machine.c revision 1.113
1/* $OpenBSD: machine.c,v 1.113 2023/01/07 05:24:59 guenther Exp $	 */
2
3/*-
4 * Copyright (c) 1994 Thorsten Lockert <tholo@sigmasoft.com>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 *    derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
19 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL
21 * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
24 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
26 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
27 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
30 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
31 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
32 *	    Patch for -DORDER by Kenneth Stailey <kstailey@disclosure.com>
33 *	    Patch for new swapctl(2) by Tobias Weingartner <weingart@openbsd.org>
34 */
35
36#include <sys/param.h>	/* DEV_BSIZE PZERO */
37#include <sys/types.h>
38#include <sys/signal.h>
39#include <sys/mount.h>
40#include <sys/proc.h>
41#include <sys/sched.h>
42#include <sys/swap.h>
43#include <sys/sysctl.h>
44
45#include <stdio.h>
46#include <stdlib.h>
47#include <string.h>
48#include <unistd.h>
49#include <err.h>
50#include <errno.h>
51
52#include "top.h"
53#include "display.h"
54#include "machine.h"
55#include "utils.h"
56
57static int	swapmode(int *, int *);
58static char	*state_abbr(struct kinfo_proc *);
59static char	*format_comm(struct kinfo_proc *);
60static int	cmd_matches(struct kinfo_proc *, char *);
61static char	**get_proc_args(struct kinfo_proc *);
62
63/* get_process_info passes back a handle.  This is what it looks like: */
64
65struct handle {
66	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
67};
68
69/* what we consider to be process size: */
70#define PROCSIZE(pp) ((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
71
72/*
73 *  These definitions control the format of the per-process area
74 */
75static char header[] =
76	"  PID X        PRI NICE  SIZE   RES STATE     WAIT      TIME    CPU COMMAND";
77
78/* offsets in the header line to start alternative columns */
79#define UNAME_START 6
80#define RTABLE_START 46
81
82#define Proc_format \
83	"%5d %-8.8s %3d %4d %5s %5s %-9s %-7.7s %6s %5.2f%% %s"
84
85/* process state names for the "STATE" column of the display */
86char	*state_abbrev[] = {
87	"", "start", "run", "sleep", "stop", "zomb", "dead", "onproc"
88};
89
90/* these are for calculating cpu state percentages */
91static struct cpustats	*cp_time;
92static struct cpustats	*cp_old;
93static struct cpustats	*cp_diff;
94
95/* these are for detailing the process states */
96int process_states[8];
97char *procstatenames[] = {
98	"", " starting, ", " running, ", " idle, ",
99	" stopped, ", " zombie, ", " dead, ", " on processor, ",
100	NULL
101};
102
103/* these are for detailing the cpu states */
104int64_t *cpu_states;
105char *cpustatenames[] = {
106	"user", "nice", "sys", "spin", "intr", "idle", NULL
107};
108
109/* this is for tracking which cpus are online */
110int *cpu_online;
111
112/* these are for detailing the memory statistics */
113int memory_stats[10];
114char *memorynames[] = {
115	"Real: ", "K/", "K act/tot ", "Free: ", "K ",
116	"Cache: ", "K ",
117	"Swap: ", "K/", "K",
118	NULL
119};
120
121/* these are names given to allowed sorting orders -- first is default */
122char	*ordernames[] = {
123	"cpu", "size", "res", "time", "pri", "pid", "command", NULL
124};
125
126/* these are for keeping track of the proc array */
127static int	nproc;
128static int	onproc = -1;
129static int	pref_len;
130static struct kinfo_proc *pbase;
131static struct kinfo_proc **pref;
132
133/* these are for getting the memory statistics */
134static int	pageshift;	/* log base 2 of the pagesize */
135
136/* define pagetok in terms of pageshift */
137#define pagetok(size) ((size) << pageshift)
138
139int		ncpu;
140int		ncpuonline;
141int		fscale;
142
143unsigned int	maxslp;
144
145int
146getfscale(void)
147{
148	int mib[] = { CTL_KERN, KERN_FSCALE };
149	size_t size = sizeof(fscale);
