uvm_page.c revision 1.87
1/*	$OpenBSD: uvm_page.c,v 1.87 2009/06/07 02:01:54 oga Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/sched.h>
77#include <sys/kernel.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80
81#include <uvm/uvm.h>
82
83/*
84 * global vars... XXXCDC: move to uvm. structure.
85 */
86
87/*
88 * physical memory config is stored in vm_physmem.
89 */
90
91struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
92int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
93
94/*
95 * Some supported CPUs in a given architecture don't support all
96 * of the things necessary to do idle page zero'ing efficiently.
97 * We therefore provide a way to disable it from machdep code here.
98 */
99
100/*
101 * XXX disabled until we can find a way to do this without causing
102 * problems for either cpu caches or DMA latency.
103 */
104boolean_t vm_page_zero_enable = FALSE;
105
106/*
107 * local variables
108 */
109
110/*
111 * these variables record the values returned by vm_page_bootstrap,
112 * for debugging purposes.  The implementation of uvm_pageboot_alloc
113 * and pmap_startup here also uses them internally.
114 */
115
116static vaddr_t      virtual_space_start;
117static vaddr_t      virtual_space_end;
118
119/*
120 * History
121 */
122UVMHIST_DECL(pghist);
123
124/*
125 * local prototypes
126 */
127
128static void uvm_pageinsert(struct vm_page *);
129static void uvm_pageremove(struct vm_page *);
130
131/*
132 * inline functions
133 */
134
135/*
136 * uvm_pageinsert: insert a page in the object
137 *
138 * => caller must lock object
139 * => caller must lock page queues
140 * => call should have already set pg's object and offset pointers
141 *    and bumped the version counter
142 */
143
144__inline static void
145uvm_pageinsert(struct vm_page *pg)
146{
147	UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
148
149	KASSERT((pg->pg_flags & PG_TABLED) == 0);
150
151	RB_INSERT(uobj_pgs, &pg->uobject->memt, pg);
152	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
153	pg->uobject->uo_npages++;
154}
155
156/*
157 * uvm_page_remove: remove page from object
158 *
159 * => caller must lock object
160 * => caller must lock page queues
161 */
162
163static __inline void
164uvm_pageremove(struct vm_page *pg)
165{
166	UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
167
168	KASSERT(pg->pg_flags & PG_TABLED);
169	/* object should be locked */
170	RB_REMOVE(uobj_pgs, &pg->uobject->memt, pg);
171
172	atomic_clearbits_int(&pg->pg_flags, PG_TABLED|PQ_AOBJ);
173	pg->uobject->uo_npages--;
174	pg->uobject = NULL;
175	pg->pg_version++;
176}
177
178int
179uvm_pagecmp(struct vm_page *a, struct vm_page *b)
180{
181	return (a->offset < b->offset ? -1 : a->offset > b->offset);
182}
183
184RB_GENERATE(uobj_pgs, vm_page, fq.queues.tree, uvm_pagecmp);
185
186/*
187 * uvm_page_init: init the page system.   called from uvm_init().
188 *
189 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
190 */
191
192void
193uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
194{
195	vsize_t freepages, pagecount, n;
196	vm_page_t pagearray;
197	int lcv, i;
198	paddr_t paddr;
199#if defined(UVMHIST)
200	static struct uvm_history_ent pghistbuf[100];
201#endif
202
203	UVMHIST_FUNC("uvm_page_init");
204	UVMHIST_INIT_STATIC(pghist, pghistbuf);
205	UVMHIST_CALLED(pghist);
206
207	/*
208	 * init the page queues and page queue locks
209	 */
210
211	TAILQ_INIT(&uvm.page_active);
212	TAILQ_INIT(&uvm.page_inactive_swp);
213	TAILQ_INIT(&uvm.page_inactive_obj);
214	simple_lock_init(&uvm.pageqlock);
215	mtx_init(&uvm.fpageqlock, IPL_VM);
216	uvm_pmr_init();
217
218	/*
219	 * allocate vm_page structures.
220	 */
221
222	/*
223	 * sanity check:
224	 * before calling this function the MD code is expected to register
225	 * some free RAM with the uvm_page_physload() function.   our job
226	 * now is to allocate vm_page structures for this memory.
227	 */
228
229	if (vm_nphysseg == 0)
230		panic("uvm_page_bootstrap: no memory pre-allocated");
231
232	/*
233	 * first calculate the number of free pages...
234	 *
235	 * note that we use start/end rather than avail_start/avail_end.
236	 * this allows us to allocate extra vm_page structures in case we
237	 * want to return some memory to the pool after booting.
238	 */
239
240	freepages = 0;
241	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
242		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
243
244	/*
245	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
246	 * use.   for each page of memory we use we need a vm_page structure.
247	 * thus, the total number of pages we can use is the total size of
248	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
249	 * structure.   we add one to freepages as a fudge factor to avoid
250	 * truncation errors (since we can only allocate in terms of whole
251	 * pages).
