1/*	$OpenBSD: key.c,v 1.20 2022/04/21 17:50:29 millert Exp $	*/
2
3/*-
4 * Copyright (c) 1991, 1993, 1994
5 *	The Regents of the University of California.  All rights reserved.
6 * Copyright (c) 1991, 1993, 1994, 1995, 1996
7 *	Keith Bostic.  All rights reserved.
8 *
9 * See the LICENSE file for redistribution information.
10 */
11
12#include "config.h"
13
14#include <sys/queue.h>
15#include <sys/time.h>
16
17#include <bitstring.h>
18#include <ctype.h>
19#include <errno.h>
20#include <limits.h>
21#include <locale.h>
22#include <stdio.h>
23#include <stdlib.h>
24#include <string.h>
25#include <unistd.h>
26
27#include "common.h"
28#include "../vi/vi.h"
29
30#define MAXIMUM(a, b)	(((a) > (b)) ? (a) : (b))
31
32static int	v_event_append(SCR *, EVENT *);
33static int	v_event_grow(SCR *, int);
34static int	v_key_cmp(const void *, const void *);
35static void	v_keyval(SCR *, int, scr_keyval_t);
36static void	v_sync(SCR *, int);
37
38/*
39 * !!!
40 * Historic vi always used:
41 *
42 *	^D: autoindent deletion
43 *	^H: last character deletion
44 *	^W: last word deletion
45 *	^Q: quote the next character (if not used in flow control).
46 *	^V: quote the next character
47 *
48 * regardless of the user's choices for these characters.  The user's erase
49 * and kill characters worked in addition to these characters.  Nvi wires
50 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
51 * and VWERASE characters described by the user's termios structure.
52 *
53 * Ex was not consistent with this scheme, as it historically ran in tty
54 * cooked mode.  This meant that the scroll command and autoindent erase
55 * characters were mapped to the user's EOF character, and the character
56 * and word deletion characters were the user's tty character and word
57 * deletion characters.  This implementation makes it all consistent, as
58 * described above for vi.
59 *
60 * !!!
61 * This means that all screens share a special key set.
62 */
63KEYLIST keylist[] = {
64	{K_BACKSLASH,	  '\\'},	/*  \ */
65	{K_CARAT,	   '^'},	/*  ^ */
66	{K_CNTRLD,	'\004'},	/* ^D */
67	{K_CNTRLR,	'\022'},	/* ^R */
68	{K_CNTRLT,	'\024'},	/* ^T */
69	{K_CNTRLZ,	'\032'},	/* ^Z */
70	{K_COLON,	   ':'},	/*  : */
71	{K_CR,		  '\r'},	/* \r */
72	{K_ESCAPE,	'\033'},	/* ^[ */
73	{K_FORMFEED,	  '\f'},	/* \f */
74	{K_HEXCHAR,	'\030'},	/* ^X */
75	{K_NL,		  '\n'},	/* \n */
76	{K_RIGHTBRACE,	   '}'},	/*  } */
77	{K_RIGHTPAREN,	   ')'},	/*  ) */
78	{K_TAB,		  '\t'},	/* \t */
79	{K_VERASE,	  '\b'},	/* \b */
80	{K_VKILL,	'\025'},	/* ^U */
81	{K_VLNEXT,	'\021'},	/* ^Q */
82	{K_VLNEXT,	'\026'},	/* ^V */
83	{K_VWERASE,	'\027'},	/* ^W */
84	{K_ZERO,	   '0'},	/*  0 */
85
86#define	ADDITIONAL_CHARACTERS	4
87	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
88	{K_NOTUSED, 0},
89	{K_NOTUSED, 0},
90	{K_NOTUSED, 0},
91};
92static int nkeylist =
93    (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
94
95/*
96 * v_key_init --
97 *	Initialize the special key lookup table.
98 *
99 * PUBLIC: int v_key_init(SCR *);
100 */
101int
102v_key_init(SCR *sp)
103{
104	u_int ch;
105	GS *gp;
106	KEYLIST *kp;
107	int cnt;
108
109	gp = sp->gp;
110
111	/*
112	 * XXX
113	 * 8-bit only, for now.  Recompilation should get you any 8-bit
114	 * character set, as long as nul isn't a character.
