machine.c revision 1.10
1/*	$OpenBSD: machine.c,v 1.10 1998/07/08 22:14:16 deraadt Exp $	*/
2
3/*
4 * top - a top users display for Unix
5 *
6 * SYNOPSIS:  For an OpenBSD system
7 *
8 * DESCRIPTION:
9 * This is the machine-dependent module for OpenBSD
10 * Tested on:
11 *	i386
12 *
13 * LIBS: -lkvm
14 *
15 * TERMCAP: -ltermlib
16 *
17 * CFLAGS: -DHAVE_GETOPT
18 *
19 * AUTHOR:  Thorsten Lockert <tholo@sigmasoft.com>
20 *          Adapted from BSD4.4 by Christos Zoulas <christos@ee.cornell.edu>
21 *          Patch for process wait display by Jarl F. Greipsland <jarle@idt.unit.no>
22 */
23
24#include <sys/types.h>
25#include <sys/signal.h>
26#include <sys/param.h>
27
28#define DOSWAP
29
30#include <stdio.h>
31#include <stdlib.h>
32#include <string.h>
33#include <limits.h>
34#include <err.h>
35#include <nlist.h>
36#include <math.h>
37#include <kvm.h>
38#include <unistd.h>
39#include <sys/errno.h>
40#include <sys/sysctl.h>
41#include <sys/dir.h>
42#include <sys/dkstat.h>
43#include <sys/file.h>
44#include <sys/time.h>
45#include <sys/resource.h>
46
47#ifdef DOSWAP
48#include <err.h>
49#include <sys/map.h>
50#include <sys/conf.h>
51#endif
52
53static int check_nlist __P((struct nlist *));
54static int getkval __P((unsigned long, int *, int, char *));
55static int swapmode __P((int *, int *));
56
57#include "top.h"
58#include "display.h"
59#include "machine.h"
60#include "utils.h"
61
62/* get_process_info passes back a handle.  This is what it looks like: */
63
64struct handle
65{
66    struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
67    int remaining;		/* number of pointers remaining */
68};
69
70/* declarations for load_avg */
71#include "loadavg.h"
72
73#define PP(pp, field) ((pp)->kp_proc . field)
74#define EP(pp, field) ((pp)->kp_eproc . field)
75#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
76
77/* what we consider to be process size: */
78#define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
79
80/* definitions for indices in the nlist array */
81#define X_CP_TIME	0
82#define X_HZ		1
83
84#ifdef DOSWAP
85#define	VM_SWAPMAP	2
86#define	VM_NSWAPMAP	3
87#define	VM_SWDEVT	4
88#define	VM_NSWAP	5
89#define	VM_NSWDEV	6
90#define	VM_DMMAX	7
91#define	VM_NISWAP	8
92#define	VM_NISWDEV	9
93#endif
94
95static struct nlist nlst[] = {
96    { "_cp_time" },		/* 0 */
97    { "_hz" },			/* 1 */
98#ifdef DOSWAP
99    { "_swapmap" },		/* 2 */
100    { "_nswapmap" },		/* 3 */
101    { "_swdevt" },		/* 4 */
102    { "_nswap" },		/* 5 */
103    { "_nswdev" },		/* 6 */
104    { "_dmmax" },		/* 7 */
105    { "_niswap" },		/* 8 */
106    { "_niswdev" },		/* 9 */
107#endif
108    { 0 }
109};
110
111/*
112 *  These definitions control the format of the per-process area
113 */
114
115static char header[] =
116  "  PID X        PRI NICE  SIZE   RES STATE WAIT     TIME    CPU COMMAND";
117/* 0123456   -- field to fill in starts at header+6 */
118#define UNAME_START 6
119
120#define Proc_format \
121	"%5d %-8.8s %3d %4d %5s %5s %-5s %-6.6s %6s %5.2f%% %.14s"
122
123
124/* process state names for the "STATE" column of the display */
125/* the extra nulls in the string "run" are for adding a slash and
126   the processor number when needed */
127
128char *state_abbrev[] =
129{
130    "", "start", "run\0\0\0", "sleep", "stop", "zomb",
131};
132
133
134static kvm_t *kd;
135
136/* these are retrieved from the kernel in _init */
137
138static          int hz;
139
140/* these are offsets obtained via nlist and used in the get_ functions */
141
142static unsigned long cp_time_offset;
143
144/* these are for calculating cpu state percentages */
145static int cp_time[CPUSTATES];
146static int cp_old[CPUSTATES];