252	 */
253
254	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
255	    (PAGE_SIZE + sizeof(struct vm_page));
256	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
257	    sizeof(struct vm_page));
258	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
259
260	/*
261	 * init the vm_page structures and put them in the correct place.
262	 */
263
264	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
265		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
266		if (n > pagecount) {
267			printf("uvm_page_init: lost %ld page(s) in init\n",
268			    (long)(n - pagecount));
269			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
270			/* n = pagecount; */
271		}
272
273		/* set up page array pointers */
274		vm_physmem[lcv].pgs = pagearray;
275		pagearray += n;
276		pagecount -= n;
277		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
278
279		/* init and free vm_pages (we've already zeroed them) */
280		paddr = ptoa(vm_physmem[lcv].start);
281		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
282			vm_physmem[lcv].pgs[i].phys_addr = paddr;
283#ifdef __HAVE_VM_PAGE_MD
284			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
285#endif
286			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
287			    atop(paddr) <= vm_physmem[lcv].avail_end) {
288				uvmexp.npages++;
289			}
290		}
291
292		/* add pages to free pool */
293		uvm_pmr_freepages(&vm_physmem[lcv].pgs[
294		    vm_physmem[lcv].avail_start - vm_physmem[lcv].start],
295		    vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
296	}
297
298	/*
299	 * pass up the values of virtual_space_start and
300	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
301	 * layers of the VM.
302	 */
303
304	*kvm_startp = round_page(virtual_space_start);
305	*kvm_endp = trunc_page(virtual_space_end);
306
307	/*
308	 * init locks for kernel threads
309	 */
310	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
311
312	/*
313	 * init reserve thresholds
314	 * XXXCDC - values may need adjusting
315	 */
316	uvmexp.reserve_pagedaemon = 4;
317	uvmexp.reserve_kernel = 6;
318	uvmexp.anonminpct = 10;
319	uvmexp.vnodeminpct = 10;
320	uvmexp.vtextminpct = 5;
321	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
322	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
323	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
324
325  	/*
326	 * determine if we should zero pages in the idle loop.
327	 */
328
329	uvm.page_idle_zero = vm_page_zero_enable;
330
331	/*
332	 * done!
333	 */
334
335	uvm.page_init_done = TRUE;
336}
337
338/*
339 * uvm_setpagesize: set the page size
340 *
341 * => sets page_shift and page_mask from uvmexp.pagesize.
342 */
343
344void
345uvm_setpagesize(void)
346{
347	if (uvmexp.pagesize == 0)
348		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
349	uvmexp.pagemask = uvmexp.pagesize - 1;
350	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
351		panic("uvm_setpagesize: page size not a power of two");
352	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
353		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
354			break;
355}
356
357/*
358 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
359 */
360
361vaddr_t
362uvm_pageboot_alloc(vsize_t size)
363{
364#if defined(PMAP_STEAL_MEMORY)
365	vaddr_t addr;
366
367	/*
368	 * defer bootstrap allocation to MD code (it may want to allocate
369	 * from a direct-mapped segment).  pmap_steal_memory should round
370	 * off virtual_space_start/virtual_space_end.
371	 */
372
373	addr = pmap_steal_memory(size, &virtual_space_start,
374	    &virtual_space_end);
375
376	return(addr);
377
378#else /* !PMAP_STEAL_MEMORY */
379
380	static boolean_t initialized = FALSE;
381	vaddr_t addr, vaddr;
382	paddr_t paddr;
383
384	/* round to page size */
385	size = round_page(size);
386
387	/*
388	 * on first call to this function, initialize ourselves.
389	 */
390	if (initialized == FALSE) {
391		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
392
393		/* round it the way we like it */
394		virtual_space_start = round_page(virtual_space_start);
395		virtual_space_end = trunc_page(virtual_space_end);
396
397		initialized = TRUE;
398	}
399
400	/*
401	 * allocate virtual memory for this request
402	 */
403	if (virtual_space_start == virtual_space_end ||
404	    (virtual_space_end - virtual_space_start) < size)
405		panic("uvm_pageboot_alloc: out of virtual space");
406
407	addr = virtual_space_start;
408
409#ifdef PMAP_GROWKERNEL
410	/*
411	 * If the kernel pmap can't map the requested space,
412	 * then allocate more resources for it.
413	 */
414	if (uvm_maxkaddr < (addr + size)) {
415		uvm_maxkaddr = pmap_growkernel(addr + size);
416		if (uvm_maxkaddr < (addr + size))
417			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
418	}
419#endif
420
421	virtual_space_start += size;
422
423	/*
424	 * allocate and mapin physical pages to back new virtual pages
425	 */
426
427	for (vaddr = round_page(addr) ; vaddr < addr + size ;
428	    vaddr += PAGE_SIZE) {
429
430		if (!uvm_page_physget(&paddr))
431			panic("uvm_pageboot_alloc: out of memory");
432
433		/*
434		 * Note this memory is no longer managed, so using
435		 * pmap_kenter is safe.
