machine.c revision 1.23
1/*	$OpenBSD: machine.c,v 1.23 2001/02/22 03:10:24 deraadt Exp $	*/
2
3/*
4 * top - a top users display for Unix
5 *
6 * SYNOPSIS:  For an OpenBSD system
7 *
8 * DESCRIPTION:
9 * This is the machine-dependent module for OpenBSD
10 * Tested on:
11 *	i386
12 *
13 * TERMCAP: -ltermlib
14 *
15 * CFLAGS: -DHAVE_GETOPT -DORDER
16 *
17 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
18 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
19 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
20 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
21 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
22 */
23
24#include <sys/types.h>
25#include <sys/signal.h>
26#include <sys/param.h>
27
28#define DOSWAP
29
30#include <stdio.h>
31#include <stdlib.h>
32#include <string.h>
33#include <limits.h>
34#include <err.h>
35#include <math.h>
36#include <unistd.h>
37#include <sys/errno.h>
38#include <sys/sysctl.h>
39#include <sys/dir.h>
40#include <sys/dkstat.h>
41#include <sys/file.h>
42#include <sys/time.h>
43#include <sys/resource.h>
44
45#ifdef DOSWAP
46#include <sys/swap.h>
47#include <err.h>
48#endif
49
50static int getkval __P((unsigned long, int *, int, char *));
51static int swapmode __P((int *, int *));
52
53#include "top.h"
54#include "display.h"
55#include "machine.h"
56#include "utils.h"
57
58/* get_process_info passes back a handle.  This is what it looks like: */
59
60struct handle {
61	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
62	int     remaining;	/* number of pointers remaining */
63};
64
65/* declarations for load_avg */
66#include "loadavg.h"
67
68#define PP(pp, field) ((pp)->kp_proc . field)
69#define EP(pp, field) ((pp)->kp_eproc . field)
70#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
71
72/* what we consider to be process size: */
73#define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
74
75/*
76 *  These definitions control the format of the per-process area
77 */
78static char header[] =
79"  PID X        PRI NICE  SIZE   RES STATE WAIT     TIME    CPU COMMAND";
80/* 0123456   -- field to fill in starts at header+6 */
81#define UNAME_START 6
82
83#define Proc_format \
84	"%5d %-8.8s %3d %4d %5s %5s %-5s %-6.6s %6s %5.2f%% %.14s"
85
86
87/* process state names for the "STATE" column of the display */
88/* the extra nulls in the string "run" are for adding a slash and
89   the processor number when needed */
90
91char *state_abbrev[] = {
92	"", "start", "run\0\0\0", "sleep", "stop", "zomb",
93};
94
95
96static int stathz;
97
98/* these are offsets obtained via nlist and used in the get_ functions */
99
100static unsigned long cp_time_offset;
101
102/* these are for calculating cpu state percentages */
103static long cp_time[CPUSTATES];
104static long cp_old[CPUSTATES];
105static long cp_diff[CPUSTATES];
106
107/* these are for detailing the process states */
108int     process_states[7];
109char   *procstatenames[] = {
110	"", " starting, ", " running, ", " idle, ", " stopped, ", " zombie, ",
111	NULL
112};
113
114/* these are for detailing the cpu states */
115int     cpu_states[CPUSTATES];
116char   *cpustatenames[] = {
117	"user", "nice", "system", "interrupt", "idle", NULL
118};
