uvm_page.c revision 1.81
1/*	$OpenBSD: uvm_page.c,v 1.81 2009/06/01 17:42:33 ariane Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/malloc.h>
77#include <sys/sched.h>
78#include <sys/kernel.h>
79#include <sys/vnode.h>
80#include <sys/mount.h>
81
82#include <uvm/uvm.h>
83
84/*
85 * global vars... XXXCDC: move to uvm. structure.
86 */
87
88/*
89 * physical memory config is stored in vm_physmem.
90 */
91
92struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
93int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
94
95/*
96 * Some supported CPUs in a given architecture don't support all
97 * of the things necessary to do idle page zero'ing efficiently.
98 * We therefore provide a way to disable it from machdep code here.
99 */
100
101/*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105boolean_t vm_page_zero_enable = FALSE;
106
107/*
108 * local variables
109 */
110
111/*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes.  The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117static vaddr_t      virtual_space_start;
118static vaddr_t      virtual_space_end;
119
120/*
121 * we use a hash table with only one bucket during bootup.  we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126static struct pglist uvm_bootbucket;
127
128/*
129 * History
130 */
131UVMHIST_DECL(pghist);
132
133/*
134 * local prototypes
135 */
136
137static void uvm_pageinsert(struct vm_page *);
138static void uvm_pageremove(struct vm_page *);
139
140/*
141 * inline functions
142 */
143
144/*
145 * uvm_pageinsert: insert a page in the object and the hash table
146 *
147 * => caller must lock object
148 * => caller must lock page queues
149 * => call should have already set pg's object and offset pointers
150 *    and bumped the version counter
151 */
152
153__inline static void
154uvm_pageinsert(struct vm_page *pg)
155{
156	struct pglist *buck;
157	UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
158
159	KASSERT((pg->pg_flags & PG_TABLED) == 0);
160	mtx_enter(&uvm.hashlock);
161	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
162	TAILQ_INSERT_TAIL(buck, pg, fq.queues.hashq);	/* put in hash */
163	mtx_leave(&uvm.hashlock);
164
165	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg,
166	    fq.queues.listq); /* put in object */
167	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
168	pg->uobject->uo_npages++;
169}
170
171/*
172 * uvm_page_remove: remove page from object and hash
173 *
174 * => caller must lock object
175 * => caller must lock page queues
176 */
177
178static __inline void
179uvm_pageremove(struct vm_page *pg)
180{
181	struct pglist *buck;
182	UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
183
184	KASSERT(pg->pg_flags & PG_TABLED);
185	mtx_enter(&uvm.hashlock);
186	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
187	TAILQ_REMOVE(buck, pg, fq.queues.hashq);
188	mtx_leave(&uvm.hashlock);
189
190#ifdef UBC
191	if (pg->uobject->pgops == &uvm_vnodeops) {
192		uvm_pgcnt_vnode--;
193	}
194#endif
195
196	/* object should be locked */
197	TAILQ_REMOVE(&pg->uobject->memq, pg, fq.queues.listq);
198
199	atomic_clearbits_int(&pg->pg_flags, PG_TABLED|PQ_AOBJ);
200	pg->uobject->uo_npages--;
201	pg->uobject = NULL;
202	pg->pg_version++;
203}
204
205/*
206 * uvm_page_init: init the page system.   called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211void
212uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
213{
214	vsize_t freepages, pagecount, n;
215	vm_page_t pagearray;
216	int lcv, i;
217	paddr_t paddr;
218#if defined(UVMHIST)
219	static struct uvm_history_ent pghistbuf[100];
220#endif
221
222	UVMHIST_FUNC("uvm_page_init");
223	UVMHIST_INIT_STATIC(pghist, pghistbuf);
224	UVMHIST_CALLED(pghist);
225
226	/*
227	 * init the page queues and page queue locks
228	 */
229
230	TAILQ_INIT(&uvm.page_active);
231	TAILQ_INIT(&uvm.page_inactive_swp);
232	TAILQ_INIT(&uvm.page_inactive_obj);
233	simple_lock_init(&uvm.pageqlock);
234	mtx_init(&uvm.fpageqlock, IPL_VM);
235	uvm_pmr_init();
236
237	/*
238	 * init the <obj,offset> => <page> hash table.  for now
239	 * we just have one bucket (the bootstrap bucket).  later on we
240	 * will allocate new buckets as we dynamically resize the hash table.