150
151	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
152	    &fscale, &size, NULL, 0) == -1)
153		return (-1);
154	return fscale;
155}
156
157int
158getncpu(void)
159{
160	int mib[] = { CTL_HW, HW_NCPU };
161	int numcpu;
162	size_t size = sizeof(numcpu);
163
164	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
165	    &numcpu, &size, NULL, 0) == -1)
166		return (-1);
167
168	return (numcpu);
169}
170
171int
172getncpuonline(void)
173{
174	int mib[] = { CTL_HW, HW_NCPUONLINE };
175	int numcpu;
176	size_t size = sizeof(numcpu);
177
178	if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
179	    &numcpu, &size, NULL, 0) == -1)
180		return (-1);
181
182	return (numcpu);
183}
184
185int
186machine_init(struct statics *statics)
187{
188	int pagesize;
189
190	ncpu = getncpu();
191	if (ncpu == -1)
192		return (-1);
193	if (getfscale() == -1)
194		return (-1);
195	cpu_states = calloc(ncpu, CPUSTATES * sizeof(int64_t));
196	if (cpu_states == NULL)
197		err(1, NULL);
198	cp_time = calloc(ncpu, sizeof(*cp_time));
199	cp_old  = calloc(ncpu, sizeof(*cp_old));
200	cp_diff = calloc(ncpu, sizeof(*cp_diff));
201	if (cp_time == NULL || cp_old == NULL || cp_diff == NULL)
202		err(1, NULL);
203	cpu_online = calloc(ncpu, sizeof(*cpu_online));
204	if (cpu_online == NULL)
205		err(1, NULL);
206
207	/*
208	 * get the page size with "getpagesize" and calculate pageshift from
209	 * it
210	 */
211	pagesize = getpagesize();
212	pageshift = 0;
213	while (pagesize > 1) {
214		pageshift++;
215		pagesize >>= 1;
216	}
217
218	/* we only need the amount of log(2)1024 for our conversion */
219	pageshift -= LOG1024;
220
221	/* fill in the statics information */
222	statics->procstate_names = procstatenames;
223	statics->cpustate_names = cpustatenames;
224	statics->memory_names = memorynames;
225	statics->order_names = ordernames;
226	return (0);
227}
228
229char *
230format_header(char *second_field, char *eighth_field)
231{
232	char *second_fieldp = second_field, *eighth_fieldp = eighth_field, *ptr;
233
234	ptr = header + UNAME_START;
235	while (*second_fieldp != '\0')
236		*ptr++ = *second_fieldp++;
237	ptr = header + RTABLE_START;
238	while (*eighth_fieldp != '\0')
239		*ptr++ = *eighth_fieldp++;
240	return (header);
241}
242
243void
244get_system_info(struct system_info *si)
245{
246	static int cpustats_mib[] = {CTL_KERN, KERN_CPUSTATS, /*fillme*/0};
247	static int sysload_mib[] = {CTL_VM, VM_LOADAVG};
248	static int uvmexp_mib[] = {CTL_VM, VM_UVMEXP};
249	static int bcstats_mib[] = {CTL_VFS, VFS_GENERIC, VFS_BCACHESTAT};
250	struct loadavg sysload;
251	struct uvmexp uvmexp;
252	struct bcachestats bcstats;
253	double *infoloadp;
254	size_t size;
255	int i;
256	int64_t *tmpstate;
257
258	size = sizeof(*cp_time);
259	for (i = 0; i < ncpu; i++) {
260		cpustats_mib[2] = i;
261		tmpstate = cpu_states + (CPUSTATES * i);
262		if (sysctl(cpustats_mib, 3, &cp_time[i], &size, NULL, 0) == -1)
263			warn("sysctl kern.cpustats failed");
264		/* convert cpustats counts to percentages */
265		(void) percentages(CPUSTATES, tmpstate, cp_time[i].cs_time,
266		    cp_old[i].cs_time, cp_diff[i].cs_time);
267		/* note whether the cpu is online */
268		cpu_online[i] = (cp_time[i].cs_flags & CPUSTATS_ONLINE) != 0;
269	}
270
271	size = sizeof(sysload);
272	if (sysctl(sysload_mib, 2, &sysload, &size, NULL, 0) == -1)
273		warn("sysctl failed");
274	infoloadp = si->load_avg;
275	for (i = 0; i < 3; i++)
276		*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
277
278
279	/* get total -- systemwide main memory usage structure */
280	size = sizeof(uvmexp);
281	if (sysctl(uvmexp_mib, 2, &uvmexp, &size, NULL, 0) == -1) {
282		warn("sysctl failed");
283		bzero(&uvmexp, sizeof(uvmexp));
284	}
285	size = sizeof(bcstats);
286	if (sysctl(bcstats_mib, 3, &bcstats, &size, NULL, 0) == -1) {
287		warn("sysctl failed");
288		bzero(&bcstats, sizeof(bcstats));
289	}
290	/* convert memory stats to Kbytes */
291	memory_stats[0] = -1;
292	memory_stats[1] = pagetok(uvmexp.active);