115	 */
116	(void)setlocale(LC_ALL, "");
117	v_key_ilookup(sp);
118
119	v_keyval(sp, K_CNTRLD, KEY_VEOF);
120	v_keyval(sp, K_VERASE, KEY_VERASE);
121	v_keyval(sp, K_VKILL, KEY_VKILL);
122	v_keyval(sp, K_VWERASE, KEY_VWERASE);
123
124	/* Sort the special key list. */
125	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
126
127	/* Initialize the fast lookup table. */
128	for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) {
129		if (gp->max_special < kp->value)
130			gp->max_special = kp->value;
131		if (kp->ch <= MAX_FAST_KEY)
132			gp->special_key[kp->ch] = kp->value;
133	}
134
135	/* Find a non-printable character to use as a message separator. */
136	for (ch = 1; ch <= MAX_CHAR_T; ++ch)
137		if (!isprint(ch)) {
138			gp->noprint = ch;
139			break;
140		}
141	if (ch != gp->noprint) {
142		msgq(sp, M_ERR, "No non-printable character found");
143		return (1);
144	}
145	return (0);
146}
147
148/*
149 * v_keyval --
150 *	Set key values.
151 *
152 * We've left some open slots in the keylist table, and if these values exist,
153 * we put them into place.  Note, they may reset (or duplicate) values already
154 * in the table, so we check for that first.
155 */
156static void
157v_keyval(SCR *sp, int val, scr_keyval_t name)
158{
159	KEYLIST *kp;
160	CHAR_T ch;
161	int dne;
162
163	/* Get the key's value from the screen. */
164	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
165		return;
166	if (dne)
167		return;
168
169	/* Check for duplication. */
170	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
171		if (kp->ch == ch) {
172			kp->value = val;
173			return;
174		}
175
176	/* Add a new entry. */
177	if (kp->value == K_NOTUSED) {
178		keylist[nkeylist].ch = ch;
179		keylist[nkeylist].value = val;
180		++nkeylist;
181	}
182}
183
184/*
185 * v_key_ilookup --
186 *	Build the fast-lookup key display array.
187 *
188 * PUBLIC: void v_key_ilookup(SCR *);
189 */
190void
191v_key_ilookup(SCR *sp)
192{
193	CHAR_T ch, *p, *t;
194	GS *gp;
195	size_t len;
196
197	for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch)
198		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
199		    len = gp->cname[ch].len = sp->clen; len--;)
200			*p++ = *t++;
201}
202
203/*
204 * v_key_len --
205 *	Return the length of the string that will display the key.
206 *	This routine is the backup for the KEY_LEN() macro.
207 *
208 * PUBLIC: size_t v_key_len(SCR *, CHAR_T);
209 */
210size_t
211v_key_len(SCR *sp, CHAR_T ch)
212{
213	(void)v_key_name(sp, ch);
214	return (sp->clen);
215}
216
217/*
218 * v_key_name --
219 *	Return the string that will display the key.  This routine
220 *	is the backup for the KEY_NAME() macro.
221 *
222 * PUBLIC: CHAR_T *v_key_name(SCR *, CHAR_T);
223 */
224CHAR_T *
225v_key_name(SCR *sp, CHAR_T ch)
226{
227	static const CHAR_T hexdigit[] = "0123456789abcdef";
228	static const CHAR_T octdigit[] = "01234567";
229	CHAR_T *chp, mask;
230	size_t len;
231	int cnt, shift;
232
233	/* See if the character was explicitly declared printable or not. */
234	if ((chp = O_STR(sp, O_PRINT)) != NULL)
235		for (; *chp != '\0'; ++chp)
236			if (*chp == ch)
237				goto pr;
238	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
239		for (; *chp != '\0'; ++chp)
240			if (*chp == ch)
241				goto nopr;
242
243	/*
244	 * Historical (ARPA standard) mappings.  Printable characters are left
245	 * alone.  Control characters less than 0x20 are represented as '^'
246	 * followed by the character offset from the '@' character in the ASCII
247	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
248	 *
249	 * XXX
250	 * The following code depends on the current locale being identical to
251	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
252	 * told that this is a reasonable assumption...
253	 *
254	 * XXX
255	 * This code will only work with CHAR_T's that are multiples of 8-bit
256	 * bytes.
257	 *
258	 * XXX
259	 * NB: There's an assumption here that all printable characters take
260	 * up a single column on the screen.  This is not always correct.