241	 */
242
243	uvm.page_nhash = 1;			/* 1 bucket */
244	uvm.page_hashmask = 0;			/* mask for hash function */
245	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
246	TAILQ_INIT(uvm.page_hash);		/* init hash table */
247	mtx_init(&uvm.hashlock, IPL_VM);	/* init hash table lock */
248
249	/*
250	 * allocate vm_page structures.
251	 */
252
253	/*
254	 * sanity check:
255	 * before calling this function the MD code is expected to register
256	 * some free RAM with the uvm_page_physload() function.   our job
257	 * now is to allocate vm_page structures for this memory.
258	 */
259
260	if (vm_nphysseg == 0)
261		panic("uvm_page_bootstrap: no memory pre-allocated");
262
263	/*
264	 * first calculate the number of free pages...
265	 *
266	 * note that we use start/end rather than avail_start/avail_end.
267	 * this allows us to allocate extra vm_page structures in case we
268	 * want to return some memory to the pool after booting.
269	 */
270
271	freepages = 0;
272	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
273		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
274
275	/*
276	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
277	 * use.   for each page of memory we use we need a vm_page structure.
278	 * thus, the total number of pages we can use is the total size of
279	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
280	 * structure.   we add one to freepages as a fudge factor to avoid
281	 * truncation errors (since we can only allocate in terms of whole
282	 * pages).
283	 */
284
285	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
286	    (PAGE_SIZE + sizeof(struct vm_page));
287	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
288	    sizeof(struct vm_page));
289	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
290
291	/*
292	 * init the vm_page structures and put them in the correct place.
293	 */
294
295	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
296		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
297		if (n > pagecount) {
298			printf("uvm_page_init: lost %ld page(s) in init\n",
299			    (long)(n - pagecount));
300			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
301			/* n = pagecount; */
302		}
303
304		/* set up page array pointers */
305		vm_physmem[lcv].pgs = pagearray;
306		pagearray += n;
307		pagecount -= n;
308		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
309
310		/* init and free vm_pages (we've already zeroed them) */
311		paddr = ptoa(vm_physmem[lcv].start);
312		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
313			vm_physmem[lcv].pgs[i].phys_addr = paddr;
314#ifdef __HAVE_VM_PAGE_MD
315			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
316#endif
317			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
318			    atop(paddr) <= vm_physmem[lcv].avail_end) {
319				uvmexp.npages++;
320			}
321		}
322
323		/* add pages to free pool */
324		uvm_pmr_freepages(&vm_physmem[lcv].pgs[
325		    vm_physmem[lcv].avail_start - vm_physmem[lcv].start],
326		    vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
327	}
328
329	/*
330	 * pass up the values of virtual_space_start and
331	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
332	 * layers of the VM.
333	 */
334
335	*kvm_startp = round_page(virtual_space_start);
336	*kvm_endp = trunc_page(virtual_space_end);
337
338	/*
339	 * init locks for kernel threads
340	 */
341	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
342
343	/*
344	 * init reserve thresholds
345	 * XXXCDC - values may need adjusting
346	 */
347	uvmexp.reserve_pagedaemon = 4;
348	uvmexp.reserve_kernel = 6;
349	uvmexp.anonminpct = 10;
350	uvmexp.vnodeminpct = 10;
351	uvmexp.vtextminpct = 5;
352	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
353	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
354	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
355
356  	/*
357	 * determine if we should zero pages in the idle loop.
358	 */
359
360	uvm.page_idle_zero = vm_page_zero_enable;
361
362	/*
363	 * done!
364	 */
365
366	uvm.page_init_done = TRUE;
367}
368
369/*
370 * uvm_setpagesize: set the page size
371 *
372 * => sets page_shift and page_mask from uvmexp.pagesize.
373 */
374
375void
376uvm_setpagesize(void)
377{
378	if (uvmexp.pagesize == 0)
379		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
380	uvmexp.pagemask = uvmexp.pagesize - 1;
381	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
382		panic("uvm_setpagesize: page size not a power of two");
383	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
384		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
385			break;
386}
387
388/*
389 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
390 */
391
392vaddr_t
393uvm_pageboot_alloc(vsize_t size)
394{
395#if defined(PMAP_STEAL_MEMORY)
396	vaddr_t addr;
397
398	/*
399	 * defer bootstrap allocation to MD code (it may want to allocate
400	 * from a direct-mapped segment).  pmap_steal_memory should round
401	 * off virtual_space_start/virtual_space_end.
402	 */
403
404	addr = pmap_steal_memory(size, &virtual_space_start,
405	    &virtual_space_end);
406
407	return(addr);
408
409#else /* !PMAP_STEAL_MEMORY */
410
411	static boolean_t initialized = FALSE;
412	vaddr_t addr, vaddr;
413	paddr_t paddr;
414
415	/* round to page size */
416	size = round_page(size);
417
418	/*
419	 * on first call to this function, initialize ourselves.
