: tmp5
2721 * r15: tmp6
2722 * r16: tmp7
2723 *
2724 */
2725void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
2726                                     Register z, Register zlen,
2727                                     Register tmp1, Register tmp2, Register tmp3, Register tmp4,
2728                                     Register tmp5, Register tmp6, Register product_hi) {
2729
2730  assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
2731
2732  const Register idx = tmp1;
2733  const Register kdx = tmp2;
2734  const Register xstart = tmp3;
2735
2736  const Register y_idx = tmp4;
2737  const Register carry = tmp5;
2738  const Register product  = xlen;
2739  const Register x_xstart = zlen;  // reuse register
2740
2741  // First Loop.
2742  //
2743  //  final static long LONG_MASK = 0xffffffffL;
2744  //  int xstart = xlen - 1;
2745  //  int ystart = ylen - 1;
2746  //  long carry = 0;
2747  //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
2748  //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
2749  //    z[kdx] = (int)product;
2750  //    carry = product >>> 32;
2751  //  }
2752  //  z[xstart] = (int)carry;
2753  //
2754
2755  movw(idx, ylen);      // idx = ylen;
2756  movw(kdx, zlen);      // kdx = xlen+ylen;
2757  mov(carry, zr);       // carry = 0;
2758
2759  Label L_done;
2760
2761  movw(xstart, xlen);
2762  subsw(xstart, xstart, 1);
2763  br(Assembler::MI, L_done);
2764
2765  multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
2766
2767  Label L_second_loop;
2768  cbzw(kdx, L_second_loop);
2769
2770  Label L_carry;
2771  subw(kdx, kdx, 1);
2772  cbzw(kdx, L_carry);
2773
2774  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2775  lsr(carry, carry, 32);
2776  subw(kdx, kdx, 1);
2777
2778  bind(L_carry);
2779  strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
2780
2781  // Second and third (nested) loops.
2782  //
2783  // for (int i = xstart-1; i >= 0; i--) { // Second loop
2784  //   carry = 0;
2785  //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
2786  //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
2787  //                    (z[k] & LONG_MASK) + carry;
2788  //     z[k] = (int)product;
2789  //     carry = product >>> 32;
2790  //   }
2791  //   z[i] = (int)carry;
2792  // }
2793  //
2794  // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
2795
2796  const Register jdx = tmp1;
2797
2798  bind(L_second_loop);
2799  mov(carry, zr);                // carry = 0;
2800  movw(jdx, ylen);               // j = ystart+1
2801
2802  subsw(xstart, xstart, 1);      // i = xstart-1;
2803  br(Assembler::MI, L_done);
2804
2805  str(z, Address(pre(sp, -4 * wordSize)));
2806
2807  Label L_last_x;
2808  lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
2809  subsw(xstart, xstart, 1);       // i = xstart-1;
2810  br(Assembler::MI, L_last_x);
2811
2812  lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
2813  ldr(product_hi, Address(rscratch1));
2814  ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
2815
2816  Label L_third_loop_prologue;
2817  bind(L_third_loop_prologue);
2818
2819  str(ylen, Address(sp, wordSize));
2820  stp(x, xstart, Address(sp, 2 * wordSize));
2821  multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
2822                          tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
2823  ldp(z, ylen, Address(post(sp, 2 * wordSize)));
2824  ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
2825
2826  addw(tmp3, xlen, 1);
2827  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2828  subsw(tmp3, tmp3, 1);
2829  br(Assembler::MI, L_done);
2830
2831  lsr(carry, carry, 32);
2832  strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
2833  b(L_second_loop);
2834
2835  // Next infrequent code is moved outside loops.
2836  bind(L_last_x);
2837  ldrw(product_hi, Address(x,  0));
2838  b(L_third_loop_prologue);
2839
2840  bind(L_done);
2841}
2842
2843/**
2844 * Emits code to update CRC-32 with a byte value according to constants in table
2845 *
2846 * @param [in,out]crc   Register containing the crc.
2847 * @param [in]val       Register containing the byte to fold into the CRC.
2848 * @param [in]table     Register containing the table of crc constants.
2849 *
2850 * uint32_t crc;
2851 * val = crc_table[(val ^ crc) & 0xFF];
2852 * crc = val ^ (crc >> 8);
2853 *
2854 */
2855void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
2856  eor(val, val, crc);
2857  andr(val, val, 0xff);
2858  ldrw(val, Address(table, val, Address::lsl(2)));
2859  eor(crc, val, crc, Assembler::LSR, 8);
2860}
2861
2862/**
2863 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
2864 *
2865 * @param [in,out]crc   Register containing the crc.
2866 * @param [in]v         Register containing the 32-bit to fold into the CRC.
2867 * @param [in]table0    Register containing table 0 of crc constants.
2868 * @param [in]table1    Register containing table 1 of crc constants.
2869 * @param [in]table2    Register containing table 2 of crc constants.
2870 * @param [in]table3    Register containing table 3 of crc constants.
2871 *
2872 * uint32_t crc;
2873 *   v = crc ^ v
2874 *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
2875 *
2876 */
2877void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
2878        Register table0, Register table1, Register table2, Register table3,
2879        bool upper) {
2880  eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
2881  uxtb(tmp, v);
2882  ldrw(crc, Address(table3, tmp, Address::lsl(2)));
2883  ubfx(tmp, v, 8, 8);
2884  ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
2885  eor(crc, crc, tmp);
2886  ubfx(tmp, v, 16, 8);
2887  ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
2888  eor(crc, crc, tmp);
2889  ubfx(tmp, v, 24, 8);
2890  ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
2891  eor(crc, crc, tmp);
2892}
2893
2894/**
2895 * @param crc   register containing existing CRC (32-bit)
2896 * @param buf   register pointing to input byte buffer (byte*)
2897 * @param len   register containing number of bytes
2898 * @param table register that will contain address of CRC table
2899 * @param tmp   scratch register
2900 */
2901void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
2902        Register table0, Register table1, Register table2, Register table3,
2903        Register tmp, Register tmp2, Register tmp3) {
2904  Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
2905  unsigned long offset;
2906
2907    ornw(crc, zr, crc);
2908
2909  if (UseCRC32) {
2910    Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
2911
2912      subs(len, len, 64);
2913      br(Assembler::GE, CRC_by64_loop);
2914      adds(len, len, 64-4);
2915      br(Assembler::GE, CRC_by4_loop);
2916      adds(len, len, 4);
2917      br(Assembler::GT, CRC_by1_loop);
2918      b(L_exit);
2919
2920    BIND(CRC_by4_loop);
2921      ldrw(tmp, Address(post(buf, 4)));
2922      subs(len, len, 4);
2923      crc32w(crc, crc, tmp);
2924      br(Assembler::GE, CRC_by4_loop);
2925      adds(len, len, 4);
2926      br(Assembler::LE, L_exit);
2927    BIND(CRC_by1_loop);
2928      ldrb(tmp, Address(post(buf, 1)));
2929      subs(len, len, 1);
2930      crc32b(crc, crc, tmp);
2931      br(Assembler::GT, CRC_by1_loop);
2932      b(L_exit);
2933
2934      align(CodeEntryAlignment);
2935    BIND(CRC_by64_loop);
2936      subs(len, len, 64);
2937      ldp(tmp, tmp3, Address(post(buf, 16)));
2938      crc32x(crc, crc, tmp);
2939      crc32x(crc, crc, tmp3);
2940      ldp(tmp, tmp3, Address(post(buf, 16)));
2941      crc32x(crc, crc, tmp);
2942      crc32x(crc, crc, tmp3);
2943      ldp(tmp, tmp3, Address(post(buf, 16)));
2944      crc32x(crc, crc, tmp);
2945      crc32x(crc, crc, tmp3);
2946      ldp(tmp, tmp3, Address(post(buf, 16)));
2947      crc32x(crc, crc, tmp);
2948      crc32x(crc, crc, tmp3);
2949      br(Assembler::GE, CRC_by64_loop);
2950      adds(len, len, 64-4);
2951      br(Assembler::GE, CRC_by4_loop);
2952      adds(len, len, 4);
2953      br(Assembler::GT, CRC_by1_loop);
2954    BIND(L_exit);
2955      ornw(crc, zr, crc);
2956      return;
2957  }
2958
2959    adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2960    if (offset) add(table0, table0, offset);
2961    add(table1, table0, 1*256*sizeof(juint));
2962    add(table2, table0, 2*256*sizeof(juint));
2963    add(table3, table0, 3*256*sizeof(juint));
2964
2965  if (UseNeon) {
2966      cmp(len, 64);
2967      br(Assembler::LT, L_by16);
2968      eor(v16, T16B, v16, v16);
2969
2970    Label L_fold;
2971
2972      add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
2973
2974      ld1(v0, v1, T2D, post(buf, 32));
2975      ld1r(v4, T2D, post(tmp, 8));
2976      ld1r(v5, T2D, post(tmp, 8));
2977      ld1r(v6, T2D, post(tmp, 8));
2978      ld1r(v7, T2D, post(tmp, 8));
2979      mov(v16, T4S, 0, crc);
2980
2981      eor(v0, T16B, v0, v16);
2982      sub(len, len, 64);
2983
2984    BIND(L_fold);
2985      pmull(v22, T8H, v0, v5, T8B);
2986      pmull(v20, T8H, v0, v7, T8B);
2987      pmull(v23, T8H, v0, v4, T8B);
2988      pmull(v21, T8H, v0, v6, T8B);
2989
2990      pmull2(v18, T8H, v0, v5, T16B);
2991      pmull2(v16, T8H, v0, v7, T16B);
2992      pmull2(v19, T8H, v0, v4, T16B);
2993      pmull2(v17, T8H, v0, v6, T16B);
2994
2995      uzp1(v24, v20, v22, T8H);
2996      uzp2(v25, v20, v22, T8H);
2997      eor(v20, T16B, v24, v25);
2998
2999      uzp1(v26, v16, v18, T8H);
3000      uzp2(v27, v16, v18, T8H);
3001      eor(v16, T16B, v26, v27);
3002
3003      ushll2(v22, T4S, v20, T8H, 8);
3004      ushll(v20, T4S, v20, T4H, 8);
3005
3006      ushll2(v18, T4S, v16, T8H, 8);
3007      ushll(v16, T4S, v16, T4H, 8);
3008
3009      eor(v22, T16B, v23, v22);
3010      eor(v18, T16B, v19, v18);
3011      eor(v20, T16B, v21, v20);
3012      eor(v16, T16B, v17, v16);
3013
3014      uzp1(v17, v16, v20, T2D);
3015      uzp2(v21, v16, v20, T2D);
3016      eor(v17, T16B, v17, v21);
3017
3018      ushll2(v20, T2D, v17, T4S, 16);
3019      ushll(v16, T2D, v17, T2S, 16);
3020
3021      eor(v20, T16B, v20, v22);
3022      eor(v16, T16B, v16, v18);
3023
3024      uzp1(v17, v20, v16, T2D);
3025      uzp2(v21, v20, v16, T2D);
3026      eor(v28, T16B, v17, v21);
3027
3028      pmull(v22, T8H, v1, v5, T8B);
3029      pmull(v20, T8H, v1, v7, T8B);
3030      pmull(v23, T8H, v1, v4, T8B);
3031      pmull(v21, T8H, v1, v6, T8B);
3032
3033      pmull2(v18, T8H, v1, v5, T16B);
3034      pmull2(v16, T8H, v1, v7, T16B);
3035      pmull2(v19, T8H, v1, v4, T16B);
3036      pmull2(v17, T8H, v1, v6, T16B);
3037
3038      ld1(v0, v1, T2D, post(buf, 32));
3039
3040      uzp1(v24, v20, v22, T8H);
3041      uzp2(v25, v20, v22, T8H);
3042      eor(v20, T16B, v24, v25);
3043
3044      uzp1(v26, v16, v18, T8H);
3045      uzp2(v27, v16, v18, T8H);
3046      eor(v16, T16B, v26, v27);
3047
3048      ushll2(v22, T4S, v20, T8H, 8);
3049      ushll(v20, T4S, v20, T4H, 8);
3050
3051      ushll2(v18, T4S, v16, T8H, 8);
3052      ushll(v16, T4S, v16, T4H, 8);
3053
3054      eor(v22, T16B, v23, v22);
3055      eor(v18, T16B, v19, v18);
3056      eor(v20, T16B, v21, v20);
3057      eor(v16, T16B, v17, v16);
3058
3059      uzp1(v17, v16, v20, T2D);
3060      uzp2(v21, v16, v20, T2D);
3061      eor(v16, T16B, v17, v21);
3062
3063      ushll2(v20, T2D, v16, T4S, 16);
3064      ushll(v16, T2D, v16, T2S, 16);
3065
3066      eor(v20, T16B, v22, v20);
3067      eor(v16, T16B, v16, v18);
3068
3069      uzp1(v17, v20, v16, T2D);
3070      uzp2(v21, v20, v16, T2D);
3071      eor(v20, T16B, v17, v21);
3072
3073      shl(v16, T2D, v28, 1);
3074      shl(v17, T2D, v20, 1);
3075
3076      eor(v0, T16B, v0, v16);
3077      eor(v1, T16B, v1, v17);
3078
3079      subs(len, len, 32);
3080      br(Assembler::GE, L_fold);
3081
3082      mov(crc, 0);
3083      mov(tmp, v0, T1D, 0);