261	 */
262	if (isprint(ch)) {
263pr:		sp->cname[0] = ch;
264		len = 1;
265		goto done;
266	}
267nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
268		sp->cname[0] = '^';
269		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
270		len = 2;
271	} else if (O_ISSET(sp, O_OCTAL)) {
272#define	BITS	(sizeof(CHAR_T) * 8)
273#define	SHIFT	(BITS - BITS % 3)
274#define	TOPMASK	(BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3)
275		sp->cname[0] = '\\';
276		sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT];
277		shift = SHIFT - 3;
278		for (len = 2, mask = 7 << (SHIFT - 3),
279		    cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3)
280			sp->cname[len++] = octdigit[(ch & mask) >> shift];
281	} else {
282		sp->cname[0] = '\\';
283		sp->cname[1] = 'x';
284		for (len = 2, chp = (u_int8_t *)&ch,
285		    cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) {
286			sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4];
287			sp->cname[len++] = hexdigit[*chp & 0x0f];
288		}
289	}
290done:	sp->cname[sp->clen = len] = '\0';
291	return (sp->cname);
292}
293
294/*
295 * v_key_val --
296 *	Fill in the value for a key.  This routine is the backup
297 *	for the KEY_VAL() macro.
298 *
299 * PUBLIC: int v_key_val(SCR *, CHAR_T);
300 */
301int
302v_key_val(SCR *sp, CHAR_T ch)
303{
304	KEYLIST k, *kp;
305
306	k.ch = ch;
307	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
308	return (kp == NULL ? K_NOTUSED : kp->value);
309}
310
311/*
312 * v_event_push --
313 *	Push events/keys onto the front of the buffer.
314 *
315 * There is a single input buffer in ex/vi.  Characters are put onto the
316 * end of the buffer by the terminal input routines, and pushed onto the
317 * front of the buffer by various other functions in ex/vi.  Each key has
318 * an associated flag value, which indicates if it has already been quoted,
319 * and if it is the result of a mapping or an abbreviation.
320 *
321 * PUBLIC: int v_event_push(SCR *, EVENT *, CHAR_T *, size_t, u_int);
322 */
323int
324v_event_push(SCR *sp, EVENT *p_evp, CHAR_T *p_s, size_t nitems, u_int flags)
325{
326	EVENT *evp;
327	GS *gp;
328	size_t total;
329
330	/* If we have room, stuff the items into the buffer. */
331	gp = sp->gp;
332	if (nitems <= gp->i_next ||
333	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
334		if (gp->i_cnt != 0)
335			gp->i_next -= nitems;
336		goto copy;
337	}
338
339	/*
340	 * If there are currently items in the queue, shift them up,
341	 * leaving some extra room.  Get enough space plus a little
342	 * extra.
343	 */
344#define	TERM_PUSH_SHIFT	30
345	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
346	if (total >= gp->i_nelem && v_event_grow(sp, MAXIMUM(total, 64)))
347		return (1);
348	if (gp->i_cnt)
349		MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems,
350		    gp->i_event + gp->i_next, gp->i_cnt);
351	gp->i_next = TERM_PUSH_SHIFT;
352
353	/* Put the new items into the queue. */
354copy:	gp->i_cnt += nitems;
355	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
356		if (p_evp != NULL)
357			*evp = *p_evp++;
358		else {
359			evp->e_event = E_CHARACTER;
360			evp->e_c = *p_s++;
361			evp->e_value = KEY_VAL(sp, evp->e_c);
362			F_INIT(&evp->e_ch, flags);
363		}
364	}
365	return (0);
366}
367
368/*
369 * v_event_append --
370 *	Append events onto the tail of the buffer.
371 */
372static int
373v_event_append(SCR *sp, EVENT *argp)
374{
375	CHAR_T *s;			/* Characters. */
376	EVENT *evp;
377	GS *gp;
378	size_t nevents;			/* Number of events. */
379
380	/* Grow the buffer as necessary. */
381	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
382	gp = sp->gp;
383	if (gp->i_event == NULL ||
384	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
385		v_event_grow(sp, MAXIMUM(nevents, 64));
386	evp = gp->i_event + gp->i_next + gp->i_cnt;
387	gp->i_cnt += nevents;
388
389	/* Transform strings of characters into single events. */
390	if (argp->e_event == E_STRING)
391		for (s = argp->e_csp; nevents--; ++evp) {
392			evp->e_event = E_CHARACTER;
393			evp->e_c = *s++;
394			evp->e_value = KEY_VAL(sp, evp->e_c);
395			evp->e_flags = 0;
396		}
397	else
398		*evp = *argp;
399	return (0);
400}
401
402/* Remove events from the queue. */
403#define	QREM(len) {							\
404	if ((gp->i_cnt -= (len)) == 0)					\
405		gp->i_next = 0;						\
406	else								\
407		gp->i_next += (len);					\
408}
409
410/*
411 * v_event_get --
412 *	Return the next event.