420	 */
421	if (initialized == FALSE) {
422		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
423
424		/* round it the way we like it */
425		virtual_space_start = round_page(virtual_space_start);
426		virtual_space_end = trunc_page(virtual_space_end);
427
428		initialized = TRUE;
429	}
430
431	/*
432	 * allocate virtual memory for this request
433	 */
434	if (virtual_space_start == virtual_space_end ||
435	    (virtual_space_end - virtual_space_start) < size)
436		panic("uvm_pageboot_alloc: out of virtual space");
437
438	addr = virtual_space_start;
439
440#ifdef PMAP_GROWKERNEL
441	/*
442	 * If the kernel pmap can't map the requested space,
443	 * then allocate more resources for it.
444	 */
445	if (uvm_maxkaddr < (addr + size)) {
446		uvm_maxkaddr = pmap_growkernel(addr + size);
447		if (uvm_maxkaddr < (addr + size))
448			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
449	}
450#endif
451
452	virtual_space_start += size;
453
454	/*
455	 * allocate and mapin physical pages to back new virtual pages
456	 */
457
458	for (vaddr = round_page(addr) ; vaddr < addr + size ;
459	    vaddr += PAGE_SIZE) {
460
461		if (!uvm_page_physget(&paddr))
462			panic("uvm_pageboot_alloc: out of memory");
463
464		/*
465		 * Note this memory is no longer managed, so using
466		 * pmap_kenter is safe.
467		 */
468		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
469	}
470	pmap_update(pmap_kernel());
471	return(addr);
472#endif	/* PMAP_STEAL_MEMORY */
473}
474
475#if !defined(PMAP_STEAL_MEMORY)
476/*
477 * uvm_page_physget: "steal" one page from the vm_physmem structure.
478 *
479 * => attempt to allocate it off the end of a segment in which the "avail"
480 *    values match the start/end values.   if we can't do that, then we
481 *    will advance both values (making them equal, and removing some
482 *    vm_page structures from the non-avail area).
483 * => return false if out of memory.
484 */
485
486/* subroutine: try to allocate from memory chunks on the specified freelist */
487boolean_t uvm_page_physget_freelist(paddr_t *, int);
488
489boolean_t
490uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
491{
492	int lcv, x;
493	UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
494
495	/* pass 1: try allocating from a matching end */
496#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
497	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
498	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
499#else
500	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
501#endif
502	{
503
504		if (uvm.page_init_done == TRUE)
505			panic("uvm_page_physget: called _after_ bootstrap");
506
507		if (vm_physmem[lcv].free_list != freelist)
508			continue;
509
510		/* try from front */
511		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
512		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
513			*paddrp = ptoa(vm_physmem[lcv].avail_start);
514			vm_physmem[lcv].avail_start++;
515			vm_physmem[lcv].start++;
516			/* nothing left?   nuke it */
517			if (vm_physmem[lcv].avail_start ==
518			    vm_physmem[lcv].end) {
519				if (vm_nphysseg == 1)
520				    panic("uvm_page_physget: out of memory!");
521				vm_nphysseg--;
522				for (x = lcv ; x < vm_nphysseg ; x++)
523					/* structure copy */
524					vm_physmem[x] = vm_physmem[x+1];
525			}
526			return (TRUE);
527		}
528
529		/* try from rear */
530		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
531		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
532			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
533			vm_physmem[lcv].avail_end--;
534			vm_physmem[lcv].end--;
535			/* nothing left?   nuke it */
536			if (vm_physmem[lcv].avail_end ==
537			    vm_physmem[lcv].start) {
538				if (vm_nphysseg == 1)
539				    panic("uvm_page_physget: out of memory!");
540				vm_nphysseg--;
541				for (x = lcv ; x < vm_nphysseg ; x++)
542					/* structure copy */
543					vm_physmem[x] = vm_physmem[x+1];
544			}
545			return (TRUE);
546		}
547	}
548
549	/* pass2: forget about matching ends, just allocate something */
550#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
551	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
552	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
553#else
554	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
555#endif
556	{
557
558		/* any room in this bank? */
559		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
560			continue;  /* nope */
561
562		*paddrp = ptoa(vm_physmem[lcv].avail_start);
563		vm_physmem[lcv].avail_start++;
564		/* truncate! */
565		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
566
567		/* nothing left?   nuke it */
568		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
569			if (vm_nphysseg == 1)
570				panic("uvm_page_physget: out of memory!");
