1/*	$OpenBSD: tblcmp.c,v 1.11 2022/12/26 19:16:01 jmc Exp $	*/
2
3/* tblcmp - table compression routines */
4
5/*  Copyright (c) 1990 The Regents of the University of California. */
6/*  All rights reserved. */
7
8/*  This code is derived from software contributed to Berkeley by */
9/*  Vern Paxson. */
10
11/*  The United States Government has rights in this work pursuant */
12/*  to contract no. DE-AC03-76SF00098 between the United States */
13/*  Department of Energy and the University of California. */
14
15/*  This file is part of flex. */
16
17/*  Redistribution and use in source and binary forms, with or without */
18/*  modification, are permitted provided that the following conditions */
19/*  are met: */
20
21/*  1. Redistributions of source code must retain the above copyright */
22/*     notice, this list of conditions and the following disclaimer. */
23/*  2. Redistributions in binary form must reproduce the above copyright */
24/*     notice, this list of conditions and the following disclaimer in the */
25/*     documentation and/or other materials provided with the distribution. */
26
27/*  Neither the name of the University nor the names of its contributors */
28/*  may be used to endorse or promote products derived from this software */
29/*  without specific prior written permission. */
30
31/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
32/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
33/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
34/*  PURPOSE. */
35
36#include "flexdef.h"
37
38
39/* declarations for functions that have forward references */
40
41void mkentry PROTO((int *, int, int, int, int));
42void mkprot PROTO((int[], int, int));
43void mktemplate PROTO((int[], int, int));
44void mv2front PROTO((int));
45int tbldiff PROTO((int[], int, int[]));
46
47
48/* bldtbl - build table entries for dfa state
49 *
50 * synopsis
51 *   int state[numecs], statenum, totaltrans, comstate, comfreq;
52 *   bldtbl( state, statenum, totaltrans, comstate, comfreq );
53 *
54 * State is the statenum'th dfa state.  It is indexed by equivalence class and
55 * gives the number of the state to enter for a given equivalence class.
56 * totaltrans is the total number of transitions out of the state.  Comstate
57 * is that state which is the destination of the most transitions out of State.
58 * Comfreq is how many transitions there are out of State to Comstate.
59 *
60 * A note on terminology:
61 *    "protos" are transition tables which have a high probability of
62 * either being redundant (a state processed later will have an identical
63 * transition table) or nearly redundant (a state processed later will have
64 * many of the same out-transitions).  A "most recently used" queue of
65 * protos is kept around with the hope that most states will find a proto
66 * which is similar enough to be usable, and therefore compacting the
67 * output tables.
68 *    "templates" are a special type of proto.  If a transition table is
69 * homogeneous or nearly homogeneous (all transitions go to the same
70 * destination) then the odds are good that future states will also go
71 * to the same destination state on basically the same character set.
72 * These homogeneous states are so common when dealing with large rule
73 * sets that they merit special attention.  If the transition table were
74 * simply made into a proto, then (typically) each subsequent, similar
75 * state will differ from the proto for two out-transitions.  One of these
76 * out-transitions will be that character on which the proto does not go
77 * to the common destination, and one will be that character on which the
78 * state does not go to the common destination.  Templates, on the other
79 * hand, go to the common state on EVERY transition character, and therefore
80 * cost only one difference.
81 */
82
83void
84bldtbl(state, statenum, totaltrans, comstate, comfreq)
85	int state[], statenum, totaltrans, comstate, comfreq;
86{
87	int extptr, extrct[2][CSIZE + 1];
88	int mindiff, minprot, i, d;
89
90	/*
91	 * If extptr is 0 then the first array of extrct holds the result of
92	 * the "best difference" to date, which is those transitions which
93	 * occur in "state" but not in the proto which, to date, has the
94	 * fewest differences between itself and "state".  If extptr is 1
95	 * then the second array of extrct hold the best difference.  The two
96	 * arrays are toggled between so that the best difference to date can
97	 * be kept around and also a difference just created by checking
98	 * against a candidate "best" proto.