436		 */
437		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
438	}
439	pmap_update(pmap_kernel());
440	return(addr);
441#endif	/* PMAP_STEAL_MEMORY */
442}
443
444#if !defined(PMAP_STEAL_MEMORY)
445/*
446 * uvm_page_physget: "steal" one page from the vm_physmem structure.
447 *
448 * => attempt to allocate it off the end of a segment in which the "avail"
449 *    values match the start/end values.   if we can't do that, then we
450 *    will advance both values (making them equal, and removing some
451 *    vm_page structures from the non-avail area).
452 * => return false if out of memory.
453 */
454
455/* subroutine: try to allocate from memory chunks on the specified freelist */
456boolean_t uvm_page_physget_freelist(paddr_t *, int);
457
458boolean_t
459uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
460{
461	int lcv, x;
462	UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
463
464	/* pass 1: try allocating from a matching end */
465#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
466	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
467	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
468#else
469	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
470#endif
471	{
472
473		if (uvm.page_init_done == TRUE)
474			panic("uvm_page_physget: called _after_ bootstrap");
475
476		if (vm_physmem[lcv].free_list != freelist)
477			continue;
478
479		/* try from front */
480		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
481		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
482			*paddrp = ptoa(vm_physmem[lcv].avail_start);
483			vm_physmem[lcv].avail_start++;
484			vm_physmem[lcv].start++;
485			/* nothing left?   nuke it */
486			if (vm_physmem[lcv].avail_start ==
487			    vm_physmem[lcv].end) {
488				if (vm_nphysseg == 1)
489				    panic("uvm_page_physget: out of memory!");
490				vm_nphysseg--;
491				for (x = lcv ; x < vm_nphysseg ; x++)
492					/* structure copy */
493					vm_physmem[x] = vm_physmem[x+1];
494			}
495			return (TRUE);
496		}
497
498		/* try from rear */
499		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
500		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
501			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
502			vm_physmem[lcv].avail_end--;
503			vm_physmem[lcv].end--;
504			/* nothing left?   nuke it */
505			if (vm_physmem[lcv].avail_end ==
506			    vm_physmem[lcv].start) {
507				if (vm_nphysseg == 1)
508				    panic("uvm_page_physget: out of memory!");
509				vm_nphysseg--;
510				for (x = lcv ; x < vm_nphysseg ; x++)
511					/* structure copy */
512					vm_physmem[x] = vm_physmem[x+1];
513			}
514			return (TRUE);
515		}
516	}
517
518	/* pass2: forget about matching ends, just allocate something */
519#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
520	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
521	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
522#else
523	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
524#endif
525	{
526
527		/* any room in this bank? */
528		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
529			continue;  /* nope */
530
531		*paddrp = ptoa(vm_physmem[lcv].avail_start);
532		vm_physmem[lcv].avail_start++;
533		/* truncate! */
534		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
535
536		/* nothing left?   nuke it */
537		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
538			if (vm_nphysseg == 1)
539				panic("uvm_page_physget: out of memory!");
540			vm_nphysseg--;
541			for (x = lcv ; x < vm_nphysseg ; x++)
542				/* structure copy */
543				vm_physmem[x] = vm_physmem[x+1];
544		}
545		return (TRUE);
546	}
547
548	return (FALSE);        /* whoops! */
549}
550
551boolean_t
552uvm_page_physget(paddr_t *paddrp)
553{
554	int i;
555	UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
556
557	/* try in the order of freelist preference */
558	for (i = 0; i < VM_NFREELIST; i++)
559		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
560			return (TRUE);
561	return (FALSE);
562}
563#endif /* PMAP_STEAL_MEMORY */
564
565/*
566 * uvm_page_physload: load physical memory into VM system
567 *
568 * => all args are PFs
569 * => all pages in start/end get vm_page structures
570 * => areas marked by avail_start/avail_end get added to the free page pool
571 * => we are limited to VM_PHYSSEG_MAX physical memory segments
572 */
573
574void
575uvm_page_physload_flags(paddr_t start, paddr_t end, paddr_t avail_start,
576    paddr_t avail_end, int free_list, int flags)
577{
578	int preload, lcv;
579	psize_t npages;
580	struct vm_page *pgs;
581	struct vm_physseg *ps;
582
583	if (uvmexp.pagesize == 0)
584		panic("uvm_page_physload: page size not set!");
585
586	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
587		panic("uvm_page_physload: bad free list %d", free_list);
588
589	if (start >= end)
590		panic("uvm_page_physload: start >= end");
591
592	/*
593	 * do we have room?
594	 */
595	if (vm_nphysseg == VM_PHYSSEG_MAX) {
596		printf("uvm_page_physload: unable to load physical memory "
597		    "segment\n");
598		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
599		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
600		printf("\tincrease VM_PHYSSEG_MAX\n");
601		return;
602	}
603
604	/*
605	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
606	 * called yet, so malloc is not available).
