machine.c revision 1.25
1/*	$OpenBSD: machine.c,v 1.25 2001/07/12 05:17:26 deraadt Exp $	*/
2
3/*
4 * top - a top users display for Unix
5 *
6 * SYNOPSIS:  For an OpenBSD system
7 *
8 * DESCRIPTION:
9 * This is the machine-dependent module for OpenBSD
10 * Tested on:
11 *	i386
12 *
13 * TERMCAP: -ltermlib
14 *
15 * CFLAGS: -DHAVE_GETOPT -DORDER
16 *
17 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
18 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
19 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
20 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
21 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
22 */
23
24#include <sys/types.h>
25#include <sys/signal.h>
26#include <sys/param.h>
27
28#define DOSWAP
29
30#include <stdio.h>
31#include <stdlib.h>
32#include <string.h>
33#include <limits.h>
34#include <err.h>
35#include <math.h>
36#include <unistd.h>
37#include <sys/errno.h>
38#include <sys/sysctl.h>
39#include <sys/dir.h>
40#include <sys/dkstat.h>
41#include <sys/file.h>
42#include <sys/time.h>
43#include <sys/resource.h>
44
45#ifdef DOSWAP
46#include <sys/swap.h>
47#include <err.h>
48#endif
49
50static int swapmode __P((int *, int *));
51
52#include "top.h"
53#include "display.h"
54#include "machine.h"
55#include "utils.h"
56
57/* get_process_info passes back a handle.  This is what it looks like: */
58
59struct handle {
60	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
61	int     remaining;	/* number of pointers remaining */
62};
63
64/* declarations for load_avg */
65#include "loadavg.h"
66
67#define PP(pp, field) ((pp)->kp_proc . field)
68#define EP(pp, field) ((pp)->kp_eproc . field)
69#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
70
71/* what we consider to be process size: */
72#define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
73
74/*
75 *  These definitions control the format of the per-process area
76 */
77static char header[] =
78"  PID X        PRI NICE  SIZE   RES STATE WAIT     TIME    CPU COMMAND";
79/* 0123456   -- field to fill in starts at header+6 */
80#define UNAME_START 6
81
82#define Proc_format \
83	"%5d %-8.8s %3d %4d %5s %5s %-5s %-6.6s %6s %5.2f%% %.14s"
84
85
86/* process state names for the "STATE" column of the display */
87/* the extra nulls in the string "run" are for adding a slash and
88   the processor number when needed */
89
90char *state_abbrev[] = {
91	"", "start", "run\0\0\0", "sleep", "stop", "zomb",
92};
93
94
95static int stathz;
96
97/* these are for calculating cpu state percentages */
98static long cp_time[CPUSTATES];
99static long cp_old[CPUSTATES];
100static long cp_diff[CPUSTATES];
101
102/* these are for detailing the process states */
103int     process_states[7];
104char   *procstatenames[] = {
105	"", " starting, ", " running, ", " idle, ", " stopped, ", " zombie, ",
106	NULL
107};
108
109/* these are for detailing the cpu states */
110int     cpu_states[CPUSTATES];
111char   *cpustatenames[] = {
112	"user", "nice", "system", "interrupt", "idle", NULL
113};
114
115/* these are for detailing the memory statistics */
116int     memory_stats[8];
117char   *memorynames[] = {
118	"Real: ", "K/", "K act/tot  ", "Free: ", "K  ",
