machine.c revision 1.69
1/* $OpenBSD: machine.c,v 1.69 2011/07/12 14:57:53 tedu Exp $	 */
2
3/*-
4 * Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
19 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
21 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
30 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
31 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
32 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
33 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
34 */
35
36#include <sys/types.h>
37#include <sys/param.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <unistd.h>
42#include <sys/sysctl.h>
43#include <sys/dkstat.h>
44#include <sys/mount.h>
45#include <sys/swap.h>
46#include <err.h>
47#include <errno.h>
48
49#include "top.h"
50#include "display.h"
51#include "machine.h"
52#include "utils.h"
53#include "loadavg.h"
54
55static int	swapmode(int *, int *);
56static char	*state_abbr(struct kinfo_proc *);
57static char	*format_comm(struct kinfo_proc *);
58
59/* get_process_info passes back a handle.  This is what it looks like: */
60
61struct handle {
62	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
63	int		remaining;	/* number of pointers remaining */
64};
65
66/* what we consider to be process size: */
67#define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
68
69/*
70 *  These definitions control the format of the per-process area
71 */
72static char header[] =
73	"  PID X        PRI NICE  SIZE   RES STATE     WAIT      TIME    CPU COMMAND";
74
75/* 0123456   -- field to fill in starts at header+6 */
76#define UNAME_START 6
77
78#define Proc_format \
79	"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"
80
81/* process state names for the "STATE" column of the display */
82/*
83 * the extra nulls in the string "run" are for adding a slash and the
84 * processor number when needed
85 */
86
87char	*state_abbrev[] = {
88	"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
89};
90
91/* these are for calculating cpu state percentages */
92static int64_t     **cp_time;
93static int64_t     **cp_old;
94static int64_t     **cp_diff;
95
96/* these are for detailing the process states */
97int process_states[8];
98char *procstatenames[] = {
99	"", " starting, ", " running, ", " idle, ",
100	" stopped, ", " zombie, ", " dead, ", " on processor, ",
101	NULL
102};
103
104/* these are for detailing the cpu states */
105int64_t *cpu_states;
106char *cpustatenames[] = {
107	"user", "nice", "system", "interrupt", "idle", NULL
108};
109
110/* these are for detailing the memory statistics */
111int memory_stats[10];
112char *memorynames[] = {
113	"Real: ", "K/", "K act/tot ", "Free: ", "K ",
114	"Cache: ", "K ",
115	"Swap: ", "K/", "K",
116	NULL
117};
118
119/* these are names given to allowed sorting orders -- first is default */
120char	*ordernames[] = {
121	"cpu", "size", "res", "time", "pri", "pid", "command", NULL
122};
123
124/* these are for keeping track of the proc array */
125static int      nproc;
126static int      onproc = -1;
127static int      pref_len;
128static struct kinfo_proc *pbase;
129static struct kinfo_proc **pref;
130
131/* these are for getting the memory statistics */
132static int      pageshift;	/* log base 2 of the pagesize */
133
134/* define pagetok in terms of pageshift */
135#define pagetok(size) ((size) << pageshift)
136
137int		ncpu;
138
139unsigned int	maxslp;
140
141int
142machine_init(struct statics *statics)
