1/*	$OpenBSD: dfa.c,v 1.8 2015/11/19 23:20:34 tedu Exp $	*/
2
3/* dfa - DFA construction routines */
4
5/*  Copyright (c) 1990 The Regents of the University of California. */
6/*  All rights reserved. */
7
8/*  This code is derived from software contributed to Berkeley by */
9/*  Vern Paxson. */
10
11/*  The United States Government has rights in this work pursuant */
12/*  to contract no. DE-AC03-76SF00098 between the United States */
13/*  Department of Energy and the University of California. */
14
15/*  Redistribution and use in source and binary forms, with or without */
16/*  modification, are permitted provided that the following conditions */
17/*  are met: */
18
19/*  1. Redistributions of source code must retain the above copyright */
20/*     notice, this list of conditions and the following disclaimer. */
21/*  2. Redistributions in binary form must reproduce the above copyright */
22/*     notice, this list of conditions and the following disclaimer in the */
23/*     documentation and/or other materials provided with the distribution. */
24
25/*  Neither the name of the University nor the names of its contributors */
26/*  may be used to endorse or promote products derived from this software */
27/*  without specific prior written permission. */
28
29/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
30/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
31/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
32/*  PURPOSE. */
33
34#include "flexdef.h"
35#include "tables.h"
36
37/* declare functions that have forward references */
38
39void dump_associated_rules PROTO ((FILE *, int));
40void dump_transitions PROTO ((FILE *, int[]));
41void sympartition PROTO ((int[], int, int[], int[]));
42int symfollowset PROTO ((int[], int, int, int[]));
43
44
45/* check_for_backing_up - check a DFA state for backing up
46 *
47 * synopsis
48 *     void check_for_backing_up( int ds, int state[numecs] );
49 *
50 * ds is the number of the state to check and state[] is its out-transitions,
51 * indexed by equivalence class.
52 */
53
54void check_for_backing_up (ds, state)
55     int ds;
56     int state[];
57{
58	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
59		++num_backing_up;
60
61		if (backing_up_report) {
62			fprintf (backing_up_file,
63				 _("State #%d is non-accepting -\n"), ds);
64
65			/* identify the state */
66			dump_associated_rules (backing_up_file, ds);
67
68			/* Now identify it further using the out- and
69			 * jam-transitions.
70			 */
71			dump_transitions (backing_up_file, state);
72
73			putc ('\n', backing_up_file);
74		}
75	}
76}
77
78
79/* check_trailing_context - check to see if NFA state set constitutes
80 *                          "dangerous" trailing context
81 *
82 * synopsis
83 *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
84 *				int accset[nacc+1], int nacc );
85 *
86 * NOTES
87 *  Trailing context is "dangerous" if both the head and the trailing
88 *  part are of variable size \and/ there's a DFA state which contains
89 *  both an accepting state for the head part of the rule and NFA states
90 *  which occur after the beginning of the trailing context.
91 *
92 *  When such a rule is matched, it's impossible to tell if having been
93 *  in the DFA state indicates the beginning of the trailing context or
94 *  further-along scanning of the pattern.  In these cases, a warning
95 *  message is issued.
96 *
97 *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
98 *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
99 */
100
101void check_trailing_context (nfa_states, num_states, accset, nacc)
102     int    *nfa_states, num_states;
103     int    *accset;
104     int nacc;
105{
106	int i, j;
107
108	for (i = 1; i <= num_states; ++i) {
109		int     ns = nfa_states[i];
110		int type = state_type[ns];
111		int ar = assoc_rule[ns];
112
113		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
114		}
115
116		else if (type == STATE_TRAILING_CONTEXT) {
117			/* Potential trouble.  Scan set of accepting numbers
118			 * for the one marking the end of the "head".  We
119			 * assume that this looping will be fairly cheap
120			 * since it's rare that an accepting number set
121			 * is large.