293	memory_stats[2] = pagetok(uvmexp.npages - uvmexp.free);
294	memory_stats[3] = -1;
295	memory_stats[4] = pagetok(uvmexp.free);
296	memory_stats[5] = -1;
297	memory_stats[6] = pagetok(bcstats.numbufpages);
298	memory_stats[7] = -1;
299
300	if (!swapmode(&memory_stats[8], &memory_stats[9])) {
301		memory_stats[8] = 0;
302		memory_stats[9] = 0;
303	}
304
305	/* set arrays and strings */
306	si->cpustates = cpu_states;
307	si->cpuonline = cpu_online;
308	si->memory = memory_stats;
309}
310
311static struct handle handle;
312
313struct kinfo_proc *
314getprocs(int op, int arg, int *cnt)
315{
316	size_t size;
317	int mib[6] = {CTL_KERN, KERN_PROC, KERN_PROC_ALL, 0,
318	    sizeof(struct kinfo_proc), 0};
319	static int maxslp_mib[] = {CTL_VM, VM_MAXSLP};
320	static struct kinfo_proc *procbase;
321	int st;
322
323	mib[2] = op;
324	mib[3] = arg;
325
326	size = sizeof(maxslp);
327	if (sysctl(maxslp_mib, 2, &maxslp, &size, NULL, 0) == -1) {
328		warn("sysctl vm.maxslp failed");
329		return (0);
330	}
331    retry:
332	free(procbase);
333	st = sysctl(mib, 6, NULL, &size, NULL, 0);
334	if (st == -1) {
335		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
336		return (0);
337	}
338	size = 5 * size / 4;			/* extra slop */
339	if ((procbase = malloc(size)) == NULL)
340		return (0);
341	mib[5] = (int)(size / sizeof(struct kinfo_proc));
342	st = sysctl(mib, 6, procbase, &size, NULL, 0);
343	if (st == -1) {
344		if (errno == ENOMEM)
345			goto retry;
346		/* _kvm_syserr(kd, kd->program, "kvm_getprocs"); */
347		return (0);
348	}
349	*cnt = (int)(size / sizeof(struct kinfo_proc));
350	return (procbase);
351}
352
353static char **
354get_proc_args(struct kinfo_proc *kp)
355{
356	static char	**s;
357	static size_t	siz = 1023;
358	int		mib[4];
359
360	if (!s && !(s = malloc(siz)))
361		err(1, NULL);
362
363	mib[0] = CTL_KERN;
364	mib[1] = KERN_PROC_ARGS;
365	mib[2] = kp->p_pid;
366	mib[3] = KERN_PROC_ARGV;
367	for (;;) {
368		size_t space = siz;
369		if (sysctl(mib, 4, s, &space, NULL, 0) == 0)
370			break;
371		if (errno != ENOMEM)
372			return NULL;
373		siz *= 2;
374		if ((s = realloc(s, siz)) == NULL)
375			err(1, NULL);
376	}
377	return s;
378}
379
380static int
381cmd_matches(struct kinfo_proc *proc, char *term)
382{
383	extern int	show_args;
384	char		**args = NULL;
385
386	if (!term) {
387		/* No command filter set */
388		return 1;
389	} else {
390		/* Filter set, process name needs to contain term */
391		if (strstr(proc->p_comm, term))
392			return 1;
393		/* If thread name set, search that too */
394		if (strstr(proc->p_name, term))
395			return 1;
396		/* If showing arguments, search those as well */
397		if (show_args) {
398			args = get_proc_args(proc);
399
400			if (args == NULL) {
401				/* Failed to get args, so can't search them */
402				return 0;
403			}
404
405			while (*args != NULL) {
406				if (strstr(*args, term))
407					return 1;
408				args++;
409			}
410		}
411	}
412	return 0;
413}
414
415struct handle *
416get_process_info(struct system_info *si, struct process_select *sel,
417    int (*compare) (const void *, const void *))
418{
419	int show_idle, show_system, show_threads, show_uid, show_pid, show_cmd;
420	int show_rtableid, hide_rtableid, hide_uid;
421	int total_procs, active_procs;
422	struct kinfo_proc **prefp, *pp;
423	int what = KERN_PROC_ALL;
424
425	show_system = sel->system;
426	show_threads = sel->threads;
427
428	if (show_system)
429		what = KERN_PROC_KTHREAD;
430	if (show_threads)
431		what |= KERN_PROC_SHOW_THREADS;
432
433	if ((pbase = getprocs(what, 0, &nproc)) == NULL) {
434		/* warnx("%s", kvm_geterr(kd)); */
435		quit(23);
436	}
437	if (nproc > onproc)
438		pref = reallocarray(pref, (onproc = nproc),
439		    sizeof(struct kinfo_proc *));
440	if (pref == NULL) {
441		warnx("Out of memory.");
442		quit(23);
443	}
444	/* get a pointer to the states summary array */
445	si->procstates = process_states;
446
447	/* set up flags which define what we are going to select */
448	show_idle = sel->idle;