147static int cp_diff[CPUSTATES];
148
149/* these are for detailing the process states */
150
151int process_states[7];
152char *procstatenames[] = {
153    "", " starting, ", " running, ", " idle, ", " stopped, ", " zombie, ",
154    NULL
155};
156
157/* these are for detailing the cpu states */
158
159int cpu_states[CPUSTATES];
160char *cpustatenames[] = {
161    "user", "nice", "system", "interrupt", "idle", NULL
162};
163
164/* these are for detailing the memory statistics */
165
166int memory_stats[8];
167char *memorynames[] = {
168    "Real: ", "K/", "K act/tot  ", "Free: ", "K  ",
169#ifdef DOSWAP
170    "Swap: ", "K/", "K used/tot",
171#endif
172    NULL
173};
174
175/* these are for keeping track of the proc array */
176
177static int nproc;
178static int onproc = -1;
179static int pref_len;
180static struct kinfo_proc *pbase;
181static struct kinfo_proc **pref;
182
183/* these are for getting the memory statistics */
184
185static int pageshift;		/* log base 2 of the pagesize */
186
187/* define pagetok in terms of pageshift */
188
189#define pagetok(size) ((size) << pageshift)
190
191int
192machine_init(statics)
193
194struct statics *statics;
195
196{
197    register int i = 0;
198    register int pagesize;
199    char errbuf[_POSIX2_LINE_MAX];
200
201    if ((kd = kvm_openfiles(NULL, NULL, NULL, O_RDONLY, errbuf)) == NULL) {
202	warnx("%s", errbuf);
203	return(-1);
204    }
205
206    setegid(getgid());
207    setgid(getgid());
208
209    /* get the list of symbols we want to access in the kernel */
210    if (kvm_nlist(kd, nlst) <= 0) {
211	warnx("nlist failed");
212	return(-1);
213    }
214
215    /* make sure they were all found */
216    if (i > 0 && check_nlist(nlst) > 0)
217	return(-1);
218
219    /* get the symbol values out of kmem */
220    (void) getkval(nlst[X_HZ].n_value,     (int *)(&hz),	sizeof(hz),
221	    nlst[X_HZ].n_name);
222
223    /* stash away certain offsets for later use */
224    cp_time_offset = nlst[X_CP_TIME].n_value;
225
226    pbase = NULL;
227    pref = NULL;
228    onproc = -1;
229    nproc = 0;
230
231    /* get the page size with "getpagesize" and calculate pageshift from it */
232    pagesize = getpagesize();
233    pageshift = 0;
234    while (pagesize > 1)
235    {
236	pageshift++;
237	pagesize >>= 1;
238    }
239
240    /* we only need the amount of log(2)1024 for our conversion */
241    pageshift -= LOG1024;
242
243    /* fill in the statics information */
244    statics->procstate_names = procstatenames;
245    statics->cpustate_names = cpustatenames;
246    statics->memory_names = memorynames;
247
248    /* all done! */
249    return(0);
250}
251
252char *format_header(uname_field)
253
254register char *uname_field;
255
256{
257    register char *ptr;
258
259    ptr = header + UNAME_START;
260    while (*uname_field != '\0')
261    {
262	*ptr++ = *uname_field++;
263    }
264
265    return(header);
266}
267
268void
269get_system_info(si)
270
271struct system_info *si;
272
273{
274    int total;
275
276    /* get the cp_time array */
277    (void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
278		   "_cp_time");
279
280    /* convert load averages to doubles */
281    {
282	register int i;
283	register double *infoloadp;
284	struct loadavg sysload;
285	size_t size = sizeof(sysload);
286	static int mib[] = { CTL_VM, VM_LOADAVG };
287
288	if (sysctl(mib, 2, &sysload, &size, NULL, 0) < 0) {
289	    warn("sysctl failed");
290	    bzero(&total, sizeof(total));
291	}
292
293	infoloadp = si->load_avg;
294	for (i = 0; i < 3; i++)
295	    *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
296    }
297