122			 */
123			for (j = 1; j <= nacc; ++j)
124				if (accset[j] & YY_TRAILING_HEAD_MASK) {
125					line_warning (_
126						      ("dangerous trailing context"),
127						      rule_linenum[ar]);
128					return;
129				}
130		}
131	}
132}
133
134
135/* dump_associated_rules - list the rules associated with a DFA state
136 *
137 * Goes through the set of NFA states associated with the DFA and
138 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
139 * and writes a report to the given file.
140 */
141
142void dump_associated_rules (file, ds)
143     FILE   *file;
144     int ds;
145{
146	int i, j;
147	int num_associated_rules = 0;
148	int     rule_set[MAX_ASSOC_RULES + 1];
149	int    *dset = dss[ds];
150	int     size = dfasiz[ds];
151
152	for (i = 1; i <= size; ++i) {
153		int rule_num = rule_linenum[assoc_rule[dset[i]]];
154
155		for (j = 1; j <= num_associated_rules; ++j)
156			if (rule_num == rule_set[j])
157				break;
158
159		if (j > num_associated_rules) {	/* new rule */
160			if (num_associated_rules < MAX_ASSOC_RULES)
161				rule_set[++num_associated_rules] =
162					rule_num;
163		}
164	}
165
166	qsort (&rule_set [1], num_associated_rules, sizeof (rule_set [1]), intcmp);
167
168	fprintf (file, _(" associated rule line numbers:"));
169
170	for (i = 1; i <= num_associated_rules; ++i) {
171		if (i % 8 == 1)
172			putc ('\n', file);
173
174		fprintf (file, "\t%d", rule_set[i]);
175	}
176
177	putc ('\n', file);
178}
179
180
181/* dump_transitions - list the transitions associated with a DFA state
182 *
183 * synopsis
184 *     dump_transitions( FILE *file, int state[numecs] );
185 *
186 * Goes through the set of out-transitions and lists them in human-readable
187 * form (i.e., not as equivalence classes); also lists jam transitions
188 * (i.e., all those which are not out-transitions, plus EOF).  The dump
189 * is done to the given file.
190 */
191
192void dump_transitions (file, state)
193     FILE   *file;
194     int state[];
195{
196	int i, ec;
197	int     out_char_set[CSIZE];
198
199	for (i = 0; i < csize; ++i) {
200		ec = ABS (ecgroup[i]);
201		out_char_set[i] = state[ec];
202	}
203
204	fprintf (file, _(" out-transitions: "));
205
206	list_character_set (file, out_char_set);
207
208	/* now invert the members of the set to get the jam transitions */
209	for (i = 0; i < csize; ++i)
210		out_char_set[i] = !out_char_set[i];
211
212	fprintf (file, _("\n jam-transitions: EOF "));
213
214	list_character_set (file, out_char_set);
215
216	putc ('\n', file);
217}
218
219
220/* epsclosure - construct the epsilon closure of a set of ndfa states
221 *
222 * synopsis
223 *    int *epsclosure( int t[num_states], int *numstates_addr,
224 *			int accset[num_rules+1], int *nacc_addr,
225 *			int *hashval_addr );
226 *
227 * NOTES
228 *  The epsilon closure is the set of all states reachable by an arbitrary
229 *  number of epsilon transitions, which themselves do not have epsilon
230 *  transitions going out, unioned with the set of states which have non-null
231 *  accepting numbers.  t is an array of size numstates of nfa state numbers.
232 *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
233 *  accset holds a list of the accepting numbers, and the size of accset is
234 *  given by *nacc_addr.  t may be subjected to reallocation if it is not
235 *  large enough to hold the epsilon closure.
236 *
237 *  hashval is the hash value for the dfa corresponding to the state set.