607	 */
608	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
609		if (vm_physmem[lcv].pgs)
610			break;
611	}
612	preload = (lcv == vm_nphysseg);
613
614	/*
615	 * if VM is already running, attempt to malloc() vm_page structures
616	 */
617	if (!preload) {
618		/*
619		 * XXXCDC: need some sort of lockout for this case
620		 * right now it is only used by devices so it should be alright.
621		 */
622		paddr_t paddr;
623
624		npages = end - start;  /* # of pages */
625
626		pgs = (struct vm_page *)uvm_km_zalloc(kernel_map,
627		    sizeof(struct vm_page) * npages);
628		if (pgs == NULL) {
629			printf("uvm_page_physload: can not malloc vm_page "
630			    "structs for segment\n");
631			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
632			return;
633		}
634
635		/* init phys_addr and free pages, XXX uvmexp.npages */
636		for (lcv = 0, paddr = ptoa(start); lcv < npages;
637		    lcv++, paddr += PAGE_SIZE) {
638			pgs[lcv].phys_addr = paddr;
639#ifdef __HAVE_VM_PAGE_MD
640			VM_MDPAGE_INIT(&pgs[lcv]);
641#endif
642			if (atop(paddr) >= avail_start &&
643			    atop(paddr) <= avail_end) {
644				if (flags & PHYSLOAD_DEVICE) {
645					atomic_setbits_int(&pgs[lcv].pg_flags,
646					    PG_DEV);
647					pgs[lcv].wire_count = 1;
648				} else {
649#if defined(VM_PHYSSEG_NOADD)
650		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
651#else
652					uvm_pagefree(&pgs[lcv]);
653#endif
654				}
655			}
656		}
657		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
658		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
659	} else {
660
661		/* gcc complains if these don't get init'd */
662		pgs = NULL;
663		npages = 0;
664
665	}
666
667	/*
668	 * now insert us in the proper place in vm_physmem[]
669	 */
670
671#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
672
673	/* random: put it at the end (easy!) */
674	ps = &vm_physmem[vm_nphysseg];
675
676#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
677
678	{
679		int x;
680		/* sort by address for binary search */
681		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
682			if (start < vm_physmem[lcv].start)
683				break;
684		ps = &vm_physmem[lcv];
685		/* move back other entries, if necessary ... */
686		for (x = vm_nphysseg ; x > lcv ; x--)
687			/* structure copy */
688			vm_physmem[x] = vm_physmem[x - 1];
689	}
690
691#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
692
693	{
694		int x;
695		/* sort by largest segment first */
696		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
697			if ((end - start) >
698			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
699				break;
700		ps = &vm_physmem[lcv];
701		/* move back other entries, if necessary ... */
702		for (x = vm_nphysseg ; x > lcv ; x--)
703			/* structure copy */
704			vm_physmem[x] = vm_physmem[x - 1];
705	}
706
707#else
708
709	panic("uvm_page_physload: unknown physseg strategy selected!");
710
711#endif
712
713	ps->start = start;
714	ps->end = end;
715	ps->avail_start = avail_start;
716	ps->avail_end = avail_end;
717	if (preload) {
718		ps->pgs = NULL;
719	} else {
720		ps->pgs = pgs;
721		ps->lastpg = pgs + npages - 1;
722	}
723	ps->free_list = free_list;
724	vm_nphysseg++;
725
726	/*
727	 * done!
728	 */
729
730	return;
731}
732
733#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
734
735void uvm_page_physdump(void); /* SHUT UP GCC */
736
737/* call from DDB */
738void
739uvm_page_physdump(void)
740{
741	int lcv;
742
743	printf("rehash: physical memory config [segs=%d of %d]:\n",
744				 vm_nphysseg, VM_PHYSSEG_MAX);
745	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
746		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
747		    (long long)vm_physmem[lcv].start,
748		    (long long)vm_physmem[lcv].end,
749		    (long long)vm_physmem[lcv].avail_start,
750		    (long long)vm_physmem[lcv].avail_end);
751	printf("STRATEGY = ");
752	switch (VM_PHYSSEG_STRAT) {
753	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
754	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
755	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
756	default: printf("<<UNKNOWN>>!!!!\n");
757	}
758}
759#endif
760
761void
762uvm_shutdown(void)
763{
764#ifdef UVM_SWAP_ENCRYPT
765	uvm_swap_finicrypt_all();
766#endif
767}
768
769/*
770 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
771 *
772 * => return null if no pages free
773 * => wake up pagedaemon if number of free pages drops below low water mark
774 * => if obj != NULL, obj must be locked (to put in hash)
775 * => if anon != NULL, anon must be locked (to put in anon)
776 * => only one of obj or anon can be non-null
777 * => caller must activate/deactivate page if it is not wired.