119#ifdef DOSWAP
120	"Swap: ", "K/", "K used/tot",
121#endif
122	NULL
123};
124
125#ifdef ORDER
126/* these are names given to allowed sorting orders -- first is default */
127char   *ordernames[] = {"cpu", "size", "res", "time", "pri", NULL};
128#endif
129
130/* these are for keeping track of the proc array */
131static int nproc;
132static int onproc = -1;
133static int pref_len;
134static struct kinfo_proc *pbase;
135static struct kinfo_proc **pref;
136
137/* these are for getting the memory statistics */
138static int pageshift;		/* log base 2 of the pagesize */
139
140/* define pagetok in terms of pageshift */
141#define pagetok(size) ((size) << pageshift)
142
143int
144getstathz()
145{
146	struct clockinfo cinf;
147	size_t  size = sizeof(cinf);
148	int     mib[2];
149
150	mib[0] = CTL_KERN;
151	mib[1] = KERN_CLOCKRATE;
152	if (sysctl(mib, 2, &cinf, &size, NULL, 0) == -1)
153		return (-1);
154	return (cinf.stathz);
155}
156
157int
158machine_init(statics)
159	struct statics *statics;
160{
161	int pagesize;
162
163	stathz = getstathz();
164	if (stathz == -1)
165		return (-1);
166
167	pbase = NULL;
168	pref = NULL;
169	onproc = -1;
170	nproc = 0;
171
172	/* get the page size with "getpagesize" and calculate pageshift from
173	 * it */
174	pagesize = getpagesize();
175	pageshift = 0;
176	while (pagesize > 1) {
177		pageshift++;
178		pagesize >>= 1;
179	}
180
181	/* we only need the amount of log(2)1024 for our conversion */
182	pageshift -= LOG1024;
183
184	/* fill in the statics information */
185	statics->procstate_names = procstatenames;
186	statics->cpustate_names = cpustatenames;
187	statics->memory_names = memorynames;
188#ifdef ORDER
189	statics->order_names = ordernames;
190#endif
191	return (0);
192}
193
194char *
195format_header(uname_field)
196	char   *uname_field;
197{
198	char *ptr;
199
200	ptr = header + UNAME_START;
201	while (*uname_field != '\0') {
202		*ptr++ = *uname_field++;
203	}
204	return (header);
205}
206
207void
208get_system_info(si)
209	struct system_info *si;
210{
211	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
212	static int vmtotal_mib[] = {CTL_VM, VM_METER};
213	static int cp_time_mib[] = { CTL_KERN, KERN_CPTIME };
214	struct loadavg sysload;
215	struct vmtotal vmtotal;
216	double *infoloadp;
217	int total, i;
218	size_t  size;
219
220	size = sizeof(cp_time);
221	if (sysctl(cp_time_mib, 2, &cp_time, &size, NULL, 0) < 0) {
222		warn("sysctl kern.cp_time failed");
223		total = 0;
224	}
225
226	size = sizeof(sysload);
227	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0) {
228		warn("sysctl failed");
229		total = 0;
230	}
231	infoloadp = si->load_avg;
232	for (i = 0; i < 3; i++)
233		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
234
235	/* convert cp_time counts to percentages */
236	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
237
238	/* get total -- systemwide main memory usage structure */
239	size = sizeof(vmtotal);
240	if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0) {
241		warn("sysctl failed");
242		bzero(&vmtotal, sizeof(vmtotal));
243	}
244	/* convert memory stats to Kbytes */
245	memory_stats[0] = -1;
