machine.c revision 1.68
1/* $OpenBSD: machine.c,v 1.68 2011/04/10 03:20:59 guenther Exp $	 */
2
3/*-
4 * Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
19 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
21 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
30 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
31 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
32 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
33 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
34 */
35
36#include <sys/types.h>
37#include <sys/param.h>
38#include <stdio.h>
39#include <stdlib.h>
40#include <string.h>
41#include <unistd.h>
42#include <sys/sysctl.h>
43#include <sys/dkstat.h>
44#include <sys/swap.h>
45#include <err.h>
46#include <errno.h>
47
48#include "top.h"
49#include "display.h"
50#include "machine.h"
51#include "utils.h"
52#include "loadavg.h"
53
54static int	swapmode(int *, int *);
55static char	*state_abbr(struct kinfo_proc *);
56static char	*format_comm(struct kinfo_proc *);
57
58/* get_process_info passes back a handle.  This is what it looks like: */
59
60struct handle {
61	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
62	int		remaining;	/* number of pointers remaining */
63};
64
65/* what we consider to be process size: */
66#define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
67
68/*
69 *  These definitions control the format of the per-process area
70 */
71static char header[] =
72	"  PID X        PRI NICE  SIZE   RES STATE     WAIT      TIME    CPU COMMAND";
73
74/* 0123456   -- field to fill in starts at header+6 */
75#define UNAME_START 6
76
77#define Proc_format \
78	"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"
79
80/* process state names for the "STATE" column of the display */
81/*
82 * the extra nulls in the string "run" are for adding a slash and the
83 * processor number when needed
84 */
85
86char	*state_abbrev[] = {
87	"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
88};
89
90/* these are for calculating cpu state percentages */
91static int64_t     **cp_time;
92static int64_t     **cp_old;
93static int64_t     **cp_diff;
94
95/* these are for detailing the process states */
96int process_states[8];
97char *procstatenames[] = {
98	"", " starting, ", " running, ", " idle, ",
99	" stopped, ", " zombie, ", " dead, ", " on processor, ",
100	NULL
101};
102
103/* these are for detailing the cpu states */
104int64_t *cpu_states;
105char *cpustatenames[] = {
106	"user", "nice", "system", "interrupt", "idle", NULL
107};
108
109/* these are for detailing the memory statistics */
110int memory_stats[8];
111char *memorynames[] = {
112	"Real: ", "K/", "K act/tot  ", "Free: ", "K  ",
113	"Swap: ", "K/", "K used/tot",
114	NULL
115};
116
117/* these are names given to allowed sorting orders -- first is default */
118char	*ordernames[] = {
119	"cpu", "size", "res", "time", "pri", "pid", "command", NULL
120};
121
122/* these are for keeping track of the proc array */
123static int      nproc;
124static int      onproc = -1;
125static int      pref_len;
126static struct kinfo_proc *pbase;
127static struct kinfo_proc **pref;
128
129/* these are for getting the memory statistics */
130static int      pageshift;	/* log base 2 of the pagesize */
131
132/* define pagetok in terms of pageshift */
133#define pagetok(size) ((size) << pageshift)
134
135int		ncpu;
136
137unsigned int	maxslp;
138
139int
140machine_init(struct statics *statics)
141{
142	size_t size = sizeof(ncpu);
143	int mib[2], pagesize, cpu;