778 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
779 * => policy decision: it is more important to pull a page off of the
780 *	appropriate priority free list than it is to get a zero'd or
781 *	unknown contents page.  This is because we live with the
782 *	consequences of a bad free list decision for the entire
783 *	lifetime of the page, e.g. if the page comes from memory that
784 *	is slower to access.
785 */
786
787struct vm_page *
788uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
789    int flags, int strat, int free_list)
790{
791	struct pglist pgl;
792	int pmr_flags;
793	struct vm_page *pg;
794	boolean_t use_reserve;
795	UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
796
797	KASSERT(obj == NULL || anon == NULL);
798	KASSERT(off == trunc_page(off));
799
800	/*
801	 * check to see if we need to generate some free pages waking
802	 * the pagedaemon.
803	 */
804	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
805	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
806	     uvmexp.inactive < uvmexp.inactarg))
807		wakeup(&uvm.pagedaemon_proc);
808
809	/*
810	 * fail if any of these conditions is true:
811	 * [1]  there really are no free pages, or
812	 * [2]  only kernel "reserved" pages remain and
813	 *        the page isn't being allocated to a kernel object.
814	 * [3]  only pagedaemon "reserved" pages remain and
815	 *        the requestor isn't the pagedaemon.
816	 */
817
818	use_reserve = (flags & UVM_PGA_USERESERVE) ||
819		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
820	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
821	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
822	     !((curproc == uvm.pagedaemon_proc) ||
823	      (curproc == syncerproc))))
824		goto fail;
825
826	pmr_flags = UVM_PLA_NOWAIT;
827	if (flags & UVM_PGA_ZERO)
828		pmr_flags |= UVM_PLA_ZERO;
829	TAILQ_INIT(&pgl);
830	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
831		goto fail;
832	pg = TAILQ_FIRST(&pgl);
833	KASSERT(pg != NULL);
834	KASSERT(TAILQ_NEXT(pg, pageq) == NULL);
835
836	pg->offset = off;
837	pg->uobject = obj;
838	pg->uanon = anon;
839	KASSERT((pg->pg_flags & PG_DEV) == 0);
840	pg->pg_flags = PG_BUSY|PG_FAKE;
841	if (!(flags & UVM_PGA_ZERO))
842		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
843	if (anon) {
844		anon->an_page = pg;
845		atomic_setbits_int(&pg->pg_flags, PQ_ANON);
846	} else {
847		if (obj)
848			uvm_pageinsert(pg);
849	}
850#if defined(UVM_PAGE_TRKOWN)
851	pg->owner_tag = NULL;
852#endif
853	UVM_PAGE_OWN(pg, "new alloc");
854
855	UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
856	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
857	return(pg);
858
859 fail:
860	UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
861	return (NULL);
862}
863
864/*
865 * uvm_pagerealloc: reallocate a page from one object to another
866 *
867 * => both objects must be locked
868 */
869
870void
871uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
872{
873
874	UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
875
876	/*
877	 * remove it from the old object
878	 */
879
880	if (pg->uobject) {
881		uvm_pageremove(pg);
882	}
883
884	/*
885	 * put it in the new object
886	 */
887
888	if (newobj) {
889		pg->uobject = newobj;
890		pg->offset = newoff;
891		pg->pg_version++;
892		uvm_pageinsert(pg);
893	}
894}
895
896
897/*
898 * uvm_pagefree: free page
899 *
900 * => erase page's identity (i.e. remove from object)
901 * => put page on free list
902 * => caller must lock owning object (either anon or uvm_object)
903 * => caller must lock page queues
904 * => assumes all valid mappings of pg are gone
905 */
906
907void
908uvm_pagefree(struct vm_page *pg)
909{
910	struct pglist pgl;
911	int saved_loan_count = pg->loan_count;
912	UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
913
914#ifdef DEBUG
915	if (pg->uobject == (void *)0xdeadbeef &&
916	    pg->uanon == (void *)0xdeadbeef) {
917		panic("uvm_pagefree: freeing free page %p", pg);
918	}
919#endif
920
921	UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
922	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
923	KASSERT((pg->pg_flags & PG_DEV) == 0);
924
925	/*
926	 * if the page was an object page (and thus "TABLED"), remove it
927	 * from the object.
928	 */
929
930	if (pg->pg_flags & PG_TABLED) {
931
932		/*
933		 * if the object page is on loan we are going to drop ownership.
934		 * it is possible that an anon will take over as owner for this
935		 * page later on.   the anon will want a !PG_CLEAN page so that
936		 * it knows it needs to allocate swap if it wants to page the
937		 * page out.
938		 */
939
940		/* in case an anon takes over */
941		if (saved_loan_count)
942			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
943		uvm_pageremove(pg);
944
945		/*
946		 * if our page was on loan, then we just lost control over it
947		 * (in fact, if it was loaned to an anon, the anon may have
948		 * already taken over ownership of the page by now and thus
949		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
950		 * return (when the last loan is dropped, then the page can be
951		 * freed by whatever was holding the last loan).