246	memory_stats[1] = pagetok(vmtotal.t_arm);
247	memory_stats[2] = pagetok(vmtotal.t_rm);
248	memory_stats[3] = -1;
249	memory_stats[4] = pagetok(vmtotal.t_free);
250	memory_stats[5] = -1;
251#ifdef DOSWAP
252	if (!swapmode(&memory_stats[6], &memory_stats[7])) {
253		memory_stats[6] = 0;
254		memory_stats[7] = 0;
255	}
256#endif
257
258	/* set arrays and strings */
259	si->cpustates = cpu_states;
260	si->memory = memory_stats;
261	si->last_pid = -1;
262}
263
264static struct handle handle;
265
266struct kinfo_proc *
267getprocs(op, arg, cnt)
268	int op, arg;
269	int *cnt;
270{
271	size_t size = sizeof(int);
272	int mib[4] = {CTL_KERN, KERN_PROC, op, arg};
273	int smib[2] = {CTL_KERN, KERN_NPROCS};
274	static struct kinfo_proc *procbase;
275	int st;
276
277	st = sysctl(smib, 2, cnt, &size, NULL, 0);
278	if (st == -1) {
279		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
280		return (0);
281	}
282	if (procbase)
283		free(procbase);
284	size = (6 * (*cnt) * sizeof(struct kinfo_proc)) / 5;
285	procbase = (struct kinfo_proc *)malloc(size);
286	if (procbase == NULL)
287		return (0);
288	st = sysctl(mib, 4, procbase, &size, NULL, 0);
289	if (st == -1) {
290		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
291		return (0);
292	}
293	if (size % sizeof(struct kinfo_proc) != 0) {
294		/* _kvm_err(kd, kd->program,
295		    "proc size mismatch (%d total, %d chunks)",
296		    size, sizeof(struct kinfo_proc)); */
297		return (0);
298	}
299	return (procbase);
300}
301
302caddr_t
303get_process_info(si, sel, compare)
304	struct system_info *si;
305	struct process_select *sel;
306	int (*compare) __P((const void *, const void *));
307
308{
309	int show_idle, show_system, show_uid, show_command;
310	int total_procs, active_procs, i;
311	struct kinfo_proc **prefp, *pp;
312
313	if ((pbase = getprocs(KERN_PROC_KTHREAD, 0, &nproc)) == NULL) {
314		/* warnx("%s", kvm_geterr(kd)); */
315		quit(23);
316	}
317	if (nproc > onproc)
318		pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
319		    * (onproc = nproc));
320	if (pref == NULL) {
321		warnx("Out of memory.");
322		quit(23);
323	}
324	/* get a pointer to the states summary array */
325	si->procstates = process_states;
326
327	/* set up flags which define what we are going to select */
328	show_idle = sel->idle;
329	show_system = sel->system;
330	show_uid = sel->uid != -1;
331	show_command = sel->command != NULL;
332
333	/* count up process states and get pointers to interesting procs */
334	total_procs = 0;
335	active_procs = 0;
336	memset((char *) process_states, 0, sizeof(process_states));
337	prefp = pref;
338	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
339		/*
340		 *  Place pointers to each valid proc structure in pref[].
341		 *  Process slots that are actually in use have a non-zero
342		 *  status field.  Processes with SSYS set are system
343		 *  processes---these get ignored unless show_sysprocs is set.
344		 */
345		if (PP(pp, p_stat) != 0 &&
346		    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) {
347			total_procs++;
348			process_states[(unsigned char) PP(pp, p_stat)]++;
349			if ((PP(pp, p_stat) != SZOMB) &&