144
145	mib[0] = CTL_HW;
146	mib[1] = HW_NCPU;
147	if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1)
148		return (-1);
149	cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
150	if (cpu_states == NULL)
151		err(1, NULL);
152	cp_time = calloc(ncpu, sizeof(int64_t *));
153	cp_old  = calloc(ncpu, sizeof(int64_t *));
154	cp_diff = calloc(ncpu, sizeof(int64_t *));
155	if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
156		err(1, NULL);
157	for (cpu = 0; cpu < ncpu; cpu++) {
158		cp_time[cpu] = calloc(CPUSTATES, sizeof(int64_t));
159		cp_old[cpu] = calloc(CPUSTATES, sizeof(int64_t));
160		cp_diff[cpu] = calloc(CPUSTATES, sizeof(int64_t));
161		if (cp_time[cpu] == NULL || cp_old[cpu] == NULL ||
162		    cp_diff[cpu] == NULL)
163			err(1, NULL);
164	}
165
166	pbase = NULL;
167	pref = NULL;
168	onproc = -1;
169	nproc = 0;
170
171	/*
172	 * get the page size with "getpagesize" and calculate pageshift from
173	 * it
174	 */
175	pagesize = getpagesize();
176	pageshift = 0;
177	while (pagesize > 1) {
178		pageshift++;
179		pagesize >>= 1;
180	}
181
182	/* we only need the amount of log(2)1024 for our conversion */
183	pageshift -= LOG1024;
184
185	/* fill in the statics information */
186	statics->procstate_names = procstatenames;
187	statics->cpustate_names = cpustatenames;
188	statics->memory_names = memorynames;
189	statics->order_names = ordernames;
190	return (0);
191}
192
193char *
194format_header(char *uname_field)
195{
196	char *ptr;
197
198	ptr = header + UNAME_START;
199	while (*uname_field != '\0')
200		*ptr++ = *uname_field++;
201	return (header);
202}
203
204void
205get_system_info(struct system_info *si)
206{
207	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
208	static int vmtotal_mib[] = {CTL_VM, VM_METER};
209	struct loadavg sysload;
210	struct vmtotal vmtotal;
211	double *infoloadp;
212	size_t size;
213	int i;
214	int64_t *tmpstate;
215
216	if (ncpu > 1) {
217		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, /*fillme*/0};
218
219		size = CPUSTATES * sizeof(int64_t);
220		for (i = 0; i < ncpu; i++) {
221			cp_time_mib[2] = i;
222			tmpstate = cpu_states + (CPUSTATES * i);
223			if (sysctl(cp_time_mib, 3, cp_time[i], &size, NULL, 0) < 0)
224				warn("sysctl kern.cp_time2 failed");
225			/* convert cp_time2 counts to percentages */
226			(void) percentages(CPUSTATES, tmpstate, cp_time[i],
227			    cp_old[i], cp_diff[i]);
228		}
229	} else {
230		int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
231		long cp_time_tmp[CPUSTATES];
232
233		size = sizeof(cp_time_tmp);
234		if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, NULL, 0) < 0)
235			warn("sysctl kern.cp_time failed");
236		for (i = 0; i < CPUSTATES; i++)
237			cp_time[0][i] = cp_time_tmp[i];
238		/* convert cp_time counts to percentages */
239		(void) percentages(CPUSTATES, cpu_states, cp_time[0],
240		    cp_old[0], cp_diff[0]);
241	}
242
243	size = sizeof(sysload);
244	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0)
245		warn("sysctl failed");
246	infoloadp = si->load_avg;
247	for (i = 0; i < 3; i++)
248		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
249
250
251	/* get total -- systemwide main memory usage structure */
252	size = sizeof(vmtotal);
253	if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0) {
254		warn("sysctl failed");
255		bzero(&vmtotal, sizeof(vmtotal));
256	}
257	/* convert memory stats to Kbytes */
258	memory_stats[0] = -1;
259	memory_stats[1] = pagetok(vmtotal.t_arm);
260	memory_stats[2] = pagetok(vmtotal.t_rm);