238 */
239
240int    *epsclosure (t, ns_addr, accset, nacc_addr, hv_addr)
241     int    *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
242{
243	int stkpos, ns, tsp;
244	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
245	int     stkend, nstate;
246	static int did_stk_init = false, *stk;
247
248#define MARK_STATE(state) \
249do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
250
251#define IS_MARKED(state) (trans1[state] < 0)
252
253#define UNMARK_STATE(state) \
254do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
255
256#define CHECK_ACCEPT(state) \
257do{ \
258nfaccnum = accptnum[state]; \
259if ( nfaccnum != NIL ) \
260accset[++nacc] = nfaccnum; \
261}while(0)
262
263#define DO_REALLOCATION() \
264do { \
265current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
266++num_reallocs; \
267t = reallocate_integer_array( t, current_max_dfa_size ); \
268stk = reallocate_integer_array( stk, current_max_dfa_size ); \
269}while(0) \
270
271#define PUT_ON_STACK(state) \
272do { \
273if ( ++stkend >= current_max_dfa_size ) \
274DO_REALLOCATION(); \
275stk[stkend] = state; \
276MARK_STATE(state); \
277}while(0)
278
279#define ADD_STATE(state) \
280do { \
281if ( ++numstates >= current_max_dfa_size ) \
282DO_REALLOCATION(); \
283t[numstates] = state; \
284hashval += state; \
285}while(0)
286
287#define STACK_STATE(state) \
288do { \
289PUT_ON_STACK(state); \
290CHECK_ACCEPT(state); \
291if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
292ADD_STATE(state); \
293}while(0)
294
295
296	if (!did_stk_init) {
297		stk = allocate_integer_array (current_max_dfa_size);
298		did_stk_init = true;
299	}
300
301	nacc = stkend = hashval = 0;
302
303	for (nstate = 1; nstate <= numstates; ++nstate) {
304		ns = t[nstate];
305
306		/* The state could be marked if we've already pushed it onto
307		 * the stack.
308		 */
309		if (!IS_MARKED (ns)) {
310			PUT_ON_STACK (ns);
311			CHECK_ACCEPT (ns);
312			hashval += ns;
313		}
314	}
315
316	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
317		ns = stk[stkpos];
318		transsym = transchar[ns];
319
320		if (transsym == SYM_EPSILON) {
321			tsp = trans1[ns] + MARKER_DIFFERENCE;
322
323			if (tsp != NO_TRANSITION) {
324				if (!IS_MARKED (tsp))
325					STACK_STATE (tsp);
326
327				tsp = trans2[ns];
328
329				if (tsp != NO_TRANSITION
330				    && !IS_MARKED (tsp))
331					STACK_STATE (tsp);
332			}
333		}
334	}
335
336	/* Clear out "visit" markers. */
337
338	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
339		if (IS_MARKED (stk[stkpos]))
340			UNMARK_STATE (stk[stkpos]);
341		else
342			flexfatal (_
343				   ("consistency check failed in epsclosure()"));
344	}
345
346	*ns_addr = numstates;
347	*hv_addr = hashval;
348	*nacc_addr = nacc;
349
350	return t;
351}
352
353
354/* increase_max_dfas - increase the maximum number of DFAs */
355
356void increase_max_dfas ()
357{
358	current_max_dfas += MAX_DFAS_INCREMENT;
359
360	++num_reallocs;
361
362	base = reallocate_integer_array (base, current_max_dfas);
363	def = reallocate_integer_array (def, current_max_dfas);
364	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
365	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
366	dhash = reallocate_integer_array (dhash, current_max_dfas);
367	dss = reallocate_int_ptr_array (dss, current_max_dfas);
368	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
369
370	if (nultrans)
371		nultrans =
372			reallocate_integer_array (nultrans,
373						  current_max_dfas);
374}
375
376
377/* ntod - convert an ndfa to a dfa
378 *
379 * Creates the dfa corresponding to the ndfa we've constructed.  The
380 * dfa starts out in state #1.
381 */
382
383void ntod ()
384{
385	int    *accset, ds, nacc, newds;
386	int     sym, hashval, numstates, dsize;
387	int     num_full_table_rows=0;	/* used only for -f */
388	int    *nset, *dset;
389	int     targptr, totaltrans, i, comstate, comfreq, targ;
390	int     symlist[CSIZE + 1];
391	int     num_start_states;
392	int     todo_head, todo_next;
393
394	struct yytbl_data *yynxt_tbl = 0;
395	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
396
397	/* Note that the following are indexed by *equivalence classes*
398	 * and not by characters.  Since equivalence classes are indexed
399	 * beginning with 1, even if the scanner accepts NUL's, this
400	 * means that (since every character is potentially in its own
401	 * equivalence class) these arrays must have room for indices
402	 * from 1 to CSIZE, so their size must be CSIZE + 1.