571			vm_nphysseg--;
572			for (x = lcv ; x < vm_nphysseg ; x++)
573				/* structure copy */
574				vm_physmem[x] = vm_physmem[x+1];
575		}
576		return (TRUE);
577	}
578
579	return (FALSE);        /* whoops! */
580}
581
582boolean_t
583uvm_page_physget(paddr_t *paddrp)
584{
585	int i;
586	UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
587
588	/* try in the order of freelist preference */
589	for (i = 0; i < VM_NFREELIST; i++)
590		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
591			return (TRUE);
592	return (FALSE);
593}
594#endif /* PMAP_STEAL_MEMORY */
595
596/*
597 * uvm_page_physload: load physical memory into VM system
598 *
599 * => all args are PFs
600 * => all pages in start/end get vm_page structures
601 * => areas marked by avail_start/avail_end get added to the free page pool
602 * => we are limited to VM_PHYSSEG_MAX physical memory segments
603 */
604
605void
606uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
607    paddr_t avail_end, int free_list)
608{
609	int preload, lcv;
610	psize_t npages;
611	struct vm_page *pgs;
612	struct vm_physseg *ps;
613
614	if (uvmexp.pagesize == 0)
615		panic("uvm_page_physload: page size not set!");
616
617	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
618		panic("uvm_page_physload: bad free list %d", free_list);
619
620	if (start >= end)
621		panic("uvm_page_physload: start >= end");
622
623	/*
624	 * do we have room?
625	 */
626	if (vm_nphysseg == VM_PHYSSEG_MAX) {
627		printf("uvm_page_physload: unable to load physical memory "
628		    "segment\n");
629		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
630		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
631		printf("\tincrease VM_PHYSSEG_MAX\n");
632		return;
633	}
634
635	/*
636	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
637	 * called yet, so malloc is not available).
638	 */
639	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
640		if (vm_physmem[lcv].pgs)
641			break;
642	}
643	preload = (lcv == vm_nphysseg);
644
645	/*
646	 * if VM is already running, attempt to malloc() vm_page structures
647	 */
648	if (!preload) {
649#if defined(VM_PHYSSEG_NOADD)
650		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
651#else
652		/* XXXCDC: need some sort of lockout for this case */
653		paddr_t paddr;
654		npages = end - start;  /* # of pages */
655		pgs = (vm_page *)uvm_km_zalloc(kernel_map,
656		    sizeof(struct vm_page) * npages);
657		if (pgs == NULL) {
658			printf("uvm_page_physload: can not malloc vm_page "
659			    "structs for segment\n");
660			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
661			return;
662		}
663		/* init phys_addr and free_list, and free pages */
664		for (lcv = 0, paddr = ptoa(start) ;
665				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
666			pgs[lcv].phys_addr = paddr;
667			pgs[lcv].free_list = free_list;
668			if (atop(paddr) >= avail_start &&
669			    atop(paddr) <= avail_end)
670				uvm_pagefree(&pgs[lcv]);
671		}
672		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
673		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
674#endif
675	} else {
676
677		/* gcc complains if these don't get init'd */
678		pgs = NULL;
679		npages = 0;
680
681	}
682
683	/*
684	 * now insert us in the proper place in vm_physmem[]
685	 */
686
687#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
688
689	/* random: put it at the end (easy!) */
690	ps = &vm_physmem[vm_nphysseg];
691
692#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
693
694	{
695		int x;
696		/* sort by address for binary search */
697		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
698			if (start < vm_physmem[lcv].start)
699				break;
700		ps = &vm_physmem[lcv];
701		/* move back other entries, if necessary ... */
702		for (x = vm_nphysseg ; x > lcv ; x--)
703			/* structure copy */
704			vm_physmem[x] = vm_physmem[x - 1];
705	}
706
707#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
708
709	{
710		int x;
711		/* sort by largest segment first */
712		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
713			if ((end - start) >
714			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
715				break;
716		ps = &vm_physmem[lcv];
717		/* move back other entries, if necessary ... */
718		for (x = vm_nphysseg ; x > lcv ; x--)
719			/* structure copy */
720			vm_physmem[x] = vm_physmem[x - 1];
721	}
722
723#else
724
725	panic("uvm_page_physload: unknown physseg strategy selected!");
726
727#endif
728
729	ps->start = start;
730	ps->end = end;
731	ps->avail_start = avail_start;
732	ps->avail_end = avail_end;
733	if (preload) {
734		ps->pgs = NULL;
735	} else {
736		ps->pgs = pgs;
737		ps->lastpg = pgs + npages - 1;
738	}
739	ps->free_list = free_list;
740	vm_nphysseg++;
741
742	/*
743	 * done!