3084      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3085      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3086      mov(tmp, v0, T1D, 1);
3087      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3088      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3089      mov(tmp, v1, T1D, 0);
3090      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3091      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3092      mov(tmp, v1, T1D, 1);
3093      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3094      update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3095
3096      add(len, len, 32);
3097  }
3098
3099  BIND(L_by16);
3100    subs(len, len, 16);
3101    br(Assembler::GE, L_by16_loop);
3102    adds(len, len, 16-4);
3103    br(Assembler::GE, L_by4_loop);
3104    adds(len, len, 4);
3105    br(Assembler::GT, L_by1_loop);
3106    b(L_exit);
3107
3108  BIND(L_by4_loop);
3109    ldrw(tmp, Address(post(buf, 4)));
3110    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
3111    subs(len, len, 4);
3112    br(Assembler::GE, L_by4_loop);
3113    adds(len, len, 4);
3114    br(Assembler::LE, L_exit);
3115  BIND(L_by1_loop);
3116    subs(len, len, 1);
3117    ldrb(tmp, Address(post(buf, 1)));
3118    update_byte_crc32(crc, tmp, table0);
3119    br(Assembler::GT, L_by1_loop);
3120    b(L_exit);
3121
3122    align(CodeEntryAlignment);
3123  BIND(L_by16_loop);
3124    subs(len, len, 16);
3125    ldp(tmp, tmp3, Address(post(buf, 16)));
3126    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
3127    update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
3128    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
3129    update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
3130    br(Assembler::GE, L_by16_loop);
3131    adds(len, len, 16-4);
3132    br(Assembler::GE, L_by4_loop);
3133    adds(len, len, 4);
3134    br(Assembler::GT, L_by1_loop);
3135  BIND(L_exit);
3136    ornw(crc, zr, crc);
3137}
3138
3139/**
3140 * @param crc   register containing existing CRC (32-bit)
3141 * @param buf   register pointing to input byte buffer (byte*)
3142 * @param len   register containing number of bytes
3143 * @param table register that will contain address of CRC table
3144 * @param tmp   scratch register
3145 */
3146void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
3147        Register table0, Register table1, Register table2, Register table3,
3148        Register tmp, Register tmp2, Register tmp3) {
3149  Label L_exit;
3150  Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop;
3151
3152    subs(len, len, 64);
3153    br(Assembler::GE, CRC_by64_loop);
3154    adds(len, len, 64-4);
3155    br(Assembler::GE, CRC_by4_loop);
3156    adds(len, len, 4);
3157    br(Assembler::GT, CRC_by1_loop);
3158    b(L_exit);
3159
3160  BIND(CRC_by4_loop);
3161    ldrw(tmp, Address(post(buf, 4)));
3162    subs(len, len, 4);
3163    crc32cw(crc, crc, tmp);
3164    br(Assembler::GE, CRC_by4_loop);
3165    adds(len, len, 4);
3166    br(Assembler::LE, L_exit);
3167  BIND(CRC_by1_loop);
3168    ldrb(tmp, Address(post(buf, 1)));
3169    subs(len, len, 1);
3170    crc32cb(crc, crc, tmp);
3171    br(Assembler::GT, CRC_by1_loop);
3172    b(L_exit);
3173
3174    align(CodeEntryAlignment);
3175  BIND(CRC_by64_loop);
3176    subs(len, len, 64);
3177    ldp(tmp, tmp3, Address(post(buf, 16)));
3178    crc32cx(crc, crc, tmp);
3179    crc32cx(crc, crc, tmp3);
3180    ldp(tmp, tmp3, Address(post(buf, 16)));
3181    crc32cx(crc, crc, tmp);
3182    crc32cx(crc, crc, tmp3);
3183    ldp(tmp, tmp3, Address(post(buf, 16)));
3184    crc32cx(crc, crc, tmp);
3185    crc32cx(crc, crc, tmp3);
3186    ldp(tmp, tmp3, Address(post(buf, 16)));
3187    crc32cx(crc, crc, tmp);
3188    crc32cx(crc, crc, tmp3);
3189    br(Assembler::GE, CRC_by64_loop);
3190    adds(len, len, 64-4);
3191    br(Assembler::GE, CRC_by4_loop);
3192    adds(len, len, 4);
3193    br(Assembler::GT, CRC_by1_loop);
3194  BIND(L_exit);
3195    return;
3196}
3197
3198SkipIfEqual::SkipIfEqual(
3199    MacroAssembler* masm, const bool* flag_addr, bool value) {
3200  _masm = masm;
3201  unsigned long offset;
3202  _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
3203  _masm->ldrb(rscratch1, Address(rscratch1, offset));
3204  _masm->cbzw(rscratch1, _label);
3205}
3206
3207SkipIfEqual::~SkipIfEqual() {
3208  _masm->bind(_label);
3209}
3210
3211void MacroAssembler::addptr(const Address &dst, int32_t src) {
3212  Address adr;
3213  switch(dst.getMode()) {
3214  case Address::base_plus_offset:
3215    // This is the expected mode, although we allow all the other
3216    // forms below.
3217    adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
3218    break;
3219  default:
3220    lea(rscratch2, dst);
3221    adr = Address(rscratch2);
3222    break;
3223  }
3224  ldr(rscratch1, adr);
3225  add(rscratch1, rscratch1, src);
3226  str(rscratch1, adr);
3227}
3228
3229void MacroAssembler::cmpptr(Register src1, Address src2) {
3230  unsigned long offset;
3231  adrp(rscratch1, src2, offset);
3232  ldr(rscratch1, Address(rscratch1, offset));
3233  cmp(src1, rscratch1);
3234}
3235
3236void MacroAssembler::store_check(Register obj, Address dst) {
3237  store_check(obj);
3238}
3239
3240void MacroAssembler::store_check(Register obj) {
3241  // Does a store check for the oop in register obj. The content of
3242  // register obj is destroyed afterwards.
3243
3244  BarrierSet* bs = Universe::heap()->barrier_set();
3245  assert(bs->kind() == BarrierSet::CardTableForRS ||
3246         bs->kind() == BarrierSet::CardTableExtension,
3247         "Wrong barrier set kind");
3248
3249  CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
3250  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3251
3252  lsr(obj, obj, CardTableModRefBS::card_shift);
3253
3254  assert(CardTableModRefBS::dirty_card_val() == 0, "must be");
3255
3256  load_byte_map_base(rscratch1);
3257
3258  if (UseCondCardMark) {
3259    Label L_already_dirty;
3260    membar(StoreLoad);
3261    ldrb(rscratch2,  Address(obj, rscratch1));
3262    cbz(rscratch2, L_already_dirty);
3263    strb(zr, Address(obj, rscratch1));
3264    bind(L_already_dirty);
3265  } else {
3266    if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
3267      membar(StoreStore);
3268    }
3269    strb(zr, Address(obj, rscratch1));
3270  }
3271}
3272
3273void MacroAssembler::load_klass(Register dst, Register src) {
3274  if (UseCompressedClassPointers) {
3275    ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3276    decode_klass_not_null(dst);
3277  } else {
3278    ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
3279  }
3280}
3281
3282void MacroAssembler::load_mirror(Register dst, Register method) {
3283  const int mirror_offset = in_bytes(Klass::java_mirror_offset());
3284  ldr(dst, Address(rmethod, Method::const_offset()));
3285  ldr(dst, Address(dst, ConstMethod::constants_offset()));
3286  ldr(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes()));
3287  ldr(dst, Address(dst, mirror_offset));
3288}
3289
3290void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
3291  if (UseCompressedClassPointers) {
3292    ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3293    if (Universe::narrow_klass_base() == NULL) {
3294      cmp(trial_klass, tmp, LSL, Universe::narrow_klass_shift());
3295      return;
3296    } else if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3297               && Universe::narrow_klass_shift() == 0) {
3298      // Only the bottom 32 bits matter
3299      cmpw(trial_klass, tmp);
3300      return;
3301    }
3302    decode_klass_not_null(tmp);
3303  } else {
3304    ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
3305  }
3306  cmp(trial_klass, tmp);
3307}
3308
3309void MacroAssembler::load_prototype_header(Register dst, Register src) {
3310  load_klass(dst, src);
3311  ldr(dst, Address(dst, Klass::prototype_header_offset()));
3312}
3313
3314void MacroAssembler::store_klass(Register dst, Register src) {
3315  // FIXME: Should this be a store release?  concurrent gcs assumes
3316  // klass length is valid if klass field is not null.
3317  if (UseCompressedClassPointers) {
3318    encode_klass_not_null(src);
3319    strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3320  } else {
3321    str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
3322  }
3323}
3324
3325void MacroAssembler::store_klass_gap(Register dst, Register src) {
3326  if (UseCompressedClassPointers) {
3327    // Store to klass gap in destination
3328    strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
3329  }
3330}
3331
3332// Algorithm must match oop.inline.hpp encode_heap_oop.
3333void MacroAssembler::encode_heap_oop(Register d, Register s) {
3334#ifdef ASSERT
3335  verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
3336#endif
3337  verify_oop(s, "broken oop in encode_heap_oop");
3338  if (Universe::narrow_oop_base() == NULL) {
3339    if (Universe::narrow_oop_shift() != 0) {
3340      assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3341      lsr(d, s, LogMinObjAlignmentInBytes);
3342    } else {
3343      mov(d, s);
3344    }
3345  } else {
3346    subs(d, s, rheapbase);
3347    csel(d, d, zr, Assembler::HS);
3348    lsr(d, d, LogMinObjAlignmentInBytes);
3349
3350    /*  Old algorithm: is this any worse?
3351    Label nonnull;
3352    cbnz(r, nonnull);
3353    sub(r, r, rheapbase);
3354    bind(nonnull);
3355    lsr(r, r, LogMinObjAlignmentInBytes);
3356    */
3357  }
3358}
3359
3360void MacroAssembler::encode_heap_oop_not_null(Register r) {
3361#ifdef ASSERT
3362  verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
3363  if (CheckCompressedOops) {
3364    Label ok;
3365    cbnz(r, ok);
3366    stop("null oop passed to encode_heap_oop_not_null");
3367    bind(ok);
3368  }
3369#endif
3370  verify_oop(r, "broken oop in encode_heap_oop_not_null");
3371  if (Universe::narrow_oop_base() != NULL) {
3372    sub(r, r, rheapbase);
3373  }
3374  if (Universe::narrow_oop_shift() != 0) {
3375    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3376    lsr(r, r, LogMinObjAlignmentInBytes);
3377  }
3378}
3379
3380void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
3381#ifdef ASSERT
3382  verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
3383  if (CheckCompressedOops) {
3384    Label ok;
3385    cbnz(src, ok);
3386    stop("null oop passed to encode_heap_oop_not_null2");
3387    bind(ok);
3388  }
3389#endif
3390  verify_oop(src, "broken oop in encode_heap_oop_not_null2");
3391
3392  Register data = src;
3393  if (Universe::narrow_oop_base() != NULL) {
3394    sub(dst, src, rheapbase);
3395    data = dst;
3396  }
3397  if (Universe::narrow_oop_shift() != 0) {
3398    assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3399    lsr(dst, data, LogMinObjAlignmentInBytes);
3400    data = dst;
3401  }
3402  if (data == src)
3403    mov(dst, src);
3404}
3405
3406void  MacroAssembler::decode_heap_oop(Register d, Register s) {
3407#ifdef ASSERT
3408  verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
3409#endif
3410  if (Universe::narrow_oop_base() == NULL) {
3411    if (Universe::narrow_oop_shift() != 0 || d != s) {
3412      lsl(d, s, Universe::narrow_oop_shift());
3413    }
3414  } else {
3415    Label done;
3416    if (d != s)
3417      mov(d, s);
3418    cbz(s, done);
3419    add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
3420    bind(done);
3421  }
3422  verify_oop(d, "broken oop in decode_heap_oop");
3423}
3424
3425void  MacroAssembler::decode_heap_oop_not_null(Register r) {
3426  assert (UseCompressedOops, "should only be used for compressed headers");
3427  assert (Universe::heap() != NULL, "java heap should be initialized");
3428  // Cannot assert, unverified entry point counts instructions (see .ad file)
3429  // vtableStubs also counts instructions in pd_code_size_limit.