99	 */
100
101	extptr = 0;
102
103	/*
104	 * If the state has too few out-transitions, don't bother trying to
105	 * compact its tables.
106	 */
107
108	if ((totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE))
109		mkentry(state, numecs, statenum, JAMSTATE, totaltrans);
110
111	else {
112		/*
113		 * "checkcom" is true if we should only check "state" against
114		 * protos which have the same "comstate" value.
115		 */
116		int checkcom =
117
118		comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
119
120		minprot = firstprot;
121		mindiff = totaltrans;
122
123		if (checkcom) {
124			/* Find first proto which has the same "comstate". */
125			for (i = firstprot; i != NIL; i = protnext[i])
126				if (protcomst[i] == comstate) {
127					minprot = i;
128					mindiff = tbldiff(state, minprot,
129					    extrct[extptr]);
130					break;
131				}
132		} else {
133			/*
134			 * Since we've decided that the most common
135			 * destination out of "state" does not occur with a
136			 * high enough frequency, we set the "comstate" to
137			 * zero, assuring that if this state is entered into
138			 * the proto list, it will not be considered a
139			 * template.
140			 */
141			comstate = 0;
142
143			if (firstprot != NIL) {
144				minprot = firstprot;
145				mindiff = tbldiff(state, minprot,
146				    extrct[extptr]);
147			}
148		}
149
150		/*
151		 * We now have the first interesting proto in "minprot".  If
152		 * it matches within the tolerances set for the first proto,
153		 * we don't want to bother scanning the rest of the proto
154		 * list to see if we have any other reasonable matches.
155		 */
156
157		if (mindiff * 100 >
158		    totaltrans * FIRST_MATCH_DIFF_PERCENTAGE) {
159			/*
160			 * Not a good enough match.  Scan the rest of the
161			 * protos.
162			 */
163			for (i = minprot; i != NIL; i = protnext[i]) {
164				d = tbldiff(state, i, extrct[1 - extptr]);
165				if (d < mindiff) {
166					extptr = 1 - extptr;
167					mindiff = d;
168					minprot = i;
169				}
170			}
171		}
172		/*
173		 * Check if the proto we've decided on as our best bet is
174		 * close enough to the state we want to match to be usable.
175		 */
176
177		if (mindiff * 100 >
178		    totaltrans * ACCEPTABLE_DIFF_PERCENTAGE) {
179			/*
180			 * No good.  If the state is homogeneous enough, we
181			 * make a template out of it.  Otherwise, we make a
182			 * proto.
183			 */
184
185			if (comfreq * 100 >=
186			    totaltrans * TEMPLATE_SAME_PERCENTAGE)
187				mktemplate(state, statenum,
188				    comstate);
189
190			else {
191				mkprot(state, statenum, comstate);
192				mkentry(state, numecs, statenum,
193				    JAMSTATE, totaltrans);
194			}
195		} else {	/* use the proto */
196			mkentry(extrct[extptr], numecs, statenum,
197			    prottbl[minprot], mindiff);
198
199			/*
200			 * If this state was sufficiently different from the
201			 * proto we built it from, make it, too, a proto.
202			 */
203
204			if (mindiff * 100 >=
205			    totaltrans * NEW_PROTO_DIFF_PERCENTAGE)
206				mkprot(state, statenum, comstate);
207
208			/*
209			 * Since mkprot added a new proto to the proto queue,
210			 * it's possible that "minprot" is no longer on the
211			 * proto queue (if it happened to have been the last
212			 * entry, it would have been bumped off).  If it's
213			 * not there, then the new proto took its physical
214			 * place (though logically the new proto is at the
215			 * beginning of the queue), so in that case the
216			 * following call will do nothing.