744	 */
745
746	if (!preload)
747		uvm_page_rehash();
748
749	return;
750}
751
752/*
753 * uvm_page_rehash: reallocate hash table based on number of free pages.
754 */
755
756void
757uvm_page_rehash(void)
758{
759	int freepages, lcv, bucketcount, oldcount;
760	struct pglist *newbuckets, *oldbuckets;
761	struct vm_page *pg;
762	size_t newsize, oldsize;
763
764	/*
765	 * compute number of pages that can go in the free pool
766	 */
767
768	freepages = 0;
769	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
770		freepages +=
771		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
772
773	/*
774	 * compute number of buckets needed for this number of pages
775	 */
776
777	bucketcount = 1;
778	while (bucketcount < freepages)
779		bucketcount = bucketcount * 2;
780
781	/*
782	 * compute the size of the current table and new table.
783	 */
784
785	oldbuckets = uvm.page_hash;
786	oldcount = uvm.page_nhash;
787	oldsize = round_page(sizeof(struct pglist) * oldcount);
788	newsize = round_page(sizeof(struct pglist) * bucketcount);
789
790	/*
791	 * allocate the new buckets
792	 */
793
794	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
795	if (newbuckets == NULL) {
796		printf("uvm_page_physrehash: WARNING: could not grow page "
797		    "hash table\n");
798		return;
799	}
800	for (lcv = 0 ; lcv < bucketcount ; lcv++)
801		TAILQ_INIT(&newbuckets[lcv]);
802
803	/*
804	 * now replace the old buckets with the new ones and rehash everything
805	 */
806
807	mtx_enter(&uvm.hashlock);
808	uvm.page_hash = newbuckets;
809	uvm.page_nhash = bucketcount;
810	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
811
812	/* ... and rehash */
813	for (lcv = 0 ; lcv < oldcount ; lcv++) {
814		while ((pg = TAILQ_FIRST(&oldbuckets[lcv])) != NULL) {
815			TAILQ_REMOVE(&oldbuckets[lcv], pg, fq.queues.hashq);
816			TAILQ_INSERT_TAIL(
817			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
818			  pg, fq.queues.hashq);
819		}
820	}
821	mtx_leave(&uvm.hashlock);
822
823	/*
824	 * free old bucket array if is not the boot-time table
825	 */
826
827	if (oldbuckets != &uvm_bootbucket)
828		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
829
830	/*
831	 * done
832	 */
833	return;
834}
835
836
837#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
838
839void uvm_page_physdump(void); /* SHUT UP GCC */
840
841/* call from DDB */
842void
843uvm_page_physdump(void)
844{
845	int lcv;
846
847	printf("rehash: physical memory config [segs=%d of %d]:\n",
848				 vm_nphysseg, VM_PHYSSEG_MAX);
849	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
850		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
851		    (long long)vm_physmem[lcv].start,
852		    (long long)vm_physmem[lcv].end,
853		    (long long)vm_physmem[lcv].avail_start,
854		    (long long)vm_physmem[lcv].avail_end);
855	printf("STRATEGY = ");
856	switch (VM_PHYSSEG_STRAT) {
857	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
858	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
859	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
860	default: printf("<<UNKNOWN>>!!!!\n");
861	}
862	printf("number of buckets = %d\n", uvm.page_nhash);
863}
864#endif
865
866void
867uvm_shutdown(void)
868{
869#ifdef UVM_SWAP_ENCRYPT
870	uvm_swap_finicrypt_all();
871#endif
872}
873
874/*
875 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
876 *
877 * => return null if no pages free
878 * => wake up pagedaemon if number of free pages drops below low water mark
879 * => if obj != NULL, obj must be locked (to put in hash)
880 * => if anon != NULL, anon must be locked (to put in anon)
881 * => only one of obj or anon can be non-null
882 * => caller must activate/deactivate page if it is not wired.
883 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
884 * => policy decision: it is more important to pull a page off of the
885 *	appropriate priority free list than it is to get a zero'd or
886 *	unknown contents page.  This is because we live with the
887 *	consequences of a bad free list decision for the entire
888 *	lifetime of the page, e.g. if the page comes from memory that
889 *	is slower to access.
890 */
891
892struct vm_page *
893uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
894    int flags, int strat, int free_list)
895{
896	struct pglist pgl;
897	int pmr_flags;
898	struct vm_page *pg;
899	boolean_t use_reserve;
900	UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
901
902	KASSERT(obj == NULL || anon == NULL);
903	KASSERT(off == trunc_page(off));
904
905	/*
906	 * check to see if we need to generate some free pages waking
907	 * the pagedaemon.