143{
144	size_t size = sizeof(ncpu);
145	int mib[2], pagesize, cpu;
146
147	mib[0] = CTL_HW;
148	mib[1] = HW_NCPU;
149	if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1)
150		return (-1);
151	cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
152	if (cpu_states == NULL)
153		err(1, NULL);
154	cp_time = calloc(ncpu, sizeof(int64_t *));
155	cp_old  = calloc(ncpu, sizeof(int64_t *));
156	cp_diff = calloc(ncpu, sizeof(int64_t *));
157	if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
158		err(1, NULL);
159	for (cpu = 0; cpu < ncpu; cpu++) {
160		cp_time[cpu] = calloc(CPUSTATES, sizeof(int64_t));
161		cp_old[cpu] = calloc(CPUSTATES, sizeof(int64_t));
162		cp_diff[cpu] = calloc(CPUSTATES, sizeof(int64_t));
163		if (cp_time[cpu] == NULL || cp_old[cpu] == NULL ||
164		    cp_diff[cpu] == NULL)
165			err(1, NULL);
166	}
167
168	pbase = NULL;
169	pref = NULL;
170	onproc = -1;
171	nproc = 0;
172
173	/*
174	 * get the page size with "getpagesize" and calculate pageshift from
175	 * it
176	 */
177	pagesize = getpagesize();
178	pageshift = 0;
179	while (pagesize > 1) {
180		pageshift++;
181		pagesize >>= 1;
182	}
183
184	/* we only need the amount of log(2)1024 for our conversion */
185	pageshift -= LOG1024;
186
187	/* fill in the statics information */
188	statics->procstate_names = procstatenames;
189	statics->cpustate_names = cpustatenames;
190	statics->memory_names = memorynames;
191	statics->order_names = ordernames;
192	return (0);
193}
194
195char *
196format_header(char *uname_field)
197{
198	char *ptr;
199
200	ptr = header + UNAME_START;
201	while (*uname_field != '\0')
202		*ptr++ = *uname_field++;
203	return (header);
204}
205
206void
207get_system_info(struct system_info *si)
208{
209	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
210	static int vmtotal_mib[] = {CTL_VM, VM_METER};
211	static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
212	struct loadavg sysload;
213	struct vmtotal vmtotal;
214	struct bcachestats bcstats;
215	double *infoloadp;
216	size_t size;
217	int i;
218	int64_t *tmpstate;
219
220	if (ncpu > 1) {
221		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, /*fillme*/0};
222
223		size = CPUSTATES * sizeof(int64_t);
224		for (i = 0; i < ncpu; i++) {
225			cp_time_mib[2] = i;
226			tmpstate = cpu_states + (CPUSTATES * i);
227			if (sysctl(cp_time_mib, 3, cp_time[i], &size, NULL, 0) < 0)
228				warn("sysctl kern.cp_time2 failed");
229			/* convert cp_time2 counts to percentages */
230			(void) percentages(CPUSTATES, tmpstate, cp_time[i],
231			    cp_old[i], cp_diff[i]);
232		}
233	} else {
234		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
235		long cp_time_tmp[CPUSTATES];
236
237		size = sizeof(cp_time_tmp);
238		if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, NULL, 0) < 0)
239			warn("sysctl kern.cp_time failed");
240		for (i = 0; i < CPUSTATES; i++)
241			cp_time[0][i] = cp_time_tmp[i];
242		/* convert cp_time counts to percentages */
243		(void) percentages(CPUSTATES, cpu_states, cp_time[0],
244		    cp_old[0], cp_diff[0]);
245	}
246
247	size = sizeof(sysload);
248	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0)
249		warn("sysctl failed");
250	infoloadp = si->load_avg;
251	for (i = 0; i < 3; i++)
252		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
253
254
255	/* get total -- systemwide main memory usage structure */
256	size = sizeof(vmtotal);
257	if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0) {