3430  // Also do not verify_oop as this is called by verify_oop.
3431  if (Universe::narrow_oop_shift() != 0) {
3432    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3433    if (Universe::narrow_oop_base() != NULL) {
3434      add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3435    } else {
3436      add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
3437    }
3438  } else {
3439    assert (Universe::narrow_oop_base() == NULL, "sanity");
3440  }
3441}
3442
3443void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
3444  assert (UseCompressedOops, "should only be used for compressed headers");
3445  assert (Universe::heap() != NULL, "java heap should be initialized");
3446  // Cannot assert, unverified entry point counts instructions (see .ad file)
3447  // vtableStubs also counts instructions in pd_code_size_limit.
3448  // Also do not verify_oop as this is called by verify_oop.
3449  if (Universe::narrow_oop_shift() != 0) {
3450    assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
3451    if (Universe::narrow_oop_base() != NULL) {
3452      add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3453    } else {
3454      add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
3455    }
3456  } else {
3457    assert (Universe::narrow_oop_base() == NULL, "sanity");
3458    if (dst != src) {
3459      mov(dst, src);
3460    }
3461  }
3462}
3463
3464void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
3465  if (Universe::narrow_klass_base() == NULL) {
3466    if (Universe::narrow_klass_shift() != 0) {
3467      assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3468      lsr(dst, src, LogKlassAlignmentInBytes);
3469    } else {
3470      if (dst != src) mov(dst, src);
3471    }
3472    return;
3473  }
3474
3475  if (use_XOR_for_compressed_class_base) {
3476    if (Universe::narrow_klass_shift() != 0) {
3477      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3478      lsr(dst, dst, LogKlassAlignmentInBytes);
3479    } else {
3480      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3481    }
3482    return;
3483  }
3484
3485  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3486      && Universe::narrow_klass_shift() == 0) {
3487    movw(dst, src);
3488    return;
3489  }
3490
3491#ifdef ASSERT
3492  verify_heapbase("MacroAssembler::encode_klass_not_null2: heap base corrupted?");
3493#endif
3494
3495  Register rbase = dst;
3496  if (dst == src) rbase = rheapbase;
3497  mov(rbase, (uint64_t)Universe::narrow_klass_base());
3498  sub(dst, src, rbase);
3499  if (Universe::narrow_klass_shift() != 0) {
3500    assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3501    lsr(dst, dst, LogKlassAlignmentInBytes);
3502  }
3503  if (dst == src) reinit_heapbase();
3504}
3505
3506void MacroAssembler::encode_klass_not_null(Register r) {
3507  encode_klass_not_null(r, r);
3508}
3509
3510void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
3511  Register rbase = dst;
3512  assert (UseCompressedClassPointers, "should only be used for compressed headers");
3513
3514  if (Universe::narrow_klass_base() == NULL) {
3515    if (Universe::narrow_klass_shift() != 0) {
3516      assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3517      lsl(dst, src, LogKlassAlignmentInBytes);
3518    } else {
3519      if (dst != src) mov(dst, src);
3520    }
3521    return;
3522  }
3523
3524  if (use_XOR_for_compressed_class_base) {
3525    if (Universe::narrow_klass_shift() != 0) {
3526      lsl(dst, src, LogKlassAlignmentInBytes);
3527      eor(dst, dst, (uint64_t)Universe::narrow_klass_base());
3528    } else {
3529      eor(dst, src, (uint64_t)Universe::narrow_klass_base());
3530    }
3531    return;
3532  }
3533
3534  if (((uint64_t)Universe::narrow_klass_base() & 0xffffffff) == 0
3535      && Universe::narrow_klass_shift() == 0) {
3536    if (dst != src)
3537      movw(dst, src);
3538    movk(dst, (uint64_t)Universe::narrow_klass_base() >> 32, 32);
3539    return;
3540  }
3541
3542  // Cannot assert, unverified entry point counts instructions (see .ad file)
3543  // vtableStubs also counts instructions in pd_code_size_limit.
3544  // Also do not verify_oop as this is called by verify_oop.
3545  if (dst == src) rbase = rheapbase;
3546  mov(rbase, (uint64_t)Universe::narrow_klass_base());
3547  if (Universe::narrow_klass_shift() != 0) {
3548    assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
3549    add(dst, rbase, src, Assembler::LSL, LogKlassAlignmentInBytes);
3550  } else {
3551    add(dst, rbase, src);
3552  }
3553  if (dst == src) reinit_heapbase();
3554}
3555
3556void  MacroAssembler::decode_klass_not_null(Register r) {
3557  decode_klass_not_null(r, r);
3558}
3559
3560void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
3561  assert (UseCompressedOops, "should only be used for compressed oops");
3562  assert (Universe::heap() != NULL, "java heap should be initialized");
3563  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3564
3565  int oop_index = oop_recorder()->find_index(obj);
3566  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3567
3568  InstructionMark im(this);
3569  RelocationHolder rspec = oop_Relocation::spec(oop_index);
3570  code_section()->relocate(inst_mark(), rspec);
3571  movz(dst, 0xDEAD, 16);
3572  movk(dst, 0xBEEF);
3573}
3574
3575void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
3576  assert (UseCompressedClassPointers, "should only be used for compressed headers");
3577  assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
3578  int index = oop_recorder()->find_index(k);
3579  assert(! Universe::heap()->is_in_reserved(k), "should not be an oop");
3580
3581  InstructionMark im(this);
3582  RelocationHolder rspec = metadata_Relocation::spec(index);
3583  code_section()->relocate(inst_mark(), rspec);
3584  narrowKlass nk = Klass::encode_klass(k);
3585  movz(dst, (nk >> 16), 16);
3586  movk(dst, nk & 0xffff);
3587}
3588
3589void MacroAssembler::load_heap_oop(Register dst, Address src)
3590{
3591  if (UseCompressedOops) {
3592    ldrw(dst, src);
3593    decode_heap_oop(dst);
3594  } else {
3595    ldr(dst, src);
3596  }
3597}
3598
3599void MacroAssembler::load_heap_oop_not_null(Register dst, Address src)
3600{
3601  if (UseCompressedOops) {
3602    ldrw(dst, src);
3603    decode_heap_oop_not_null(dst);
3604  } else {
3605    ldr(dst, src);
3606  }
3607}
3608
3609void MacroAssembler::store_heap_oop(Address dst, Register src) {
3610  if (UseCompressedOops) {
3611    assert(!dst.uses(src), "not enough registers");
3612    encode_heap_oop(src);
3613    strw(src, dst);
3614  } else
3615    str(src, dst);
3616}
3617
3618// Used for storing NULLs.
3619void MacroAssembler::store_heap_oop_null(Address dst) {
3620  if (UseCompressedOops) {
3621    strw(zr, dst);
3622  } else
3623    str(zr, dst);
3624}
3625
3626#if INCLUDE_ALL_GCS
3627void MacroAssembler::g1_write_barrier_pre(Register obj,
3628                                          Register pre_val,
3629                                          Register thread,
3630                                          Register tmp,
3631                                          bool tosca_live,
3632                                          bool expand_call) {
3633  // If expand_call is true then we expand the call_VM_leaf macro
3634  // directly to skip generating the check by
3635  // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
3636
3637  assert(thread == rthread, "must be");
3638
3639  Label done;
3640  Label runtime;
3641
3642  assert(pre_val != noreg, "check this code");
3643
3644  if (obj != noreg)
3645    assert_different_registers(obj, pre_val, tmp);
3646
3647  Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3648                                       SATBMarkQueue::byte_offset_of_active()));
3649  Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3650                                       SATBMarkQueue::byte_offset_of_index()));
3651  Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
3652                                       SATBMarkQueue::byte_offset_of_buf()));
3653
3654
3655  // Is marking active?
3656  if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
3657    ldrw(tmp, in_progress);
3658  } else {
3659    assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
3660    ldrb(tmp, in_progress);
3661  }
3662  cbzw(tmp, done);
3663
3664  // Do we need to load the previous value?
3665  if (obj != noreg) {
3666    load_heap_oop(pre_val, Address(obj, 0));
3667  }
3668
3669  // Is the previous value null?
3670  cbz(pre_val, done);
3671
3672  // Can we store original value in the thread's buffer?
3673  // Is index == 0?
3674  // (The index field is typed as size_t.)
3675
3676  ldr(tmp, index);                      // tmp := *index_adr
3677  cbz(tmp, runtime);                    // tmp == 0?
3678                                        // If yes, goto runtime
3679
3680  sub(tmp, tmp, wordSize);              // tmp := tmp - wordSize
3681  str(tmp, index);                      // *index_adr := tmp
3682  ldr(rscratch1, buffer);
3683  add(tmp, tmp, rscratch1);             // tmp := tmp + *buffer_adr
3684
3685  // Record the previous value
3686  str(pre_val, Address(tmp, 0));
3687  b(done);
3688
3689  bind(runtime);
3690  // save the live input values
3691  push(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3692
3693  // Calling the runtime using the regular call_VM_leaf mechanism generates
3694  // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
3695  // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
3696  //
3697  // If we care generating the pre-barrier without a frame (e.g. in the
3698  // intrinsified Reference.get() routine) then ebp might be pointing to
3699  // the caller frame and so this check will most likely fail at runtime.
3700  //
3701  // Expanding the call directly bypasses the generation of the check.
3702  // So when we do not have have a full interpreter frame on the stack
3703  // expand_call should be passed true.
3704
3705  if (expand_call) {
3706    assert(pre_val != c_rarg1, "smashed arg");
3707    pass_arg1(this, thread);
3708    pass_arg0(this, pre_val);
3709    MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
3710  } else {
3711    call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
3712  }
3713
3714  pop(r0->bit(tosca_live) | obj->bit(obj != noreg) | pre_val->bit(true), sp);
3715
3716  bind(done);
3717}
3718
3719void MacroAssembler::g1_write_barrier_post(Register store_addr,
3720                                           Register new_val,
3721                                           Register thread,
3722                                           Register tmp,
3723                                           Register tmp2) {
3724  assert(thread == rthread, "must be");
3725
3726  Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3727                                       DirtyCardQueue::byte_offset_of_index()));
3728  Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
3729                                       DirtyCardQueue::byte_offset_of_buf()));
3730
3731  BarrierSet* bs = Universe::heap()->barrier_set();
3732  CardTableModRefBS* ct = (CardTableModRefBS*)bs;
3733  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3734
3735  Label done;
3736  Label runtime;
3737
3738  // Does store cross heap regions?
3739
3740  eor(tmp, store_addr, new_val);
3741  lsr(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
3742  cbz(tmp, done);
3743
3744  // crosses regions, storing NULL?
3745
3746  cbz(new_val, done);
3747
3748  // storing region crossing non-NULL, is card already dirty?