350			    (show_idle || (PP(pp, p_pctcpu) != 0) ||
351				(PP(pp, p_stat) == SRUN)) &&
352			    (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t) sel->uid)) {
353				*prefp++ = pp;
354				active_procs++;
355			}
356		}
357	}
358
359	/* if requested, sort the "interesting" processes */
360	if (compare != NULL) {
361		qsort((char *) pref, active_procs, sizeof(struct kinfo_proc *), compare);
362	}
363	/* remember active and total counts */
364	si->p_total = total_procs;
365	si->p_active = pref_len = active_procs;
366
367	/* pass back a handle */
368	handle.next_proc = pref;
369	handle.remaining = active_procs;
370	return ((caddr_t) & handle);
371}
372
373char    fmt[MAX_COLS];		/* static area where result is built */
374
375char *
376format_next_process(handle, get_userid)
377	caddr_t handle;
378	char *(*get_userid)();
379
380{
381	char waddr[sizeof(void *) * 2 + 3];	/* Hexify void pointer */
382	struct kinfo_proc *pp;
383	struct handle *hp;
384	char *p_wait;
385	int cputime;
386	double pct;
387
388	/* find and remember the next proc structure */
389	hp = (struct handle *) handle;
390	pp = *(hp->next_proc++);
391	hp->remaining--;
392
393	/* get the process's user struct and set cputime */
394	if ((PP(pp, p_flag) & P_INMEM) == 0) {
395		/*
396		 * Print swapped processes as <pname>
397		 */
398		char   *comm = PP(pp, p_comm);
399#define COMSIZ sizeof(PP(pp, p_comm))
400		char    buf[COMSIZ];
401		(void) strncpy(buf, comm, COMSIZ);
402		comm[0] = '<';
403		(void) strncpy(&comm[1], buf, COMSIZ - 2);
404		comm[COMSIZ - 2] = '\0';
405		(void) strncat(comm, ">", COMSIZ - 1);
406		comm[COMSIZ - 1] = '\0';
407	}
408	cputime = (PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks)) / stathz;
409
410	/* calculate the base for cpu percentages */
411	pct = pctdouble(PP(pp, p_pctcpu));
412
413	if (PP(pp, p_wchan))
414		if (PP(pp, p_wmesg))
415			p_wait = EP(pp, e_wmesg);
416		else {
417			snprintf(waddr, sizeof(waddr), "%lx",
418			    (unsigned long) (PP(pp, p_wchan)) & ~KERNBASE);
419			p_wait = waddr;
420		}
421	else
422		p_wait = "-";
423
424	/* format this entry */
425	snprintf(fmt, MAX_COLS,
426	    Proc_format,
427	    PP(pp, p_pid),
428	    (*get_userid) (EP(pp, e_pcred.p_ruid)),
429	    PP(pp, p_priority) - PZERO,
430	    PP(pp, p_nice) - NZERO,
431	    format_k(pagetok(PROCSIZE(pp))),
432	    format_k(pagetok(VP(pp, vm_rssize))),
433	    (PP(pp, p_stat) == SSLEEP && PP(pp, p_slptime) > MAXSLP)
434	    ? "idle" : state_abbrev[(unsigned char) PP(pp, p_stat)],
435	    p_wait,
436	    format_time(cputime),
437	    100.0 * pct,
438	    printable(PP(pp, p_comm)));
439
440	/* return the result */
441	return (fmt);
442}
443
444/* comparison routine for qsort */
445static unsigned char sorted_state[] =
446{
447	0,			/* not used		 */
448	4,			/* start		 */
449	5,			/* run			 */
450	2,			/* sleep		 */
451	3,			/* stop			 */
452	1			/* zombie		 */
453};
454#ifdef ORDER
455
456/*
457 *  proc_compares - comparison functions for "qsort"
458 */
459
460/*
461 * First, the possible comparison keys.  These are defined in such a way
462 * that they can be merely listed in the source code to define the actual
463 * desired ordering.