261	memory_stats[3] = -1;
262	memory_stats[4] = pagetok(vmtotal.t_free);
263	memory_stats[5] = -1;
264
265	if (!swapmode(&memory_stats[6], &memory_stats[7])) {
266		memory_stats[6] = 0;
267		memory_stats[7] = 0;
268	}
269
270	/* set arrays and strings */
271	si->cpustates = cpu_states;
272	si->memory = memory_stats;
273	si->last_pid = -1;
274}
275
276static struct handle handle;
277
278struct kinfo_proc *
279getprocs(int op, int arg, int *cnt)
280{
281	size_t size;
282	int mib[6] = {CTL_KERN, KERN_PROC, 0, 0, sizeof(struct kinfo_proc), 0};
283	static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
284	static struct kinfo_proc *procbase;
285	int st;
286
287	mib[2] = op;
288	mib[3] = arg;
289
290	size = sizeof(maxslp);
291	if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) < 0) {
292		warn("sysctl vm.maxslp failed");
293		return (0);
294	}
295    retry:
296	free(procbase);
297	st = sysctl(mib, 6, NULL, &size, NULL, 0);
298	if (st == -1) {
299		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
300		return (0);
301	}
302	size = 5 * size / 4;			/* extra slop */
303	if ((procbase = malloc(size)) == NULL)
304		return (0);
305	mib[5] = (int)(size / sizeof(struct kinfo_proc));
306	st = sysctl(mib, 6, procbase, &size, NULL, 0);
307	if (st == -1) {
308		if (errno == ENOMEM)
309			goto retry;
310		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
311		return (0);
312	}
313	*cnt = (int)(size / sizeof(struct kinfo_proc));
314	return (procbase);
315}
316
317caddr_t
318get_process_info(struct system_info *si, struct process_select *sel,
319    int (*compare) (const void *, const void *))
320{
321	int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
322	int total_procs, active_procs;
323	struct kinfo_proc **prefp, *pp;
324
325	if ((pbase = getprocs(KERN_PROC_KTHREAD, 0, &nproc)) == NULL) {
326		/* warnx("%s", kvm_geterr(kd)); */
327		quit(23);
328	}
329	if (nproc > onproc)
330		pref = (struct kinfo_proc **)realloc(pref,
331		    sizeof(struct kinfo_proc *) * (onproc = nproc));
332	if (pref == NULL) {
333		warnx("Out of memory.");
334		quit(23);
335	}
336	/* get a pointer to the states summary array */
337	si->procstates = process_states;
338
339	/* set up flags which define what we are going to select */
340	show_idle = sel->idle;
341	show_system = sel->system;
342	show_threads = sel->threads;
343	show_uid = sel->uid != (uid_t)-1;
344	show_pid = sel->pid != (pid_t)-1;
345	show_cmd = sel->command != NULL;
346
347	/* count up process states and get pointers to interesting procs */
348	total_procs = 0;
349	active_procs = 0;
350	memset((char *) process_states, 0, sizeof(process_states));
351	prefp = pref;
352	for (pp = pbase; pp < &pbase[nproc]; pp++) {
353		/*
354		 *  Place pointers to each valid proc structure in pref[].
355		 *  Process slots that are actually in use have a non-zero
356		 *  status field.  Processes with P_SYSTEM set are system
357		 *  processes---these get ignored unless show_system is set.
358		 */
359		if (pp->p_stat != 0 &&
360		    (show_system || (pp->p_flag & P_SYSTEM) == 0) &&
361		    (show_threads || (pp->p_flag & P_THREAD) == 0)) {
362			total_procs++;
363			process_states[(unsigned char) pp->p_stat]++;
364			if (pp->p_stat != SZOMB &&
365			    (show_idle || pp->p_pctcpu != 0 ||
366			    pp->p_stat == SRUN) &&
367			    (!show_uid || pp->p_ruid == sel->uid) &&
368			    (!show_pid || pp->p_pid == sel->pid) &&
369			    (!show_cmd || strstr(pp->p_comm,
370				sel->command))) {
371				*prefp++ = pp;