3749
3750  ExternalAddress cardtable((address) ct->byte_map_base);
3751  assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
3752  const Register card_addr = tmp;
3753
3754  lsr(card_addr, store_addr, CardTableModRefBS::card_shift);
3755
3756  // get the address of the card
3757  load_byte_map_base(tmp2);
3758  add(card_addr, card_addr, tmp2);
3759  ldrb(tmp2, Address(card_addr));
3760  cmpw(tmp2, (int)G1SATBCardTableModRefBS::g1_young_card_val());
3761  br(Assembler::EQ, done);
3762
3763  assert((int)CardTableModRefBS::dirty_card_val() == 0, "must be 0");
3764
3765  membar(Assembler::StoreLoad);
3766
3767  ldrb(tmp2, Address(card_addr));
3768  cbzw(tmp2, done);
3769
3770  // storing a region crossing, non-NULL oop, card is clean.
3771  // dirty card and log.
3772
3773  strb(zr, Address(card_addr));
3774
3775  ldr(rscratch1, queue_index);
3776  cbz(rscratch1, runtime);
3777  sub(rscratch1, rscratch1, wordSize);
3778  str(rscratch1, queue_index);
3779
3780  ldr(tmp2, buffer);
3781  str(card_addr, Address(tmp2, rscratch1));
3782  b(done);
3783
3784  bind(runtime);
3785  // save the live input values
3786  push(store_addr->bit(true) | new_val->bit(true), sp);
3787  call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
3788  pop(store_addr->bit(true) | new_val->bit(true), sp);
3789
3790  bind(done);
3791}
3792
3793#endif // INCLUDE_ALL_GCS
3794
3795Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
3796  assert(oop_recorder() != NULL, "this assembler needs a Recorder");
3797  int index = oop_recorder()->allocate_metadata_index(obj);
3798  RelocationHolder rspec = metadata_Relocation::spec(index);
3799  return Address((address)obj, rspec);
3800}
3801
3802// Move an oop into a register.  immediate is true if we want
3803// immediate instrcutions, i.e. we are not going to patch this
3804// instruction while the code is being executed by another thread.  In
3805// that case we can use move immediates rather than the constant pool.
3806void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
3807  int oop_index;
3808  if (obj == NULL) {
3809    oop_index = oop_recorder()->allocate_oop_index(obj);
3810  } else {
3811    oop_index = oop_recorder()->find_index(obj);
3812    assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "should be real oop");
3813  }
3814  RelocationHolder rspec = oop_Relocation::spec(oop_index);
3815  if (! immediate) {
3816    address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
3817    ldr_constant(dst, Address(dummy, rspec));
3818  } else
3819    mov(dst, Address((address)obj, rspec));
3820}
3821
3822// Move a metadata address into a register.
3823void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
3824  int oop_index;
3825  if (obj == NULL) {
3826    oop_index = oop_recorder()->allocate_metadata_index(obj);
3827  } else {
3828    oop_index = oop_recorder()->find_index(obj);
3829  }
3830  RelocationHolder rspec = metadata_Relocation::spec(oop_index);
3831  mov(dst, Address((address)obj, rspec));
3832}
3833
3834Address MacroAssembler::constant_oop_address(jobject obj) {
3835  assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
3836  assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
3837  int oop_index = oop_recorder()->find_index(obj);
3838  return Address((address)obj, oop_Relocation::spec(oop_index));
3839}
3840
3841// Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
3842void MacroAssembler::tlab_allocate(Register obj,
3843                                   Register var_size_in_bytes,
3844                                   int con_size_in_bytes,
3845                                   Register t1,
3846                                   Register t2,
3847                                   Label& slow_case) {
3848  assert_different_registers(obj, t2);
3849  assert_different_registers(obj, var_size_in_bytes);
3850  Register end = t2;
3851
3852  // verify_tlab();
3853
3854  ldr(obj, Address(rthread, JavaThread::tlab_top_offset()));
3855  if (var_size_in_bytes == noreg) {
3856    lea(end, Address(obj, con_size_in_bytes));
3857  } else {
3858    lea(end, Address(obj, var_size_in_bytes));
3859  }
3860  ldr(rscratch1, Address(rthread, JavaThread::tlab_end_offset()));
3861  cmp(end, rscratch1);
3862  br(Assembler::HI, slow_case);
3863
3864  // update the tlab top pointer
3865  str(end, Address(rthread, JavaThread::tlab_top_offset()));
3866
3867  // recover var_size_in_bytes if necessary
3868  if (var_size_in_bytes == end) {
3869    sub(var_size_in_bytes, var_size_in_bytes, obj);
3870  }
3871  // verify_tlab();
3872}
3873
3874// Preserves r19, and r3.
3875Register MacroAssembler::tlab_refill(Label& retry,
3876                                     Label& try_eden,
3877                                     Label& slow_case) {
3878  Register top = r0;
3879  Register t1  = r2;
3880  Register t2  = r4;
3881  assert_different_registers(top, rthread, t1, t2, /* preserve: */ r19, r3);
3882  Label do_refill, discard_tlab;
3883
3884  if (!Universe::heap()->supports_inline_contig_alloc()) {
3885    // No allocation in the shared eden.
3886    b(slow_case);
3887  }
3888
3889  ldr(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3890  ldr(t1,  Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3891
3892  // calculate amount of free space
3893  sub(t1, t1, top);
3894  lsr(t1, t1, LogHeapWordSize);
3895
3896  // Retain tlab and allocate object in shared space if
3897  // the amount free in the tlab is too large to discard.
3898
3899  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3900  cmp(t1, rscratch1);
3901  br(Assembler::LE, discard_tlab);
3902
3903  // Retain
3904  // ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3905  mov(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
3906  add(rscratch1, rscratch1, t2);
3907  str(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
3908
3909  if (TLABStats) {
3910    // increment number of slow_allocations
3911    addmw(Address(rthread, in_bytes(JavaThread::tlab_slow_allocations_offset())),
3912         1, rscratch1);
3913  }
3914  b(try_eden);
3915
3916  bind(discard_tlab);
3917  if (TLABStats) {
3918    // increment number of refills
3919    addmw(Address(rthread, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1,
3920         rscratch1);
3921    // accumulate wastage -- t1 is amount free in tlab
3922    addmw(Address(rthread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1,
3923         rscratch1);
3924  }
3925
3926  // if tlab is currently allocated (top or end != null) then
3927  // fill [top, end + alignment_reserve) with array object
3928  cbz(top, do_refill);
3929
3930  // set up the mark word
3931  mov(rscratch1, (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
3932  str(rscratch1, Address(top, oopDesc::mark_offset_in_bytes()));
3933  // set the length to the remaining space
3934  sub(t1, t1, typeArrayOopDesc::header_size(T_INT));
3935  add(t1, t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
3936  lsl(t1, t1, log2_intptr(HeapWordSize/sizeof(jint)));
3937  strw(t1, Address(top, arrayOopDesc::length_offset_in_bytes()));
3938  // set klass to intArrayKlass
3939  {
3940    unsigned long offset;
3941    // dubious reloc why not an oop reloc?
3942    adrp(rscratch1, ExternalAddress((address)Universe::intArrayKlassObj_addr()),
3943         offset);
3944    ldr(t1, Address(rscratch1, offset));
3945  }
3946  // store klass last.  concurrent gcs assumes klass length is valid if
3947  // klass field is not null.
3948  store_klass(top, t1);
3949
3950  mov(t1, top);
3951  ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3952  sub(t1, t1, rscratch1);
3953  incr_allocated_bytes(rthread, t1, 0, rscratch1);
3954
3955  // refill the tlab with an eden allocation
3956  bind(do_refill);
3957  ldr(t1, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3958  lsl(t1, t1, LogHeapWordSize);
3959  // allocate new tlab, address returned in top
3960  eden_allocate(top, t1, 0, t2, slow_case);
3961
3962  // Check that t1 was preserved in eden_allocate.
3963#ifdef ASSERT
3964  if (UseTLAB) {
3965    Label ok;
3966    Register tsize = r4;
3967    assert_different_registers(tsize, rthread, t1);
3968    str(tsize, Address(pre(sp, -16)));
3969    ldr(tsize, Address(rthread, in_bytes(JavaThread::tlab_size_offset())));
3970    lsl(tsize, tsize, LogHeapWordSize);
3971    cmp(t1, tsize);
3972    br(Assembler::EQ, ok);
3973    STOP("assert(t1 != tlab size)");
3974    should_not_reach_here();
3975
3976    bind(ok);
3977    ldr(tsize, Address(post(sp, 16)));
3978  }
3979#endif
3980  str(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3981  str(top, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
3982  add(top, top, t1);
3983  sub(top, top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
3984  str(top, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
3985
3986  if (ZeroTLAB) {
3987    // This is a fast TLAB refill, therefore the GC is not notified of it.
3988    // So compiled code must fill the new TLAB with zeroes.
3989    ldr(top, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
3990    zero_memory(top,t1,t2);
3991  }
3992
3993  verify_tlab();
3994  b(retry);
3995
3996  return rthread; // for use by caller
3997}
3998
3999// Zero words; len is in bytes
4000// Destroys all registers except addr
4001// len must be a nonzero multiple of wordSize
4002void MacroAssembler::zero_memory(Register addr, Register len, Register t1) {
4003  assert_different_registers(addr, len, t1, rscratch1, rscratch2);
4004
4005#ifdef ASSERT
4006  { Label L;
4007    tst(len, BytesPerWord - 1);
4008    br(Assembler::EQ, L);
4009    stop("len is not a multiple of BytesPerWord");
4010    bind(L);
4011  }
4012#endif
4013
4014#ifndef PRODUCT
4015  block_comment("zero memory");
4016#endif
4017
4018  Label loop;
4019  Label entry;
4020
4021//  Algorithm:
4022//
4023//    scratch1 = cnt & 7;
4024//    cnt -= scratch1;
4025//    p += scratch1;
4026//    switch (scratch1) {
4027//      do {
4028//        cnt -= 8;
4029//          p[-8] = 0;
4030//        case 7:
4031//          p[-7] = 0;
4032//        case 6:
4033//          p[-6] = 0;
4034//          // ...
4035//        case 1:
4036//          p[-1] = 0;
4037//        case 0:
4038//          p += 8;
4039//      } while (cnt);
4040//    }
4041
4042  const int unroll = 8; // Number of str(zr) instructions we'll unroll
4043
4044  lsr(len, len, LogBytesPerWord);
4045  andr(rscratch1, len, unroll - 1);  // tmp1 = cnt % unroll
4046  sub(len, len, rscratch1);      // cnt -= unroll
4047  // t1 always points to the end of the region we're about to zero
4048  add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord);
4049  adr(rscratch2, entry);
4050  sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2);
4051  br(rscratch2);
4052  bind(loop);
4053  sub(len, len, unroll);
4054  for (int i = -unroll; i < 0; i++)
4055    str(zr, Address(t1, i * wordSize));
4056  bind(entry);
4057  add(t1, t1, unroll * wordSize);
4058  cbnz(len, loop);
4059}
4060
4061// Defines obj, preserves var_size_in_bytes
4062void MacroAssembler::eden_allocate(Register obj,
4063                                   Register var_size_in_bytes,
4064                                   int con_size_in_bytes,
4065                                   Register t1,
4066                                   Label& slow_case) {
4067  assert_different_registers(obj, var_size_in_bytes, t1);
4068  if (!Universe::heap()->supports_inline_contig_alloc()) {
4069    b(slow_case);
4070  } else {
4071    Register end = t1;
4072    Register heap_end = rscratch2;
4073    Label retry;
4074    bind(retry);
4075    {
4076      unsigned long offset;
4077      adrp(rscratch1, ExternalAddress((address) Universe::heap()->end_addr()), offset);
4078      ldr(heap_end, Address(rscratch1, offset));
4079    }
4080
4081    ExternalAddress heap_top((address) Universe::heap()->top_addr());
4082
4083    // Get the current top of the heap
4084    {
4085      unsigned long offset;
4086      adrp(rscratch1, heap_top, offset);
4087      // Use add() here after ARDP, rather than lea().
4088      // lea() does not generate anything if its offset is zero.
4089      // However, relocs expect to find either an ADD or a load/store
4090      // insn after an ADRP.  add() always generates an ADD insn, even
4091      // for add(Rn, Rn, 0).