298    /* convert cp_time counts to percentages */
299    total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
300
301    /* sum memory statistics */
302    {
303	struct vmtotal total;
304	size_t size = sizeof(total);
305	static int mib[] = { CTL_VM, VM_METER };
306
307	/* get total -- systemwide main memory usage structure */
308	if (sysctl(mib, 2, &total, &size, NULL, 0) < 0) {
309	    warn("sysctl failed");
310	    bzero(&total, sizeof(total));
311	}
312	/* convert memory stats to Kbytes */
313	memory_stats[0] = -1;
314	memory_stats[1] = pagetok(total.t_arm);
315	memory_stats[2] = pagetok(total.t_rm);
316	memory_stats[3] = -1;
317	memory_stats[4] = pagetok(total.t_free);
318	memory_stats[5] = -1;
319#ifdef DOSWAP
320	if (!swapmode(&memory_stats[6], &memory_stats[7])) {
321	    memory_stats[6] = 0;
322	    memory_stats[7] = 0;
323	}
324#endif
325    }
326
327    /* set arrays and strings */
328    si->cpustates = cpu_states;
329    si->memory = memory_stats;
330    si->last_pid = -1;
331}
332
333static struct handle handle;
334
335caddr_t get_process_info(si, sel, compare)
336
337struct system_info *si;
338struct process_select *sel;
339int (*compare) __P((const void *, const void *));
340
341{
342    register int i;
343    register int total_procs;
344    register int active_procs;
345    register struct kinfo_proc **prefp;
346    register struct kinfo_proc *pp;
347
348    /* these are copied out of sel for speed */
349    int show_idle;
350    int show_system;
351    int show_uid;
352    int show_command;
353
354
355    if ((pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc)) == NULL) {
356	warnx("%s", kvm_geterr(kd));
357	quit(23);
358    }
359    if (nproc > onproc)
360	pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
361		* (onproc = nproc));
362    if (pref == NULL) {
363	warnx("Out of memory.");
364	quit(23);
365    }
366    /* get a pointer to the states summary array */
367    si->procstates = process_states;
368
369    /* set up flags which define what we are going to select */
370    show_idle = sel->idle;
371    show_system = sel->system;
372    show_uid = sel->uid != -1;
373    show_command = sel->command != NULL;
374
375    /* count up process states and get pointers to interesting procs */
376    total_procs = 0;
377    active_procs = 0;
378    memset((char *)process_states, 0, sizeof(process_states));
379    prefp = pref;
380    for (pp = pbase, i = 0; i < nproc; pp++, i++)
381    {
382	/*
383	 *  Place pointers to each valid proc structure in pref[].
384	 *  Process slots that are actually in use have a non-zero
385	 *  status field.  Processes with SSYS set are system
386	 *  processes---these get ignored unless show_sysprocs is set.
387	 */
388	if (PP(pp, p_stat) != 0 &&
389	    (show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
390	{
391	    total_procs++;
392	    process_states[(unsigned char) PP(pp, p_stat)]++;
393	    if ((PP(pp, p_stat) != SZOMB) &&
394		(show_idle || (PP(pp, p_pctcpu) != 0) ||
395		 (PP(pp, p_stat) == SRUN)) &&
396		(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
397	    {
398		*prefp++ = pp;
399		active_procs++;
400	    }
401	}
402    }
403
404    /* if requested, sort the "interesting" processes */
405    if (compare != NULL)
406    {
407	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
408    }
409
410    /* remember active and total counts */
411    si->p_total = total_procs;
412    si->p_active = pref_len = active_procs;
413
414    /* pass back a handle */
415    handle.next_proc = pref;
416    handle.remaining = active_procs;
417    return((caddr_t)&handle);
418}
419
420char fmt[MAX_COLS];		/* static area where result is built */