372				active_procs++;
373			}
374		}
375	}
376
377	/* if requested, sort the "interesting" processes */
378	if (compare != NULL)
379		qsort((char *) pref, active_procs,
380		    sizeof(struct kinfo_proc *), compare);
381	/* remember active and total counts */
382	si->p_total = total_procs;
383	si->p_active = pref_len = active_procs;
384
385	/* pass back a handle */
386	handle.next_proc = pref;
387	handle.remaining = active_procs;
388	return ((caddr_t) & handle);
389}
390
391char fmt[MAX_COLS];	/* static area where result is built */
392
393static char *
394state_abbr(struct kinfo_proc *pp)
395{
396	static char buf[10];
397
398	if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
399		snprintf(buf, sizeof buf, "%s/%llu",
400		    state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
401	else
402		snprintf(buf, sizeof buf, "%s",
403		    state_abbrev[(unsigned char)pp->p_stat]);
404	return buf;
405}
406
407static char *
408format_comm(struct kinfo_proc *kp)
409{
410	static char **s, buf[MAX_COLS];
411	size_t siz = 100;
412	char **p;
413	int mib[4];
414	extern int show_args;
415
416	if (!show_args)
417		return (kp->p_comm);
418
419	for (;; siz *= 2) {
420		if ((s = realloc(s, siz)) == NULL)
421			err(1, NULL);
422		mib[0] = CTL_KERN;
423		mib[1] = KERN_PROC_ARGS;
424		mib[2] = kp->p_pid;
425		mib[3] = KERN_PROC_ARGV;
426		if (sysctl(mib, 4, s, &siz, NULL, 0) == 0)
427			break;
428		if (errno != ENOMEM)
429			return (kp->p_comm);
430	}
431	buf[0] = '\0';
432	for (p = s; *p != NULL; p++) {
433		if (p != s)
434			strlcat(buf, " ", sizeof(buf));
435		strlcat(buf, *p, sizeof(buf));
436	}
437	if (buf[0] == '\0')
438		return (kp->p_comm);
439	return (buf);
440}
441
442char *
443format_next_process(caddr_t handle, char *(*get_userid)(uid_t), pid_t *pid)
444{
445	char *p_wait, waddr[sizeof(void *) * 2 + 3];	/* Hexify void pointer */
446	struct kinfo_proc *pp;
447	struct handle *hp;
448	int cputime;
449	double pct;
450
451	/* find and remember the next proc structure */
452	hp = (struct handle *) handle;
453	pp = *(hp->next_proc++);
454	hp->remaining--;
455
456	cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);
457
458	/* calculate the base for cpu percentages */
459	pct = pctdouble(pp->p_pctcpu);
460
461	if (pp->p_wchan) {
462		if (pp->p_wmesg)
463			p_wait = pp->p_wmesg;
464		else {
465			snprintf(waddr, sizeof(waddr), "%llx",
466			    (unsigned long long)(pp->p_wchan & ~KERNBASE));
467			p_wait = waddr;
468		}
469	} else
470		p_wait = "-";
471
472	/* format this entry */
473	snprintf(fmt, sizeof fmt, Proc_format,
474	    pp->p_pid, (*get_userid)(pp->p_ruid),
475	    pp->p_priority - PZERO, pp->p_nice - NZERO,
476	    format_k(pagetok(PROCSIZE(pp))),
477	    format_k(pagetok(pp->p_vm_rssize)),
478	    (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
479	    "idle" : state_abbr(pp),
480	    p_wait, format_time(cputime), 100.0 * pct,
481	    printable(format_comm(pp)));
482
483	*pid = pp->p_pid;
484	/* return the result */
485	return (fmt);
486}
487
488/* comparison routine for qsort */
489static unsigned char sorted_state[] =
490{
491	0,			/* not used		 */
492	4,			/* start		 */
493	5,			/* run			 */
494	2,			/* sleep		 */
495	3,			/* stop			 */
496	1			/* zombie		 */
497};
498
499/*
500 *  proc_compares - comparison functions for "qsort"
501 */
502
503/*
504 * First, the possible comparison keys.  These are defined in such a way
505 * that they can be merely listed in the source code to define the actual
506 * desired ordering.