4092      add(rscratch1, rscratch1, offset);
4093      ldaxr(obj, rscratch1);
4094    }
4095
4096    // Adjust it my the size of our new object
4097    if (var_size_in_bytes == noreg) {
4098      lea(end, Address(obj, con_size_in_bytes));
4099    } else {
4100      lea(end, Address(obj, var_size_in_bytes));
4101    }
4102
4103    // if end < obj then we wrapped around high memory
4104    cmp(end, obj);
4105    br(Assembler::LO, slow_case);
4106
4107    cmp(end, heap_end);
4108    br(Assembler::HI, slow_case);
4109
4110    // If heap_top hasn't been changed by some other thread, update it.
4111    stlxr(rscratch2, end, rscratch1);
4112    cbnzw(rscratch2, retry);
4113  }
4114}
4115
4116void MacroAssembler::verify_tlab() {
4117#ifdef ASSERT
4118  if (UseTLAB && VerifyOops) {
4119    Label next, ok;
4120
4121    stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4122
4123    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4124    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4125    cmp(rscratch2, rscratch1);
4126    br(Assembler::HS, next);
4127    STOP("assert(top >= start)");
4128    should_not_reach_here();
4129
4130    bind(next);
4131    ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4132    ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4133    cmp(rscratch2, rscratch1);
4134    br(Assembler::HS, ok);
4135    STOP("assert(top <= end)");
4136    should_not_reach_here();
4137
4138    bind(ok);
4139    ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4140  }
4141#endif
4142}
4143
4144// Writes to stack successive pages until offset reached to check for
4145// stack overflow + shadow pages.  This clobbers tmp.
4146void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4147  assert_different_registers(tmp, size, rscratch1);
4148  mov(tmp, sp);
4149  // Bang stack for total size given plus shadow page size.
4150  // Bang one page at a time because large size can bang beyond yellow and
4151  // red zones.
4152  Label loop;
4153  mov(rscratch1, os::vm_page_size());
4154  bind(loop);
4155  lea(tmp, Address(tmp, -os::vm_page_size()));
4156  subsw(size, size, rscratch1);
4157  str(size, Address(tmp));
4158  br(Assembler::GT, loop);
4159
4160  // Bang down shadow pages too.
4161  // At this point, (tmp-0) is the last address touched, so don't
4162  // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4163  // was post-decremented.)  Skip this address by starting at i=1, and
4164  // touch a few more pages below.  N.B.  It is important to touch all
4165  // the way down to and including i=StackShadowPages.
4166  for (int i = 0; i < (int)(JavaThread::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) {
4167    // this could be any sized move but this is can be a debugging crumb
4168    // so the bigger the better.
4169    lea(tmp, Address(tmp, -os::vm_page_size()));
4170    str(size, Address(tmp));
4171  }
4172}
4173
4174
4175address MacroAssembler::read_polling_page(Register r, address page, relocInfo::relocType rtype) {
4176  unsigned long off;
4177  adrp(r, Address(page, rtype), off);
4178  InstructionMark im(this);
4179  code_section()->relocate(inst_mark(), rtype);
4180  ldrw(zr, Address(r, off));
4181  return inst_mark();
4182}
4183
4184address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
4185  InstructionMark im(this);
4186  code_section()->relocate(inst_mark(), rtype);
4187  ldrw(zr, Address(r, 0));
4188  return inst_mark();
4189}
4190
4191void MacroAssembler::adrp(Register reg1, const Address &dest, unsigned long &byte_offset) {
4192  relocInfo::relocType rtype = dest.rspec().reloc()->type();
4193  unsigned long low_page = (unsigned long)CodeCache::low_bound() >> 12;
4194  unsigned long high_page = (unsigned long)(CodeCache::high_bound()-1) >> 12;
4195  unsigned long dest_page = (unsigned long)dest.target() >> 12;
4196  long offset_low = dest_page - low_page;
4197  long offset_high = dest_page - high_page;
4198
4199  assert(is_valid_AArch64_address(dest.target()), "bad address");
4200  assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
4201
4202  InstructionMark im(this);
4203  code_section()->relocate(inst_mark(), dest.rspec());
4204  // 8143067: Ensure that the adrp can reach the dest from anywhere within
4205  // the code cache so that if it is relocated we know it will still reach
4206  if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
4207    _adrp(reg1, dest.target());
4208  } else {
4209    unsigned long target = (unsigned long)dest.target();
4210    unsigned long adrp_target
4211      = (target & 0xffffffffUL) | ((unsigned long)pc() & 0xffff00000000UL);
4212
4213    _adrp(reg1, (address)adrp_target);
4214    movk(reg1, target >> 32, 32);
4215  }
4216  byte_offset = (unsigned long)dest.target() & 0xfff;
4217}
4218
4219void MacroAssembler::load_byte_map_base(Register reg) {
4220  jbyte *byte_map_base =
4221    ((CardTableModRefBS*)(Universe::heap()->barrier_set()))->byte_map_base;
4222
4223  if (is_valid_AArch64_address((address)byte_map_base)) {
4224    // Strictly speaking the byte_map_base isn't an address at all,
4225    // and it might even be negative.
4226    unsigned long offset;
4227    adrp(reg, ExternalAddress((address)byte_map_base), offset);
4228    // We expect offset to be zero with most collectors.
4229    if (offset != 0) {
4230      add(reg, reg, offset);
4231    }
4232  } else {
4233    mov(reg, (uint64_t)byte_map_base);
4234  }
4235}
4236
4237void MacroAssembler::build_frame(int framesize) {
4238  assert(framesize > 0, "framesize must be > 0");
4239  if (framesize < ((1 << 9) + 2 * wordSize)) {
4240    sub(sp, sp, framesize);
4241    stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4242    if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
4243  } else {
4244    stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
4245    if (PreserveFramePointer) mov(rfp, sp);
4246    if (framesize < ((1 << 12) + 2 * wordSize))
4247      sub(sp, sp, framesize - 2 * wordSize);
4248    else {
4249      mov(rscratch1, framesize - 2 * wordSize);
4250      sub(sp, sp, rscratch1);
4251    }
4252  }
4253}
4254
4255void MacroAssembler::remove_frame(int framesize) {
4256  assert(framesize > 0, "framesize must be > 0");
4257  if (framesize < ((1 << 9) + 2 * wordSize)) {
4258    ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
4259    add(sp, sp, framesize);
4260  } else {
4261    if (framesize < ((1 << 12) + 2 * wordSize))
4262      add(sp, sp, framesize - 2 * wordSize);
4263    else {
4264      mov(rscratch1, framesize - 2 * wordSize);
4265      add(sp, sp, rscratch1);
4266    }
4267    ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
4268  }
4269}
4270
4271typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4272
4273// Search for str1 in str2 and return index or -1
4274void MacroAssembler::string_indexof(Register str2, Register str1,
4275                                    Register cnt2, Register cnt1,
4276                                    Register tmp1, Register tmp2,
4277                                    Register tmp3, Register tmp4,
4278                                    int icnt1, Register result, int ae) {
4279  Label BM, LINEARSEARCH, DONE, NOMATCH, MATCH;
4280
4281  Register ch1 = rscratch1;
4282  Register ch2 = rscratch2;
4283  Register cnt1tmp = tmp1;
4284  Register cnt2tmp = tmp2;
4285  Register cnt1_neg = cnt1;
4286  Register cnt2_neg = cnt2;
4287  Register result_tmp = tmp4;
4288
4289  bool isL = ae == StrIntrinsicNode::LL;
4290
4291  bool str1_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL;
4292  bool str2_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::LU;
4293  int str1_chr_shift = str1_isL ? 0:1;
4294  int str2_chr_shift = str2_isL ? 0:1;
4295  int str1_chr_size = str1_isL ? 1:2;
4296  int str2_chr_size = str2_isL ? 1:2;
4297  chr_insn str1_load_1chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4298                                      (chr_insn)&MacroAssembler::ldrh;
4299  chr_insn str2_load_1chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4300                                      (chr_insn)&MacroAssembler::ldrh;
4301  chr_insn load_2chr = isL ? (chr_insn)&MacroAssembler::ldrh : (chr_insn)&MacroAssembler::ldrw;
4302  chr_insn load_4chr = isL ? (chr_insn)&MacroAssembler::ldrw : (chr_insn)&MacroAssembler::ldr;
4303
4304  // Note, inline_string_indexOf() generates checks:
4305  // if (substr.count > string.count) return -1;
4306  // if (substr.count == 0) return 0;
4307
4308// We have two strings, a source string in str2, cnt2 and a pattern string
4309// in str1, cnt1. Find the 1st occurence of pattern in source or return -1.
4310
4311// For larger pattern and source we use a simplified Boyer Moore algorithm.
4312// With a small pattern and source we use linear scan.
4313
4314  if (icnt1 == -1) {
4315    cmp(cnt1, 256);             // Use Linear Scan if cnt1 < 8 || cnt1 >= 256
4316    ccmp(cnt1, 8, 0b0000, LO);  // Can't handle skip >= 256 because we use
4317    br(LO, LINEARSEARCH);       // a byte array.
4318    cmp(cnt1, cnt2, LSR, 2);    // Source must be 4 * pattern for BM
4319    br(HS, LINEARSEARCH);
4320  }
4321
4322// The Boyer Moore alogorithm is based on the description here:-
4323//
4324// http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
4325//
4326// This describes and algorithm with 2 shift rules. The 'Bad Character' rule
4327// and the 'Good Suffix' rule.
4328//
4329// These rules are essentially heuristics for how far we can shift the
4330// pattern along the search string.
4331//
4332// The implementation here uses the 'Bad Character' rule only because of the
4333// complexity of initialisation for the 'Good Suffix' rule.
4334//
4335// This is also known as the Boyer-Moore-Horspool algorithm:-
4336//
4337// http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
4338//
4339// #define ASIZE 128
4340//
4341//    int bm(unsigned char *x, int m, unsigned char *y, int n) {
4342//       int i, j;
4343//       unsigned c;
4344//       unsigned char bc[ASIZE];
4345//
4346//       /* Preprocessing */
4347//       for (i = 0; i < ASIZE; ++i)
4348//          bc[i] = 0;
4349//       for (i = 0; i < m - 1; ) {
4350//          c = x[i];
4351//          ++i;
4352//          if (c < ASIZE) bc[c] = i;
4353//       }
4354//
4355//       /* Searching */
4356//       j = 0;
4357//       while (j <= n - m) {
4358//          c = y[i+j];
4359//          if (x[m-1] == c)
4360//            for (i = m - 2; i >= 0 && x[i] == y[i + j]; --i);
4361//          if (i < 0) return j;
4362//          if (c < ASIZE)
4363//            j = j - bc[y[j+m-1]] + m;
4364//          else
4365//            j += 1; // Advance by 1 only if char >= ASIZE
4366//       }
4367//    }
4368
4369  if (icnt1 == -1) {
4370    BIND(BM);
4371
4372    Label ZLOOP, BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP;
4373    Label BMADV, BMMATCH, BMCHECKEND;
4374
4375    Register cnt1end = tmp2;
4376    Register str2end = cnt2;
4377    Register skipch = tmp2;
4378
4379    // Restrict ASIZE to 128 to reduce stack space/initialisation.
4380    // The presence of chars >= ASIZE in the target string does not affect
4381    // performance, but we must be careful not to initialise them in the stack
4382    // array.
4383    // The presence of chars >= ASIZE in the source string may adversely affect
4384    // performance since we can only advance by one when we encounter one.