258		warn("sysctl failed");
259		bzero(&vmtotal, sizeof(vmtotal));
260	}
261	size = sizeof(bcstats);
262	if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) < 0) {
263		warn("sysctl failed");
264		bzero(&bcstats, sizeof(bcstats));
265	}
266	/* convert memory stats to Kbytes */
267	memory_stats[0] = -1;
268	memory_stats[1] = pagetok(vmtotal.t_arm);
269	memory_stats[2] = pagetok(vmtotal.t_rm);
270	memory_stats[3] = -1;
271	memory_stats[4] = pagetok(vmtotal.t_free);
272	memory_stats[5] = -1;
273	memory_stats[6] = pagetok(bcstats.numbufpages);
274	memory_stats[7] = -1;
275
276	if (!swapmode(&memory_stats[8], &memory_stats[9])) {
277		memory_stats[8] = 0;
278		memory_stats[9] = 0;
279	}
280
281	/* set arrays and strings */
282	si->cpustates = cpu_states;
283	si->memory = memory_stats;
284	si->last_pid = -1;
285}
286
287static struct handle handle;
288
289struct kinfo_proc *
290getprocs(int op, int arg, int *cnt)
291{
292	size_t size;
293	int mib[6] = {CTL_KERN, KERN_PROC, 0, 0, sizeof(struct kinfo_proc), 0};
294	static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
295	static struct kinfo_proc *procbase;
296	int st;
297
298	mib[2] = op;
299	mib[3] = arg;
300
301	size = sizeof(maxslp);
302	if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) < 0) {
303		warn("sysctl vm.maxslp failed");
304		return (0);
305	}
306    retry:
307	free(procbase);
308	st = sysctl(mib, 6, NULL, &size, NULL, 0);
309	if (st == -1) {
310		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
311		return (0);
312	}
313	size = 5 * size / 4;			/* extra slop */
314	if ((procbase = malloc(size)) == NULL)
315		return (0);
316	mib[5] = (int)(size / sizeof(struct kinfo_proc));
317	st = sysctl(mib, 6, procbase, &size, NULL, 0);
318	if (st == -1) {
319		if (errno == ENOMEM)
320			goto retry;
321		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
322		return (0);
323	}
324	*cnt = (int)(size / sizeof(struct kinfo_proc));
325	return (procbase);
326}
327
328caddr_t
329get_process_info(struct system_info *si, struct process_select *sel,
330    int (*compare) (const void *, const void *))
331{
332	int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
333	int total_procs, active_procs;
334	struct kinfo_proc **prefp, *pp;
335
336	if ((pbase = getprocs(KERN_PROC_KTHREAD, 0, &nproc)) == NULL) {
337		/* warnx("%s", kvm_geterr(kd)); */
338		quit(23);
339	}
340	if (nproc > onproc)
341		pref = (struct kinfo_proc **)realloc(pref,
342		    sizeof(struct kinfo_proc *) * (onproc = nproc));
343	if (pref == NULL) {
344		warnx("Out of memory.");
345		quit(23);
346	}
347	/* get a pointer to the states summary array */
348	si->procstates = process_states;
349
350	/* set up flags which define what we are going to select */
351	show_idle = sel->idle;
352	show_system = sel->system;
353	show_threads = sel->threads;
354	show_uid = sel->uid != (uid_t)-1;
355	show_pid = sel->pid != (pid_t)-1;
356	show_cmd = sel->command != NULL;
357
358	/* count up process states and get pointers to interesting procs */
359	total_procs = 0;
360	active_procs = 0;
361	memset((char *) process_states, 0, sizeof(process_states));
362	prefp = pref;
363	for (pp = pbase; pp < &pbase[nproc]; pp++) {
364		/*
365		 *  Place pointers to each valid proc structure in pref[].
366		 *  Process slots that are actually in use have a non-zero
367		 *  status field.  Processes with P_SYSTEM set are system
368		 *  processes---these get ignored unless show_system is set.