952		 */
953
954		if (saved_loan_count)
955			return;
956	} else if (saved_loan_count && pg->uanon) {
957		/*
958		 * if our page is owned by an anon and is loaned out to the
959		 * kernel then we just want to drop ownership and return.
960		 * the kernel must free the page when all its loans clear ...
961		 * note that the kernel can't change the loan status of our
962		 * page as long as we are holding PQ lock.
963		 */
964		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
965		pg->uanon->an_page = NULL;
966		pg->uanon = NULL;
967		return;
968	}
969	KASSERT(saved_loan_count == 0);
970
971	/*
972	 * now remove the page from the queues
973	 */
974
975	if (pg->pg_flags & PQ_ACTIVE) {
976		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
977		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
978		uvmexp.active--;
979	}
980	if (pg->pg_flags & PQ_INACTIVE) {
981		if (pg->pg_flags & PQ_SWAPBACKED)
982			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
983		else
984			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
985		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
986		uvmexp.inactive--;
987	}
988
989	/*
990	 * if the page was wired, unwire it now.
991	 */
992
993	if (pg->wire_count) {
994		pg->wire_count = 0;
995		uvmexp.wired--;
996	}
997	if (pg->uanon) {
998		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
999		pg->uanon->an_page = NULL;
1000		pg->uanon = NULL;
1001#ifdef UBC
1002		uvm_pgcnt_anon--;
1003#endif
1004	}
1005
1006	/*
1007	 * Clean page state bits.
1008	 */
1009	atomic_clearbits_int(&pg->pg_flags, PG_ZERO|PG_FAKE|PG_BUSY|
1010	    PG_RELEASED|PG_CLEAN|PG_CLEANCHK|PQ_ENCRYPT);
1011	/*
1012	 * Pmap flag cleaning.
1013	 * XXX: Shouldn't pmap do this?
1014	 */
1015	atomic_clearbits_int(&pg->pg_flags,
1016	    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
1017
1018#if defined(DIAGNOSTIC)
1019	if (pg->pg_flags != 0) {
1020		panic("uvm_pagefree: expected page %p pg_flags to be 0\n"
1021		    "uvm_pagefree: instead of pg->pg_flags = %x\n",
1022		    VM_PAGE_TO_PHYS(pg), pg->pg_flags);
1023	}
1024#endif
1025#ifdef DEBUG
1026	pg->uobject = (void *)0xdeadbeef;
1027	pg->offset = 0xdeadbeef;
1028	pg->uanon = (void *)0xdeadbeef;
1029#endif
1030	TAILQ_INIT(&pgl);
1031	TAILQ_INSERT_HEAD(&pgl, pg, pageq);
1032	uvm_pmr_freepageq(&pgl);
1033
1034	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1035		uvm.page_idle_zero = vm_page_zero_enable;
1036}
1037
1038/*
1039 * uvm_page_unbusy: unbusy an array of pages.
1040 *
1041 * => pages must either all belong to the same object, or all belong to anons.
1042 * => if pages are object-owned, object must be locked.
1043 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1044 */
1045
1046void
1047uvm_page_unbusy(struct vm_page **pgs, int npgs)
1048{
1049	struct vm_page *pg;
1050	struct uvm_object *uobj;
1051	int i;
1052	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1053
1054	for (i = 0; i < npgs; i++) {
1055		pg = pgs[i];
1056
1057		if (pg == NULL || pg == PGO_DONTCARE) {
1058			continue;
1059		}
1060		if (pg->pg_flags & PG_WANTED) {
1061			wakeup(pg);
1062		}
1063		if (pg->pg_flags & PG_RELEASED) {
1064			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1065			uobj = pg->uobject;
1066			if (uobj != NULL) {
1067				uvm_lock_pageq();
1068				pmap_page_protect(pg, VM_PROT_NONE);
1069				/* XXX won't happen right now */
1070				if (pg->pg_flags & PQ_ANON)
1071					uao_dropswap(uobj,
1072					    pg->offset >> PAGE_SHIFT);
1073				uvm_pagefree(pg);
1074				uvm_unlock_pageq();
1075			} else {
1076				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1077				UVM_PAGE_OWN(pg, NULL);
1078				uvm_anfree(pg->uanon);
1079			}
1080		} else {
1081			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1082			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1083			UVM_PAGE_OWN(pg, NULL);
1084		}
1085	}
1086}
1087
1088#if defined(UVM_PAGE_TRKOWN)
1089/*
1090 * uvm_page_own: set or release page ownership
1091 *
1092 * => this is a debugging function that keeps track of who sets PG_BUSY
1093 *	and where they do it.   it can be used to track down problems
1094 *	such a process setting "PG_BUSY" and never releasing it.