413 *
414 * !!!
415 * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
416 * mapping keys is that one or more keystrokes act like a function key.
417 * What's going on is that vi is reading a number, and the character following
418 * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
419 * user is entering the z command, a valid command is "z40+", and we don't want
420 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
421 * into "z40xxx".  However, if the user enters "35x", we want to put all of the
422 * characters through the mapping code.
423 *
424 * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
425 * mapping digits as long as they weren't the first character of the map, e.g.
426 * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
427 * (the digit 0 was a special case as it doesn't indicate the start of a count)
428 * as the first character of the map, but then ignored those mappings.  While
429 * it's probably stupid to map digits, vi isn't your mother.
430 *
431 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
432 * end-of-digit without "looking" at the next character, i.e. leaving it as the
433 * user entered it.  Presumably, the next term_key call will tell us how the
434 * user wants it handled.
435 *
436 * There is one more complication.  Users might map keys to digits, and, as
437 * it's described above, the commands:
438 *
439 *	:map g 1G
440 *	d2g
441 *
442 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
443 * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
444 * before, otherwise, we pretend we haven't mapped the character, and return
445 * <end-of-digits>.
446 *
447 * Now that that's out of the way, let's talk about Energizer Bunny macros.
448 * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
449 * fairly easy to detect this example, because it's all internal to term_key.
450 * If we're expanding a macro and it gets big enough, at some point we can
451 * assume it's looping and kill it.  The examples that are tough are the ones
452 * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
453 * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
454 * find the looping macro again.  There is no way that we can detect this
455 * without doing a full parse of the command, because the character that might
456 * cause the loop (in this case 'x') may be a literal character, e.g. the map
457 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
458 *
459 * Historic vi tried to detect looping macros by disallowing obvious cases in
460 * the map command, maps that that ended with the same letter as they started
461 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
462 * too many times before keys were returned to the command parser.  It didn't
463 * get many (most?) of the tricky cases right, however, and it was certainly
464 * possible to create macros that ran forever.  And, even if it did figure out
465 * what was going on, the user was usually tossed into ex mode.  Finally, any
466 * changes made before vi realized that the macro was recursing were left in
467 * place.  We recover gracefully, but the only recourse the user has in an
468 * infinite macro loop is to interrupt.
469 *
470 * !!!
471 * It is historic practice that mapping characters to themselves as the first
472 * part of the mapped string was legal, and did not cause infinite loops, i.e.
473 * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
474 * characters were returned instead of being remapped.
475 *
476 * !!!
477 * It is also historic practice that the macro "map ] ]]^" caused a single ]
478 * keypress to behave as the command ]] (the ^ got the map past the vi check
479 * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
480 * What happened was that, in the historic vi, maps were expanded as the keys
481 * were retrieved, but not all at once and not centrally.  So, the keypress ]
482 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
483 * the ]] command code.  The ]] command then retrieved a key without entering
484 * the mapping code.  This could bite us anytime a user has a map that depends
485 * on secondary keys NOT being mapped.  I can't see any possible way to make
486 * this work in here without the complete abandonment of Rationality Itself.
487 *
488 * XXX
489 * The final issue is recovery.  It would be possible to undo all of the work
490 * that was done by the macro if we entered a record into the log so that we
491 * knew when the macro started, and, in fact, this might be worth doing at some
492 * point.  Given that this might make the log grow unacceptably (consider that
493 * cursor keys are done with maps), for now we leave any changes made in place.
494 *
495 * PUBLIC: int v_event_get(SCR *, EVENT *, int, u_int32_t);
496 */
497int
498v_event_get(SCR *sp, EVENT *argp, int timeout, u_int32_t flags)
499{
500	EVENT *evp, ev;
501	GS *gp;
502	SEQ *qp;
503	int init_nomap, ispartial, istimeout, remap_cnt;
504
505	gp = sp->gp;
506
507	/* If simply checking for interrupts, argp may be NULL. */
508	if (argp == NULL)
509		argp = &ev;
510
511retry:	istimeout = remap_cnt = 0;
512
513	/*
514	 * If the queue isn't empty and we're timing out for characters,
515	 * return immediately.
