uvm_page.c revision 1.92
1/*	$OpenBSD: uvm_page.c,v 1.92 2009/07/22 21:05:37 oga Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/malloc.h>
77#include <sys/sched.h>
78#include <sys/kernel.h>
79#include <sys/vnode.h>
80#include <sys/mount.h>
81
82#include <uvm/uvm.h>
83
84/*
85 * global vars... XXXCDC: move to uvm. structure.
86 */
87
88/*
89 * physical memory config is stored in vm_physmem.
90 */
91
92struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
93int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
94
95/*
96 * Some supported CPUs in a given architecture don't support all
97 * of the things necessary to do idle page zero'ing efficiently.
98 * We therefore provide a way to disable it from machdep code here.
99 */
100
101/*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105boolean_t vm_page_zero_enable = FALSE;
106
107/*
108 * local variables
109 */
110
111/*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes.  The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117static vaddr_t      virtual_space_start;
118static vaddr_t      virtual_space_end;
119
120/*
121 * we use a hash table with only one bucket during bootup.  we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126static struct pglist uvm_bootbucket;
127
128/*
129 * History
130 */
131UVMHIST_DECL(pghist);
132
133/*
134 * local prototypes
135 */
136
137static void uvm_pageinsert(struct vm_page *);
138static void uvm_pageremove(struct vm_page *);
139
140/*
141 * inline functions
142 */
143
144/*
145 * uvm_pageinsert: insert a page in the object and the hash table
146 *
147 * => caller must lock object
148 * => caller must lock page queues
149 * => call should have already set pg's object and offset pointers
150 *    and bumped the version counter
151 */
152
153__inline static void
154uvm_pageinsert(struct vm_page *pg)
155{
156	struct pglist *buck;
157	UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
158
159	KASSERT((pg->pg_flags & PG_TABLED) == 0);
160	mtx_enter(&uvm.hashlock);
161	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
162	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
163	mtx_leave(&uvm.hashlock);
164
165	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
166	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
167	pg->uobject->uo_npages++;
168}
169
170/*
171 * uvm_page_remove: remove page from object and hash
172 *
173 * => caller must lock object
174 * => caller must lock page queues
175 */
176
177static __inline void
178uvm_pageremove(struct vm_page *pg)
179{
180	struct pglist *buck;
181	UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
182
183	KASSERT(pg->pg_flags & PG_TABLED);
184	mtx_enter(&uvm.hashlock);
185	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
186	TAILQ_REMOVE(buck, pg, hashq);
187	mtx_leave(&uvm.hashlock);
188
189#ifdef UBC
190	if (pg->uobject->pgops == &uvm_vnodeops) {
191		uvm_pgcnt_vnode--;
192	}
193#endif
194
195	/* object should be locked */
196	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
197
198	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
199	pg->uobject->uo_npages--;
200	pg->uobject = NULL;
201	pg->pg_version++;
202}
203
204/*
205 * uvm_page_init: init the page system.   called from uvm_init().
206 *
207 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
208 */
209
210void
211uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
212{
213	vsize_t freepages, pagecount, n;
214	vm_page_t pagearray;
215	int lcv, i;
216	paddr_t paddr;
217#if defined(UVMHIST)
218	static struct uvm_history_ent pghistbuf[100];
219#endif
220
221	UVMHIST_FUNC("uvm_page_init");
222	UVMHIST_INIT_STATIC(pghist, pghistbuf);
223	UVMHIST_CALLED(pghist);
224
225	/*
226	 * init the page queues and page queue locks
227	 */
228
229	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
230		for (i = 0; i < PGFL_NQUEUES; i++)
231			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
232	}
233	TAILQ_INIT(&uvm.page_active);
234	TAILQ_INIT(&uvm.page_inactive_swp);
235	TAILQ_INIT(&uvm.page_inactive_obj);
236	simple_lock_init(&uvm.pageqlock);
237	mtx_init(&uvm.fpageqlock, IPL_VM);
238
239	/*
240	 * init the <obj,offset> => <page> hash table.  for now
241	 * we just have one bucket (the bootstrap bucket).  later on we
242	 * will allocate new buckets as we dynamically resize the hash table.
243	 */
244
245	uvm.page_nhash = 1;			/* 1 bucket */
246	uvm.page_hashmask = 0;			/* mask for hash function */
247	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
248	TAILQ_INIT(uvm.page_hash);		/* init hash table */
249	mtx_init(&uvm.hashlock, IPL_VM);	/* init hash table lock */
250
251	/*
252	 * allocate vm_page structures.
253	 */
254
255	/*
256	 * sanity check:
257	 * before calling this function the MD code is expected to register
258	 * some free RAM with the uvm_page_physload() function.   our job
259	 * now is to allocate vm_page structures for this memory.
260	 */
261
262	if (vm_nphysseg == 0)
263		panic("uvm_page_bootstrap: no memory pre-allocated");
264
265	/*
266	 * first calculate the number of free pages...
267	 *
268	 * note that we use start/end rather than avail_start/avail_end.
269	 * this allows us to allocate extra vm_page structures in case we
270	 * want to return some memory to the pool after booting.
271	 */
272
273	freepages = 0;
274	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
275		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
276
277	/*
278	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
279	 * use.   for each page of memory we use we need a vm_page structure.
280	 * thus, the total number of pages we can use is the total size of
281	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
282	 * structure.   we add one to freepages as a fudge factor to avoid
283	 * truncation errors (since we can only allocate in terms of whole
284	 * pages).