403	 */
404	int     duplist[CSIZE + 1], state[CSIZE + 1];
405	int     targfreq[CSIZE + 1], targstate[CSIZE + 1];
406
407	/* accset needs to be large enough to hold all of the rules present
408	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
409	 */
410	accset = allocate_integer_array ((num_rules + 1) * 2);
411	nset = allocate_integer_array (current_max_dfa_size);
412
413	/* The "todo" queue is represented by the head, which is the DFA
414	 * state currently being processed, and the "next", which is the
415	 * next DFA state number available (not in use).  We depend on the
416	 * fact that snstods() returns DFA's \in increasing order/, and thus
417	 * need only know the bounds of the dfas to be processed.
418	 */
419	todo_head = todo_next = 0;
420
421	for (i = 0; i <= csize; ++i) {
422		duplist[i] = NIL;
423		symlist[i] = false;
424	}
425
426	for (i = 0; i <= num_rules; ++i)
427		accset[i] = NIL;
428
429	if (trace) {
430		dumpnfa (scset[1]);
431		fputs (_("\n\nDFA Dump:\n\n"), stderr);
432	}
433
434	inittbl ();
435
436	/* Check to see whether we should build a separate table for
437	 * transitions on NUL characters.  We don't do this for full-speed
438	 * (-F) scanners, since for them we don't have a simple state
439	 * number lying around with which to index the table.  We also
440	 * don't bother doing it for scanners unless (1) NUL is in its own
441	 * equivalence class (indicated by a positive value of
442	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
443	 * equivalence class, and (3) the number of equivalence classes is
444	 * the same as the number of characters.  This latter case comes
445	 * about when useecs is false or when it's true but every character
446	 * still manages to land in its own class (unlikely, but it's
447	 * cheap to check for).  If all these things are true then the
448	 * character code needed to represent NUL's equivalence class for
449	 * indexing the tables is going to take one more bit than the
450	 * number of characters, and therefore we won't be assured of
451	 * being able to fit it into a YY_CHAR variable.  This rules out
452	 * storing the transitions in a compressed table, since the code
453	 * for interpreting them uses a YY_CHAR variable (perhaps it
454	 * should just use an integer, though; this is worth pondering ...
455	 * ###).
456	 *
457	 * Finally, for full tables, we want the number of entries in the
458	 * table to be a power of two so the array references go fast (it
459	 * will just take a shift to compute the major index).  If
460	 * encoding NUL's transitions in the table will spoil this, we
461	 * give it its own table (note that this will be the case if we're
462	 * not using equivalence classes).
463	 */
464
465	/* Note that the test for ecgroup[0] == numecs below accomplishes
466	 * both (1) and (2) above
467	 */
468	if (!fullspd && ecgroup[0] == numecs) {
469		/* NUL is alone in its equivalence class, which is the
470		 * last one.
471		 */
472		int     use_NUL_table = (numecs == csize);
473
474		if (fulltbl && !use_NUL_table) {
475			/* We still may want to use the table if numecs
476			 * is a power of 2.
477			 */
478			int     power_of_two;
479
480			for (power_of_two = 1; power_of_two <= csize;
481			     power_of_two *= 2)
482				if (numecs == power_of_two) {
483					use_NUL_table = true;
484					break;
485				}
486		}
487
488		if (use_NUL_table)
489			nultrans =
490				allocate_integer_array (current_max_dfas);
491
492		/* From now on, nultrans != nil indicates that we're
493		 * saving null transitions for later, separate encoding.
494		 */
495	}
496
497
498	if (fullspd) {
499		for (i = 0; i <= numecs; ++i)
500			state[i] = 0;
501
502		place_state (state, 0, 0);
503		dfaacc[0].dfaacc_state = 0;
504	}
505
506	else if (fulltbl) {
507		if (nultrans)
508			/* We won't be including NUL's transitions in the
509			 * table, so build it for entries from 0 .. numecs - 1.