449	show_uid = sel->uid != (uid_t)-1;
450	hide_uid = sel->huid != (uid_t)-1;
451	show_pid = sel->pid != (pid_t)-1;
452	show_rtableid = sel->rtableid != -1;
453	hide_rtableid = sel->hrtableid != -1;
454	show_cmd = sel->command != NULL;
455
456	/* count up process states and get pointers to interesting procs */
457	total_procs = 0;
458	active_procs = 0;
459	memset((char *) process_states, 0, sizeof(process_states));
460	prefp = pref;
461	for (pp = pbase; pp < &pbase[nproc]; pp++) {
462		/*
463		 * When showing threads, we want to ignore the structure
464		 * that represents the entire process, which has TID == -1
465		 */
466		if (show_threads && pp->p_tid == -1)
467			continue;
468		/*
469		 * Place pointers to each valid proc structure in pref[].
470		 * Process slots that are actually in use have a non-zero
471		 * status field.
472		 */
473		if (pp->p_stat != 0) {
474			total_procs++;
475			process_states[(unsigned char) pp->p_stat]++;
476			if ((pp->p_psflags & PS_ZOMBIE) == 0 &&
477			    (show_idle || pp->p_pctcpu != 0 ||
478			    pp->p_stat == SRUN) &&
479			    (!hide_uid || pp->p_ruid != sel->huid) &&
480			    (!show_uid || pp->p_ruid == sel->uid) &&
481			    (!show_pid || pp->p_pid == sel->pid) &&
482			    (!hide_rtableid || pp->p_rtableid != sel->hrtableid) &&
483			    (!show_rtableid || pp->p_rtableid == sel->rtableid) &&
484			    (!show_cmd || cmd_matches(pp, sel->command))) {
485				*prefp++ = pp;
486				active_procs++;
487			}
488		}
489	}
490
491	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
492	/* remember active and total counts */
493	si->p_total = total_procs;
494	si->p_active = pref_len = active_procs;
495
496	/* pass back a handle */
497	handle.next_proc = pref;
498	return &handle;
499}
500
501char fmt[MAX_COLS];	/* static area where result is built */
502
503static char *
504state_abbr(struct kinfo_proc *pp)
505{
506	static char buf[10];
507
508	if (ncpu > 1 && pp->p_cpuid != KI_NOCPU)
509		snprintf(buf, sizeof buf, "%s/%llu",
510		    state_abbrev[(unsigned char)pp->p_stat], pp->p_cpuid);
511	else
512		snprintf(buf, sizeof buf, "%s",
513		    state_abbrev[(unsigned char)pp->p_stat]);
514	return buf;
515}
516
517static char *
518format_comm(struct kinfo_proc *kp)
519{
520	static char	buf[MAX_COLS];
521	char		**p, **s;
522	extern int	show_args;
523
524	if (show_args && (s = get_proc_args(kp)) != NULL) {
525		buf[0] = '\0';
526		for (p = s; *p != NULL; p++) {
527			if (p != s)
528				strlcat(buf, " ", sizeof(buf));
529			strlcat(buf, *p, sizeof(buf));
530		}
531		if (buf[0] != '\0')
532			return buf;
533	}
534	if (kp->p_name[0] != '\0') {
535		snprintf(buf, sizeof buf, "%s/%s", kp->p_comm,
536		    kp->p_name);
537		return buf;
538	}
539	return kp->p_comm;
540}
541
542void
543skip_processes(struct handle *hndl, int n)
544{
545	hndl->next_proc += n;
546}
547
548char *
549format_next_process(struct handle *hndl, const char *(*get_userid)(uid_t, int),
550    int rtable, pid_t *pid)
551{
552	struct kinfo_proc *pp;
553	int cputime;
554	double pct;
555	char second_buf[16], eighth_buf[8];
556
557	/* find and remember the next proc structure */
558	pp = *(hndl->next_proc++);
559
560	cputime = pp->p_rtime_sec + ((pp->p_rtime_usec + 500000) / 1000000);
561
562	/* calculate the base for cpu percentages */
563	pct = (double)pp->p_pctcpu / fscale;
564
565	if (get_userid == NULL)
566		snprintf(second_buf, sizeof(second_buf), "%8d", pp->p_tid);
567	else
568		strlcpy(second_buf, (*get_userid)(pp->p_ruid, 0),
569		    sizeof(second_buf));
570
571	if (rtable)
572		snprintf(eighth_buf, sizeof(eighth_buf), "%7d", pp->p_rtableid);
573	else
574		strlcpy(eighth_buf, pp->p_wmesg[0] ? pp->p_wmesg : "-",
575		    sizeof(eighth_buf));
576
577	/* format this entry */
578	snprintf(fmt, sizeof(fmt), Proc_format, pp->p_pid, second_buf,
579	    pp->p_priority - PZERO, pp->p_nice - NZERO,
580	    format_k(pagetok(PROCSIZE(pp))),
581	    format_k(pagetok(pp->p_vm_rssize)),
582	    (pp->p_stat == SSLEEP && pp->p_slptime > maxslp) ?