4385
4386      stp(zr, zr, pre(sp, -128));
4387      for (int i = 1; i < 8; i++)
4388          stp(zr, zr, Address(sp, i*16));
4389
4390      mov(cnt1tmp, 0);
4391      sub(cnt1end, cnt1, 1);
4392    BIND(BCLOOP);
4393      (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4394      cmp(ch1, 128);
4395      add(cnt1tmp, cnt1tmp, 1);
4396      br(HS, BCSKIP);
4397      strb(cnt1tmp, Address(sp, ch1));
4398    BIND(BCSKIP);
4399      cmp(cnt1tmp, cnt1end);
4400      br(LT, BCLOOP);
4401
4402      mov(result_tmp, str2);
4403
4404      sub(cnt2, cnt2, cnt1);
4405      add(str2end, str2, cnt2, LSL, str2_chr_shift);
4406    BIND(BMLOOPSTR2);
4407      sub(cnt1tmp, cnt1, 1);
4408      (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4409      (this->*str2_load_1chr)(skipch, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4410      cmp(ch1, skipch);
4411      br(NE, BMSKIP);
4412      subs(cnt1tmp, cnt1tmp, 1);
4413      br(LT, BMMATCH);
4414    BIND(BMLOOPSTR1);
4415      (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp, Address::lsl(str1_chr_shift)));
4416      (this->*str2_load_1chr)(ch2, Address(str2, cnt1tmp, Address::lsl(str2_chr_shift)));
4417      cmp(ch1, ch2);
4418      br(NE, BMSKIP);
4419      subs(cnt1tmp, cnt1tmp, 1);
4420      br(GE, BMLOOPSTR1);
4421    BIND(BMMATCH);
4422      sub(result, str2, result_tmp);
4423      if (!str2_isL) lsr(result, result, 1);
4424      add(sp, sp, 128);
4425      b(DONE);
4426    BIND(BMADV);
4427      add(str2, str2, str2_chr_size);
4428      b(BMCHECKEND);
4429    BIND(BMSKIP);
4430      cmp(skipch, 128);
4431      br(HS, BMADV);
4432      ldrb(ch2, Address(sp, skipch));
4433      add(str2, str2, cnt1, LSL, str2_chr_shift);
4434      sub(str2, str2, ch2, LSL, str2_chr_shift);
4435    BIND(BMCHECKEND);
4436      cmp(str2, str2end);
4437      br(LE, BMLOOPSTR2);
4438      add(sp, sp, 128);
4439      b(NOMATCH);
4440  }
4441
4442  BIND(LINEARSEARCH);
4443  {
4444    Label DO1, DO2, DO3;
4445
4446    Register str2tmp = tmp2;
4447    Register first = tmp3;
4448
4449    if (icnt1 == -1)
4450    {
4451        Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT;
4452
4453        cmp(cnt1, str1_isL == str2_isL ? 4 : 2);
4454        br(LT, DOSHORT);
4455
4456        sub(cnt2, cnt2, cnt1);
4457        mov(result_tmp, cnt2);
4458
4459        lea(str1, Address(str1, cnt1, Address::lsl(str1_chr_shift)));
4460        lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4461        sub(cnt1_neg, zr, cnt1, LSL, str1_chr_shift);
4462        sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4463        (this->*str1_load_1chr)(first, Address(str1, cnt1_neg));
4464
4465      BIND(FIRST_LOOP);
4466        (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4467        cmp(first, ch2);
4468        br(EQ, STR1_LOOP);
4469      BIND(STR2_NEXT);
4470        adds(cnt2_neg, cnt2_neg, str2_chr_size);
4471        br(LE, FIRST_LOOP);
4472        b(NOMATCH);
4473
4474      BIND(STR1_LOOP);
4475        adds(cnt1tmp, cnt1_neg, str1_chr_size);
4476        add(cnt2tmp, cnt2_neg, str2_chr_size);
4477        br(GE, MATCH);
4478
4479      BIND(STR1_NEXT);
4480        (this->*str1_load_1chr)(ch1, Address(str1, cnt1tmp));
4481        (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4482        cmp(ch1, ch2);
4483        br(NE, STR2_NEXT);
4484        adds(cnt1tmp, cnt1tmp, str1_chr_size);
4485        add(cnt2tmp, cnt2tmp, str2_chr_size);
4486        br(LT, STR1_NEXT);
4487        b(MATCH);
4488
4489      BIND(DOSHORT);
4490      if (str1_isL == str2_isL) {
4491        cmp(cnt1, 2);
4492        br(LT, DO1);
4493        br(GT, DO3);
4494      }
4495    }
4496
4497    if (icnt1 == 4) {
4498      Label CH1_LOOP;
4499
4500        (this->*load_4chr)(ch1, str1);
4501        sub(cnt2, cnt2, 4);
4502        mov(result_tmp, cnt2);
4503        lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4504        sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4505
4506      BIND(CH1_LOOP);
4507        (this->*load_4chr)(ch2, Address(str2, cnt2_neg));
4508        cmp(ch1, ch2);
4509        br(EQ, MATCH);
4510        adds(cnt2_neg, cnt2_neg, str2_chr_size);
4511        br(LE, CH1_LOOP);
4512        b(NOMATCH);
4513    }
4514
4515    if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 2) {
4516      Label CH1_LOOP;
4517
4518      BIND(DO2);
4519        (this->*load_2chr)(ch1, str1);
4520        sub(cnt2, cnt2, 2);
4521        mov(result_tmp, cnt2);
4522        lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4523        sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4524
4525      BIND(CH1_LOOP);
4526        (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4527        cmp(ch1, ch2);
4528        br(EQ, MATCH);
4529        adds(cnt2_neg, cnt2_neg, str2_chr_size);
4530        br(LE, CH1_LOOP);
4531        b(NOMATCH);
4532    }
4533
4534    if ((icnt1 == -1 && str1_isL == str2_isL) || icnt1 == 3) {
4535      Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
4536
4537      BIND(DO3);
4538        (this->*load_2chr)(first, str1);
4539        (this->*str1_load_1chr)(ch1, Address(str1, 2*str1_chr_size));
4540
4541        sub(cnt2, cnt2, 3);
4542        mov(result_tmp, cnt2);
4543        lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4544        sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4545
4546      BIND(FIRST_LOOP);
4547        (this->*load_2chr)(ch2, Address(str2, cnt2_neg));
4548        cmpw(first, ch2);
4549        br(EQ, STR1_LOOP);
4550      BIND(STR2_NEXT);
4551        adds(cnt2_neg, cnt2_neg, str2_chr_size);
4552        br(LE, FIRST_LOOP);
4553        b(NOMATCH);
4554
4555      BIND(STR1_LOOP);
4556        add(cnt2tmp, cnt2_neg, 2*str2_chr_size);
4557        (this->*str2_load_1chr)(ch2, Address(str2, cnt2tmp));
4558        cmp(ch1, ch2);
4559        br(NE, STR2_NEXT);
4560        b(MATCH);
4561    }
4562
4563    if (icnt1 == -1 || icnt1 == 1) {
4564      Label CH1_LOOP, HAS_ZERO;
4565      Label DO1_SHORT, DO1_LOOP;
4566
4567      BIND(DO1);
4568        (this->*str1_load_1chr)(ch1, str1);
4569        cmp(cnt2, 8);
4570        br(LT, DO1_SHORT);
4571
4572        if (str2_isL) {
4573          if (!str1_isL) {
4574            tst(ch1, 0xff00);
4575            br(NE, NOMATCH);
4576          }
4577          orr(ch1, ch1, ch1, LSL, 8);
4578        }
4579        orr(ch1, ch1, ch1, LSL, 16);
4580        orr(ch1, ch1, ch1, LSL, 32);
4581
4582        sub(cnt2, cnt2, 8/str2_chr_size);
4583        mov(result_tmp, cnt2);
4584        lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4585        sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4586
4587        mov(tmp3, str2_isL ? 0x0101010101010101 : 0x0001000100010001);
4588      BIND(CH1_LOOP);
4589        ldr(ch2, Address(str2, cnt2_neg));
4590        eor(ch2, ch1, ch2);
4591        sub(tmp1, ch2, tmp3);
4592        orr(tmp2, ch2, str2_isL ? 0x7f7f7f7f7f7f7f7f : 0x7fff7fff7fff7fff);
4593        bics(tmp1, tmp1, tmp2);
4594        br(NE, HAS_ZERO);
4595        adds(cnt2_neg, cnt2_neg, 8);
4596        br(LT, CH1_LOOP);
4597
4598        cmp(cnt2_neg, 8);
4599        mov(cnt2_neg, 0);
4600        br(LT, CH1_LOOP);
4601        b(NOMATCH);
4602
4603      BIND(HAS_ZERO);
4604        rev(tmp1, tmp1);
4605        clz(tmp1, tmp1);
4606        add(cnt2_neg, cnt2_neg, tmp1, LSR, 3);
4607        b(MATCH);
4608
4609      BIND(DO1_SHORT);
4610        mov(result_tmp, cnt2);
4611        lea(str2, Address(str2, cnt2, Address::lsl(str2_chr_shift)));
4612        sub(cnt2_neg, zr, cnt2, LSL, str2_chr_shift);
4613      BIND(DO1_LOOP);
4614        (this->*str2_load_1chr)(ch2, Address(str2, cnt2_neg));
4615        cmpw(ch1, ch2);
4616        br(EQ, MATCH);
4617        adds(cnt2_neg, cnt2_neg, str2_chr_size);
4618        br(LT, DO1_LOOP);
4619    }
4620  }
4621  BIND(NOMATCH);
4622    mov(result, -1);
4623    b(DONE);
4624  BIND(MATCH);
4625    add(result, result_tmp, cnt2_neg, ASR, str2_chr_shift);
4626  BIND(DONE);
4627}
4628
4629typedef void (MacroAssembler::* chr_insn)(Register Rt, const Address &adr);
4630typedef void (MacroAssembler::* uxt_insn)(Register Rd, Register Rn);
4631
4632void MacroAssembler::string_indexof_char(Register str1, Register cnt1,
4633                                         Register ch, Register result,
4634                                         Register tmp1, Register tmp2, Register tmp3)
4635{
4636  Label CH1_LOOP, HAS_ZERO, DO1_SHORT, DO1_LOOP, MATCH, NOMATCH, DONE;
4637  Register cnt1_neg = cnt1;
4638  Register ch1 = rscratch1;
4639  Register result_tmp = rscratch2;
4640
4641  cmp(cnt1, 4);
4642  br(LT, DO1_SHORT);
4643
4644  orr(ch, ch, ch, LSL, 16);
4645  orr(ch, ch, ch, LSL, 32);
4646
4647  sub(cnt1, cnt1, 4);
4648  mov(result_tmp, cnt1);
4649  lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4650  sub(cnt1_neg, zr, cnt1, LSL, 1);
4651
4652  mov(tmp3, 0x0001000100010001);
4653
4654  BIND(CH1_LOOP);
4655    ldr(ch1, Address(str1, cnt1_neg));
4656    eor(ch1, ch, ch1);
4657    sub(tmp1, ch1, tmp3);
4658    orr(tmp2, ch1, 0x7fff7fff7fff7fff);
4659    bics(tmp1, tmp1, tmp2);
4660    br(NE, HAS_ZERO);
4661    adds(cnt1_neg, cnt1_neg, 8);
4662    br(LT, CH1_LOOP);
4663
4664    cmp(cnt1_neg, 8);
4665    mov(cnt1_neg, 0);
4666    br(LT, CH1_LOOP);
4667    b(NOMATCH);
4668
4669  BIND(HAS_ZERO);
4670    rev(tmp1, tmp1);
4671    clz(tmp1, tmp1);
4672    add(cnt1_neg, cnt1_neg, tmp1, LSR, 3);
4673    b(MATCH);
4674
4675  BIND(DO1_SHORT);
4676    mov(result_tmp, cnt1);
4677    lea(str1, Address(str1, cnt1, Address::uxtw(1)));
4678    sub(cnt1_neg, zr, cnt1, LSL, 1);
4679  BIND(DO1_LOOP);
4680    ldrh(ch1, Address(str1, cnt1_neg));
4681    cmpw(ch, ch1);
4682    br(EQ, MATCH);
4683    adds(cnt1_neg, cnt1_neg, 2);
4684    br(LT, DO1_LOOP);
4685  BIND(NOMATCH);
4686    mov(result, -1);
4687    b(DONE);
4688  BIND(MATCH);
4689    add(result, result_tmp, cnt1_neg, ASR, 1);
4690  BIND(DONE);
4691}
4692
4693// Compare strings.