510			 */
511			num_full_table_rows = numecs;
512
513		else
514			/* Take into account the fact that we'll be including
515			 * the NUL entries in the transition table.  Build it
516			 * from 0 .. numecs.
517			 */
518			num_full_table_rows = numecs + 1;
519
520		/* Begin generating yy_nxt[][]
521		 * This spans the entire LONG function.
522		 * This table is tricky because we don't know how big it will be.
523		 * So we'll have to realloc() on the way...
524		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
525		 */
526		yynxt_tbl =
527			(struct yytbl_data *) calloc (1,
528						      sizeof (struct
529							      yytbl_data));
530		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
531		yynxt_tbl->td_hilen = 1;
532		yynxt_tbl->td_lolen = num_full_table_rows;
533		yynxt_tbl->td_data = yynxt_data =
534			(flex_int32_t *) calloc (yynxt_tbl->td_lolen *
535					    yynxt_tbl->td_hilen,
536					    sizeof (flex_int32_t));
537		yynxt_curr = 0;
538
539		buf_prints (&yydmap_buf,
540			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
541			    long_align ? "flex_int32_t" : "flex_int16_t");
542
543		/* Unless -Ca, declare it "short" because it's a real
544		 * long-shot that that won't be large enough.
545		 */
546		if (gentables)
547			out_str_dec
548				("static yyconst %s yy_nxt[][%d] =\n    {\n",
549				 long_align ? "flex_int32_t" : "flex_int16_t",
550				 num_full_table_rows);
551		else {
552			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
553			out_str ("static yyconst %s *yy_nxt =0;\n",
554				 long_align ? "flex_int32_t" : "flex_int16_t");
555		}
556
557
558		if (gentables)
559			outn ("    {");
560
561		/* Generate 0 entries for state #0. */
562		for (i = 0; i < num_full_table_rows; ++i) {
563			mk2data (0);
564			yynxt_data[yynxt_curr++] = 0;
565		}
566
567		dataflush ();
568		if (gentables)
569			outn ("    },\n");
570	}
571
572	/* Create the first states. */
573
574	num_start_states = lastsc * 2;
575
576	for (i = 1; i <= num_start_states; ++i) {
577		numstates = 1;
578
579		/* For each start condition, make one state for the case when
580		 * we're at the beginning of the line (the '^' operator) and
581		 * one for the case when we're not.
582		 */
583		if (i % 2 == 1)
584			nset[numstates] = scset[(i / 2) + 1];
585		else
586			nset[numstates] =
587				mkbranch (scbol[i / 2], scset[i / 2]);
588
589		nset = epsclosure (nset, &numstates, accset, &nacc,
590				   &hashval);
591
592		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
593			numas += nacc;
594			totnst += numstates;
595			++todo_next;
596
597			if (variable_trailing_context_rules && nacc > 0)
598				check_trailing_context (nset, numstates,
599							accset, nacc);
600		}
601	}
602
603	if (!fullspd) {
604		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
605			flexfatal (_
606				   ("could not create unique end-of-buffer state"));
607
608		++numas;
609		++num_start_states;
610		++todo_next;
611	}
612
613
614	while (todo_head < todo_next) {
615		targptr = 0;
616		totaltrans = 0;
617
618		for (i = 1; i <= numecs; ++i)
619			state[i] = 0;
620
621		ds = ++todo_head;
622
623		dset = dss[ds];
624		dsize = dfasiz[ds];
625
626		if (trace)
627			fprintf (stderr, _("state # %d:\n"), ds);
628
629		sympartition (dset, dsize, symlist, duplist);
630
631		for (sym = 1; sym <= numecs; ++sym) {
632			if (symlist[sym]) {
633				symlist[sym] = 0;
634
635				if (duplist[sym] == NIL) {
636					/* Symbol has unique out-transitions. */
637					numstates =
638						symfollowset (dset, dsize,
639							      sym, nset);
640					nset = epsclosure (nset,
641							   &numstates,
642							   accset, &nacc,
643							   &hashval);
644
645					if (snstods
646					    (nset, numstates, accset, nacc,
647					     hashval, &newds)) {
648						totnst = totnst +
649							numstates;
650						++todo_next;
651						numas += nacc;
652
653						if (variable_trailing_context_rules && nacc > 0)
654							check_trailing_context
655								(nset,
656								 numstates,
657								 accset,
658								 nacc);
659					}
660
661					state[sym] = newds;
662
663					if (trace)
664						fprintf (stderr,
665							 "\t%d\t%d\n", sym,
666							 newds);
667
668					targfreq[++targptr] = 1;
669					targstate[targptr] = newds;
670					++numuniq;
671				}
672
673				else {
674					/* sym's equivalence class has the same
675					 * transitions as duplist(sym)'s
676					 * equivalence class.