119
120/* these are for detailing the memory statistics */
121int     memory_stats[8];
122char   *memorynames[] = {
123	"Real: ", "K/", "K act/tot  ", "Free: ", "K  ",
124#ifdef DOSWAP
125	"Swap: ", "K/", "K used/tot",
126#endif
127	NULL
128};
129
130#ifdef ORDER
131/* these are names given to allowed sorting orders -- first is default */
132char   *ordernames[] = {"cpu", "size", "res", "time", "pri", NULL};
133#endif
134
135/* these are for keeping track of the proc array */
136static int nproc;
137static int onproc = -1;
138static int pref_len;
139static struct kinfo_proc *pbase;
140static struct kinfo_proc **pref;
141
142/* these are for getting the memory statistics */
143static int pageshift;		/* log base 2 of the pagesize */
144
145/* define pagetok in terms of pageshift */
146#define pagetok(size) ((size) << pageshift)
147
148int
149getstathz()
150{
151	struct clockinfo cinf;
152	size_t  size = sizeof(cinf);
153	int     mib[2];
154
155	mib[0] = CTL_KERN;
156	mib[1] = KERN_CLOCKRATE;
157	if (sysctl(mib, 2, &cinf, &size, NULL, 0) == -1)
158		return (-1);
159	return (cinf.stathz);
160}
161
162int
163machine_init(statics)
164	struct statics *statics;
165{
166	char    errbuf[_POSIX2_LINE_MAX];
167	int pagesize, i = 0;
168
169	stathz = getstathz();
170	if (stathz == -1)
171		return (-1);
172
173	pbase = NULL;
174	pref = NULL;
175	onproc = -1;
176	nproc = 0;
177
178	/* get the page size with "getpagesize" and calculate pageshift from
179	 * it */
180	pagesize = getpagesize();
181	pageshift = 0;
182	while (pagesize > 1) {
183		pageshift++;
184		pagesize >>= 1;
185	}
186
187	/* we only need the amount of log(2)1024 for our conversion */
188	pageshift -= LOG1024;
189
190	/* fill in the statics information */
191	statics->procstate_names = procstatenames;
192	statics->cpustate_names = cpustatenames;
193	statics->memory_names = memorynames;
194#ifdef ORDER
195	statics->order_names = ordernames;
196#endif
197	return (0);
198}
199
200char *
201format_header(uname_field)
202	char   *uname_field;
203{
204	char *ptr;
205
206	ptr = header + UNAME_START;
207	while (*uname_field != '\0') {
208		*ptr++ = *uname_field++;
209	}
210	return (header);
211}
212
213void
214get_system_info(si)
215	struct system_info *si;
216{
217	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
218	static int vmtotal_mib[] = {CTL_VM, VM_METER};
219	static int cp_time_mib[] = { CTL_KERN, KERN_CPTIME };
220	struct loadavg sysload;
221	struct vmtotal vmtotal;
222	double *infoloadp;
223	int total, i;
224	size_t  size;
225
226	size = sizeof(cp_time);
227	if (sysctl(cp_time_mib, 2, &cp_time, &size, NULL, 0) < 0) {
228		warn("sysctl kern.cp_time failed");
229		total = 0;
230	}
231
232	size = sizeof(sysload);
233	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) < 0) {
234		warn("sysctl failed");
235		total = 0;
236	}
237	infoloadp = si->load_avg;
238	for (i = 0; i < 3; i++)
239		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
240
241	/* convert cp_time counts to percentages */
242	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
243
244	/* get total -- systemwide main memory usage structure */
245	size = sizeof(vmtotal);
246	if (sysctl(vmtotal_mib, 2, &vmtotal, &size, NULL, 0) < 0) {