516	 */
517	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
518		return (0);
519
520	/*
521	 * If the queue is empty, we're checking for interrupts, or we're
522	 * timing out for characters, get more events.
523	 */
524	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
525		/*
526		 * If we're reading new characters, check any scripting
527		 * windows for input.
528		 */
529		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
530			return (1);
531loop:		if (gp->scr_event(sp, argp,
532		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
533			return (1);
534		switch (argp->e_event) {
535		case E_ERR:
536		case E_SIGHUP:
537		case E_SIGTERM:
538			/*
539			 * Fatal conditions cause the file to be synced to
540			 * disk immediately.
541			 */
542			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
543			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
544			return (1);
545		case E_TIMEOUT:
546			istimeout = 1;
547			break;
548		case E_INTERRUPT:
549			/* Set the global interrupt flag. */
550			F_SET(sp->gp, G_INTERRUPTED);
551
552			/*
553			 * If the caller was interested in interrupts, return
554			 * immediately.
555			 */
556			if (LF_ISSET(EC_INTERRUPT))
557				return (0);
558			goto append;
559		default:
560append:			if (v_event_append(sp, argp))
561				return (1);
562			break;
563		}
564	}
565
566	/*
567	 * If the caller was only interested in interrupts or timeouts, return
568	 * immediately.  (We may have gotten characters, and that's okay, they
569	 * were queued up for later use.)
570	 */
571	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
572		return (0);
573
574newmap:	evp = &gp->i_event[gp->i_next];
575
576	/*
577	 * If the next event in the queue isn't a character event, return
578	 * it, we're done.
579	 */
580	if (evp->e_event != E_CHARACTER) {
581		*argp = *evp;
582		QREM(1);
583		return (0);
584	}
585
586	/*
587	 * If the key isn't mappable because:
588	 *
589	 *	+ ... the timeout has expired
590	 *	+ ... it's not a mappable key
591	 *	+ ... neither the command or input map flags are set
592	 *	+ ... there are no maps that can apply to it
593	 *
594	 * return it forthwith.
595	 */
596	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
597	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
598	    (evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c)))
599		goto nomap;
600
601	/* Search the map. */
602	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
603	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
604
605	/*
606	 * If get a partial match, get more characters and retry the map.
607	 * If time out without further characters, return the characters
608	 * unmapped.
609	 *
610	 * !!!
611	 * <escape> characters are a problem.  Cursor keys start with <escape>
612	 * characters, so there's almost always a map in place that begins with
613	 * an <escape> character.  If we timeout <escape> keys in the same way
614	 * that we timeout other keys, the user will get a noticeable pause as
615	 * they enter <escape> to terminate input mode.  If key timeout is set
616	 * for a slow link, users will get an even longer pause.  Nvi used to
617	 * simply timeout <escape> characters at 1/10th of a second, but this
618	 * loses over PPP links where the latency is greater than 100Ms.
619	 */
620	if (ispartial) {
621		if (O_ISSET(sp, O_TIMEOUT))
622			timeout = (evp->e_value == K_ESCAPE ?
623			    O_VAL(sp, O_ESCAPETIME) :
624			    O_VAL(sp, O_KEYTIME)) * 100;
625		else
626			timeout = 0;
627		goto loop;
628	}
629
630	/* If no map, return the character. */
631	if (qp == NULL) {
632nomap:		if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
633			goto not_digit;
634		*argp = *evp;
635		QREM(1);
636		return (0);
637	}
638
639	/*
640	 * If looking for the end of a digit string, and the first character
641	 * of the map is it, pretend we haven't seen the character.
642	 */
643	if (LF_ISSET(EC_MAPNODIGIT) &&
644	    qp->output != NULL && !isdigit(qp->output[0])) {
645not_digit:	argp->e_c = CH_NOT_DIGIT;
646		argp->e_value = K_NOTUSED;
647		argp->e_event = E_CHARACTER;
648		F_INIT(&argp->e_ch, 0);
649		return (0);
650	}
651
652	/* Find out if the initial segments are identical. */
653	if (qp->output != NULL) {
654		init_nomap =
655		    !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
656	}
657
658	/* Delete the mapped characters from the queue. */
659	QREM(qp->ilen);
660
661	/* If keys mapped to nothing, go get more. */
662	if (qp->output == NULL)
663		goto retry;
664
665	/* If remapping characters... */
666	if (O_ISSET(sp, O_REMAP)) {
667		/*
668		 * Periodically check for interrupts.  Always check the first
669		 * time through, because it's possible to set up a map that
670		 * will return a character every time, but will expand to more,
671		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
672		 * get anywhere useful.