217			 */
218
219			mv2front(minprot);
220		}
221	}
222}
223
224
225/* cmptmps - compress template table entries
226 *
227 * Template tables are compressed by using the 'template equivalence
228 * classes', which are collections of transition character equivalence
229 * classes which always appear together in templates - really meta-equivalence
230 * classes.
231 */
232
233void
234cmptmps()
235{
236	int tmpstorage[CSIZE + 1];
237	int *tmp = tmpstorage, i, j;
238	int totaltrans, trans;
239
240	peakpairs = numtemps * numecs + tblend;
241
242	if (usemecs) {
243		/*
244		 * Create equivalence classes based on data gathered on
245		 * template transitions.
246		 */
247		nummecs = cre8ecs(tecfwd, tecbck, numecs);
248	} else
249		nummecs = numecs;
250
251	while (lastdfa + numtemps + 1 >= current_max_dfas)
252		increase_max_dfas();
253
254	/* Loop through each template. */
255
256	for (i = 1; i <= numtemps; ++i) {
257		/* Number of non-jam transitions out of this template. */
258		totaltrans = 0;
259
260		for (j = 1; j <= numecs; ++j) {
261			trans = tnxt[numecs * i + j];
262
263			if (usemecs) {
264				/*
265				 * The absolute value of tecbck is the
266				 * meta-equivalence class of a given
267				 * equivalence class, as set up by cre8ecs().
268				 */
269				if (tecbck[j] > 0) {
270					tmp[tecbck[j]] = trans;
271
272					if (trans > 0)
273						++totaltrans;
274				}
275			} else {
276				tmp[j] = trans;
277
278				if (trans > 0)
279					++totaltrans;
280			}
281		}
282
283		/*
284		 * It is assumed (in a rather subtle way) in the skeleton
285		 * that if we're using meta-equivalence classes, the def[]
286		 * entry for all templates is the jam template, i.e.,
287		 * templates never default to other non-jam table entries
288		 * (e.g., another template)
289		 */
290
291		/* Leave room for the jam-state after the last real state. */
292		mkentry(tmp, nummecs, lastdfa + i + 1, JAMSTATE,
293		    totaltrans);
294	}
295}
296
297
298
299/* expand_nxt_chk - expand the next check arrays */
300
301void
302expand_nxt_chk()
303{
304	int old_max = current_max_xpairs;
305
306	current_max_xpairs += MAX_XPAIRS_INCREMENT;
307
308	++num_reallocs;
309
310	nxt = reallocate_integer_array(nxt, current_max_xpairs);
311	chk = reallocate_integer_array(chk, current_max_xpairs);
312
313	memset((chk + old_max), 0, MAX_XPAIRS_INCREMENT * sizeof(int));
314}
315
316
317/* find_table_space - finds a space in the table for a state to be placed
318 *
319 * synopsis
320 *     int *state, numtrans, block_start;
321 *     int find_table_space();
322 *
323 *     block_start = find_table_space( state, numtrans );
324 *
325 * State is the state to be added to the full speed transition table.
326 * Numtrans is the number of out-transitions for the state.
327 *
328 * find_table_space() returns the position of the start of the first block (in
329 * chk) able to accommodate the state
330 *
331 * In determining if a state will or will not fit, find_table_space() must take
332 * into account the fact that an end-of-buffer state will be added at [0],
333 * and an action number will be added in [-1].
334 */
335
336int
337find_table_space(state, numtrans)
338	int *state, numtrans;
339{
340	/*
341	 * Firstfree is the position of the first possible occurrence of two
342	 * consecutive unused records in the chk and nxt arrays.
343	 */
344	int i;
345	int *state_ptr, *chk_ptr;
346	int *ptr_to_last_entry_in_state;
347
348	/*
349	 * If there are too many out-transitions, put the state at the end of
350	 * nxt and chk.
351	 */
352	if (numtrans > MAX_XTIONS_FULL_INTERIOR_FIT) {
353		/*
354		 * If table is empty, return the first available spot in
355		 * chk/nxt, which should be 1.