507 */
508
509#define ORDERKEY_PCTCPU \
510	if (lresult = (pctcpu)p2->p_pctcpu - (pctcpu)p1->p_pctcpu, \
511	    (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
512#define ORDERKEY_CPUTIME \
513	if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
514		if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
515#define ORDERKEY_STATE \
516	if ((result = sorted_state[(unsigned char)p2->p_stat] - \
517	    sorted_state[(unsigned char)p1->p_stat])  == 0)
518#define ORDERKEY_PRIO \
519	if ((result = p2->p_priority - p1->p_priority) == 0)
520#define ORDERKEY_RSSIZE \
521	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
522#define ORDERKEY_MEM \
523	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
524#define ORDERKEY_PID \
525	if ((result = p1->p_pid - p2->p_pid) == 0)
526#define ORDERKEY_CMD \
527	if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)
528
529/* compare_cpu - the comparison function for sorting by cpu percentage */
530static int
531compare_cpu(const void *v1, const void *v2)
532{
533	struct proc **pp1 = (struct proc **) v1;
534	struct proc **pp2 = (struct proc **) v2;
535	struct kinfo_proc *p1, *p2;
536	pctcpu lresult;
537	int result;
538
539	/* remove one level of indirection */
540	p1 = *(struct kinfo_proc **) pp1;
541	p2 = *(struct kinfo_proc **) pp2;
542
543	ORDERKEY_PCTCPU
544	ORDERKEY_CPUTIME
545	ORDERKEY_STATE
546	ORDERKEY_PRIO
547	ORDERKEY_RSSIZE
548	ORDERKEY_MEM
549		;
550	return (result);
551}
552
553/* compare_size - the comparison function for sorting by total memory usage */
554static int
555compare_size(const void *v1, const void *v2)
556{
557	struct proc **pp1 = (struct proc **) v1;
558	struct proc **pp2 = (struct proc **) v2;
559	struct kinfo_proc *p1, *p2;
560	pctcpu lresult;
561	int result;
562
563	/* remove one level of indirection */
564	p1 = *(struct kinfo_proc **) pp1;
565	p2 = *(struct kinfo_proc **) pp2;
566
567	ORDERKEY_MEM
568	ORDERKEY_RSSIZE
569	ORDERKEY_PCTCPU
570	ORDERKEY_CPUTIME
571	ORDERKEY_STATE
572	ORDERKEY_PRIO
573		;
574	return (result);
575}
576
577/* compare_res - the comparison function for sorting by resident set size */
578static int
579compare_res(const void *v1, const void *v2)
580{
581	struct proc **pp1 = (struct proc **) v1;
582	struct proc **pp2 = (struct proc **) v2;
583	struct kinfo_proc *p1, *p2;
584	pctcpu lresult;
585	int result;
586
587	/* remove one level of indirection */
588	p1 = *(struct kinfo_proc **) pp1;
589	p2 = *(struct kinfo_proc **) pp2;
590
591	ORDERKEY_RSSIZE
592	ORDERKEY_MEM
593	ORDERKEY_PCTCPU
594	ORDERKEY_CPUTIME
595	ORDERKEY_STATE
596	ORDERKEY_PRIO
597		;
598	return (result);
599}
600
601/* compare_time - the comparison function for sorting by CPU time */
602static int
603compare_time(const void *v1, const void *v2)
604{
605	struct proc **pp1 = (struct proc **) v1;
606	struct proc **pp2 = (struct proc **) v2;
607	struct kinfo_proc *p1, *p2;
608	pctcpu lresult;
609	int result;
610
611	/* remove one level of indirection */
612	p1 = *(struct kinfo_proc **) pp1;
613	p2 = *(struct kinfo_proc **) pp2;
614
615	ORDERKEY_CPUTIME
616	ORDERKEY_PCTCPU
617	ORDERKEY_STATE
618	ORDERKEY_PRIO
619	ORDERKEY_MEM
620	ORDERKEY_RSSIZE
621		;
622	return (result);
623}
624
625/* compare_prio - the comparison function for sorting by CPU time */