4694void MacroAssembler::string_compare(Register str1, Register str2,
4695                                    Register cnt1, Register cnt2, Register result,
4696                                    Register tmp1,
4697                                    FloatRegister vtmp, FloatRegister vtmpZ, int ae) {
4698  Label LENGTH_DIFF, DONE, SHORT_LOOP, SHORT_STRING,
4699    NEXT_WORD, DIFFERENCE;
4700
4701  bool isLL = ae == StrIntrinsicNode::LL;
4702  bool isLU = ae == StrIntrinsicNode::LU;
4703  bool isUL = ae == StrIntrinsicNode::UL;
4704
4705  bool str1_isL = isLL || isLU;
4706  bool str2_isL = isLL || isUL;
4707
4708  int str1_chr_shift = str1_isL ? 0 : 1;
4709  int str2_chr_shift = str2_isL ? 0 : 1;
4710  int str1_chr_size = str1_isL ? 1 : 2;
4711  int str2_chr_size = str2_isL ? 1 : 2;
4712
4713  chr_insn str1_load_chr = str1_isL ? (chr_insn)&MacroAssembler::ldrb :
4714                                      (chr_insn)&MacroAssembler::ldrh;
4715  chr_insn str2_load_chr = str2_isL ? (chr_insn)&MacroAssembler::ldrb :
4716                                      (chr_insn)&MacroAssembler::ldrh;
4717  uxt_insn ext_chr = isLL ? (uxt_insn)&MacroAssembler::uxtbw :
4718                            (uxt_insn)&MacroAssembler::uxthw;
4719
4720  BLOCK_COMMENT("string_compare {");
4721
4722  // Bizzarely, the counts are passed in bytes, regardless of whether they
4723  // are L or U strings, however the result is always in characters.
4724  if (!str1_isL) asrw(cnt1, cnt1, 1);
4725  if (!str2_isL) asrw(cnt2, cnt2, 1);
4726
4727  // Compute the minimum of the string lengths and save the difference.
4728  subsw(tmp1, cnt1, cnt2);
4729  cselw(cnt2, cnt1, cnt2, Assembler::LE); // min
4730
4731  // A very short string
4732  cmpw(cnt2, isLL ? 8:4);
4733  br(Assembler::LT, SHORT_STRING);
4734
4735  // Check if the strings start at the same location.
4736  cmp(str1, str2);
4737  br(Assembler::EQ, LENGTH_DIFF);
4738
4739  // Compare longwords
4740  {
4741    subw(cnt2, cnt2, isLL ? 8:4); // The last longword is a special case
4742
4743    // Move both string pointers to the last longword of their
4744    // strings, negate the remaining count, and convert it to bytes.
4745    lea(str1, Address(str1, cnt2, Address::uxtw(str1_chr_shift)));
4746    lea(str2, Address(str2, cnt2, Address::uxtw(str2_chr_shift)));
4747    if (isLU || isUL) {
4748      sub(cnt1, zr, cnt2, LSL, str1_chr_shift);
4749      eor(vtmpZ, T16B, vtmpZ, vtmpZ);
4750    }
4751    sub(cnt2, zr, cnt2, LSL, str2_chr_shift);
4752
4753    // Loop, loading longwords and comparing them into rscratch2.
4754    bind(NEXT_WORD);
4755    if (isLU) {
4756      ldrs(vtmp, Address(str1, cnt1));
4757      zip1(vtmp, T8B, vtmp, vtmpZ);
4758      umov(result, vtmp, D, 0);
4759    } else {
4760      ldr(result, Address(str1, isUL ? cnt1:cnt2));
4761    }
4762    if (isUL) {
4763      ldrs(vtmp, Address(str2, cnt2));
4764      zip1(vtmp, T8B, vtmp, vtmpZ);
4765      umov(rscratch1, vtmp, D, 0);
4766    } else {
4767      ldr(rscratch1, Address(str2, cnt2));
4768    }
4769    adds(cnt2, cnt2, isUL ? 4:8);
4770    if (isLU || isUL) add(cnt1, cnt1, isLU ? 4:8);
4771    eor(rscratch2, result, rscratch1);
4772    cbnz(rscratch2, DIFFERENCE);
4773    br(Assembler::LT, NEXT_WORD);
4774
4775    // Last longword.  In the case where length == 4 we compare the
4776    // same longword twice, but that's still faster than another
4777    // conditional branch.
4778
4779    if (isLU) {
4780      ldrs(vtmp, Address(str1));
4781      zip1(vtmp, T8B, vtmp, vtmpZ);
4782      umov(result, vtmp, D, 0);
4783    } else {
4784      ldr(result, Address(str1));
4785    }
4786    if (isUL) {
4787      ldrs(vtmp, Address(str2));
4788      zip1(vtmp, T8B, vtmp, vtmpZ);
4789      umov(rscratch1, vtmp, D, 0);
4790    } else {
4791      ldr(rscratch1, Address(str2));
4792    }
4793    eor(rscratch2, result, rscratch1);
4794    cbz(rscratch2, LENGTH_DIFF);
4795
4796    // Find the first different characters in the longwords and
4797    // compute their difference.
4798    bind(DIFFERENCE);
4799    rev(rscratch2, rscratch2);
4800    clz(rscratch2, rscratch2);
4801    andr(rscratch2, rscratch2, isLL ? -8 : -16);
4802    lsrv(result, result, rscratch2);
4803    (this->*ext_chr)(result, result);
4804    lsrv(rscratch1, rscratch1, rscratch2);
4805    (this->*ext_chr)(rscratch1, rscratch1);
4806    subw(result, result, rscratch1);
4807    b(DONE);
4808  }
4809
4810  bind(SHORT_STRING);
4811  // Is the minimum length zero?
4812  cbz(cnt2, LENGTH_DIFF);
4813
4814  bind(SHORT_LOOP);
4815  (this->*str1_load_chr)(result, Address(post(str1, str1_chr_size)));
4816  (this->*str2_load_chr)(cnt1, Address(post(str2, str2_chr_size)));
4817  subw(result, result, cnt1);
4818  cbnz(result, DONE);
4819  sub(cnt2, cnt2, 1);
4820  cbnz(cnt2, SHORT_LOOP);
4821
4822  // Strings are equal up to min length.  Return the length difference.
4823  bind(LENGTH_DIFF);
4824  mov(result, tmp1);
4825
4826  // That's it
4827  bind(DONE);
4828
4829  BLOCK_COMMENT("} string_compare");
4830}
4831
4832// Compare Strings or char/byte arrays.
4833
4834// is_string is true iff this is a string comparison.
4835
4836// For Strings we're passed the address of the first characters in a1
4837// and a2 and the length in cnt1.
4838
4839// For byte and char arrays we're passed the arrays themselves and we
4840// have to extract length fields and do null checks here.
4841
4842// elem_size is the element size in bytes: either 1 or 2.
4843
4844// There are two implementations.  For arrays >= 8 bytes, all
4845// comparisons (including the final one, which may overlap) are
4846// performed 8 bytes at a time.  For arrays < 8 bytes, we compare a
4847// halfword, then a short, and then a byte.
4848
4849void MacroAssembler::arrays_equals(Register a1, Register a2,
4850                                   Register result, Register cnt1,
4851                                   int elem_size, bool is_string)
4852{
4853  Label SAME, DONE, SHORT, NEXT_WORD, ONE;
4854  Register tmp1 = rscratch1;
4855  Register tmp2 = rscratch2;
4856  Register cnt2 = tmp2;  // cnt2 only used in array length compare
4857  int elem_per_word = wordSize/elem_size;
4858  int log_elem_size = exact_log2(elem_size);
4859  int length_offset = arrayOopDesc::length_offset_in_bytes();
4860  int base_offset
4861    = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
4862
4863  assert(elem_size == 1 || elem_size == 2, "must be char or byte");
4864  assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
4865
4866#ifndef PRODUCT
4867  {
4868    const char kind = (elem_size == 2) ? 'U' : 'L';
4869    char comment[64];
4870    snprintf(comment, sizeof comment, "%s%c%s {",
4871             is_string ? "string_equals" : "array_equals",
4872             kind, "{");
4873    BLOCK_COMMENT(comment);
4874  }
4875#endif
4876
4877  mov(result, false);
4878
4879  if (!is_string) {
4880    // if (a==a2)
4881    //     return true;
4882    eor(rscratch1, a1, a2);
4883    cbz(rscratch1, SAME);
4884    // if (a==null || a2==null)
4885    //     return false;
4886    cbz(a1, DONE);
4887    cbz(a2, DONE);
4888    // if (a1.length != a2.length)
4889    //      return false;
4890    ldrw(cnt1, Address(a1, length_offset));
4891    ldrw(cnt2, Address(a2, length_offset));
4892    eorw(tmp1, cnt1, cnt2);
4893    cbnzw(tmp1, DONE);
4894
4895    lea(a1, Address(a1, base_offset));
4896    lea(a2, Address(a2, base_offset));
4897  }
4898
4899  // Check for short strings, i.e. smaller than wordSize.
4900  subs(cnt1, cnt1, elem_per_word);
4901  br(Assembler::LT, SHORT);
4902  // Main 8 byte comparison loop.
4903  bind(NEXT_WORD); {
4904    ldr(tmp1, Address(post(a1, wordSize)));
4905    ldr(tmp2, Address(post(a2, wordSize)));
4906    subs(cnt1, cnt1, elem_per_word);
4907    eor(tmp1, tmp1, tmp2);
4908    cbnz(tmp1, DONE);
4909  } br(GT, NEXT_WORD);
4910  // Last longword.  In the case where length == 4 we compare the
4911  // same longword twice, but that's still faster than another
4912  // conditional branch.
4913  // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
4914  // length == 4.
4915  if (log_elem_size > 0)
4916    lsl(cnt1, cnt1, log_elem_size);
4917  ldr(tmp1, Address(a1, cnt1));
4918  ldr(tmp2, Address(a2, cnt1));
4919  eor(tmp1, tmp1, tmp2);
4920  cbnz(tmp1, DONE);
4921  b(SAME);
4922
4923  bind(SHORT);
4924  Label TAIL03, TAIL01;
4925
4926  tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
4927  {
4928    ldrw(tmp1, Address(post(a1, 4)));
4929    ldrw(tmp2, Address(post(a2, 4)));
4930    eorw(tmp1, tmp1, tmp2);
4931    cbnzw(tmp1, DONE);
4932  }
4933  bind(TAIL03);
4934  tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
4935  {
4936    ldrh(tmp1, Address(post(a1, 2)));
4937    ldrh(tmp2, Address(post(a2, 2)));
4938    eorw(tmp1, tmp1, tmp2);
4939    cbnzw(tmp1, DONE);
4940  }
4941  bind(TAIL01);
4942  if (elem_size == 1) { // Only needed when comparing byte arrays.
4943    tbz(cnt1, 0, SAME); // 0-1 bytes left.
4944    {
4945      ldrb(tmp1, a1);
4946      ldrb(tmp2, a2);
4947      eorw(tmp1, tmp1, tmp2);
4948      cbnzw(tmp1, DONE);
4949    }
4950  }
4951  // Arrays are equal.
4952  bind(SAME);
4953  mov(result, true);
4954
4955  // That's it.
4956  bind(DONE);
4957  BLOCK_COMMENT(is_string ? "} string_equals" : "} array_equals");
4958}
4959
4960
4961// The size of the blocks erased by the zero_blocks stub.  We must
4962// handle anything smaller than this ourselves in zero_words().
4963const int MacroAssembler::zero_words_block_size = 8;
4964
4965// zero_words() is used by C2 ClearArray patterns.  It is as small as
4966// possible, handling small word counts locally and delegating
4967// anything larger to the zero_blocks stub.  It is expanded many times
4968// in compiled code, so it is important to keep it short.
4969
4970// ptr:   Address of a buffer to be zeroed.
4971// cnt:   Count in HeapWords.
4972//
4973// ptr, cnt, rscratch1, and rscratch2 are clobbered.
4974void MacroAssembler::zero_words(Register ptr, Register cnt)
4975{
4976  assert(is_power_of_2(zero_words_block_size), "adjust this");
4977  assert(ptr == r10 && cnt == r11, "mismatch in register usage");
4978
4979  BLOCK_COMMENT("zero_words {");
4980  cmp(cnt, zero_words_block_size);
4981  Label around, done, done16;
4982  br(LO, around);
4983  {
4984    RuntimeAddress zero_blocks =  RuntimeAddress(StubRoutines::aarch64::zero_blocks());
4985    assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated");
4986    if (StubRoutines::aarch64::complete()) {
4987      trampoline_call(zero_blocks);
4988    } else {
4989      bl(zero_blocks);
4990    }
4991  }
4992  bind(around);
4993  for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
4994    Label l;
4995    tbz(cnt, exact_log2(i), l);
4996    for (int j = 0; j < i; j += 2) {
4997      stp(zr, zr, post(ptr, 16));
4998    }
4999    bind(l);
5000  }
5001  {
5002    Label l;
5003    tbz(cnt, 0, l);
5004    str(zr, Address(ptr));
5005    bind(l);
5006  }
5007  BLOCK_COMMENT("} zero_words");
5008}
5009
5010// base:         Address of a buffer to be zeroed, 8 bytes aligned.