285	 */
286
287	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
288	    (PAGE_SIZE + sizeof(struct vm_page));
289	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
290	    sizeof(struct vm_page));
291	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
292
293	/*
294	 * init the vm_page structures and put them in the correct place.
295	 */
296
297	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
298		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
299		if (n > pagecount) {
300			printf("uvm_page_init: lost %ld page(s) in init\n",
301			    (long)(n - pagecount));
302			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
303			/* n = pagecount; */
304		}
305
306		/* set up page array pointers */
307		vm_physmem[lcv].pgs = pagearray;
308		pagearray += n;
309		pagecount -= n;
310		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
311
312		/* init and free vm_pages (we've already zeroed them) */
313		paddr = ptoa(vm_physmem[lcv].start);
314		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
315			vm_physmem[lcv].pgs[i].phys_addr = paddr;
316#ifdef __HAVE_VM_PAGE_MD
317			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
318#endif
319			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
320			    atop(paddr) <= vm_physmem[lcv].avail_end) {
321				uvmexp.npages++;
322				/* add page to free pool */
323				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
324			}
325		}
326	}
327
328	/*
329	 * pass up the values of virtual_space_start and
330	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
331	 * layers of the VM.
332	 */
333
334	*kvm_startp = round_page(virtual_space_start);
335	*kvm_endp = trunc_page(virtual_space_end);
336
337	/*
338	 * init locks for kernel threads
339	 */
340	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
341
342	/*
343	 * init reserve thresholds
344	 * XXXCDC - values may need adjusting
345	 */
346	uvmexp.reserve_pagedaemon = 4;
347	uvmexp.reserve_kernel = 6;
348	uvmexp.anonminpct = 10;
349	uvmexp.vnodeminpct = 10;
350	uvmexp.vtextminpct = 5;
351	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
352	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
353	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
354
355  	/*
356	 * determine if we should zero pages in the idle loop.
357	 */
358
359	uvm.page_idle_zero = vm_page_zero_enable;
360
361	/*
362	 * done!
363	 */
364
365	uvm.page_init_done = TRUE;
366}
367
368/*
369 * uvm_setpagesize: set the page size
370 *
371 * => sets page_shift and page_mask from uvmexp.pagesize.
372 */
373
374void
375uvm_setpagesize(void)
376{
377	if (uvmexp.pagesize == 0)
378		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
379	uvmexp.pagemask = uvmexp.pagesize - 1;
380	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
381		panic("uvm_setpagesize: page size not a power of two");
382	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
383		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
384			break;
385}
386
387/*
388 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
389 */
390
391vaddr_t
392uvm_pageboot_alloc(vsize_t size)
393{
394#if defined(PMAP_STEAL_MEMORY)
395	vaddr_t addr;
396
397	/*
398	 * defer bootstrap allocation to MD code (it may want to allocate
399	 * from a direct-mapped segment).  pmap_steal_memory should round
400	 * off virtual_space_start/virtual_space_end.
401	 */
402
403	addr = pmap_steal_memory(size, &virtual_space_start,
404	    &virtual_space_end);
405
406	return(addr);
407
408#else /* !PMAP_STEAL_MEMORY */
409
410	static boolean_t initialized = FALSE;
411	vaddr_t addr, vaddr;
412	paddr_t paddr;
413
414	/* round to page size */
415	size = round_page(size);
416
417	/*
418	 * on first call to this function, initialize ourselves.
419	 */
420	if (initialized == FALSE) {
421		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
422
423		/* round it the way we like it */
424		virtual_space_start = round_page(virtual_space_start);
425		virtual_space_end = trunc_page(virtual_space_end);
426
427		initialized = TRUE;
428	}
429
430	/*
431	 * allocate virtual memory for this request
432	 */
433	if (virtual_space_start == virtual_space_end ||
434	    (virtual_space_end - virtual_space_start) < size)
435		panic("uvm_pageboot_alloc: out of virtual space");
436
437	addr = virtual_space_start;
438
439#ifdef PMAP_GROWKERNEL
440	/*
441	 * If the kernel pmap can't map the requested space,
442	 * then allocate more resources for it.
443	 */
444	if (uvm_maxkaddr < (addr + size)) {
445		uvm_maxkaddr = pmap_growkernel(addr + size);
446		if (uvm_maxkaddr < (addr + size))
447			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
448	}
449#endif
450
451	virtual_space_start += size;
452
453	/*
454	 * allocate and mapin physical pages to back new virtual pages
455	 */
456
457	for (vaddr = round_page(addr) ; vaddr < addr + size ;
458	    vaddr += PAGE_SIZE) {
459
460		if (!uvm_page_physget(&paddr))
461			panic("uvm_pageboot_alloc: out of memory");
462
463		/*
464		 * Note this memory is no longer managed, so using
465		 * pmap_kenter is safe.
466		 */
467		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
468	}
469	pmap_update(pmap_kernel());
470	return(addr);
471#endif	/* PMAP_STEAL_MEMORY */
472}
473
474#if !defined(PMAP_STEAL_MEMORY)
475/*
476 * uvm_page_physget: "steal" one page from the vm_physmem structure.
477 *
478 * => attempt to allocate it off the end of a segment in which the "avail"
479 *    values match the start/end values.   if we can't do that, then we
480 *    will advance both values (making them equal, and removing some
481 *    vm_page structures from the non-avail area).
482 * => return false if out of memory.