369		 */
370		if (pp->p_stat != 0 &&
371		    (show_system || (pp->p_flag & P_SYSTEM) == 0) &&
372		    (show_threads || (pp->p_flag & P_THREAD) == 0)) {
373			total_procs++;
374			process_states[(unsigned char) pp->p_stat]++;
375			if (pp->p_stat != SZOMB &&
376			    (show_idle || pp->p_pctcpu != 0 ||
377			    pp->p_stat == SRUN) &&
378			    (!show_uid || pp->p_ruid == sel->uid) &&
379			    (!show_pid || pp->p_pid == sel->pid) &&
380			    (!show_cmd || strstr(pp->p_comm,
381				sel->command))) {
382				*prefp++ = pp;
383				active_procs++;
384			}
385		}
386	}
387
388	/* if requested, sort the "interesting" processes */
389	if (compare != NULL)
390		qsort((char *) pref, active_procs,
391		    sizeof(struct kinfo_proc *), compare);
392	/* remember active and total counts */
393	si->p_total = total_procs;
394	si->p_active = pref_len = active_procs;
395
396	/* pass back a handle */
397	handle.next_proc = pref;
398	handle.remaining = active_procs;
399	return ((caddr_t) & handle);
400}
401
402char fmt[MAX_COLS];	/* static area where result is built */
403
404static char *
405state_abbr(struct kinfo_proc *pp)
406{
407	static char buf[10];
408
409	if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
410		snprintf(buf, sizeof buf, "%s/%llu",
411		    state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
412	else
413		snprintf(buf, sizeof buf, "%s",
414		    state_abbrev[(unsigned char)pp->p_stat]);
415	return buf;
416}
417
418static char *
419format_comm(struct kinfo_proc *kp)
420{
421	static char **s, buf[MAX_COLS];
422	size_t siz = 100;
423	char **p;
424	int mib[4];
425	extern int show_args;
426
427	if (!show_args)
428		return (kp->p_comm);
429
430	for (;; siz *= 2) {
431		if ((s = realloc(s, siz)) == NULL)
432			err(1, NULL);
433		mib[0] = CTL_KERN;
434		mib[1] = KERN_PROC_ARGS;
435		mib[2] = kp->p_pid;
436		mib[3] = KERN_PROC_ARGV;
437		if (sysctl(mib, 4, s, &siz, NULL, 0) == 0)
438			break;
439		if (errno != ENOMEM)
440			return (kp->p_comm);
441	}
442	buf[0] = '\0';
443	for (p = s; *p != NULL; p++) {
444		if (p != s)
445			strlcat(buf, " ", sizeof(buf));
446		strlcat(buf, *p, sizeof(buf));
447	}
448	if (buf[0] == '\0')
449		return (kp->p_comm);
450	return (buf);
451}
452
453char *
454format_next_process(caddr_t handle, char *(*get_userid)(uid_t), pid_t *pid)
455{
456	char *p_wait, waddr[sizeof(void *) * 2 + 3];	/* Hexify void pointer */
457	struct kinfo_proc *pp;
458	struct handle *hp;
459	int cputime;
460	double pct;
461
462	/* find and remember the next proc structure */
463	hp = (struct handle *) handle;
464	pp = *(hp->next_proc++);
465	hp->remaining--;
466
467	cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);
468
469	/* calculate the base for cpu percentages */
470	pct = pctdouble(pp->p_pctcpu);
471
472	if (pp->p_wchan) {
473		if (pp->p_wmesg)
474			p_wait = pp->p_wmesg;
475		else {
476			snprintf(waddr, sizeof(waddr), "%llx",
477			    (unsigned long long)(pp->p_wchan & ~KERNBASE));
478			p_wait = waddr;
479		}
480	} else
481		p_wait = "-";
482
483	/* format this entry */
484	snprintf(fmt, sizeof fmt, Proc_format,
485	    pp->p_pid, (*get_userid)(pp->p_ruid),
486	    pp->p_priority - PZERO, pp->p_nice - NZERO,
487	    format_k(pagetok(PROCSIZE(pp))),
488	    format_k(pagetok(pp->p_vm_rssize)),
489	    (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
490	    "idle" : state_abbr(pp),
491	    p_wait, format_time(cputime), 100.0 * pct,
492	    printable(format_comm(pp)));
493
494	*pid = pp->p_pid;
495	/* return the result */
496	return (fmt);
497}
498
499/* comparison routine for qsort */
500static unsigned char sorted_state[] =
501{
502	0,			/* not used		 */
503	4,			/* start		 */
504	5,			/* run			 */
505	2,			/* sleep		 */
506	3,			/* stop			 */
507	1			/* zombie		 */
508};
509
510/*
511 *  proc_compares - comparison functions for "qsort"
512 */
513
514/*
515 * First, the possible comparison keys.  These are defined in such a way
516 * that they can be merely listed in the source code to define the actual
517 * desired ordering.