5011// cnt:          Immediate count in HeapWords.
5012#define SmallArraySize (18 * BytesPerLong)
5013void MacroAssembler::zero_words(Register base, u_int64_t cnt)
5014{
5015  BLOCK_COMMENT("zero_words {");
5016  int i = cnt & 1;  // store any odd word to start
5017  if (i) str(zr, Address(base));
5018
5019  if (cnt <= SmallArraySize / BytesPerLong) {
5020    for (; i < (int)cnt; i += 2)
5021      stp(zr, zr, Address(base, i * wordSize));
5022  } else {
5023    const int unroll = 4; // Number of stp(zr, zr) instructions we'll unroll
5024    int remainder = cnt % (2 * unroll);
5025    for (; i < remainder; i += 2)
5026      stp(zr, zr, Address(base, i * wordSize));
5027
5028    Label loop;
5029    Register cnt_reg = rscratch1;
5030    Register loop_base = rscratch2;
5031    cnt = cnt - remainder;
5032    mov(cnt_reg, cnt);
5033    // adjust base and prebias by -2 * wordSize so we can pre-increment
5034    add(loop_base, base, (remainder - 2) * wordSize);
5035    bind(loop);
5036    sub(cnt_reg, cnt_reg, 2 * unroll);
5037    for (i = 1; i < unroll; i++)
5038      stp(zr, zr, Address(loop_base, 2 * i * wordSize));
5039    stp(zr, zr, Address(pre(loop_base, 2 * unroll * wordSize)));
5040    cbnz(cnt_reg, loop);
5041  }
5042  BLOCK_COMMENT("} zero_words");
5043}
5044
5045// Zero blocks of memory by using DC ZVA.
5046//
5047// Aligns the base address first sufficently for DC ZVA, then uses
5048// DC ZVA repeatedly for every full block.  cnt is the size to be
5049// zeroed in HeapWords.  Returns the count of words left to be zeroed
5050// in cnt.
5051//
5052// NOTE: This is intended to be used in the zero_blocks() stub.  If
5053// you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5054void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5055  Register tmp = rscratch1;
5056  Register tmp2 = rscratch2;
5057  int zva_length = VM_Version::zva_length();
5058  Label initial_table_end, loop_zva;
5059  Label fini;
5060
5061  // Base must be 16 byte aligned. If not just return and let caller handle it
5062  tst(base, 0x0f);
5063  br(Assembler::NE, fini);
5064  // Align base with ZVA length.
5065  neg(tmp, base);
5066  andr(tmp, tmp, zva_length - 1);
5067
5068  // tmp: the number of bytes to be filled to align the base with ZVA length.
5069  add(base, base, tmp);
5070  sub(cnt, cnt, tmp, Assembler::ASR, 3);
5071  adr(tmp2, initial_table_end);
5072  sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5073  br(tmp2);
5074
5075  for (int i = -zva_length + 16; i < 0; i += 16)
5076    stp(zr, zr, Address(base, i));
5077  bind(initial_table_end);
5078
5079  sub(cnt, cnt, zva_length >> 3);
5080  bind(loop_zva);
5081  dc(Assembler::ZVA, base);
5082  subs(cnt, cnt, zva_length >> 3);
5083  add(base, base, zva_length);
5084  br(Assembler::GE, loop_zva);
5085  add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
5086  bind(fini);
5087}
5088
5089// base:   Address of a buffer to be filled, 8 bytes aligned.
5090// cnt:    Count in 8-byte unit.
5091// value:  Value to be filled with.
5092// base will point to the end of the buffer after filling.
5093void MacroAssembler::fill_words(Register base, Register cnt, Register value)
5094{
5095//  Algorithm:
5096//
5097//    scratch1 = cnt & 7;
5098//    cnt -= scratch1;
5099//    p += scratch1;
5100//    switch (scratch1) {
5101//      do {
5102//        cnt -= 8;
5103//          p[-8] = v;
5104//        case 7:
5105//          p[-7] = v;
5106//        case 6:
5107//          p[-6] = v;
5108//          // ...
5109//        case 1:
5110//          p[-1] = v;
5111//        case 0:
5112//          p += 8;
5113//      } while (cnt);
5114//    }
5115
5116  assert_different_registers(base, cnt, value, rscratch1, rscratch2);
5117
5118  Label fini, skip, entry, loop;
5119  const int unroll = 8; // Number of stp instructions we'll unroll
5120
5121  cbz(cnt, fini);
5122  tbz(base, 3, skip);
5123  str(value, Address(post(base, 8)));
5124  sub(cnt, cnt, 1);
5125  bind(skip);
5126
5127  andr(rscratch1, cnt, (unroll-1) * 2);
5128  sub(cnt, cnt, rscratch1);
5129  add(base, base, rscratch1, Assembler::LSL, 3);
5130  adr(rscratch2, entry);
5131  sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
5132  br(rscratch2);
5133
5134  bind(loop);
5135  add(base, base, unroll * 16);
5136  for (int i = -unroll; i < 0; i++)
5137    stp(value, value, Address(base, i * 16));
5138  bind(entry);
5139  subs(cnt, cnt, unroll * 2);
5140  br(Assembler::GE, loop);
5141
5142  tbz(cnt, 0, fini);
5143  str(value, Address(post(base, 8)));
5144  bind(fini);
5145}
5146
5147// Intrinsic for sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray and
5148// java/lang/StringUTF16.compress.
5149void MacroAssembler::encode_iso_array(Register src, Register dst,
5150                      Register len, Register result,
5151                      FloatRegister Vtmp1, FloatRegister Vtmp2,
5152                      FloatRegister Vtmp3, FloatRegister Vtmp4)
5153{
5154    Label DONE, NEXT_32, LOOP_8, NEXT_8, LOOP_1, NEXT_1;
5155    Register tmp1 = rscratch1;
5156
5157      mov(result, len); // Save initial len
5158
5159#ifndef BUILTIN_SIM
5160      subs(len, len, 32);
5161      br(LT, LOOP_8);
5162
5163// The following code uses the SIMD 'uqxtn' and 'uqxtn2' instructions
5164// to convert chars to bytes. These set the 'QC' bit in the FPSR if
5165// any char could not fit in a byte, so clear the FPSR so we can test it.
5166      clear_fpsr();
5167
5168    BIND(NEXT_32);
5169      ld1(Vtmp1, Vtmp2, Vtmp3, Vtmp4, T8H, src);
5170      uqxtn(Vtmp1, T8B, Vtmp1, T8H);  // uqxtn  - write bottom half
5171      uqxtn(Vtmp1, T16B, Vtmp2, T8H); // uqxtn2 - write top half
5172      uqxtn(Vtmp2, T8B, Vtmp3, T8H);
5173      uqxtn(Vtmp2, T16B, Vtmp4, T8H); // uqxtn2
5174      get_fpsr(tmp1);
5175      cbnzw(tmp1, LOOP_8);
5176      st1(Vtmp1, Vtmp2, T16B, post(dst, 32));
5177      subs(len, len, 32);
5178      add(src, src, 64);
5179      br(GE, NEXT_32);
5180
5181    BIND(LOOP_8);
5182      adds(len, len, 32-8);
5183      br(LT, LOOP_1);
5184      clear_fpsr(); // QC may be set from loop above, clear again
5185    BIND(NEXT_8);
5186      ld1(Vtmp1, T8H, src);
5187      uqxtn(Vtmp1, T8B, Vtmp1, T8H);
5188      get_fpsr(tmp1);
5189      cbnzw(tmp1, LOOP_1);
5190      st1(Vtmp1, T8B, post(dst, 8));
5191      subs(len, len, 8);
5192      add(src, src, 16);
5193      br(GE, NEXT_8);
5194
5195    BIND(LOOP_1);
5196      adds(len, len, 8);
5197      br(LE, DONE);
5198#else
5199      cbz(len, DONE);
5200#endif
5201    BIND(NEXT_1);
5202      ldrh(tmp1, Address(post(src, 2)));
5203      tst(tmp1, 0xff00);
5204      br(NE, DONE);
5205      strb(tmp1, Address(post(dst, 1)));
5206      subs(len, len, 1);
5207      br(GT, NEXT_1);
5208
5209    BIND(DONE);
5210      sub(result, result, len); // Return index where we stopped
5211                                // Return len == 0 if we processed all
5212                                // characters
5213}
5214
5215
5216// Inflate byte[] array to char[].
5217void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
5218                                        FloatRegister vtmp1, FloatRegister vtmp2, FloatRegister vtmp3,
5219                                        Register tmp4) {
5220  Label big, done;
5221
5222  assert_different_registers(src, dst, len, tmp4, rscratch1);
5223
5224  fmovd(vtmp1 , zr);
5225  lsrw(rscratch1, len, 3);
5226
5227  cbnzw(rscratch1, big);
5228
5229  // Short string: less than 8 bytes.
5230  {
5231    Label loop, around, tiny;
5232
5233    subsw(len, len, 4);
5234    andw(len, len, 3);
5235    br(LO, tiny);
5236
5237    // Use SIMD to do 4 bytes.
5238    ldrs(vtmp2, post(src, 4));
5239    zip1(vtmp3, T8B, vtmp2, vtmp1);
5240    strd(vtmp3, post(dst, 8));
5241
5242    cbzw(len, done);
5243
5244    // Do the remaining bytes by steam.
5245    bind(loop);
5246    ldrb(tmp4, post(src, 1));
5247    strh(tmp4, post(dst, 2));
5248    subw(len, len, 1);
5249
5250    bind(tiny);
5251    cbnz(len, loop);
5252
5253    bind(around);
5254    b(done);
5255  }
5256
5257  // Unpack the bytes 8 at a time.
5258  bind(big);
5259  andw(len, len, 7);
5260
5261  {
5262    Label loop, around;
5263
5264    bind(loop);
5265    ldrd(vtmp2, post(src, 8));
5266    sub(rscratch1, rscratch1, 1);
5267    zip1(vtmp3, T16B, vtmp2, vtmp1);
5268    st1(vtmp3, T8H, post(dst, 16));
5269    cbnz(rscratch1, loop);
5270
5271    bind(around);
5272  }
5273
5274  // Do the tail of up to 8 bytes.
5275  sub(src, src, 8);
5276  add(src, src, len, ext::uxtw, 0);
5277  ldrd(vtmp2, Address(src));
5278  sub(dst, dst, 16);
5279  add(dst, dst, len, ext::uxtw, 1);
5280  zip1(vtmp3, T16B, vtmp2, vtmp1);
5281  st1(vtmp3, T8H, Address(dst));
5282
5283  bind(done);
5284}
5285
5286// Compress char[] array to byte[].
5287void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
5288                                         FloatRegister tmp1Reg, FloatRegister tmp2Reg,
5289                                         FloatRegister tmp3Reg, FloatRegister tmp4Reg,
5290                                         Register result) {
5291  encode_iso_array(src, dst, len, result,
5292                   tmp1Reg, tmp2Reg, tmp3Reg, tmp4Reg);
5293  cmp(len, zr);
5294  csel(result, result, zr, EQ);
5295}
5296
5297// get_thread() can be called anywhere inside generated code so we
5298// need to save whatever non-callee save context might get clobbered
5299// by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
5300// the call setup code.
5301//
5302// aarch64_get_thread_helper() clobbers only r0, r1, and flags.
5303//
5304void MacroAssembler::get_thread(Register dst) {
5305  RegSet saved_regs = RegSet::range(r0, r1) + lr - dst;
5306  push(saved_regs, sp);
5307
5308  mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
5309  blrt(lr, 1, 0, 1);
5310  if (dst != c_rarg0) {
5311    mov(dst, c_rarg0);
5312  }
5313
5314  pop(saved_regs, sp);
5315}
5316