356		 */
357		if (tblend < 2)
358			return 1;
359
360		/*
361		 * Start searching for table space near the end of chk/nxt
362		 * arrays.
363		 */
364		i = tblend - numecs;
365	} else
366		/*
367		 * Start searching for table space from the beginning
368		 * (skipping only the elements which will definitely not hold
369		 * the new state).
370		 */
371		i = firstfree;
372
373	while (1) {		/* loops until a space is found */
374		while (i + numecs >= current_max_xpairs)
375			expand_nxt_chk();
376
377		/*
378		 * Loops until space for end-of-buffer and action number are
379		 * found.
380		 */
381		while (1) {
382			/* Check for action number space. */
383			if (chk[i - 1] == 0) {
384				/* Check for end-of-buffer space. */
385				if (chk[i] == 0)
386					break;
387
388				else
389					/*
390					 * Since i != 0, there is no use
391					 * checking to see if (++i) - 1 == 0,
392					 * because that's the same as i == 0,
393					 * so we skip a space.
394					 */
395					i += 2;
396			} else
397				++i;
398
399			while (i + numecs >= current_max_xpairs)
400				expand_nxt_chk();
401		}
402
403		/*
404		 * If we started search from the beginning, store the new
405		 * firstfree for the next call of find_table_space().
406		 */
407		if (numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT)
408			firstfree = i + 1;
409
410		/*
411		 * Check to see if all elements in chk (and therefore nxt)
412		 * that are needed for the new state have not yet been taken.
413		 */
414
415		state_ptr = &state[1];
416		ptr_to_last_entry_in_state = &chk[i + numecs + 1];
417
418		for (chk_ptr = &chk[i + 1];
419		    chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr)
420			if (*(state_ptr++) != 0 && *chk_ptr != 0)
421				break;
422
423		if (chk_ptr == ptr_to_last_entry_in_state)
424			return i;
425
426		else
427			++i;
428	}
429}
430
431
432/* inittbl - initialize transition tables
433 *
434 * Initializes "firstfree" to be one beyond the end of the table.  Initializes
435 * all "chk" entries to be zero.
436 */
437void
438inittbl()
439{
440	int i;
441
442	memset(chk, 0, current_max_xpairs * sizeof(int));
443
444	tblend = 0;
445	firstfree = tblend + 1;
446	numtemps = 0;
447
448	if (usemecs) {
449		/*
450		 * Set up doubly-linked meta-equivalence classes; these are
451		 * sets of equivalence classes which all have identical
452		 * transitions out of TEMPLATES.
453		 */
454
455		tecbck[1] = NIL;
456
457		for (i = 2; i <= numecs; ++i) {
458			tecbck[i] = i - 1;
459			tecfwd[i - 1] = i;
460		}
461
462		tecfwd[numecs] = NIL;
463	}
464}
465
466
467/* mkdeftbl - make the default, "jam" table entries */
468
469void
470mkdeftbl()
471{
472	int i;
473
474	jamstate = lastdfa + 1;
475
476	++tblend;		/* room for transition on end-of-buffer
477				 * character */
478
479	while (tblend + numecs >= current_max_xpairs)
480		expand_nxt_chk();
481
482	/* Add in default end-of-buffer transition. */
483	nxt[tblend] = end_of_buffer_state;
484	chk[tblend] = jamstate;
485
486	for (i = 1; i <= numecs; ++i) {
487		nxt[tblend + i] = 0;
488		chk[tblend + i] = jamstate;
489	}
490
491	jambase = tblend;
492
493	base[jamstate] = jambase;
494	def[jamstate] = 0;
495
496	tblend += numecs;
497	++numtemps;
498}
499
500
501/* mkentry - create base/def and nxt/chk entries for transition array
502 *
503 * synopsis
504 *   int state[numchars + 1], numchars, statenum, deflink, totaltrans;
505 *   mkentry( state, numchars, statenum, deflink, totaltrans );
506 *
507 * "state" is a transition array "numchars" characters in size, "statenum"
508 * is the offset to be used into the base/def tables, and "deflink" is the
509 * entry to put in the "def" table entry.  If "deflink" is equal to
510 * "JAMSTATE", then no attempt will be made to fit zero entries of "state"
511 * (i.e., jam entries) into the table.  It is assumed that by linking to
512 * "JAMSTATE" they will be taken care of.  In any case, entries in "state"
513 * marking transitions to "SAME_TRANS" are treated as though they will be
514 * taken care of by wherever "deflink" points.  "totaltrans" is the total
515 * number of transitions out of the state.  If it is below a certain threshold,
516 * the tables are searched for an interior spot that will accommodate the
517 * state array.