908	 */
909	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
910	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
911	     uvmexp.inactive < uvmexp.inactarg))
912		wakeup(&uvm.pagedaemon_proc);
913
914	/*
915	 * fail if any of these conditions is true:
916	 * [1]  there really are no free pages, or
917	 * [2]  only kernel "reserved" pages remain and
918	 *        the page isn't being allocated to a kernel object.
919	 * [3]  only pagedaemon "reserved" pages remain and
920	 *        the requestor isn't the pagedaemon.
921	 */
922
923	use_reserve = (flags & UVM_PGA_USERESERVE) ||
924		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
925	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
926	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
927	     !((curproc == uvm.pagedaemon_proc) ||
928	      (curproc == syncerproc))))
929		goto fail;
930
931	pmr_flags = UVM_PLA_NOWAIT;
932	if (flags & UVM_PGA_ZERO)
933		pmr_flags |= UVM_PLA_ZERO;
934	TAILQ_INIT(&pgl);
935	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
936		goto fail;
937	pg = TAILQ_FIRST(&pgl);
938	KASSERT(pg != NULL);
939	KASSERT(TAILQ_NEXT(pg, pageq) == NULL);
940
941	pg->offset = off;
942	pg->uobject = obj;
943	pg->uanon = anon;
944	pg->pg_flags = PG_BUSY|PG_CLEAN|PG_FAKE;
945	if (anon) {
946		anon->an_page = pg;
947		atomic_setbits_int(&pg->pg_flags, PQ_ANON);
948#ifdef UBC
949		uvm_pgcnt_anon++;
950#endif
951	} else {
952		if (obj)
953			uvm_pageinsert(pg);
954	}
955#if defined(UVM_PAGE_TRKOWN)
956	pg->owner_tag = NULL;
957#endif
958	UVM_PAGE_OWN(pg, "new alloc");
959
960	UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
961	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
962	return(pg);
963
964 fail:
965	UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
966	return (NULL);
967}
968
969/*
970 * uvm_pagerealloc: reallocate a page from one object to another
971 *
972 * => both objects must be locked
973 */
974
975void
976uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
977{
978
979	UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
980
981	/*
982	 * remove it from the old object
983	 */
984
985	if (pg->uobject) {
986		uvm_pageremove(pg);
987	}
988
989	/*
990	 * put it in the new object
991	 */
992
993	if (newobj) {
994		pg->uobject = newobj;
995		pg->offset = newoff;
996		pg->pg_version++;
997		uvm_pageinsert(pg);
998	}
999}
1000
1001
1002/*
1003 * uvm_pagefree: free page
1004 *
1005 * => erase page's identity (i.e. remove from hash/object)
1006 * => put page on free list
1007 * => caller must lock owning object (either anon or uvm_object)
1008 * => caller must lock page queues
1009 * => assumes all valid mappings of pg are gone
1010 */
1011
1012void
1013uvm_pagefree(struct vm_page *pg)
1014{
1015	struct pglist pgl;
1016	int saved_loan_count = pg->loan_count;
1017	UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
1018
1019#ifdef DEBUG
1020	if (pg->uobject == (void *)0xdeadbeef &&
1021	    pg->uanon == (void *)0xdeadbeef) {
1022		panic("uvm_pagefree: freeing free page %p", pg);
1023	}
1024#endif
1025
1026	UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
1027	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1028
1029	/*
1030	 * if the page was an object page (and thus "TABLED"), remove it
1031	 * from the object.
1032	 */
1033
1034	if (pg->pg_flags & PG_TABLED) {
1035
1036		/*
1037		 * if the object page is on loan we are going to drop ownership.
1038		 * it is possible that an anon will take over as owner for this
1039		 * page later on.   the anon will want a !PG_CLEAN page so that
1040		 * it knows it needs to allocate swap if it wants to page the
1041		 * page out.
1042		 */
1043
1044		/* in case an anon takes over */
1045		if (saved_loan_count)
1046			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1047		uvm_pageremove(pg);
1048
1049		/*
1050		 * if our page was on loan, then we just lost control over it
1051		 * (in fact, if it was loaned to an anon, the anon may have
1052		 * already taken over ownership of the page by now and thus
1053		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1054		 * return (when the last loan is dropped, then the page can be
1055		 * freed by whatever was holding the last loan).