1095 * => page's object [if any] must be locked
1096 * => if "tag" is NULL then we are releasing page ownership
1097 */
1098void
1099uvm_page_own(struct vm_page *pg, char *tag)
1100{
1101	/* gain ownership? */
1102	if (tag) {
1103		if (pg->owner_tag) {
1104			printf("uvm_page_own: page %p already owned "
1105			    "by proc %d [%s]\n", pg,
1106			     pg->owner, pg->owner_tag);
1107			panic("uvm_page_own");
1108		}
1109		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1110		pg->owner_tag = tag;
1111		return;
1112	}
1113
1114	/* drop ownership */
1115	if (pg->owner_tag == NULL) {
1116		printf("uvm_page_own: dropping ownership of an non-owned "
1117		    "page (%p)\n", pg);
1118		panic("uvm_page_own");
1119	}
1120	pg->owner_tag = NULL;
1121	return;
1122}
1123#endif
1124
1125/*
1126 * uvm_pageidlezero: zero free pages while the system is idle.
1127 *
1128 * => we do at least one iteration per call, if we are below the target.
1129 * => we loop until we either reach the target or whichqs indicates that
1130 *	there is a process ready to run.
1131 */
1132void
1133uvm_pageidlezero(void)
1134{
1135#if 0 /* Disabled for now. */
1136	struct vm_page *pg;
1137	struct pgfreelist *pgfl;
1138	int free_list;
1139	UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
1140
1141	do {
1142		uvm_lock_fpageq();
1143
1144		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1145			uvm.page_idle_zero = FALSE;
1146			uvm_unlock_fpageq();
1147			return;
1148		}
1149
1150		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1151			pgfl = &uvm.page_free[free_list];
1152			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1153			    PGFL_UNKNOWN])) != NULL)
1154				break;
1155		}
1156
1157		if (pg == NULL) {
1158			/*
1159			 * No non-zero'd pages; don't bother trying again
1160			 * until we know we have non-zero'd pages free.
1161			 */
1162			uvm.page_idle_zero = FALSE;
1163			uvm_unlock_fpageq();
1164			return;
1165		}
1166
1167		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1168		uvmexp.free--;
1169		uvm_unlock_fpageq();
1170
1171#ifdef PMAP_PAGEIDLEZERO
1172		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1173			/*
1174			 * The machine-dependent code detected some
1175			 * reason for us to abort zeroing pages,
1176			 * probably because there is a process now
1177			 * ready to run.
1178			 */
1179			uvm_lock_fpageq();
1180			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1181			    pg, pageq);
1182			uvmexp.free++;
1183			uvmexp.zeroaborts++;
1184			uvm_unlock_fpageq();
1185			return;
1186		}
1187#else
1188		/*
1189		 * XXX This will toast the cache unless the pmap_zero_page()
1190		 * XXX implementation does uncached access.
1191		 */
1192		pmap_zero_page(pg);
1193#endif
1194		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1195
1196		uvm_lock_fpageq();
1197		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1198		uvmexp.free++;
1199		uvmexp.zeropages++;
1200		uvm_unlock_fpageq();
1201	} while (curcpu_is_idle());
1202#endif /* 0 */
1203}
1204
1205/*
1206 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1207 */
1208
1209#if VM_PHYSSEG_MAX > 1
1210/*
1211 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1212 */
1213int
1214vm_physseg_find(paddr_t pframe, int *offp)
1215{
1216
1217#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1218	/* binary search for it */
1219	int	start, len, try;
1220
1221	/*
1222	 * if try is too large (thus target is less than than try) we reduce
1223	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1224	 *
1225	 * if the try is too small (thus target is greater than try) then
1226	 * we set the new start to be (try + 1).   this means we need to
1227	 * reduce the length to (round(len/2) - 1).
1228	 *
1229	 * note "adjust" below which takes advantage of the fact that
1230	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1231	 * for any value of len we may have
1232	 */
1233
1234	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1235		try = start + (len / 2);	/* try in the middle */
1236
1237		/* start past our try? */
1238		if (pframe >= vm_physmem[try].start) {
1239			/* was try correct? */
1240			if (pframe < vm_physmem[try].end) {
1241				if (offp)
1242					*offp = pframe - vm_physmem[try].start;
1243				return(try);            /* got it */
1244			}
1245			start = try + 1;	/* next time, start here */
1246			len--;			/* "adjust" */
1247		} else {
1248			/*
1249			 * pframe before try, just reduce length of
1250			 * region, done in "for" loop
1251			 */
1252		}
1253	}
1254	return(-1);
1255
1256#else
1257	/* linear search for it */
1258	int	lcv;
1259
1260	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1261		if (pframe >= vm_physmem[lcv].start &&
1262		    pframe < vm_physmem[lcv].end) {
1263			if (offp)
1264				*offp = pframe - vm_physmem[lcv].start;
1265			return(lcv);		   /* got it */
1266		}
1267	}
1268	return(-1);
1269
1270#endif
1271}
1272
1273/*
1274 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1275 * back from an I/O mapping (ugh!).   used in some MD code as well.