583	    "idle" : state_abbr(pp),
584	    eighth_buf, format_time(cputime), 100.0 * pct,
585	    printable(format_comm(pp)));
586
587	*pid = pp->p_pid;
588	/* return the result */
589	return (fmt);
590}
591
592/* comparison routine for qsort */
593static unsigned char sorted_state[] =
594{
595	0,			/* not used		 */
596	4,			/* start		 */
597	5,			/* run			 */
598	2,			/* sleep		 */
599	3,			/* stop			 */
600	1			/* zombie		 */
601};
602
603extern int rev_order;
604
605/*
606 *  proc_compares - comparison functions for "qsort"
607 */
608
609/*
610 * First, the possible comparison keys.  These are defined in such a way
611 * that they can be merely listed in the source code to define the actual
612 * desired ordering.
613 */
614
615#define ORDERKEY_PCTCPU \
616	if ((result = (int)(p2->p_pctcpu - p1->p_pctcpu)) == 0)
617#define ORDERKEY_CPUTIME \
618	if ((result = p2->p_rtime_sec - p1->p_rtime_sec) == 0) \
619		if ((result = p2->p_rtime_usec - p1->p_rtime_usec) == 0)
620#define ORDERKEY_STATE \
621	if ((result = sorted_state[(unsigned char)p2->p_stat] - \
622	    sorted_state[(unsigned char)p1->p_stat])  == 0)
623#define ORDERKEY_PRIO \
624	if ((result = p2->p_priority - p1->p_priority) == 0)
625#define ORDERKEY_RSSIZE \
626	if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
627#define ORDERKEY_MEM \
628	if ((result = PROCSIZE(p2) - PROCSIZE(p1)) == 0)
629#define ORDERKEY_PID \
630	if ((result = p1->p_pid - p2->p_pid) == 0)
631#define ORDERKEY_CMD \
632	if ((result = strcmp(p1->p_comm, p2->p_comm)) == 0)
633
634/* remove one level of indirection and set sort order */
635#define SETORDER do { \
636		if (rev_order) { \
637			p1 = *(struct kinfo_proc **) v2; \
638			p2 = *(struct kinfo_proc **) v1; \
639		} else { \
640			p1 = *(struct kinfo_proc **) v1; \
641			p2 = *(struct kinfo_proc **) v2; \
642		} \
643	} while (0)
644
645/* compare_cpu - the comparison function for sorting by cpu percentage */
646static int
647compare_cpu(const void *v1, const void *v2)
648{
649	struct kinfo_proc *p1, *p2;
650	int result;
651
652	SETORDER;
653
654	ORDERKEY_PCTCPU
655	ORDERKEY_CPUTIME
656	ORDERKEY_STATE
657	ORDERKEY_PRIO
658	ORDERKEY_RSSIZE
659	ORDERKEY_MEM
660		;
661	return (result);
662}
663
664/* compare_size - the comparison function for sorting by total memory usage */
665static int
666compare_size(const void *v1, const void *v2)
667{
668	struct kinfo_proc *p1, *p2;
669	int result;
670
671	SETORDER;
672
673	ORDERKEY_MEM
674	ORDERKEY_RSSIZE
675	ORDERKEY_PCTCPU
676	ORDERKEY_CPUTIME
677	ORDERKEY_STATE
678	ORDERKEY_PRIO
679		;
680	return (result);
681}
682
683/* compare_res - the comparison function for sorting by resident set size */
684static int
685compare_res(const void *v1, const void *v2)
686{
687	struct kinfo_proc *p1, *p2;
688	int result;
689
690	SETORDER;
691
692	ORDERKEY_RSSIZE
693	ORDERKEY_MEM
694	ORDERKEY_PCTCPU
695	ORDERKEY_CPUTIME
696	ORDERKEY_STATE
697	ORDERKEY_PRIO
698		;
699	return (result);
700}
701
702/* compare_time - the comparison function for sorting by CPU time */