483 */
484
485/* subroutine: try to allocate from memory chunks on the specified freelist */
486static boolean_t uvm_page_physget_freelist(paddr_t *, int);
487
488static boolean_t
489uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
490{
491	int lcv, x;
492	UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
493
494	/* pass 1: try allocating from a matching end */
495#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
496	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
497	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
498#else
499	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
500#endif
501	{
502
503		if (uvm.page_init_done == TRUE)
504			panic("uvm_page_physget: called _after_ bootstrap");
505
506		if (vm_physmem[lcv].free_list != freelist)
507			continue;
508
509		/* try from front */
510		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
511		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
512			*paddrp = ptoa(vm_physmem[lcv].avail_start);
513			vm_physmem[lcv].avail_start++;
514			vm_physmem[lcv].start++;
515			/* nothing left?   nuke it */
516			if (vm_physmem[lcv].avail_start ==
517			    vm_physmem[lcv].end) {
518				if (vm_nphysseg == 1)
519				    panic("uvm_page_physget: out of memory!");
520				vm_nphysseg--;
521				for (x = lcv ; x < vm_nphysseg ; x++)
522					/* structure copy */
523					vm_physmem[x] = vm_physmem[x+1];
524			}
525			return (TRUE);
526		}
527
528		/* try from rear */
529		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
530		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
531			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
532			vm_physmem[lcv].avail_end--;
533			vm_physmem[lcv].end--;
534			/* nothing left?   nuke it */
535			if (vm_physmem[lcv].avail_end ==
536			    vm_physmem[lcv].start) {
537				if (vm_nphysseg == 1)
538				    panic("uvm_page_physget: out of memory!");
539				vm_nphysseg--;
540				for (x = lcv ; x < vm_nphysseg ; x++)
541					/* structure copy */
542					vm_physmem[x] = vm_physmem[x+1];
543			}
544			return (TRUE);
545		}
546	}
547
548	/* pass2: forget about matching ends, just allocate something */
549#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
550	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
551	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
552#else
553	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
554#endif
555	{
556
557		/* any room in this bank? */
558		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
559			continue;  /* nope */
560
561		*paddrp = ptoa(vm_physmem[lcv].avail_start);
562		vm_physmem[lcv].avail_start++;
563		/* truncate! */
564		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
565
566		/* nothing left?   nuke it */
567		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
568			if (vm_nphysseg == 1)
569				panic("uvm_page_physget: out of memory!");
570			vm_nphysseg--;
571			for (x = lcv ; x < vm_nphysseg ; x++)
572				/* structure copy */
573				vm_physmem[x] = vm_physmem[x+1];
574		}
575		return (TRUE);
576	}
577
578	return (FALSE);        /* whoops! */
579}
580
581boolean_t
582uvm_page_physget(paddr_t *paddrp)
583{
584	int i;
585	UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
586
587	/* try in the order of freelist preference */
588	for (i = 0; i < VM_NFREELIST; i++)
589		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
590			return (TRUE);
591	return (FALSE);
592}
593#endif /* PMAP_STEAL_MEMORY */
594
595/*
596 * uvm_page_physload: load physical memory into VM system
597 *
598 * => all args are PFs
599 * => all pages in start/end get vm_page structures
600 * => areas marked by avail_start/avail_end get added to the free page pool
601 * => we are limited to VM_PHYSSEG_MAX physical memory segments
602 */
603
604void
605uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
606    paddr_t avail_end, int free_list)
607{
608	int preload, lcv;
609	psize_t npages;
610	struct vm_page *pgs;
611	struct vm_physseg *ps;
612
613	if (uvmexp.pagesize == 0)
614		panic("uvm_page_physload: page size not set!");
615
616	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
617		panic("uvm_page_physload: bad free list %d", free_list);
618
619	if (start >= end)
620		panic("uvm_page_physload: start >= end");
621
622	/*
623	 * do we have room?
624	 */
625	if (vm_nphysseg == VM_PHYSSEG_MAX) {
626		printf("uvm_page_physload: unable to load physical memory "
627		    "segment\n");
628		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
629		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
630		printf("\tincrease VM_PHYSSEG_MAX\n");
631		return;
632	}
633
634	/*
635	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
636	 * called yet, so malloc is not available).
637	 */
638	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
639		if (vm_physmem[lcv].pgs)
640			break;
641	}
642	preload = (lcv == vm_nphysseg);
643
644	/*
645	 * if VM is already running, attempt to malloc() vm_page structures
646	 */
647	if (!preload) {
648#if defined(VM_PHYSSEG_NOADD)
649		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
650#else
651		/* XXXCDC: need some sort of lockout for this case */
652		paddr_t paddr;
653		npages = end - start;  /* # of pages */
654		pgs = (vm_page *)uvm_km_zalloc(kernel_map,
655		    sizeof(struct vm_page) * npages);
656		if (pgs == NULL) {
657			printf("uvm_page_physload: can not malloc vm_page "
658			    "structs for segment\n");
659			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
660			return;
661		}
662		/* init phys_addr and free_list, and free pages */
663		for (lcv = 0, paddr = ptoa(start) ;
664				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
665			pgs[lcv].phys_addr = paddr;
666			pgs[lcv].free_list = free_list;
667			if (atop(paddr) >= avail_start &&
668			    atop(paddr) <= avail_end)
669				uvm_pagefree(&pgs[lcv]);
670		}
671		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
672		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
673#endif
674	} else {
675
676		/* gcc complains if these don't get init'd */
677		pgs = NULL;
678		npages = 0;
679
680	}
681
682	/*
683	 * now insert us in the proper place in vm_physmem[]
684	 */
685
686#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
687
688	/* random: put it at the end (easy!) */
689	ps = &vm_physmem[vm_nphysseg];
690
691#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
692
693	{
694		int x;
695		/* sort by address for binary search */
696		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
697			if (start < vm_physmem[lcv].start)
698				break;
699		ps = &vm_physmem[lcv];
700		/* move back other entries, if necessary ... */
701		for (x = vm_nphysseg ; x > lcv ; x--)
702			/* structure copy */
703			vm_physmem[x] = vm_physmem[x - 1];
704	}
705
706#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
707
708	{
709		int x;
710		/* sort by largest segment first */
711		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
712			if ((end - start) >
713			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
714				break;
715		ps = &vm_physmem[lcv];
716		/* move back other entries, if necessary ... */
717		for (x = vm_nphysseg ; x > lcv ; x--)
718			/* structure copy */
719			vm_physmem[x] = vm_physmem[x - 1];
720	}
721
722#else
723
724	panic("uvm_page_physload: unknown physseg strategy selected!");
725
726#endif
727
728	ps->start = start;
729	ps->end = end;
730	ps->avail_start = avail_start;
731	ps->avail_end = avail_end;
732	if (preload) {
733		ps->pgs = NULL;
734	} else {
735		ps->pgs = pgs;
736		ps->lastpg = pgs + npages - 1;
737	}
738	ps->free_list = free_list;
739	vm_nphysseg++;
740
741	/*
742	 * done!