626static int
627compare_prio(const void *v1, const void *v2)
628{
629	struct proc   **pp1 = (struct proc **) v1;
630	struct proc   **pp2 = (struct proc **) v2;
631	struct kinfo_proc *p1, *p2;
632	pctcpu lresult;
633	int result;
634
635	/* remove one level of indirection */
636	p1 = *(struct kinfo_proc **) pp1;
637	p2 = *(struct kinfo_proc **) pp2;
638
639	ORDERKEY_PRIO
640	ORDERKEY_PCTCPU
641	ORDERKEY_CPUTIME
642	ORDERKEY_STATE
643	ORDERKEY_RSSIZE
644	ORDERKEY_MEM
645		;
646	return (result);
647}
648
649static int
650compare_pid(const void *v1, const void *v2)
651{
652	struct proc **pp1 = (struct proc **) v1;
653	struct proc **pp2 = (struct proc **) v2;
654	struct kinfo_proc *p1, *p2;
655	pctcpu lresult;
656	int result;
657
658	/* remove one level of indirection */
659	p1 = *(struct kinfo_proc **) pp1;
660	p2 = *(struct kinfo_proc **) pp2;
661
662	ORDERKEY_PID
663	ORDERKEY_PCTCPU
664	ORDERKEY_CPUTIME
665	ORDERKEY_STATE
666	ORDERKEY_PRIO
667	ORDERKEY_RSSIZE
668	ORDERKEY_MEM
669		;
670	return (result);
671}
672
673static int
674compare_cmd(const void *v1, const void *v2)
675{
676	struct proc **pp1 = (struct proc **) v1;
677	struct proc **pp2 = (struct proc **) v2;
678	struct kinfo_proc *p1, *p2;
679	pctcpu lresult;
680	int result;
681
682	/* remove one level of indirection */
683	p1 = *(struct kinfo_proc **) pp1;
684	p2 = *(struct kinfo_proc **) pp2;
685
686	ORDERKEY_CMD
687	ORDERKEY_PCTCPU
688	ORDERKEY_CPUTIME
689	ORDERKEY_STATE
690	ORDERKEY_PRIO
691	ORDERKEY_RSSIZE
692	ORDERKEY_MEM
693		;
694	return (result);
695}
696
697
698int (*proc_compares[])(const void *, const void *) = {
699	compare_cpu,
700	compare_size,
701	compare_res,
702	compare_time,
703	compare_prio,
704	compare_pid,
705	compare_cmd,
706	NULL
707};
708
709/*
710 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
711 *		the process does not exist.
712 *		It is EXTREMELY IMPORTANT that this function work correctly.
713 *		If top runs setuid root (as in SVR4), then this function
714 *		is the only thing that stands in the way of a serious
715 *		security problem.  It validates requests for the "kill"
716 *		and "renice" commands.
717 */
718uid_t
719proc_owner(pid_t pid)
720{
721	struct kinfo_proc **prefp, *pp;
722	int cnt;
723
724	prefp = pref;
725	cnt = pref_len;
726	while (--cnt >= 0) {
727		pp = *prefp++;
728		if (pp->p_pid == pid)
729			return ((uid_t)pp->p_ruid);
730	}
731	return (uid_t)(-1);
732}
733
734/*
735 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
736 * to be based on the new swapctl(2) system call.
737 */
738static int
739swapmode(int *used, int *total)
740{
741	struct swapent *swdev;
742	int nswap, rnswap, i;
743
744	nswap = swapctl(SWAP_NSWAP, 0, 0);
745	if (nswap == 0)
746		return 0;
747
748	swdev = calloc(nswap, sizeof(*swdev));
749	if (swdev == NULL)
750		return 0;
751
752	rnswap = swapctl(SWAP_STATS, swdev, nswap);
753	if (rnswap == -1) {
754		free(swdev);
755		return 0;
756	}
757
758	/* if rnswap != nswap, then what? */
759
760	/* Total things up */
761	*total = *used = 0;
762	for (i = 0; i < nswap; i++) {
763		if (swdev[i].se_flags & SWF_ENABLE) {
764			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
765			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
766		}
767	}
768	free(swdev);
769	return 1;
770}
771