518 */
519
520void
521mkentry(state, numchars, statenum, deflink, totaltrans)
522	int *state;
523	int numchars, statenum, deflink, totaltrans;
524{
525	int minec, maxec, i, baseaddr;
526	int tblbase, tbllast;
527
528	if (totaltrans == 0) {	/* there are no out-transitions */
529		if (deflink == JAMSTATE)
530			base[statenum] = JAMSTATE;
531		else
532			base[statenum] = 0;
533
534		def[statenum] = deflink;
535		return;
536	}
537	for (minec = 1; minec <= numchars; ++minec) {
538		if (state[minec] != SAME_TRANS)
539			if (state[minec] != 0 || deflink != JAMSTATE)
540				break;
541	}
542
543	if (totaltrans == 1) {
544		/*
545		 * There's only one out-transition.  Save it for later to
546		 * fill in holes in the tables.
547		 */
548		stack1(statenum, minec, state[minec], deflink);
549		return;
550	}
551	for (maxec = numchars; maxec > 0; --maxec) {
552		if (state[maxec] != SAME_TRANS)
553			if (state[maxec] != 0 || deflink != JAMSTATE)
554				break;
555	}
556
557	/*
558	 * Whether we try to fit the state table in the middle of the table
559	 * entries we have already generated, or if we just take the state
560	 * table at the end of the nxt/chk tables, we must make sure that we
561	 * have a valid base address (i.e., non-negative).  Note that
562	 * negative base addresses dangerous at run-time (because indexing
563	 * the nxt array with one and a low-valued character will access
564	 * memory before the start of the array.
565	 */
566
567	/* Find the first transition of state that we need to worry about. */
568	if (totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE) {
569		/* Attempt to squeeze it into the middle of the tables. */
570		baseaddr = firstfree;
571
572		while (baseaddr < minec) {
573			/*
574			 * Using baseaddr would result in a negative base
575			 * address below; find the next free slot.
576			 */
577			for (++baseaddr; chk[baseaddr] != 0; ++baseaddr);
578		}
579
580		while (baseaddr + maxec - minec + 1 >= current_max_xpairs)
581			expand_nxt_chk();
582
583		for (i = minec; i <= maxec; ++i)
584			if (state[i] != SAME_TRANS &&
585			    (state[i] != 0 || deflink != JAMSTATE) &&
586			    chk[baseaddr + i - minec] != 0) {	/* baseaddr unsuitable -
587								 * find another */
588				for (++baseaddr;
589				    baseaddr < current_max_xpairs &&
590				    chk[baseaddr] != 0; ++baseaddr);
591
592				while (baseaddr + maxec - minec + 1 >=
593				    current_max_xpairs)
594					expand_nxt_chk();
595
596				/*
597				 * Reset the loop counter so we'll start all
598				 * over again next time it's incremented.
599				 */
600
601				i = minec - 1;
602			}
603	} else {
604		/*
605		 * Ensure that the base address we eventually generate is
606		 * non-negative.