247		warn("sysctl failed");
248		bzero(&vmtotal, sizeof(vmtotal));
249	}
250	/* convert memory stats to Kbytes */
251	memory_stats[0] = -1;
252	memory_stats[1] = pagetok(vmtotal.t_arm);
253	memory_stats[2] = pagetok(vmtotal.t_rm);
254	memory_stats[3] = -1;
255	memory_stats[4] = pagetok(vmtotal.t_free);
256	memory_stats[5] = -1;
257#ifdef DOSWAP
258	if (!swapmode(&memory_stats[6], &memory_stats[7])) {
259		memory_stats[6] = 0;
260		memory_stats[7] = 0;
261	}
262#endif
263
264	/* set arrays and strings */
265	si->cpustates = cpu_states;
266	si->memory = memory_stats;
267	si->last_pid = -1;
268}
269
270static struct handle handle;
271
272struct kinfo_proc *
273getprocs(op, arg, cnt)
274	int op, arg;
275	int *cnt;
276{
277	size_t size = 0;
278	int mib[4] = {CTL_KERN, KERN_PROC, op, arg};
279	int st, nprocs;
280	static struct kinfo_proc *procbase;
281
282	st = sysctl(mib, 4, NULL, &size, NULL, 0);
283	if (st == -1) {
284		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
285		return (0);
286	}
287	if (procbase)
288		free(procbase);
289	procbase = (struct kinfo_proc *)malloc(size);
290	if (procbase == NULL)
291		return (0);
292	st = sysctl(mib, 4, procbase, &size, NULL, 0);
293	if (st == -1) {
294		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
295		return (0);
296	}
297	if (size % sizeof(struct kinfo_proc) != 0) {
298		/* _kvm_err(kd, kd->program,
299		    "proc size mismatch (%d total, %d chunks)",
300		    size, sizeof(struct kinfo_proc)); */
301		return (0);
302	}
303	*cnt = size / sizeof(struct kinfo_proc);
304	return (procbase);
305}
306
307caddr_t
308get_process_info(si, sel, compare)
309	struct system_info *si;
310	struct process_select *sel;
311	int (*compare) __P((const void *, const void *));
312
313{
314	int show_idle, show_system, show_uid, show_command;
315	int total_procs, active_procs, i;
316	struct kinfo_proc **prefp, *pp;
317
318	if ((pbase = getprocs(KERN_PROC_KTHREAD, 0, &nproc)) == NULL) {
319		/* warnx("%s", kvm_geterr(kd)); */
320		quit(23);
321	}
322	if (nproc > onproc)
323		pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
324		    * (onproc = nproc));
325	if (pref == NULL) {
326		warnx("Out of memory.");
327		quit(23);
328	}
329	/* get a pointer to the states summary array */
330	si->procstates = process_states;
331
332	/* set up flags which define what we are going to select */
333	show_idle = sel->idle;
334	show_system = sel->system;
335	show_uid = sel->uid != -1;
336	show_command = sel->command != NULL;
337
338	/* count up process states and get pointers to interesting procs */
339	total_procs = 0;
340	active_procs = 0;
341	memset((char *) process_states, 0, sizeof(process_states));
342	prefp = pref;
343	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
344		/*
345		 *  Place pointers to each valid proc structure in pref[].
346		 *  Process slots that are actually in use have a non-zero
347		 *  status field.  Processes with SSYS set are system
348		 *  processes---these get ignored unless show_sysprocs is set.
349		 */
350		if (PP(pp, p_stat) != 0 &&
351		    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0))) {
352			total_procs++;
353			process_states[(unsigned char) PP(pp, p_stat)]++;