518 */
519
520#define ORDERKEY_PCTCPU \
521	if (lresult = (pctcpu)p2->p_pctcpu - (pctcpu)p1->p_pctcpu, \
522	    (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
523#define ORDERKEY_CPUTIME \
524	if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
525		if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
526#define ORDERKEY_STATE \
527	if ((result = sorted_state[(unsigned char)p2->p_stat] - \
528	    sorted_state[(unsigned char)p1->p_stat])  == 0)
529#define ORDERKEY_PRIO \
530	if ((result = p2->p_priority - p1->p_priority) == 0)
531#define ORDERKEY_RSSIZE \
532	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
533#define ORDERKEY_MEM \
534	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
535#define ORDERKEY_PID \
536	if ((result = p1->p_pid - p2->p_pid) == 0)
537#define ORDERKEY_CMD \
538	if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)
539
540/* compare_cpu - the comparison function for sorting by cpu percentage */
541static int
542compare_cpu(const void *v1, const void *v2)
543{
544	struct proc **pp1 = (struct proc **) v1;
545	struct proc **pp2 = (struct proc **) v2;
546	struct kinfo_proc *p1, *p2;
547	pctcpu lresult;
548	int result;
549
550	/* remove one level of indirection */
551	p1 = *(struct kinfo_proc **) pp1;
552	p2 = *(struct kinfo_proc **) pp2;
553
554	ORDERKEY_PCTCPU
555	ORDERKEY_CPUTIME
556	ORDERKEY_STATE
557	ORDERKEY_PRIO
558	ORDERKEY_RSSIZE
559	ORDERKEY_MEM
560		;
561	return (result);
562}
563
564/* compare_size - the comparison function for sorting by total memory usage */
565static int
566compare_size(const void *v1, const void *v2)
567{
568	struct proc **pp1 = (struct proc **) v1;
569	struct proc **pp2 = (struct proc **) v2;
570	struct kinfo_proc *p1, *p2;
571	pctcpu lresult;
572	int result;
573
574	/* remove one level of indirection */
575	p1 = *(struct kinfo_proc **) pp1;
576	p2 = *(struct kinfo_proc **) pp2;
577
578	ORDERKEY_MEM
579	ORDERKEY_RSSIZE
580	ORDERKEY_PCTCPU
581	ORDERKEY_CPUTIME
582	ORDERKEY_STATE
583	ORDERKEY_PRIO
584		;
585	return (result);
586}
587
588/* compare_res - the comparison function for sorting by resident set size */
589static int
590compare_res(const void *v1, const void *v2)
591{
592	struct proc **pp1 = (struct proc **) v1;
593	struct proc **pp2 = (struct proc **) v2;
594	struct kinfo_proc *p1, *p2;
595	pctcpu lresult;
596	int result;
597
598	/* remove one level of indirection */
599	p1 = *(struct kinfo_proc **) pp1;
600	p2 = *(struct kinfo_proc **) pp2;
601
602	ORDERKEY_RSSIZE
603	ORDERKEY_MEM
604	ORDERKEY_PCTCPU
605	ORDERKEY_CPUTIME
606	ORDERKEY_STATE
607	ORDERKEY_PRIO
608		;
609	return (result);
610}
611
612/* compare_time - the comparison function for sorting by CPU time */
613static int
614compare_time(const void *v1, const void *v2)
615{
616	struct proc **pp1 = (struct proc **) v1;
617	struct proc **pp2 = (struct proc **) v2;
618	struct kinfo_proc *p1, *p2;
619	pctcpu lresult;
620	int result;
621
622	/* remove one level of indirection */
623	p1 = *(struct kinfo_proc **) pp1;
624	p2 = *(struct kinfo_proc **) pp2;
625
626	ORDERKEY_CPUTIME
627	ORDERKEY_PCTCPU
628	ORDERKEY_STATE
629	ORDERKEY_PRIO
630	ORDERKEY_MEM
631	ORDERKEY_RSSIZE
632		;
633	return (result);
634}
635
636/* compare_prio - the comparison function for sorting by CPU time */