421
422char *format_next_process(handle, get_userid)
423
424caddr_t handle;
425char *(*get_userid)();
426
427{
428    register struct kinfo_proc *pp;
429    register int cputime;
430    register double pct;
431    struct handle *hp;
432    char waddr[sizeof(void *) * 2 + 3];	/* Hexify void pointer */
433    char *p_wait;
434
435    /* find and remember the next proc structure */
436    hp = (struct handle *)handle;
437    pp = *(hp->next_proc++);
438    hp->remaining--;
439
440
441    /* get the process's user struct and set cputime */
442    if ((PP(pp, p_flag) & P_INMEM) == 0) {
443	/*
444	 * Print swapped processes as <pname>
445	 */
446	char *comm = PP(pp, p_comm);
447#define COMSIZ sizeof(PP(pp, p_comm))
448	char buf[COMSIZ];
449	(void) strncpy(buf, comm, COMSIZ);
450	comm[0] = '<';
451	(void) strncpy(&comm[1], buf, COMSIZ - 2);
452	comm[COMSIZ - 2] = '\0';
453	(void) strncat(comm, ">", COMSIZ - 1);
454	comm[COMSIZ - 1] = '\0';
455    }
456
457    cputime = (PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks)) / hz;
458
459    /* calculate the base for cpu percentages */
460    pct = pctdouble(PP(pp, p_pctcpu));
461
462    if (PP(pp, p_wchan))
463        if (PP(pp, p_wmesg))
464	    p_wait = EP(pp, e_wmesg);
465	else {
466	    snprintf(waddr, sizeof(waddr), "%lx",
467		(unsigned long)(PP(pp, p_wchan)) & ~KERNBASE);
468	    p_wait = waddr;
469        }
470    else
471	p_wait = "-";
472
473    /* format this entry */
474    snprintf(fmt, MAX_COLS,
475	    Proc_format,
476	    PP(pp, p_pid),
477	    (*get_userid)(EP(pp, e_pcred.p_ruid)),
478	    PP(pp, p_priority) - PZERO,
479	    PP(pp, p_nice) - NZERO,
480	    format_k(pagetok(PROCSIZE(pp))),
481	    format_k(pagetok(VP(pp, vm_rssize))),
482	    (PP(pp, p_stat) == SSLEEP && PP(pp, p_slptime) > MAXSLP)
483	     ? "idle" : state_abbrev[(unsigned char) PP(pp, p_stat)],
484	    p_wait,
485	    format_time(cputime),
486	    100.0 * pct,
487	    printable(PP(pp, p_comm)));
488
489    /* return the result */
490    return(fmt);
491}
492
493
494/*
495 * check_nlist(nlst) - checks the nlist to see if any symbols were not
496 *		found.  For every symbol that was not found, a one-line
497 *		message is printed to stderr.  The routine returns the
498 *		number of symbols NOT found.
499 */
500
501static int check_nlist(nlst)
502
503register struct nlist *nlst;
504
505{
506    register int i;
507
508    /* check to see if we got ALL the symbols we requested */
509    /* this will write one line to stderr for every symbol not found */
510
511    i = 0;
512    while (nlst->n_name != NULL)
513    {
514	if (nlst->n_type == 0)
515	{
516	    /* this one wasn't found */
517	    (void) fprintf(stderr, "kernel: no symbol named `%s'\n",
518			   nlst->n_name);
519	    i = 1;
520	}
521	nlst++;
522    }
523
524    return(i);
525}
526
527
528/*
529 *  getkval(offset, ptr, size, refstr) - get a value out of the kernel.
530 *	"offset" is the byte offset into the kernel for the desired value,
531 *  	"ptr" points to a buffer into which the value is retrieved,
532 *  	"size" is the size of the buffer (and the object to retrieve),
533 *  	"refstr" is a reference string used when printing error meessages,
534 *	    if "refstr" starts with a '!', then a failure on read will not
535 *  	    be fatal (this may seem like a silly way to do things, but I
536 *  	    really didn't want the overhead of another argument).
537 *
538 */
539
540static int getkval(offset, ptr, size, refstr)
541
542unsigned long offset;
543int *ptr;
544int size;
545char *refstr;
546
547{
548    if (kvm_read(kd, offset, (char *) ptr, size) != size)
549    {
550	if (*refstr == '!')