677					 */
678					targ = state[duplist[sym]];
679					state[sym] = targ;
680
681					if (trace)
682						fprintf (stderr,
683							 "\t%d\t%d\n", sym,
684							 targ);
685
686					/* Update frequency count for
687					 * destination state.
688					 */
689
690					i = 0;
691					while (targstate[++i] != targ) ;
692
693					++targfreq[i];
694					++numdup;
695				}
696
697				++totaltrans;
698				duplist[sym] = NIL;
699			}
700		}
701
702
703		numsnpairs += totaltrans;
704
705		if (ds > num_start_states)
706			check_for_backing_up (ds, state);
707
708		if (nultrans) {
709			nultrans[ds] = state[NUL_ec];
710			state[NUL_ec] = 0;	/* remove transition */
711		}
712
713		if (fulltbl) {
714
715			/* Each time we hit here, it's another td_hilen, so we realloc. */
716			yynxt_tbl->td_hilen++;
717			yynxt_tbl->td_data = yynxt_data =
718				(flex_int32_t *) realloc (yynxt_data,
719						     yynxt_tbl->td_hilen *
720						     yynxt_tbl->td_lolen *
721						     sizeof (flex_int32_t));
722
723
724			if (gentables)
725				outn ("    {");
726
727			/* Supply array's 0-element. */
728			if (ds == end_of_buffer_state) {
729				mk2data (-end_of_buffer_state);
730				yynxt_data[yynxt_curr++] =
731					-end_of_buffer_state;
732			}
733			else {
734				mk2data (end_of_buffer_state);
735				yynxt_data[yynxt_curr++] =
736					end_of_buffer_state;
737			}
738
739			for (i = 1; i < num_full_table_rows; ++i) {
740				/* Jams are marked by negative of state
741				 * number.
742				 */
743				mk2data (state[i] ? state[i] : -ds);
744				yynxt_data[yynxt_curr++] =
745					state[i] ? state[i] : -ds;
746			}
747
748			dataflush ();
749			if (gentables)
750				outn ("    },\n");
751		}
752
753		else if (fullspd)
754			place_state (state, ds, totaltrans);
755
756		else if (ds == end_of_buffer_state)
757			/* Special case this state to make sure it does what
758			 * it's supposed to, i.e., jam on end-of-buffer.
759			 */
760			stack1 (ds, 0, 0, JAMSTATE);
761
762		else {		/* normal, compressed state */
763
764			/* Determine which destination state is the most
765			 * common, and how many transitions to it there are.
766			 */
767
768			comfreq = 0;
769			comstate = 0;
770
771			for (i = 1; i <= targptr; ++i)
772				if (targfreq[i] > comfreq) {
773					comfreq = targfreq[i];
774					comstate = targstate[i];
775				}
776
777			bldtbl (state, ds, totaltrans, comstate, comfreq);
778		}
779	}
780
781	if (fulltbl) {
782		dataend ();
783		if (tablesext) {
784			yytbl_data_compress (yynxt_tbl);
785			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
786				flexerror (_
787					   ("Could not write yynxt_tbl[][]"));
788		}
789		if (yynxt_tbl) {
790			yytbl_data_destroy (yynxt_tbl);
791			yynxt_tbl = 0;
792		}
793	}
794
795	else if (!fullspd) {
796		cmptmps ();	/* create compressed template entries */
797
798		/* Create tables for all the states with only one
799		 * out-transition.