743	 */
744
745	if (!preload)
746		uvm_page_rehash();
747
748	return;
749}
750
751/*
752 * uvm_page_rehash: reallocate hash table based on number of free pages.
753 */
754
755void
756uvm_page_rehash(void)
757{
758	int freepages, lcv, bucketcount, oldcount;
759	struct pglist *newbuckets, *oldbuckets;
760	struct vm_page *pg;
761	size_t newsize, oldsize;
762
763	/*
764	 * compute number of pages that can go in the free pool
765	 */
766
767	freepages = 0;
768	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
769		freepages +=
770		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
771
772	/*
773	 * compute number of buckets needed for this number of pages
774	 */
775
776	bucketcount = 1;
777	while (bucketcount < freepages)
778		bucketcount = bucketcount * 2;
779
780	/*
781	 * compute the size of the current table and new table.
782	 */
783
784	oldbuckets = uvm.page_hash;
785	oldcount = uvm.page_nhash;
786	oldsize = round_page(sizeof(struct pglist) * oldcount);
787	newsize = round_page(sizeof(struct pglist) * bucketcount);
788
789	/*
790	 * allocate the new buckets
791	 */
792
793	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
794	if (newbuckets == NULL) {
795		printf("uvm_page_physrehash: WARNING: could not grow page "
796		    "hash table\n");
797		return;
798	}
799	for (lcv = 0 ; lcv < bucketcount ; lcv++)
800		TAILQ_INIT(&newbuckets[lcv]);
801
802	/*
803	 * now replace the old buckets with the new ones and rehash everything
804	 */
805
806	mtx_enter(&uvm.hashlock);
807	uvm.page_hash = newbuckets;
808	uvm.page_nhash = bucketcount;
809	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
810
811	/* ... and rehash */
812	for (lcv = 0 ; lcv < oldcount ; lcv++) {
813		while ((pg = TAILQ_FIRST(&oldbuckets[lcv])) != NULL) {
814			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
815			TAILQ_INSERT_TAIL(
816			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
817			  pg, hashq);
818		}
819	}
820	mtx_leave(&uvm.hashlock);
821
822	/*
823	 * free old bucket array if is not the boot-time table
824	 */
825
826	if (oldbuckets != &uvm_bootbucket)
827		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
828
829	/*
830	 * done
831	 */
832	return;
833}
834
835
836#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
837
838void uvm_page_physdump(void); /* SHUT UP GCC */
839
840/* call from DDB */
841void
842uvm_page_physdump(void)
843{
844	int lcv;
845
846	printf("rehash: physical memory config [segs=%d of %d]:\n",
847				 vm_nphysseg, VM_PHYSSEG_MAX);
848	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
849		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
850		    (long long)vm_physmem[lcv].start,
851		    (long long)vm_physmem[lcv].end,
852		    (long long)vm_physmem[lcv].avail_start,
853		    (long long)vm_physmem[lcv].avail_end);
854	printf("STRATEGY = ");
855	switch (VM_PHYSSEG_STRAT) {
856	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
857	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
858	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
859	default: printf("<<UNKNOWN>>!!!!\n");
860	}
861	printf("number of buckets = %d\n", uvm.page_nhash);
862}
863#endif
864
865void
866uvm_shutdown(void)
867{
868#ifdef UVM_SWAP_ENCRYPT
869	uvm_swap_finicrypt_all();
870#endif
871}
872
873/*
874 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
875 *
876 * => return null if no pages free
877 * => wake up pagedaemon if number of free pages drops below low water mark
878 * => if obj != NULL, obj must be locked (to put in hash)
879 * => if anon != NULL, anon must be locked (to put in anon)
880 * => only one of obj or anon can be non-null
881 * => caller must activate/deactivate page if it is not wired.
882 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
883 * => policy decision: it is more important to pull a page off of the
884 *	appropriate priority free list than it is to get a zero'd or
885 *	unknown contents page.  This is because we live with the
886 *	consequences of a bad free list decision for the entire
887 *	lifetime of the page, e.g. if the page comes from memory that
888 *	is slower to access.