464 */
465
466
467#define ORDERKEY_PCTCPU \
468	if (lresult = (pctcpu)PP(p2, p_pctcpu) - (pctcpu)PP(p1, p_pctcpu), \
469	    (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
470#define ORDERKEY_CPUTIME \
471	if ((result = PP(p2, p_rtime.tv_sec) - PP(p1, p_rtime.tv_sec)) == 0) \
472		if ((result = PP(p2, p_rtime.tv_usec) - \
473		     PP(p1, p_rtime.tv_usec)) == 0)
474#define ORDERKEY_STATE \
475	if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
476	    sorted_state[(unsigned char) PP(p1, p_stat)])  == 0)
477#define ORDERKEY_PRIO \
478	if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
479#define ORDERKEY_RSSIZE \
480	if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
481#define ORDERKEY_MEM \
482	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
483
484
485/* compare_cpu - the comparison function for sorting by cpu percentage */
486int
487compare_cpu(v1, v2)
488	const void *v1, *v2;
489{
490	struct proc **pp1 = (struct proc **) v1;
491	struct proc **pp2 = (struct proc **) v2;
492	struct kinfo_proc *p1;
493	struct kinfo_proc *p2;
494	int result;
495	pctcpu lresult;
496
497	/* remove one level of indirection */
498	p1 = *(struct kinfo_proc **) pp1;
499	p2 = *(struct kinfo_proc **) pp2;
500
501	ORDERKEY_PCTCPU
502	    ORDERKEY_CPUTIME
503	    ORDERKEY_STATE
504	    ORDERKEY_PRIO
505	    ORDERKEY_RSSIZE
506	    ORDERKEY_MEM
507	    ;
508	return (result);
509}
510
511/* compare_size - the comparison function for sorting by total memory usage */
512int
513compare_size(v1, v2)
514	const void *v1, *v2;
515{
516	struct proc **pp1 = (struct proc **) v1;
517	struct proc **pp2 = (struct proc **) v2;
518	struct kinfo_proc *p1;
519	struct kinfo_proc *p2;
520	int result;
521	pctcpu lresult;
522
523	/* remove one level of indirection */
524	p1 = *(struct kinfo_proc **) pp1;
525	p2 = *(struct kinfo_proc **) pp2;
526
527	ORDERKEY_MEM
528	    ORDERKEY_RSSIZE
529	    ORDERKEY_PCTCPU
530	    ORDERKEY_CPUTIME
531	    ORDERKEY_STATE
532	    ORDERKEY_PRIO
533	    ;
534	return (result);
535}
536
537/* compare_res - the comparison function for sorting by resident set size */
538int
539compare_res(v1, v2)
540	const void *v1, *v2;
541{
542	struct proc **pp1 = (struct proc **) v1;
543	struct proc **pp2 = (struct proc **) v2;
544	struct kinfo_proc *p1;
545	struct kinfo_proc *p2;
546	int result;
547	pctcpu lresult;
548
549	/* remove one level of indirection */
550	p1 = *(struct kinfo_proc **) pp1;
551	p2 = *(struct kinfo_proc **) pp2;
552
553	ORDERKEY_RSSIZE
554	    ORDERKEY_MEM
555	    ORDERKEY_PCTCPU
556	    ORDERKEY_CPUTIME
557	    ORDERKEY_STATE
558	    ORDERKEY_PRIO
559	    ;
560	return (result);
561}
562
563/* compare_time - the comparison function for sorting by CPU time */
564int
565compare_time(v1, v2)
566	const void *v1, *v2;
567{
568	struct proc **pp1 = (struct proc **) v1;
569	struct proc **pp2 = (struct proc **) v2;
570	struct kinfo_proc *p1;
571	struct kinfo_proc *p2;
572	int result;
573	pctcpu lresult;
574
575	/* remove one level of indirection */
576	p1 = *(struct kinfo_proc **) pp1;
577	p2 = *(struct kinfo_proc **) pp2;
578
579	ORDERKEY_CPUTIME
580	    ORDERKEY_PCTCPU
581	    ORDERKEY_STATE
582	    ORDERKEY_PRIO
583	    ORDERKEY_MEM
584	    ORDERKEY_RSSIZE
585	    ;
586	return (result);
587}
588
589/* compare_prio - the comparison function for sorting by CPU time */
590int
591compare_prio(v1, v2)
592	const void *v1, *v2;
593{
594	struct proc **pp1 = (struct proc **) v1;
595	struct proc **pp2 = (struct proc **) v2;
596	struct kinfo_proc *p1;
597	struct kinfo_proc *p2;
598	int result;
599	pctcpu lresult;
600
601	/* remove one level of indirection */
602	p1 = *(struct kinfo_proc **) pp1;
603	p2 = *(struct kinfo_proc **) pp2;
604
605	ORDERKEY_PRIO
606	    ORDERKEY_PCTCPU
607	    ORDERKEY_CPUTIME
608	    ORDERKEY_STATE
609	    ORDERKEY_RSSIZE
610	    ORDERKEY_MEM
611	    ;
612	return (result);
613}
614
615int     (*proc_compares[]) () = {
616	compare_cpu,
617	compare_size,
618	compare_res,
619	compare_time,
620	compare_prio,
621	NULL
622};
623#else
624/*
625 *  proc_compare - comparison function for "qsort"
626 *	Compares the resource consumption of two processes using five
627 *  	distinct keys.  The keys (in descending order of importance) are:
628 *  	percent cpu, cpu ticks, state, resident set size, total virtual
629 *  	memory usage.  The process states are ordered as follows (from least
630 *  	to most important):  zombie, sleep, stop, start, run.  The array
631 *  	declaration below maps a process state index into a number that
632 *  	reflects this ordering.