1276 */
1277struct vm_page *
1278PHYS_TO_VM_PAGE(paddr_t pa)
1279{
1280	paddr_t pf = atop(pa);
1281	int	off;
1282	int	psi;
1283
1284	psi = vm_physseg_find(pf, &off);
1285
1286	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1287}
1288#endif /* VM_PHYSSEG_MAX > 1 */
1289
1290/*
1291 * uvm_pagelookup: look up a page
1292 *
1293 * => caller should lock object to keep someone from pulling the page
1294 *	out from under it
1295 */
1296struct vm_page *
1297uvm_pagelookup(struct uvm_object *obj, voff_t off)
1298{
1299	struct vm_page find;
1300
1301	find.offset = off;
1302	return (RB_FIND(uobj_pgs, &obj->memt, &find));
1303}
1304
1305/*
1306 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1307 *
1308 * => caller must lock page queues
1309 */
1310void
1311uvm_pagewire(struct vm_page *pg)
1312{
1313	if (pg->wire_count == 0) {
1314		if (pg->pg_flags & PQ_ACTIVE) {
1315			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1316			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1317			uvmexp.active--;
1318		}
1319		if (pg->pg_flags & PQ_INACTIVE) {
1320			if (pg->pg_flags & PQ_SWAPBACKED)
1321				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1322			else
1323				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1324			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1325			uvmexp.inactive--;
1326		}
1327		uvmexp.wired++;
1328	}
1329	pg->wire_count++;
1330}
1331
1332/*
1333 * uvm_pageunwire: unwire the page.
1334 *
1335 * => activate if wire count goes to zero.
1336 * => caller must lock page queues
1337 */
1338void
1339uvm_pageunwire(struct vm_page *pg)
1340{
1341	pg->wire_count--;
1342	if (pg->wire_count == 0) {
1343		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1344		uvmexp.active++;
1345		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1346		uvmexp.wired--;
1347	}
1348}
1349
1350/*
1351 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1352 *
1353 * => caller must lock page queues
1354 * => caller must check to make sure page is not wired
1355 * => object that page belongs to must be locked (so we can adjust pg->flags)
1356 */
1357void
1358uvm_pagedeactivate(struct vm_page *pg)
1359{
1360	pmap_page_protect(pg, VM_PROT_NONE);
1361
1362	if (pg->pg_flags & PQ_ACTIVE) {
1363		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1364		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1365		uvmexp.active--;
1366	}
1367	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1368		KASSERT(pg->wire_count == 0);
1369		if (pg->pg_flags & PQ_SWAPBACKED)
1370			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1371		else
1372			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1373		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1374		uvmexp.inactive++;
1375		pmap_clear_reference(pg);
1376		/*
1377		 * update the "clean" bit.  this isn't 100%
1378		 * accurate, and doesn't have to be.  we'll
1379		 * re-sync it after we zap all mappings when
1380		 * scanning the inactive list.
1381		 */
1382		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1383		    pmap_is_modified(pg))
1384			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1385	}
1386}
1387
1388/*
1389 * uvm_pageactivate: activate page
1390 *
1391 * => caller must lock page queues
1392 */
1393void
1394uvm_pageactivate(struct vm_page *pg)
1395{
1396	if (pg->pg_flags & PQ_INACTIVE) {
1397		if (pg->pg_flags & PQ_SWAPBACKED)
1398			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1399		else
1400			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1401		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1402		uvmexp.inactive--;
1403	}
1404	if (pg->wire_count == 0) {
1405
1406		/*
1407		 * if page is already active, remove it from list so we
1408		 * can put it at tail.  if it wasn't active, then mark
1409		 * it active and bump active count
1410		 */
1411		if (pg->pg_flags & PQ_ACTIVE)
1412			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1413		else {
1414			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1415			uvmexp.active++;
1416		}
1417
1418		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1419	}
1420}
1421
1422/*
1423 * uvm_pagezero: zero fill a page
1424 *
1425 * => if page is part of an object then the object should be locked
1426 *	to protect pg->flags.
1427 */
1428void
1429uvm_pagezero(struct vm_page *pg)
1430{
1431	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1432	pmap_zero_page(pg);
1433}
1434
1435/*
1436 * uvm_pagecopy: copy a page
1437 *
1438 * => if page is part of an object then the object should be locked
1439 *	to protect pg->flags.
1440 */
1441void
1442uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1443{
1444	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1445	pmap_copy_page(src, dst);
1446}
1447
1448/*
1449 * uvm_page_lookup_freelist: look up the free list for the specified page
1450 */
1451int
1452uvm_page_lookup_freelist(struct vm_page *pg)
1453{
1454#if VM_PHYSSEG_MAX == 1
1455	return (vm_physmem[0].free_list);
1456#else
1457	int lcv;
1458
1459	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1460	KASSERT(lcv != -1);
1461	return (vm_physmem[lcv].free_list);
1462#endif
1463}
1464