703static int
704compare_time(const void *v1, const void *v2)
705{
706	struct kinfo_proc *p1, *p2;
707	int result;
708
709	SETORDER;
710
711	ORDERKEY_CPUTIME
712	ORDERKEY_PCTCPU
713	ORDERKEY_STATE
714	ORDERKEY_PRIO
715	ORDERKEY_MEM
716	ORDERKEY_RSSIZE
717		;
718	return (result);
719}
720
721/* compare_prio - the comparison function for sorting by CPU time */
722static int
723compare_prio(const void *v1, const void *v2)
724{
725	struct kinfo_proc *p1, *p2;
726	int result;
727
728	SETORDER;
729
730	ORDERKEY_PRIO
731	ORDERKEY_PCTCPU
732	ORDERKEY_CPUTIME
733	ORDERKEY_STATE
734	ORDERKEY_RSSIZE
735	ORDERKEY_MEM
736		;
737	return (result);
738}
739
740static int
741compare_pid(const void *v1, const void *v2)
742{
743	struct kinfo_proc *p1, *p2;
744	int result;
745
746	SETORDER;
747
748	ORDERKEY_PID
749	ORDERKEY_PCTCPU
750	ORDERKEY_CPUTIME
751	ORDERKEY_STATE
752	ORDERKEY_PRIO
753	ORDERKEY_RSSIZE
754	ORDERKEY_MEM
755		;
756	return (result);
757}
758
759static int
760compare_cmd(const void *v1, const void *v2)
761{
762	struct kinfo_proc *p1, *p2;
763	int result;
764
765	SETORDER;
766
767	ORDERKEY_CMD
768	ORDERKEY_PCTCPU
769	ORDERKEY_CPUTIME
770	ORDERKEY_STATE
771	ORDERKEY_PRIO
772	ORDERKEY_RSSIZE
773	ORDERKEY_MEM
774		;
775	return (result);
776}
777
778
779int (*proc_compares[])(const void *, const void *) = {
780	compare_cpu,
781	compare_size,
782	compare_res,
783	compare_time,
784	compare_prio,
785	compare_pid,
786	compare_cmd,
787	NULL
788};
789
790/*
791 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
792 *		the process does not exist.
793 *		It is EXTREMELY IMPORTANT that this function work correctly.
794 *		If top runs setuid root (as in SVR4), then this function
795 *		is the only thing that stands in the way of a serious
796 *		security problem.  It validates requests for the "kill"
797 *		and "renice" commands.
798 */
799uid_t
800proc_owner(pid_t pid)
801{
802	struct kinfo_proc **prefp, *pp;
803	int cnt;
804
805	prefp = pref;
806	cnt = pref_len;
807	while (--cnt >= 0) {
808		pp = *prefp++;
809		if (pp->p_pid == pid)
810			return ((uid_t)pp->p_ruid);
811	}
812	return (uid_t)(-1);
813}
814
815/*
816 * swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
817 * to be based on the new swapctl(2) system call.
818 */
819static int
820swapmode(int *used, int *total)
821{
822	struct swapent *swdev;
823	int nswap, rnswap, i;
824
825	nswap = swapctl(SWAP_NSWAP, 0, 0);
826	if (nswap == 0)
827		return 0;
828
829	swdev = calloc(nswap, sizeof(*swdev));
830	if (swdev == NULL)
831		return 0;
832
833	rnswap = swapctl(SWAP_STATS, swdev, nswap);
834	if (rnswap == -1) {
835		free(swdev);
836		return 0;
837	}
838
839	/* if rnswap != nswap, then what? */
840
841	/* Total things up */
842	*total = *used = 0;
843	for (i = 0; i < nswap; i++) {
844		if (swdev[i].se_flags & SWF_ENABLE) {
845			*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
846			*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
847		}
848	}
849	free(swdev);
850	return 1;
851}
852