354			if ((PP(pp, p_stat) != SZOMB) &&
355			    (show_idle || (PP(pp, p_pctcpu) != 0) ||
356				(PP(pp, p_stat) == SRUN)) &&
357			    (!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t) sel->uid)) {
358				*prefp++ = pp;
359				active_procs++;
360			}
361		}
362	}
363
364	/* if requested, sort the "interesting" processes */
365	if (compare != NULL) {
366		qsort((char *) pref, active_procs, sizeof(struct kinfo_proc *), compare);
367	}
368	/* remember active and total counts */
369	si->p_total = total_procs;
370	si->p_active = pref_len = active_procs;
371
372	/* pass back a handle */
373	handle.next_proc = pref;
374	handle.remaining = active_procs;
375	return ((caddr_t) & handle);
376}
377
378char    fmt[MAX_COLS];		/* static area where result is built */
379
380char *
381format_next_process(handle, get_userid)
382	caddr_t handle;
383	char *(*get_userid)();
384
385{
386	char waddr[sizeof(void *) * 2 + 3];	/* Hexify void pointer */
387	struct kinfo_proc *pp;
388	struct handle *hp;
389	char *p_wait;
390	int cputime;
391	double pct;
392
393	/* find and remember the next proc structure */
394	hp = (struct handle *) handle;
395	pp = *(hp->next_proc++);
396	hp->remaining--;
397
398	/* get the process's user struct and set cputime */
399	if ((PP(pp, p_flag) & P_INMEM) == 0) {
400		/*
401		 * Print swapped processes as <pname>
402		 */
403		char   *comm = PP(pp, p_comm);
404#define COMSIZ sizeof(PP(pp, p_comm))
405		char    buf[COMSIZ];
406		(void) strncpy(buf, comm, COMSIZ);
407		comm[0] = '<';
408		(void) strncpy(&comm[1], buf, COMSIZ - 2);
409		comm[COMSIZ - 2] = '\0';
410		(void) strncat(comm, ">", COMSIZ - 1);
411		comm[COMSIZ - 1] = '\0';
412	}
413	cputime = (PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks)) / stathz;
414
415	/* calculate the base for cpu percentages */
416	pct = pctdouble(PP(pp, p_pctcpu));
417
418	if (PP(pp, p_wchan))
419		if (PP(pp, p_wmesg))
420			p_wait = EP(pp, e_wmesg);
421		else {
422			snprintf(waddr, sizeof(waddr), "%lx",
423			    (unsigned long) (PP(pp, p_wchan)) & ~KERNBASE);
424			p_wait = waddr;
425		}
426	else
427		p_wait = "-";
428
429	/* format this entry */
430	snprintf(fmt, MAX_COLS,
431	    Proc_format,
432	    PP(pp, p_pid),
433	    (*get_userid) (EP(pp, e_pcred.p_ruid)),
434	    PP(pp, p_priority) - PZERO,
435	    PP(pp, p_nice) - NZERO,
436	    format_k(pagetok(PROCSIZE(pp))),
437	    format_k(pagetok(VP(pp, vm_rssize))),
438	    (PP(pp, p_stat) == SSLEEP && PP(pp, p_slptime) > MAXSLP)
439	    ? "idle" : state_abbrev[(unsigned char) PP(pp, p_stat)],
440	    p_wait,
441	    format_time(cputime),
442	    100.0 * pct,
443	    printable(PP(pp, p_comm)));
444
445	/* return the result */
446	return (fmt);
447}
448
449/* comparison routine for qsort */
450static unsigned char sorted_state[] =
451{
452	0,			/* not used		 */
453	4,			/* start		 */
454	5,			/* run			 */
455	2,			/* sleep		 */
456	3,			/* stop			 */
457	1			/* zombie		 */
458};
459#ifdef ORDER
460
461/*
462 *  proc_compares - comparison functions for "qsort"
463 */
464
465/*
466 * First, the possible comparison keys.  These are defined in such a way
467 * that they can be merely listed in the source code to define the actual
468 * desired ordering.