633 */
634int
635proc_compare(v1, v2)
636	const void *v1, *v2;
637{
638	struct proc **pp1 = (struct proc **) v1;
639	struct proc **pp2 = (struct proc **) v2;
640	struct kinfo_proc *p1;
641	struct kinfo_proc *p2;
642	int result;
643	pctcpu lresult;
644
645	/* remove one level of indirection */
646	p1 = *(struct kinfo_proc **) pp1;
647	p2 = *(struct kinfo_proc **) pp2;
648
649	/* compare percent cpu (pctcpu) */
650	if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0) {
651		/* use CPU usage to break the tie */
652		if ((result = PP(p2, p_rtime).tv_sec - PP(p1, p_rtime).tv_sec) == 0) {
653			/* use process state to break the tie */
654			if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
655				sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) {
656				/* use priority to break the tie */
657				if ((result = PP(p2, p_priority) -
658				    PP(p1, p_priority)) == 0) {
659					/* use resident set size (rssize) to
660					 * break the tie */
661					if ((result = VP(p2, vm_rssize) -
662					    VP(p1, vm_rssize)) == 0) {
663						/* use total memory to break
664						 * the tie */
665						result = PROCSIZE(p2) - PROCSIZE(p1);
666					}
667				}
668			}
669		}
670	} else {
671		result = lresult < 0 ? -1 : 1;
672	}
673	return (result);
674}
675#endif
676
677/*
678 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
679 *		the process does not exist.
680 *		It is EXTREMLY IMPORTANT that this function work correctly.
681 *		If top runs setuid root (as in SVR4), then this function
682 *		is the only thing that stands in the way of a serious
683 *		security problem.  It validates requests for the "kill"
684 *		and "renice" commands.
685 */
686int
687proc_owner(pid)
688	pid_t   pid;
689{
690	struct kinfo_proc **prefp, *pp;
691	int cnt;
692
693	prefp = pref;
694	cnt = pref_len;
695	while (--cnt >= 0) {
696		pp = *prefp++;
697		if (PP(pp, p_pid) == pid) {
698			return ((int) EP(pp, e_pcred.p_ruid));
699		}
700	}
701	return (-1);
702}
703#ifdef DOSWAP
704/*
705 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
706 * to be based on the new swapctl(2) system call.
707 */
708static int
709swapmode(used, total)
710	int    *used;
711	int    *total;
712{
713	int     nswap, rnswap, i;
714	struct swapent *swdev;
715
716	nswap = swapctl(SWAP_NSWAP, 0, 0);
717	if (nswap == 0)
718		return 0;
719
720	swdev = malloc(nswap * sizeof(*swdev));
721	if (swdev == NULL)
722		return 0;
723
724	rnswap = swapctl(SWAP_STATS, swdev, nswap);
725	if (rnswap == -1)
726		return 0;
727
728	/* if rnswap != nswap, then what? */
729
730	/* Total things up */
731	*total = *used = 0;
732	for (i = 0; i < nswap; i++) {
733		if (swdev[i].se_flags & SWF_ENABLE) {
734			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
735			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
736		}
737	}
738
739	free(swdev);
740	return 1;
741}
742#endif
743