889 */
890
891struct vm_page *
892uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
893    int flags, int strat, int free_list)
894{
895	int lcv, try1, try2, zeroit = 0;
896	struct vm_page *pg;
897	struct pglist *freeq;
898	struct pgfreelist *pgfl;
899	boolean_t use_reserve;
900	UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
901
902	KASSERT(obj == NULL || anon == NULL);
903	KASSERT(off == trunc_page(off));
904
905	uvm_lock_fpageq();
906
907	/*
908	 * check to see if we need to generate some free pages waking
909	 * the pagedaemon.
910	 */
911	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
912	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
913	     uvmexp.inactive < uvmexp.inactarg))
914		wakeup(&uvm.pagedaemon);
915
916	/*
917	 * fail if any of these conditions is true:
918	 * [1]  there really are no free pages, or
919	 * [2]  only kernel "reserved" pages remain and
920	 *        the page isn't being allocated to a kernel object.
921	 * [3]  only pagedaemon "reserved" pages remain and
922	 *        the requestor isn't the pagedaemon.
923	 */
924
925	use_reserve = (flags & UVM_PGA_USERESERVE) ||
926		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
927	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
928	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
929	     !((curproc == uvm.pagedaemon_proc) ||
930	      (curproc == syncerproc))))
931		goto fail;
932
933#if PGFL_NQUEUES != 2
934#error uvm_pagealloc_strat needs to be updated
935#endif
936
937	/*
938	 * If we want a zero'd page, try the ZEROS queue first, otherwise
939	 * we try the UNKNOWN queue first.
940	 */
941	if (flags & UVM_PGA_ZERO) {
942		try1 = PGFL_ZEROS;
943		try2 = PGFL_UNKNOWN;
944	} else {
945		try1 = PGFL_UNKNOWN;
946		try2 = PGFL_ZEROS;
947	}
948
949	UVMHIST_LOG(pghist, "obj=%p off=%lx anon=%p flags=%lx",
950	    obj, (u_long)off, anon, flags);
951	UVMHIST_LOG(pghist, "strat=%ld free_list=%ld", strat, free_list, 0, 0);
952 again:
953	switch (strat) {
954	case UVM_PGA_STRAT_NORMAL:
955		/* Check all freelists in descending priority order. */
956		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
957			pgfl = &uvm.page_free[lcv];
958			if ((pg = TAILQ_FIRST((freeq =
959			      &pgfl->pgfl_queues[try1]))) != NULL ||
960			    (pg = TAILQ_FIRST((freeq =
961			      &pgfl->pgfl_queues[try2]))) != NULL)
962				goto gotit;
963		}
964
965		/* No pages free! */
966		goto fail;
967
968	case UVM_PGA_STRAT_ONLY:
969	case UVM_PGA_STRAT_FALLBACK:
970		/* Attempt to allocate from the specified free list. */
971		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
972		pgfl = &uvm.page_free[free_list];
973		if ((pg = TAILQ_FIRST((freeq =
974		      &pgfl->pgfl_queues[try1]))) != NULL ||
975		    (pg = TAILQ_FIRST((freeq =
976		      &pgfl->pgfl_queues[try2]))) != NULL)
977			goto gotit;
978
979		/* Fall back, if possible. */
980		if (strat == UVM_PGA_STRAT_FALLBACK) {
981			strat = UVM_PGA_STRAT_NORMAL;
982			goto again;
983		}
984
985		/* No pages free! */
986		goto fail;
987
988	default:
989		panic("uvm_pagealloc_strat: bad strat %d", strat);
990		/* NOTREACHED */
991	}
992
993 gotit:
994	TAILQ_REMOVE(freeq, pg, pageq);
995	uvmexp.free--;
996
997	/* update zero'd page count */
998	if (pg->pg_flags & PG_ZERO)
999		uvmexp.zeropages--;
1000
1001	/*
1002	 * update allocation statistics and remember if we have to
1003	 * zero the page
1004	 */
1005	if (flags & UVM_PGA_ZERO) {
1006		if (pg->pg_flags & PG_ZERO) {
1007			uvmexp.pga_zerohit++;
1008			zeroit = 0;
1009		} else {
1010			uvmexp.pga_zeromiss++;
1011			zeroit = 1;
1012		}
1013	}
1014
1015	uvm_unlock_fpageq();		/* unlock free page queue */
1016
1017	pg->offset = off;
1018	pg->uobject = obj;
1019	pg->uanon = anon;
1020	pg->pg_flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1021	pg->pg_version++;
1022	if (anon) {
1023		anon->an_page = pg;
1024		atomic_setbits_int(&pg->pg_flags, PQ_ANON);
1025#ifdef UBC
1026		uvm_pgcnt_anon++;
1027#endif
1028	} else {
1029		if (obj)
1030			uvm_pageinsert(pg);
1031	}
1032#if defined(UVM_PAGE_TRKOWN)
1033	pg->owner_tag = NULL;
1034#endif
1035	UVM_PAGE_OWN(pg, "new alloc");
1036
1037	if (flags & UVM_PGA_ZERO) {
1038		/*
1039		 * A zero'd page is not clean.  If we got a page not already
1040		 * zero'd, then we have to zero it ourselves.