551	{
552	    return(0);
553	}
554	else
555	{
556	    warn("kvm_read for %s", refstr);
557	    quit(23);
558	}
559    }
560    return(1);
561}
562
563/* comparison routine for qsort */
564
565/*
566 *  proc_compare - comparison function for "qsort"
567 *	Compares the resource consumption of two processes using five
568 *  	distinct keys.  The keys (in descending order of importance) are:
569 *  	percent cpu, cpu ticks, state, resident set size, total virtual
570 *  	memory usage.  The process states are ordered as follows (from least
571 *  	to most important):  zombie, sleep, stop, start, run.  The array
572 *  	declaration below maps a process state index into a number that
573 *  	reflects this ordering.
574 */
575
576static unsigned char sorted_state[] =
577{
578    0,	/* not used		*/
579    4,	/* start		*/
580    5,	/* run			*/
581    2,	/* sleep		*/
582    3,	/* stop			*/
583    1	/* zombie		*/
584};
585
586int
587proc_compare(v1, v2)
588
589const void *v1, *v2;
590
591{
592    register struct proc **pp1 = (struct proc **)v1;
593    register struct proc **pp2 = (struct proc **)v2;
594    register struct kinfo_proc *p1;
595    register struct kinfo_proc *p2;
596    register int result;
597    register pctcpu lresult;
598
599    /* remove one level of indirection */
600    p1 = *(struct kinfo_proc **) pp1;
601    p2 = *(struct kinfo_proc **) pp2;
602
603    /* compare percent cpu (pctcpu) */
604    if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0)
605    {
606	/* use CPU usage to break the tie */
607	if ((result = PP(p2, p_rtime).tv_sec - PP(p1, p_rtime).tv_sec) == 0)
608	{
609	    /* use process state to break the tie */
610	    if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
611			  sorted_state[(unsigned char) PP(p1, p_stat)])  == 0)
612	    {
613		/* use priority to break the tie */
614		if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
615		{
616		    /* use resident set size (rssize) to break the tie */
617		    if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
618		    {
619			/* use total memory to break the tie */
620			result = PROCSIZE(p2) - PROCSIZE(p1);
621		    }
622		}
623	    }
624	}
625    }
626    else
627    {
628	result = lresult < 0 ? -1 : 1;
629    }
630
631    return(result);
632}
633
634
635/*
636 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
637 *		the process does not exist.
638 *		It is EXTREMLY IMPORTANT that this function work correctly.
639 *		If top runs setuid root (as in SVR4), then this function
640 *		is the only thing that stands in the way of a serious
641 *		security problem.  It validates requests for the "kill"
642 *		and "renice" commands.
643 */
644
645int proc_owner(pid)
646
647pid_t pid;
648
649{
650    register int cnt;
651    register struct kinfo_proc **prefp;
652    register struct kinfo_proc *pp;
653
654    prefp = pref;
655    cnt = pref_len;
656    while (--cnt >= 0)
657    {
658	pp = *prefp++;
659	if (PP(pp, p_pid) == pid)
660	{
661	    return((int)EP(pp, e_pcred.p_ruid));
662	}
663    }
664    return(-1);
665}
666
667#ifdef DOSWAP
668/*
669 * swapmode is based on a program called swapinfo written
670 * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
671 */
672
673#define	SVAR(var) __STRING(var)	/* to force expansion */
674#define	KGET(idx, var)							\
675	KGET1(idx, &var, sizeof(var), SVAR(var))
676#define	KGET1(idx, p, s, msg)						\
677	KGET2(nlst[idx].n_value, p, s, msg)
678#define	KGET2(addr, p, s, msg)						\
679	if (kvm_read(kd, (u_long)(addr), p, s) != s)			\
680		warnx("cannot read %s: %s", msg, kvm_geterr(kd))
681
682static int
683swapmode(used, total)
684int *used;
685int *total;