800		 */
801		while (onesp > 0) {
802			mk1tbl (onestate[onesp], onesym[onesp],
803				onenext[onesp], onedef[onesp]);
804			--onesp;
805		}
806
807		mkdeftbl ();
808	}
809
810	free ((void *) accset);
811	free ((void *) nset);
812}
813
814
815/* snstods - converts a set of ndfa states into a dfa state
816 *
817 * synopsis
818 *    is_new_state = snstods( int sns[numstates], int numstates,
819 *				int accset[num_rules+1], int nacc,
820 *				int hashval, int *newds_addr );
821 *
822 * On return, the dfa state number is in newds.
823 */
824
825int snstods (sns, numstates, accset, nacc, hashval, newds_addr)
826     int sns[], numstates, accset[], nacc, hashval, *newds_addr;
827{
828	int     didsort = 0;
829	int i, j;
830	int     newds, *oldsns;
831
832	for (i = 1; i <= lastdfa; ++i)
833		if (hashval == dhash[i]) {
834			if (numstates == dfasiz[i]) {
835				oldsns = dss[i];
836
837				if (!didsort) {
838					/* We sort the states in sns so we
839					 * can compare it to oldsns quickly.
840					 */
841					qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
842					didsort = 1;
843				}
844
845				for (j = 1; j <= numstates; ++j)
846					if (sns[j] != oldsns[j])
847						break;
848
849				if (j > numstates) {
850					++dfaeql;
851					*newds_addr = i;
852					return 0;
853				}
854
855				++hshcol;
856			}
857
858			else
859				++hshsave;
860		}
861
862	/* Make a new dfa. */
863
864	if (++lastdfa >= current_max_dfas)
865		increase_max_dfas ();
866
867	newds = lastdfa;
868
869	dss[newds] = allocate_integer_array (numstates + 1);
870
871	/* If we haven't already sorted the states in sns, we do so now,
872	 * so that future comparisons with it can be made quickly.
873	 */
874
875	if (!didsort)
876		qsort (&sns [1], numstates, sizeof (sns [1]), intcmp);
877
878	for (i = 1; i <= numstates; ++i)
879		dss[newds][i] = sns[i];
880
881	dfasiz[newds] = numstates;
882	dhash[newds] = hashval;
883
884	if (nacc == 0) {
885		if (reject)
886			dfaacc[newds].dfaacc_set = (int *) 0;
887		else
888			dfaacc[newds].dfaacc_state = 0;
889
890		accsiz[newds] = 0;
891	}
892
893	else if (reject) {
894		/* We sort the accepting set in increasing order so the
895		 * disambiguating rule that the first rule listed is considered
896		 * match in the event of ties will work.
897		 */
898
899		qsort (&accset [1], nacc, sizeof (accset [1]), intcmp);
900
901		dfaacc[newds].dfaacc_set =
902			allocate_integer_array (nacc + 1);
903
904		/* Save the accepting set for later */
905		for (i = 1; i <= nacc; ++i) {
906			dfaacc[newds].dfaacc_set[i] = accset[i];
907
908			if (accset[i] <= num_rules)
909				/* Who knows, perhaps a REJECT can yield
910				 * this rule.
911				 */
912				rule_useful[accset[i]] = true;
913		}
914
915		accsiz[newds] = nacc;
916	}
917
918	else {
919		/* Find lowest numbered rule so the disambiguating rule
920		 * will work.
921		 */
922		j = num_rules + 1;
923
924		for (i = 1; i <= nacc; ++i)
925			if (accset[i] < j)
926				j = accset[i];
927
928		dfaacc[newds].dfaacc_state = j;
929
930		if (j <= num_rules)
931			rule_useful[j] = true;
932	}
933
934	*newds_addr = newds;
935
936	return 1;
937}
938
939
940/* symfollowset - follow the symbol transitions one step
941 *
942 * synopsis
943 *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
944 *				int transsym, int nset[current_max_dfa_size] );
945 */
946
947int symfollowset (ds, dsize, transsym, nset)
948     int ds[], dsize, transsym, nset[];
949{
950	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
951
952	numstates = 0;
953
954	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
955		ns = ds[i];
956		sym = transchar[ns];
957		tsp = trans1[ns];
958
959		if (sym < 0) {	/* it's a character class */
960			sym = -sym;
961			ccllist = cclmap[sym];
962			lenccl = ccllen[sym];
963
964			if (cclng[sym]) {
965				for (j = 0; j < lenccl; ++j) {
966					/* Loop through negated character
967					 * class.