1041		 */
1042		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1043		if (zeroit)
1044			pmap_zero_page(pg);
1045	}
1046
1047	UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
1048	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1049	return(pg);
1050
1051 fail:
1052	uvm_unlock_fpageq();
1053	UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
1054	return (NULL);
1055}
1056
1057/*
1058 * uvm_pagerealloc: reallocate a page from one object to another
1059 *
1060 * => both objects must be locked
1061 */
1062
1063void
1064uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1065{
1066
1067	UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
1068
1069	/*
1070	 * remove it from the old object
1071	 */
1072
1073	if (pg->uobject) {
1074		uvm_pageremove(pg);
1075	}
1076
1077	/*
1078	 * put it in the new object
1079	 */
1080
1081	if (newobj) {
1082		pg->uobject = newobj;
1083		pg->offset = newoff;
1084		pg->pg_version++;
1085		uvm_pageinsert(pg);
1086	}
1087}
1088
1089
1090/*
1091 * uvm_pagefree: free page
1092 *
1093 * => erase page's identity (i.e. remove from hash/object)
1094 * => put page on free list
1095 * => caller must lock owning object (either anon or uvm_object)
1096 * => caller must lock page queues
1097 * => assumes all valid mappings of pg are gone
1098 */
1099
1100void
1101uvm_pagefree(struct vm_page *pg)
1102{
1103	int saved_loan_count = pg->loan_count;
1104	UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
1105
1106#ifdef DEBUG
1107	if (pg->uobject == (void *)0xdeadbeef &&
1108	    pg->uanon == (void *)0xdeadbeef) {
1109		panic("uvm_pagefree: freeing free page %p", pg);
1110	}
1111#endif
1112
1113	UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
1114	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1115
1116	/*
1117	 * if the page was an object page (and thus "TABLED"), remove it
1118	 * from the object.
1119	 */
1120
1121	if (pg->pg_flags & PG_TABLED) {
1122
1123		/*
1124		 * if the object page is on loan we are going to drop ownership.
1125		 * it is possible that an anon will take over as owner for this
1126		 * page later on.   the anon will want a !PG_CLEAN page so that
1127		 * it knows it needs to allocate swap if it wants to page the
1128		 * page out.
1129		 */
1130
1131		/* in case an anon takes over */
1132		if (saved_loan_count)
1133			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1134		uvm_pageremove(pg);
1135
1136		/*
1137		 * if our page was on loan, then we just lost control over it
1138		 * (in fact, if it was loaned to an anon, the anon may have
1139		 * already taken over ownership of the page by now and thus
1140		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1141		 * return (when the last loan is dropped, then the page can be
1142		 * freed by whatever was holding the last loan).
1143		 */
1144
1145		if (saved_loan_count)
1146			return;
1147	} else if (saved_loan_count && pg->uanon) {
1148		/*
1149		 * if our page is owned by an anon and is loaned out to the
1150		 * kernel then we just want to drop ownership and return.
1151		 * the kernel must free the page when all its loans clear ...
1152		 * note that the kernel can't change the loan status of our
1153		 * page as long as we are holding PQ lock.
1154		 */
1155		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1156		pg->uanon->an_page = NULL;
1157		pg->uanon = NULL;
1158		return;
1159	}
1160	KASSERT(saved_loan_count == 0);
1161
1162	/*
1163	 * now remove the page from the queues
1164	 */
1165
1166	if (pg->pg_flags & PQ_ACTIVE) {
1167		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1168		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1169		uvmexp.active--;
1170	}
1171	if (pg->pg_flags & PQ_INACTIVE) {
1172		if (pg->pg_flags & PQ_SWAPBACKED)
1173			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1174		else
1175			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1176		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1177		uvmexp.inactive--;
1178	}
1179
1180	/*
1181	 * if the page was wired, unwire it now.
1182	 */
1183
1184	if (pg->wire_count) {
1185		pg->wire_count = 0;
1186		uvmexp.wired--;
1187	}
1188	if (pg->uanon) {
1189		pg->uanon->an_page = NULL;
1190#ifdef UBC
1191		uvm_pgcnt_anon--;
1192#endif
1193	}
1194
1195	/*
1196	 * and put on free queue
1197	 */
1198
1199	atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
1200
1201	uvm_lock_fpageq();
1202	TAILQ_INSERT_TAIL(&uvm.page_free[
1203	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1204	atomic_clearbits_int(&pg->pg_flags, PQ_MASK);
1205	atomic_setbits_int(&pg->pg_flags, PQ_FREE);
1206#ifdef DEBUG
1207	pg->uobject = (void *)0xdeadbeef;
1208	pg->offset = 0xdeadbeef;
1209	pg->uanon = (void *)0xdeadbeef;
1210#endif
1211	uvmexp.free++;
1212
1213	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1214		uvm.page_idle_zero = vm_page_zero_enable;
1215
1216	uvm_unlock_fpageq();
1217}
1218
1219/*
1220 * uvm_page_unbusy: unbusy an array of pages.
1221 *
1222 * => pages must either all belong to the same object, or all belong to anons.
1223 * => if pages are object-owned, object must be locked.