607		 */
608		baseaddr = MAX(tblend + 1, minec);
609	}
610
611	tblbase = baseaddr - minec;
612	tbllast = tblbase + maxec;
613
614	while (tbllast + 1 >= current_max_xpairs)
615		expand_nxt_chk();
616
617	base[statenum] = tblbase;
618	def[statenum] = deflink;
619
620	for (i = minec; i <= maxec; ++i)
621		if (state[i] != SAME_TRANS)
622			if (state[i] != 0 || deflink != JAMSTATE) {
623				nxt[tblbase + i] = state[i];
624				chk[tblbase + i] = statenum;
625			}
626	if (baseaddr == firstfree)
627		/* Find next free slot in tables. */
628		for (++firstfree; chk[firstfree] != 0; ++firstfree);
629
630	tblend = MAX(tblend, tbllast);
631}
632
633
634/* mk1tbl - create table entries for a state (or state fragment) which
635 *            has only one out-transition
636 */
637
638void
639mk1tbl(state, sym, onenxt, onedef)
640	int state, sym, onenxt, onedef;
641{
642	if (firstfree < sym)
643		firstfree = sym;
644
645	while (chk[firstfree] != 0)
646		if (++firstfree >= current_max_xpairs)
647			expand_nxt_chk();
648
649	base[state] = firstfree - sym;
650	def[state] = onedef;
651	chk[firstfree] = state;
652	nxt[firstfree] = onenxt;
653
654	if (firstfree > tblend) {
655		tblend = firstfree++;
656
657		if (firstfree >= current_max_xpairs)
658			expand_nxt_chk();
659	}
660}
661
662
663/* mkprot - create new proto entry */
664
665void
666mkprot(state, statenum, comstate)
667	int state[], statenum, comstate;
668{
669	int i, slot, tblbase;
670
671	if (++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE) {
672		/*
673		 * Gotta make room for the new proto by dropping last entry
674		 * in the queue.
675		 */
676		slot = lastprot;
677		lastprot = protprev[lastprot];
678		protnext[lastprot] = NIL;
679	} else
680		slot = numprots;
681
682	protnext[slot] = firstprot;
683
684	if (firstprot != NIL)
685		protprev[firstprot] = slot;
686
687	firstprot = slot;
688	prottbl[slot] = statenum;
689	protcomst[slot] = comstate;
690
691	/* Copy state into save area so it can be compared with rapidly. */
692	tblbase = numecs * (slot - 1);
693
694	for (i = 1; i <= numecs; ++i)
695		protsave[tblbase + i] = state[i];
696}
697
698
699/* mktemplate - create a template entry based on a state, and connect the state
700 *              to it
701 */
702
703void
704mktemplate(state, statenum, comstate)
705	int state[], statenum, comstate;
706{
707	int i, numdiff, tmpbase, tmp[CSIZE + 1];
708	u_char transset[CSIZE + 1];
709	int tsptr;
710
711	++numtemps;
712
713	tsptr = 0;
714
715	/*
716	 * Calculate where we will temporarily store the transition table of
717	 * the template in the tnxt[] array.  The final transition table gets
718	 * created by cmptmps().
719	 */
720
721	tmpbase = numtemps * numecs;
722
723	if (tmpbase + numecs >= current_max_template_xpairs) {
724		current_max_template_xpairs +=
725		    MAX_TEMPLATE_XPAIRS_INCREMENT;
726
727		++num_reallocs;
728
729		tnxt = reallocate_integer_array(tnxt,
730		    current_max_template_xpairs);
731	}
732	for (i = 1; i <= numecs; ++i)
733		if (state[i] == 0)
734			tnxt[tmpbase + i] = 0;
735		else {
736			transset[tsptr++] = i;
737			tnxt[tmpbase + i] = comstate;
738		}
739
740	if (usemecs)
741		mkeccl(transset, tsptr, tecfwd, tecbck, numecs, 0);
742
743	mkprot(tnxt + tmpbase, -numtemps, comstate);
744
745	/*
746	 * We rely on the fact that mkprot adds things to the beginning of
747	 * the proto queue.