968					 */
969					ch = ccltbl[ccllist + j];
970
971					if (ch == 0)
972						ch = NUL_ec;
973
974					if (ch > transsym)
975						/* Transsym isn't in negated
976						 * ccl.
977						 */
978						break;
979
980					else if (ch == transsym)
981						/* next 2 */
982						goto bottom;
983				}
984
985				/* Didn't find transsym in ccl. */
986				nset[++numstates] = tsp;
987			}
988
989			else
990				for (j = 0; j < lenccl; ++j) {
991					ch = ccltbl[ccllist + j];
992
993					if (ch == 0)
994						ch = NUL_ec;
995
996					if (ch > transsym)
997						break;
998					else if (ch == transsym) {
999						nset[++numstates] = tsp;
1000						break;
1001					}
1002				}
1003		}
1004
1005		else if (sym == SYM_EPSILON) {	/* do nothing */
1006		}
1007
1008		else if (ABS (ecgroup[sym]) == transsym)
1009			nset[++numstates] = tsp;
1010
1011	      bottom:;
1012	}
1013
1014	return numstates;
1015}
1016
1017
1018/* sympartition - partition characters with same out-transitions
1019 *
1020 * synopsis
1021 *    sympartition( int ds[current_max_dfa_size], int numstates,
1022 *			int symlist[numecs], int duplist[numecs] );
1023 */
1024
1025void sympartition (ds, numstates, symlist, duplist)
1026     int ds[], numstates;
1027     int symlist[], duplist[];
1028{
1029	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1030
1031	/* Partitioning is done by creating equivalence classes for those
1032	 * characters which have out-transitions from the given state.  Thus
1033	 * we are really creating equivalence classes of equivalence classes.
1034	 */
1035
1036	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
1037		duplist[i] = i - 1;
1038		dupfwd[i] = i + 1;
1039	}
1040
1041	duplist[1] = NIL;
1042	dupfwd[numecs] = NIL;
1043
1044	for (i = 1; i <= numstates; ++i) {
1045		ns = ds[i];
1046		tch = transchar[ns];
1047
1048		if (tch != SYM_EPSILON) {
1049			if (tch < -lastccl || tch >= csize) {
1050				flexfatal (_
1051					   ("bad transition character detected in sympartition()"));
1052			}
1053
1054			if (tch >= 0) {	/* character transition */
1055				int     ec = ecgroup[tch];
1056
1057				mkechar (ec, dupfwd, duplist);
1058				symlist[ec] = 1;
1059			}
1060
1061			else {	/* character class */
1062				tch = -tch;
1063
1064				lenccl = ccllen[tch];
1065				cclp = cclmap[tch];
1066				mkeccl (ccltbl + cclp, lenccl, dupfwd,
1067					duplist, numecs, NUL_ec);
1068
1069				if (cclng[tch]) {
1070					j = 0;
1071
1072					for (k = 0; k < lenccl; ++k) {
1073						ich = ccltbl[cclp + k];
1074
1075						if (ich == 0)
1076							ich = NUL_ec;
1077
1078						for (++j; j < ich; ++j)
1079							symlist[j] = 1;
1080					}
1081
1082					for (++j; j <= numecs; ++j)
1083						symlist[j] = 1;
1084				}
1085
1086				else
1087					for (k = 0; k < lenccl; ++k) {
1088						ich = ccltbl[cclp + k];
1089
1090						if (ich == 0)
1091							ich = NUL_ec;
1092
1093						symlist[ich] = 1;
1094					}
1095			}
1096		}
1097	}
1098}
1099