1224 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1225 */
1226
1227void
1228uvm_page_unbusy(struct vm_page **pgs, int npgs)
1229{
1230	struct vm_page *pg;
1231	struct uvm_object *uobj;
1232	int i;
1233	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1234
1235	for (i = 0; i < npgs; i++) {
1236		pg = pgs[i];
1237
1238		if (pg == NULL || pg == PGO_DONTCARE) {
1239			continue;
1240		}
1241		if (pg->pg_flags & PG_WANTED) {
1242			wakeup(pg);
1243		}
1244		if (pg->pg_flags & PG_RELEASED) {
1245			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1246			uobj = pg->uobject;
1247			if (uobj != NULL) {
1248				uvm_lock_pageq();
1249				pmap_page_protect(pg, VM_PROT_NONE);
1250				/* XXX won't happen right now */
1251				if (pg->pg_flags & PQ_ANON)
1252					uao_dropswap(uobj,
1253					    pg->offset >> PAGE_SHIFT);
1254				uvm_pagefree(pg);
1255				uvm_unlock_pageq();
1256			} else {
1257				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1258				UVM_PAGE_OWN(pg, NULL);
1259				uvm_anfree(pg->uanon);
1260			}
1261		} else {
1262			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1263			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1264			UVM_PAGE_OWN(pg, NULL);
1265		}
1266	}
1267}
1268
1269#if defined(UVM_PAGE_TRKOWN)
1270/*
1271 * uvm_page_own: set or release page ownership
1272 *
1273 * => this is a debugging function that keeps track of who sets PG_BUSY
1274 *	and where they do it.   it can be used to track down problems
1275 *	such a process setting "PG_BUSY" and never releasing it.
1276 * => page's object [if any] must be locked
1277 * => if "tag" is NULL then we are releasing page ownership
1278 */
1279void
1280uvm_page_own(struct vm_page *pg, char *tag)
1281{
1282	/* gain ownership? */
1283	if (tag) {
1284		if (pg->owner_tag) {
1285			printf("uvm_page_own: page %p already owned "
1286			    "by proc %d [%s]\n", pg,
1287			     pg->owner, pg->owner_tag);
1288			panic("uvm_page_own");
1289		}
1290		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1291		pg->owner_tag = tag;
1292		return;
1293	}
1294
1295	/* drop ownership */
1296	if (pg->owner_tag == NULL) {
1297		printf("uvm_page_own: dropping ownership of an non-owned "
1298		    "page (%p)\n", pg);
1299		panic("uvm_page_own");
1300	}
1301	pg->owner_tag = NULL;
1302	return;
1303}
1304#endif
1305
1306/*
1307 * uvm_pageidlezero: zero free pages while the system is idle.
1308 *
1309 * => we do at least one iteration per call, if we are below the target.
1310 * => we loop until we either reach the target or whichqs indicates that
1311 *	there is a process ready to run.
1312 */
1313void
1314uvm_pageidlezero(void)
1315{
1316	struct vm_page *pg;
1317	struct pgfreelist *pgfl;
1318	int free_list;
1319	UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
1320
1321	do {
1322		uvm_lock_fpageq();
1323
1324		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1325			uvm.page_idle_zero = FALSE;
1326			uvm_unlock_fpageq();
1327			return;
1328		}
1329
1330		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1331			pgfl = &uvm.page_free[free_list];
1332			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1333			    PGFL_UNKNOWN])) != NULL)
1334				break;
1335		}
1336
1337		if (pg == NULL) {
1338			/*
1339			 * No non-zero'd pages; don't bother trying again
1340			 * until we know we have non-zero'd pages free.
1341			 */
1342			uvm.page_idle_zero = FALSE;
1343			uvm_unlock_fpageq();
1344			return;
1345		}
1346
1347		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1348		uvmexp.free--;
1349		uvm_unlock_fpageq();
1350
1351#ifdef PMAP_PAGEIDLEZERO
1352		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1353			/*
1354			 * The machine-dependent code detected some
1355			 * reason for us to abort zeroing pages,
1356			 * probably because there is a process now
1357			 * ready to run.
1358			 */
1359			uvm_lock_fpageq();
1360			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1361			    pg, pageq);
1362			uvmexp.free++;
1363			uvmexp.zeroaborts++;
1364			uvm_unlock_fpageq();
1365			return;
1366		}
1367#else
1368		/*
1369		 * XXX This will toast the cache unless the pmap_zero_page()
1370		 * XXX implementation does uncached access.
1371		 */
1372		pmap_zero_page(pg);
1373#endif
1374		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1375
1376		uvm_lock_fpageq();
1377		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1378		uvmexp.free++;
1379		uvmexp.zeropages++;
1380		uvm_unlock_fpageq();
1381	} while (curcpu_is_idle());
1382}
1383
1384/*
1385 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1386 */
1387
1388#if VM_PHYSSEG_MAX > 1
1389/*
1390 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1391 */
1392int
1393vm_physseg_find(paddr_t pframe, int *offp)
1394{
1395
1396#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1397	/* binary search for it */
1398	int	start, len, try;
1399
1400	/*
1401	 * if try is too large (thus target is less than than try) we reduce
1402	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1403	 *
1404	 * if the try is too small (thus target is greater than try) then
1405	 * we set the new start to be (try + 1).   this means we need to
1406	 * reduce the length to (round(len/2) - 1).
1407	 *
1408	 * note "adjust" below which takes advantage of the fact that
1409	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1410	 * for any value of len we may have
1411	 */
1412
1413	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1414		try = start + (len / 2);	/* try in the middle */
1415
1416		/* start past our try? */
1417		if (pframe >= vm_physmem[try].start) {
1418			/* was try correct? */
1419			if (pframe < vm_physmem[try].end) {
1420				if (offp)
1421					*offp = pframe - vm_physmem[try].start;
1422				return(try);            /* got it */
1423			}
1424			start = try + 1;	/* next time, start here */
1425			len--;			/* "adjust" */
1426		} else {
1427			/*
1428			 * pframe before try, just reduce length of
1429			 * region, done in "for" loop
1430			 */
1431		}
1432	}
1433	return(-1);
1434
1435#else
1436	/* linear search for it */
1437	int	lcv;
1438
1439	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1440		if (pframe >= vm_physmem[lcv].start &&
1441		    pframe < vm_physmem[lcv].end) {
1442			if (offp)
1443				*offp = pframe - vm_physmem[lcv].start;
1444			return(lcv);		   /* got it */
1445		}
1446	}
1447	return(-1);
1448
1449#endif
1450}
1451
1452/*
1453 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1454 * back from an I/O mapping (ugh!).   used in some MD code as well.