469 */
470
471
472#define ORDERKEY_PCTCPU \
473	if (lresult = (pctcpu)PP(p2, p_pctcpu) - (pctcpu)PP(p1, p_pctcpu), \
474	    (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
475#define ORDERKEY_CPUTIME \
476	if ((result = PP(p2, p_rtime.tv_sec) - PP(p1, p_rtime.tv_sec)) == 0) \
477		if ((result = PP(p2, p_rtime.tv_usec) - \
478		     PP(p1, p_rtime.tv_usec)) == 0)
479#define ORDERKEY_STATE \
480	if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] - \
481	    sorted_state[(unsigned char) PP(p1, p_stat)])  == 0)
482#define ORDERKEY_PRIO \
483	if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
484#define ORDERKEY_RSSIZE \
485	if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
486#define ORDERKEY_MEM \
487	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
488
489
490/* compare_cpu - the comparison function for sorting by cpu percentage */
491int
492compare_cpu(v1, v2)
493	const void *v1, *v2;
494{
495	struct proc **pp1 = (struct proc **) v1;
496	struct proc **pp2 = (struct proc **) v2;
497	struct kinfo_proc *p1;
498	struct kinfo_proc *p2;
499	int result;
500	pctcpu lresult;
501
502	/* remove one level of indirection */
503	p1 = *(struct kinfo_proc **) pp1;
504	p2 = *(struct kinfo_proc **) pp2;
505
506	ORDERKEY_PCTCPU
507	    ORDERKEY_CPUTIME
508	    ORDERKEY_STATE
509	    ORDERKEY_PRIO
510	    ORDERKEY_RSSIZE
511	    ORDERKEY_MEM
512	    ;
513	return (result);
514}
515
516/* compare_size - the comparison function for sorting by total memory usage */
517int
518compare_size(v1, v2)
519	const void *v1, *v2;
520{
521	struct proc **pp1 = (struct proc **) v1;
522	struct proc **pp2 = (struct proc **) v2;
523	struct kinfo_proc *p1;
524	struct kinfo_proc *p2;
525	int result;
526	pctcpu lresult;
527
528	/* remove one level of indirection */
529	p1 = *(struct kinfo_proc **) pp1;
530	p2 = *(struct kinfo_proc **) pp2;
531
532	ORDERKEY_MEM
533	    ORDERKEY_RSSIZE
534	    ORDERKEY_PCTCPU
535	    ORDERKEY_CPUTIME
536	    ORDERKEY_STATE
537	    ORDERKEY_PRIO
538	    ;
539	return (result);
540}
541
542/* compare_res - the comparison function for sorting by resident set size */
543int
544compare_res(v1, v2)
545	const void *v1, *v2;
546{
547	struct proc **pp1 = (struct proc **) v1;
548	struct proc **pp2 = (struct proc **) v2;
549	struct kinfo_proc *p1;
550	struct kinfo_proc *p2;
551	int result;
552	pctcpu lresult;
553
554	/* remove one level of indirection */
555	p1 = *(struct kinfo_proc **) pp1;
556	p2 = *(struct kinfo_proc **) pp2;
557
558	ORDERKEY_RSSIZE
559	    ORDERKEY_MEM
560	    ORDERKEY_PCTCPU
561	    ORDERKEY_CPUTIME
562	    ORDERKEY_STATE
563	    ORDERKEY_PRIO
564	    ;
565	return (result);
566}
567
568/* compare_time - the comparison function for sorting by CPU time */
569int
570compare_time(v1, v2)
571	const void *v1, *v2;
572{
573	struct proc **pp1 = (struct proc **) v1;
574	struct proc **pp2 = (struct proc **) v2;
575	struct kinfo_proc *p1;
576	struct kinfo_proc *p2;
577	int result;
578	pctcpu lresult;
579
580	/* remove one level of indirection */
581	p1 = *(struct kinfo_proc **) pp1;
582	p2 = *(struct kinfo_proc **) pp2;
583
584	ORDERKEY_CPUTIME
585	    ORDERKEY_PCTCPU
586	    ORDERKEY_STATE
587	    ORDERKEY_PRIO
588	    ORDERKEY_MEM
589	    ORDERKEY_RSSIZE
590	    ;
591	return (result);
592}
593
594/* compare_prio - the comparison function for sorting by CPU time */
595int
596compare_prio(v1, v2)
597	const void *v1, *v2;
598{
599	struct proc **pp1 = (struct proc **) v1;
600	struct proc **pp2 = (struct proc **) v2;
601	struct kinfo_proc *p1;
602	struct kinfo_proc *p2;
603	int result;
604	pctcpu lresult;
605
606	/* remove one level of indirection */
607	p1 = *(struct kinfo_proc **) pp1;
608	p2 = *(struct kinfo_proc **) pp2;
609
610	ORDERKEY_PRIO
611	    ORDERKEY_PCTCPU
612	    ORDERKEY_CPUTIME
613	    ORDERKEY_STATE
614	    ORDERKEY_RSSIZE
615	    ORDERKEY_MEM
616	    ;
617	return (result);
618}
619
620int     (*proc_compares[]) () = {
621	compare_cpu,
622	compare_size,
623	compare_res,
624	compare_time,
625	compare_prio,
626	NULL
627};
628#else
629/*
630 *  proc_compare - comparison function for "qsort"
631 *	Compares the resource consumption of two processes using five
632 *  	distinct keys.  The keys (in descending order of importance) are:
633 *  	percent cpu, cpu ticks, state, resident set size, total virtual
634 *  	memory usage.  The process states are ordered as follows (from least
635 *  	to most important):  zombie, sleep, stop, start, run.  The array
636 *  	declaration below maps a process state index into a number that
637 *  	reflects this ordering.