673		 */
674		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
675		    (gp->scr_event(sp, &ev,
676		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
677			F_SET(sp->gp, G_INTERRUPTED);
678			argp->e_event = E_INTERRUPT;
679			return (0);
680		}
681
682		/*
683		 * If an initial part of the characters mapped, they are not
684		 * further remapped -- return the first one.  Push the rest
685		 * of the characters, or all of the characters if no initial
686		 * part mapped, back on the queue.
687		 */
688		if (init_nomap) {
689			if (v_event_push(sp, NULL, qp->output + qp->ilen,
690			    qp->olen - qp->ilen, CH_MAPPED))
691				return (1);
692			if (v_event_push(sp, NULL,
693			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
694				return (1);
695			evp = &gp->i_event[gp->i_next];
696			goto nomap;
697		}
698		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
699			return (1);
700		goto newmap;
701	}
702
703	/* Else, push the characters on the queue and return one. */
704	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
705		return (1);
706
707	goto nomap;
708}
709
710/*
711 * v_sync --
712 *	Walk the screen lists, sync'ing files to their backup copies.
713 */
714static void
715v_sync(SCR *sp, int flags)
716{
717	GS *gp;
718
719	gp = sp->gp;
720	TAILQ_FOREACH(sp, &gp->dq, q)
721		rcv_sync(sp, flags);
722	TAILQ_FOREACH(sp, &gp->hq, q)
723		rcv_sync(sp, flags);
724}
725
726/*
727 * v_event_err --
728 *	Unexpected event.
729 *
730 * PUBLIC: void v_event_err(SCR *, EVENT *);
731 */
732void
733v_event_err(SCR *sp, EVENT *evp)
734{
735	switch (evp->e_event) {
736	case E_CHARACTER:
737		msgq(sp, M_ERR, "Unexpected character event");
738		break;
739	case E_EOF:
740		msgq(sp, M_ERR, "Unexpected end-of-file event");
741		break;
742	case E_INTERRUPT:
743		msgq(sp, M_ERR, "Unexpected interrupt event");
744		break;
745	case E_QUIT:
746		msgq(sp, M_ERR, "Unexpected quit event");
747		break;
748	case E_REPAINT:
749		msgq(sp, M_ERR, "Unexpected repaint event");
750		break;
751	case E_STRING:
752		msgq(sp, M_ERR, "Unexpected string event");
753		break;
754	case E_TIMEOUT:
755		msgq(sp, M_ERR, "Unexpected timeout event");
756		break;
757	case E_WRESIZE:
758		msgq(sp, M_ERR, "Unexpected resize event");
759		break;
760	case E_WRITE:
761		msgq(sp, M_ERR, "Unexpected write event");
762		break;
763
764	/*
765	 * Theoretically, none of these can occur, as they're handled at the
766	 * top editor level.
767	 */
768	case E_ERR:
769	case E_SIGHUP:
770	case E_SIGTERM:
771	default:
772		abort();
773	}
774
775	/* Free any allocated memory. */
776	free(evp->e_asp);
777}
778
779/*
780 * v_event_flush --
781 *	Flush any flagged keys, returning if any keys were flushed.
782 *
783 * PUBLIC: int v_event_flush(SCR *, u_int);
784 */
785int
786v_event_flush(SCR *sp, u_int flags)
787{
788	GS *gp;
789	int rval;
790
791	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
792	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
793		QREM(1);
794	return (rval);
795}
796
797/*
798 * v_event_grow --
799 *	Grow the terminal queue.
800 */
801static int
802v_event_grow(SCR *sp, int add)
803{
804	GS *gp;
805	size_t new_nelem, olen;
806
807	gp = sp->gp;
808	new_nelem = gp->i_nelem + add;
809	olen = gp->i_nelem * sizeof(gp->i_event[0]);
810	BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
811	gp->i_nelem = olen / sizeof(gp->i_event[0]);
812	return (0);
813}
814
815/*
816 * v_key_cmp --
817 *	Compare two keys for sorting.
818 */
819static int
820v_key_cmp(const void *ap, const void *bp)
821{
822	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
823}
824