637static int
638compare_prio(const void *v1, const void *v2)
639{
640	struct proc   **pp1 = (struct proc **) v1;
641	struct proc   **pp2 = (struct proc **) v2;
642	struct kinfo_proc *p1, *p2;
643	pctcpu lresult;
644	int result;
645
646	/* remove one level of indirection */
647	p1 = *(struct kinfo_proc **) pp1;
648	p2 = *(struct kinfo_proc **) pp2;
649
650	ORDERKEY_PRIO
651	ORDERKEY_PCTCPU
652	ORDERKEY_CPUTIME
653	ORDERKEY_STATE
654	ORDERKEY_RSSIZE
655	ORDERKEY_MEM
656		;
657	return (result);
658}
659
660static int
661compare_pid(const void *v1, const void *v2)
662{
663	struct proc **pp1 = (struct proc **) v1;
664	struct proc **pp2 = (struct proc **) v2;
665	struct kinfo_proc *p1, *p2;
666	pctcpu lresult;
667	int result;
668
669	/* remove one level of indirection */
670	p1 = *(struct kinfo_proc **) pp1;
671	p2 = *(struct kinfo_proc **) pp2;
672
673	ORDERKEY_PID
674	ORDERKEY_PCTCPU
675	ORDERKEY_CPUTIME
676	ORDERKEY_STATE
677	ORDERKEY_PRIO
678	ORDERKEY_RSSIZE
679	ORDERKEY_MEM
680		;
681	return (result);
682}
683
684static int
685compare_cmd(const void *v1, const void *v2)
686{
687	struct proc **pp1 = (struct proc **) v1;
688	struct proc **pp2 = (struct proc **) v2;
689	struct kinfo_proc *p1, *p2;
690	pctcpu lresult;
691	int result;
692
693	/* remove one level of indirection */
694	p1 = *(struct kinfo_proc **) pp1;
695	p2 = *(struct kinfo_proc **) pp2;
696
697	ORDERKEY_CMD
698	ORDERKEY_PCTCPU
699	ORDERKEY_CPUTIME
700	ORDERKEY_STATE
701	ORDERKEY_PRIO
702	ORDERKEY_RSSIZE
703	ORDERKEY_MEM
704		;
705	return (result);
706}
707
708
709int (*proc_compares[])(const void *, const void *) = {
710	compare_cpu,
711	compare_size,
712	compare_res,
713	compare_time,
714	compare_prio,
715	compare_pid,
716	compare_cmd,
717	NULL
718};
719
720/*
721 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
722 *		the process does not exist.
723 *		It is EXTREMELY IMPORTANT that this function work correctly.
724 *		If top runs setuid root (as in SVR4), then this function
725 *		is the only thing that stands in the way of a serious
726 *		security problem.  It validates requests for the "kill"
727 *		and "renice" commands.
728 */
729uid_t
730proc_owner(pid_t pid)
731{
732	struct kinfo_proc **prefp, *pp;
733	int cnt;
734
735	prefp = pref;
736	cnt = pref_len;
737	while (--cnt >= 0) {
738		pp = *prefp++;
739		if (pp->p_pid == pid)
740			return ((uid_t)pp->p_ruid);
741	}
742	return (uid_t)(-1);
743}
744
745/*
746 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
747 * to be based on the new swapctl(2) system call.
748 */
749static int
750swapmode(int *used, int *total)
751{
752	struct swapent *swdev;
753	int nswap, rnswap, i;
754
755	nswap = swapctl(SWAP_NSWAP, 0, 0);
756	if (nswap == 0)
757		return 0;
758
759	swdev = calloc(nswap, sizeof(*swdev));
760	if (swdev == NULL)
761		return 0;
762
763	rnswap = swapctl(SWAP_STATS, swdev, nswap);
764	if (rnswap == -1) {
765		free(swdev);
766		return 0;
767	}
768
769	/* if rnswap != nswap, then what? */
770
771	/* Total things up */
772	*total = *used = 0;
773	for (i = 0; i < nswap; i++) {
774		if (swdev[i].se_flags & SWF_ENABLE) {
775			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
776			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
777		}
778	}
779	free(swdev);
780	return 1;
781}
782