1056		 */
1057
1058		if (saved_loan_count)
1059			return;
1060	} else if (saved_loan_count && pg->uanon) {
1061		/*
1062		 * if our page is owned by an anon and is loaned out to the
1063		 * kernel then we just want to drop ownership and return.
1064		 * the kernel must free the page when all its loans clear ...
1065		 * note that the kernel can't change the loan status of our
1066		 * page as long as we are holding PQ lock.
1067		 */
1068		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1069		pg->uanon->an_page = NULL;
1070		pg->uanon = NULL;
1071		return;
1072	}
1073	KASSERT(saved_loan_count == 0);
1074
1075	/*
1076	 * now remove the page from the queues
1077	 */
1078
1079	if (pg->pg_flags & PQ_ACTIVE) {
1080		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1081		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1082		uvmexp.active--;
1083	}
1084	if (pg->pg_flags & PQ_INACTIVE) {
1085		if (pg->pg_flags & PQ_SWAPBACKED)
1086			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1087		else
1088			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1089		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1090		uvmexp.inactive--;
1091	}
1092
1093	/*
1094	 * if the page was wired, unwire it now.
1095	 */
1096
1097	if (pg->wire_count) {
1098		pg->wire_count = 0;
1099		uvmexp.wired--;
1100	}
1101	if (pg->uanon) {
1102		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1103		pg->uanon->an_page = NULL;
1104		pg->uanon = NULL;
1105#ifdef UBC
1106		uvm_pgcnt_anon--;
1107#endif
1108	}
1109
1110	/*
1111	 * Clean page state bits.
1112	 */
1113	atomic_clearbits_int(&pg->pg_flags,
1114	    PG_ZERO|PG_FAKE|PG_BUSY|PG_RELEASED|PG_CLEAN|PG_CLEANCHK);
1115	/*
1116	 * Pmap flag cleaning.
1117	 * XXX: Shouldn't pmap do this?
1118	 */
1119	atomic_clearbits_int(&pg->pg_flags,
1120	    PG_PMAP0|PG_PMAP1|PG_PMAP2|PG_PMAP3);
1121
1122#if defined(DIAGNOSTIC)
1123	if (pg->pg_flags != 0) {
1124		panic("uvm_pagefree: expected page %p pg_flags to be 0\n"
1125		    "uvm_pagefree: instead of pg->pg_flags = %x\n",
1126		    VM_PAGE_TO_PHYS(pg), pg->pg_flags);
1127	}
1128#endif
1129#ifdef DEBUG
1130	pg->uobject = (void *)0xdeadbeef;
1131	pg->offset = 0xdeadbeef;
1132	pg->uanon = (void *)0xdeadbeef;
1133#endif
1134	TAILQ_INIT(&pgl);
1135	TAILQ_INSERT_HEAD(&pgl, pg, pageq);
1136	uvm_pmr_freepageq(&pgl);
1137
1138	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1139		uvm.page_idle_zero = vm_page_zero_enable;
1140}
1141
1142/*
1143 * uvm_page_unbusy: unbusy an array of pages.
1144 *
1145 * => pages must either all belong to the same object, or all belong to anons.
1146 * => if pages are object-owned, object must be locked.
1147 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1148 */
1149
1150void
1151uvm_page_unbusy(struct vm_page **pgs, int npgs)
1152{
1153	struct vm_page *pg;
1154	struct uvm_object *uobj;
1155	int i;
1156	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1157
1158	for (i = 0; i < npgs; i++) {
1159		pg = pgs[i];
1160
1161		if (pg == NULL || pg == PGO_DONTCARE) {
1162			continue;
1163		}
1164		if (pg->pg_flags & PG_WANTED) {
1165			wakeup(pg);
1166		}
1167		if (pg->pg_flags & PG_RELEASED) {
1168			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1169			uobj = pg->uobject;
1170			if (uobj != NULL) {
1171				uobj->pgops->pgo_releasepg(pg, NULL);
1172			} else {
1173				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1174				UVM_PAGE_OWN(pg, NULL);
1175				uvm_anfree(pg->uanon);
1176			}
1177		} else {
1178			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1179			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1180			UVM_PAGE_OWN(pg, NULL);
1181		}
1182	}
1183}
1184
1185#if defined(UVM_PAGE_TRKOWN)
1186/*
1187 * uvm_page_own: set or release page ownership
1188 *
1189 * => this is a debugging function that keeps track of who sets PG_BUSY
1190 *	and where they do it.   it can be used to track down problems
1191 *	such a process setting "PG_BUSY" and never releasing it.