1455 */
1456struct vm_page *
1457PHYS_TO_VM_PAGE(paddr_t pa)
1458{
1459	paddr_t pf = atop(pa);
1460	int	off;
1461	int	psi;
1462
1463	psi = vm_physseg_find(pf, &off);
1464
1465	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1466}
1467#endif /* VM_PHYSSEG_MAX > 1 */
1468
1469/*
1470 * uvm_pagelookup: look up a page
1471 *
1472 * => caller should lock object to keep someone from pulling the page
1473 *	out from under it
1474 */
1475struct vm_page *
1476uvm_pagelookup(struct uvm_object *obj, voff_t off)
1477{
1478	struct vm_page *pg;
1479	struct pglist *buck;
1480
1481	mtx_enter(&uvm.hashlock);
1482	buck = &uvm.page_hash[uvm_pagehash(obj,off)];
1483
1484	TAILQ_FOREACH(pg, buck, hashq) {
1485		if (pg->uobject == obj && pg->offset == off) {
1486			break;
1487		}
1488	}
1489	mtx_leave(&uvm.hashlock);
1490	return(pg);
1491}
1492
1493/*
1494 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1495 *
1496 * => caller must lock page queues
1497 */
1498void
1499uvm_pagewire(struct vm_page *pg)
1500{
1501	if (pg->wire_count == 0) {
1502		if (pg->pg_flags & PQ_ACTIVE) {
1503			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1504			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1505			uvmexp.active--;
1506		}
1507		if (pg->pg_flags & PQ_INACTIVE) {
1508			if (pg->pg_flags & PQ_SWAPBACKED)
1509				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1510			else
1511				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1512			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1513			uvmexp.inactive--;
1514		}
1515		uvmexp.wired++;
1516	}
1517	pg->wire_count++;
1518}
1519
1520/*
1521 * uvm_pageunwire: unwire the page.
1522 *
1523 * => activate if wire count goes to zero.
1524 * => caller must lock page queues
1525 */
1526void
1527uvm_pageunwire(struct vm_page *pg)
1528{
1529	pg->wire_count--;
1530	if (pg->wire_count == 0) {
1531		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1532		uvmexp.active++;
1533		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1534		uvmexp.wired--;
1535	}
1536}
1537
1538/*
1539 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1540 *
1541 * => caller must lock page queues
1542 * => caller must check to make sure page is not wired
1543 * => object that page belongs to must be locked (so we can adjust pg->flags)
1544 */
1545void
1546uvm_pagedeactivate(struct vm_page *pg)
1547{
1548	if (pg->pg_flags & PQ_ACTIVE) {
1549		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1550		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1551		uvmexp.active--;
1552	}
1553	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1554		KASSERT(pg->wire_count == 0);
1555		if (pg->pg_flags & PQ_SWAPBACKED)
1556			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1557		else
1558			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1559		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1560		uvmexp.inactive++;
1561		pmap_clear_reference(pg);
1562		/*
1563		 * update the "clean" bit.  this isn't 100%
1564		 * accurate, and doesn't have to be.  we'll
1565		 * re-sync it after we zap all mappings when
1566		 * scanning the inactive list.
1567		 */
1568		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1569		    pmap_is_modified(pg))
1570			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1571	}
1572}
1573
1574/*
1575 * uvm_pageactivate: activate page
1576 *
1577 * => caller must lock page queues
1578 */
1579void
1580uvm_pageactivate(struct vm_page *pg)
1581{
1582	if (pg->pg_flags & PQ_INACTIVE) {
1583		if (pg->pg_flags & PQ_SWAPBACKED)
1584			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1585		else
1586			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1587		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1588		uvmexp.inactive--;
1589	}
1590	if (pg->wire_count == 0) {
1591
1592		/*
1593		 * if page is already active, remove it from list so we
1594		 * can put it at tail.  if it wasn't active, then mark
1595		 * it active and bump active count
1596		 */
1597		if (pg->pg_flags & PQ_ACTIVE)
1598			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1599		else {
1600			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1601			uvmexp.active++;
1602		}
1603
1604		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1605	}
1606}
1607
1608/*
1609 * uvm_pagezero: zero fill a page
1610 *
1611 * => if page is part of an object then the object should be locked
1612 *	to protect pg->flags.
1613 */
1614void
1615uvm_pagezero(struct vm_page *pg)
1616{
1617	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1618	pmap_zero_page(pg);
1619}
1620
1621/*
1622 * uvm_pagecopy: copy a page
1623 *
1624 * => if page is part of an object then the object should be locked
1625 *	to protect pg->flags.
1626 */
1627void
1628uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1629{
1630	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1631	pmap_copy_page(src, dst);
1632}
1633
1634/*
1635 * uvm_page_lookup_freelist: look up the free list for the specified page
1636 */
1637int
1638uvm_page_lookup_freelist(struct vm_page *pg)
1639{
1640#if VM_PHYSSEG_MAX == 1
1641	return (vm_physmem[0].free_list);
1642#else
1643	int lcv;
1644
1645	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1646	KASSERT(lcv != -1);
1647	return (vm_physmem[lcv].free_list);
1648#endif
1649}
1650