748	 */
749
750	numdiff = tbldiff(state, firstprot, tmp);
751	mkentry(tmp, numecs, statenum, -numtemps, numdiff);
752}
753
754
755/* mv2front - move proto queue element to front of queue */
756
757void
758mv2front(qelm)
759	int qelm;
760{
761	if (firstprot != qelm) {
762		if (qelm == lastprot)
763			lastprot = protprev[lastprot];
764
765		protnext[protprev[qelm]] = protnext[qelm];
766
767		if (protnext[qelm] != NIL)
768			protprev[protnext[qelm]] = protprev[qelm];
769
770		protprev[qelm] = NIL;
771		protnext[qelm] = firstprot;
772		protprev[firstprot] = qelm;
773		firstprot = qelm;
774	}
775}
776
777
778/* place_state - place a state into full speed transition table
779 *
780 * State is the statenum'th state.  It is indexed by equivalence class and
781 * gives the number of the state to enter for a given equivalence class.
782 * Transnum is the number of out-transitions for the state.
783 */
784
785void
786place_state(state, statenum, transnum)
787	int *state, statenum, transnum;
788{
789	int i;
790	int *state_ptr;
791	int position = find_table_space(state, transnum);
792
793	/* "base" is the table of start positions. */
794	base[statenum] = position;
795
796	/*
797	 * Put in action number marker; this non-zero number makes sure that
798	 * find_table_space() knows that this position in chk/nxt is taken
799	 * and should not be used for another accepting number in another
800	 * state.
801	 */
802	chk[position - 1] = 1;
803
804	/*
805	 * Put in end-of-buffer marker; this is for the same purposes as
806	 * above.
807	 */
808	chk[position] = 1;
809
810	/* Place the state into chk and nxt. */
811	state_ptr = &state[1];
812
813	for (i = 1; i <= numecs; ++i, ++state_ptr)
814		if (*state_ptr != 0) {
815			chk[position + i] = i;
816			nxt[position + i] = *state_ptr;
817		}
818	if (position + numecs > tblend)
819		tblend = position + numecs;
820}
821
822
823/* stack1 - save states with only one out-transition to be processed later
824 *
825 * If there's room for another state on the "one-transition" stack, the
826 * state is pushed onto it, to be processed later by mk1tbl.  If there's
827 * no room, we process the sucker right now.
828 */
829
830void
831stack1(statenum, sym, nextstate, deflink)
832	int statenum, sym, nextstate, deflink;
833{
834	if (onesp >= ONE_STACK_SIZE - 1)
835		mk1tbl(statenum, sym, nextstate, deflink);
836
837	else {
838		++onesp;
839		onestate[onesp] = statenum;
840		onesym[onesp] = sym;
841		onenext[onesp] = nextstate;
842		onedef[onesp] = deflink;
843	}
844}
845
846
847/* tbldiff - compute differences between two state tables
848 *
849 * "state" is the state array which is to be extracted from the pr'th
850 * proto.  "pr" is both the number of the proto we are extracting from
851 * and an index into the save area where we can find the proto's complete
852 * state table.  Each entry in "state" which differs from the corresponding
853 * entry of "pr" will appear in "ext".
854 *
855 * Entries which are the same in both "state" and "pr" will be marked
856 * as transitions to "SAME_TRANS" in "ext".  The total number of differences
857 * between "state" and "pr" is returned as function value.  Note that this
858 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
859 */
860
861int
862tbldiff(state, pr, ext)
863	int state[], pr, ext[];
864{
865	int i, *sp = state, *ep = ext, *protp;
866	int numdiff = 0;
867
868	protp = &protsave[numecs * (pr - 1)];
869
870	for (i = numecs; i > 0; --i) {
871		if (*++protp == *++sp)
872			*++ep = SAME_TRANS;
873		else {
874			*++ep = *sp;
875			++numdiff;
876		}
877	}
878
879	return numdiff;
880}
881