638 */
639int
640proc_compare(v1, v2)
641	const void *v1, *v2;
642{
643	struct proc **pp1 = (struct proc **) v1;
644	struct proc **pp2 = (struct proc **) v2;
645	struct kinfo_proc *p1;
646	struct kinfo_proc *p2;
647	int result;
648	pctcpu lresult;
649
650	/* remove one level of indirection */
651	p1 = *(struct kinfo_proc **) pp1;
652	p2 = *(struct kinfo_proc **) pp2;
653
654	/* compare percent cpu (pctcpu) */
655	if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0) {
656		/* use CPU usage to break the tie */
657		if ((result = PP(p2, p_rtime).tv_sec - PP(p1, p_rtime).tv_sec) == 0) {
658			/* use process state to break the tie */
659			if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
660				sorted_state[(unsigned char) PP(p1, p_stat)]) == 0) {
661				/* use priority to break the tie */
662				if ((result = PP(p2, p_priority) -
663				    PP(p1, p_priority)) == 0) {
664					/* use resident set size (rssize) to
665					 * break the tie */
666					if ((result = VP(p2, vm_rssize) -
667					    VP(p1, vm_rssize)) == 0) {
668						/* use total memory to break
669						 * the tie */
670						result = PROCSIZE(p2) - PROCSIZE(p1);
671					}
672				}
673			}
674		}
675	} else {
676		result = lresult < 0 ? -1 : 1;
677	}
678	return (result);
679}
680#endif
681
682/*
683 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
684 *		the process does not exist.
685 *		It is EXTREMLY IMPORTANT that this function work correctly.
686 *		If top runs setuid root (as in SVR4), then this function
687 *		is the only thing that stands in the way of a serious
688 *		security problem.  It validates requests for the "kill"
689 *		and "renice" commands.
690 */
691int
692proc_owner(pid)
693	pid_t   pid;
694{
695	struct kinfo_proc **prefp, *pp;
696	int cnt;
697
698	prefp = pref;
699	cnt = pref_len;
700	while (--cnt >= 0) {
701		pp = *prefp++;
702		if (PP(pp, p_pid) == pid) {
703			return ((int) EP(pp, e_pcred.p_ruid));
704		}
705	}
706	return (-1);
707}
708#ifdef DOSWAP
709/*
710 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
711 * to be based on the new swapctl(2) system call.
712 */
713static int
714swapmode(used, total)
715	int    *used;
716	int    *total;
717{
718	int     nswap, rnswap, i;
719	struct swapent *swdev;
720
721	nswap = swapctl(SWAP_NSWAP, 0, 0);
722	if (nswap == 0)
723		return 0;
724
725	swdev = malloc(nswap * sizeof(*swdev));
726	if (swdev == NULL)
727		return 0;
728
729	rnswap = swapctl(SWAP_STATS, swdev, nswap);
730	if (rnswap == -1)
731		return 0;
732
733	/* if rnswap != nswap, then what? */
734
735	/* Total things up */
736	*total = *used = 0;
737	for (i = 0; i < nswap; i++) {
738		if (swdev[i].se_flags & SWF_ENABLE) {
739			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
740			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
741		}
742	}
743
744	free(swdev);
745	return 1;
746}
747#endif
748