686{
687	int nswap, nswdev, dmmax, nswapmap, niswap, niswdev;
688	int s, e, i, l, nfree;
689	struct swdevt *sw;
690	long *perdev;
691	struct map *swapmap, *kswapmap;
692	struct mapent *mp, *freemp;
693
694	KGET(VM_NSWAP, nswap);
695	KGET(VM_NSWDEV, nswdev);
696	KGET(VM_DMMAX, dmmax);
697	KGET(VM_NSWAPMAP, nswapmap);
698	KGET(VM_SWAPMAP, kswapmap);	/* kernel `swapmap' is a pointer */
699	if (nswap == 0) {
700		*used = 0;
701		*total = 0;
702		return (1);
703	}
704	if ((sw = malloc(nswdev * sizeof(*sw))) == NULL ||
705	    (perdev = malloc(nswdev * sizeof(*perdev))) == NULL ||
706	    (freemp = mp = malloc(nswapmap * sizeof(*mp))) == NULL)
707		err(1, "malloc");
708	KGET1(VM_SWDEVT, sw, nswdev * sizeof(*sw), "swdevt");
709	KGET2((long)kswapmap, mp, nswapmap * sizeof(*mp), "swapmap");
710
711	/* Supports sequential swap */
712	if (nlst[VM_NISWAP].n_value != 0) {
713		KGET(VM_NISWAP, niswap);
714		KGET(VM_NISWDEV, niswdev);
715	} else {
716		niswap = nswap;
717		niswdev = nswdev;
718	}
719
720	/* First entry in map is `struct map'; rest are mapent's. */
721	swapmap = (struct map *)mp;
722	if (nswapmap != swapmap->m_limit - (struct mapent *)kswapmap)
723		errx(1, "panic: nswapmap goof");
724
725	/* Count up swap space. */
726	nfree = 0;
727	memset(perdev, 0, nswdev * sizeof(*perdev));
728	for (mp++; mp->m_addr != 0; mp++) {
729		s = mp->m_addr;			/* start of swap region */
730		e = mp->m_addr + mp->m_size;	/* end of region */
731		nfree += mp->m_size;
732
733		/*
734		 * Swap space is split up among the configured disks.
735		 *
736		 * For interleaved swap devices, the first dmmax blocks
737		 * of swap space some from the first disk, the next dmmax
738		 * blocks from the next, and so on up to niswap blocks.
739		 *
740		 * Sequential swap devices follow the interleaved devices
741		 * (i.e. blocks starting at niswap) in the order in which
742		 * they appear in the swdev table.  The size of each device
743		 * will be a multiple of dmmax.
744		 *
745		 * The list of free space joins adjacent free blocks,
746		 * ignoring device boundries.  If we want to keep track
747		 * of this information per device, we'll just have to
748		 * extract it ourselves.  We know that dmmax-sized chunks
749		 * cannot span device boundaries (interleaved or sequential)
750		 * so we loop over such chunks assigning them to devices.
751		 */
752		i = -1;
753		while (s < e) {		/* XXX this is inefficient */
754			int bound = roundup(s+1, dmmax);
755
756			if (bound > e)
757				bound = e;
758			if (bound <= niswap) {
759				/* Interleaved swap chunk. */
760				if (i == -1)
761					i = (s / dmmax) % niswdev;
762				perdev[i] += bound - s;
763				if (++i >= niswdev)
764					i = 0;
765			} else {
766				/* Sequential swap chunk. */
767				if (i < niswdev) {
768					i = niswdev;
769					l = niswap + sw[i].sw_nblks;
770				}
771				while (s >= l) {
772					/* XXX don't die on bogus blocks */
773					if (i == nswdev-1)
774						break;
775					l += sw[++i].sw_nblks;
776				}
777				perdev[i] += bound - s;
778			}
779			s = bound;
780		}
781	}
782
783	*total = 0;
784	for (i = 0; i < nswdev; i++) {
785		int xsize, xfree;
786
787		xsize = sw[i].sw_nblks;
788		xfree = perdev[i];
789		*total += xsize;
790	}
791
792	/*
793	 * If only one partition has been set up via swapon(8), we don't
794	 * need to bother with totals.
795	 */
796#if DEV_BSHIFT < 10
797	*used = (*total - nfree) >> (10 - DEV_BSHIFT);
798	*total >>= 10 - DEV_BSHIFT;
799#elif DEV_BSHIFT > 10
800	*used = (*total - nfree) >> (DEV_BSHIFT - 10);
801	*total >>= DEV_BSHIFT - 10;
802#endif
803	free (sw); free (freemp); free (perdev);
804	return 1;
805}
806#endif
807