1192 * => page's object [if any] must be locked
1193 * => if "tag" is NULL then we are releasing page ownership
1194 */
1195void
1196uvm_page_own(struct vm_page *pg, char *tag)
1197{
1198	/* gain ownership? */
1199	if (tag) {
1200		if (pg->owner_tag) {
1201			printf("uvm_page_own: page %p already owned "
1202			    "by proc %d [%s]\n", pg,
1203			     pg->owner, pg->owner_tag);
1204			panic("uvm_page_own");
1205		}
1206		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1207		pg->owner_tag = tag;
1208		return;
1209	}
1210
1211	/* drop ownership */
1212	if (pg->owner_tag == NULL) {
1213		printf("uvm_page_own: dropping ownership of an non-owned "
1214		    "page (%p)\n", pg);
1215		panic("uvm_page_own");
1216	}
1217	pg->owner_tag = NULL;
1218	return;
1219}
1220#endif
1221
1222/*
1223 * uvm_pageidlezero: zero free pages while the system is idle.
1224 *
1225 * => we do at least one iteration per call, if we are below the target.
1226 * => we loop until we either reach the target or whichqs indicates that
1227 *	there is a process ready to run.
1228 */
1229void
1230uvm_pageidlezero(void)
1231{
1232#if 0 /* Disabled for now. */
1233	struct vm_page *pg;
1234	struct pgfreelist *pgfl;
1235	int free_list;
1236	UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
1237
1238	do {
1239		uvm_lock_fpageq();
1240
1241		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1242			uvm.page_idle_zero = FALSE;
1243			uvm_unlock_fpageq();
1244			return;
1245		}
1246
1247		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1248			pgfl = &uvm.page_free[free_list];
1249			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1250			    PGFL_UNKNOWN])) != NULL)
1251				break;
1252		}
1253
1254		if (pg == NULL) {
1255			/*
1256			 * No non-zero'd pages; don't bother trying again
1257			 * until we know we have non-zero'd pages free.
1258			 */
1259			uvm.page_idle_zero = FALSE;
1260			uvm_unlock_fpageq();
1261			return;
1262		}
1263
1264		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1265		uvmexp.free--;
1266		uvm_unlock_fpageq();
1267
1268#ifdef PMAP_PAGEIDLEZERO
1269		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1270			/*
1271			 * The machine-dependent code detected some
1272			 * reason for us to abort zeroing pages,
1273			 * probably because there is a process now
1274			 * ready to run.
1275			 */
1276			uvm_lock_fpageq();
1277			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1278			    pg, pageq);
1279			uvmexp.free++;
1280			uvmexp.zeroaborts++;
1281			uvm_unlock_fpageq();
1282			return;
1283		}
1284#else
1285		/*
1286		 * XXX This will toast the cache unless the pmap_zero_page()
1287		 * XXX implementation does uncached access.
1288		 */
1289		pmap_zero_page(pg);
1290#endif
1291		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1292
1293		uvm_lock_fpageq();
1294		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1295		uvmexp.free++;
1296		uvmexp.zeropages++;
1297		uvm_unlock_fpageq();
1298	} while (curcpu_is_idle());
1299#endif /* 0 */
1300}
1301
1302/*
1303 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1304 */
1305
1306#if VM_PHYSSEG_MAX > 1
1307/*
1308 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1309 */
1310int
1311vm_physseg_find(paddr_t pframe, int *offp)
1312{
1313
1314#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1315	/* binary search for it */
1316	int	start, len, try;
1317
1318	/*
1319	 * if try is too large (thus target is less than than try) we reduce
1320	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1321	 *
1322	 * if the try is too small (thus target is greater than try) then
1323	 * we set the new start to be (try + 1).   this means we need to
1324	 * reduce the length to (round(len/2) - 1).
1325	 *
1326	 * note "adjust" below which takes advantage of the fact that
1327	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1328	 * for any value of len we may have
1329	 */
1330
1331	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1332		try = start + (len / 2);	/* try in the middle */
1333
1334		/* start past our try? */
1335		if (pframe >= vm_physmem[try].start) {
1336			/* was try correct? */
1337			if (pframe < vm_physmem[try].end) {
1338				if (offp)
1339					*offp = pframe - vm_physmem[try].start;
1340				return(try);            /* got it */
1341			}
1342			start = try + 1;	/* next time, start here */
1343			len--;			/* "adjust" */
1344		} else {
1345			/*
1346			 * pframe before try, just reduce length of
1347			 * region, done in "for" loop
1348			 */
1349		}
1350	}
1351	return(-1);
1352
1353#else
1354	/* linear search for it */
1355	int	lcv;
1356
1357	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1358		if (pframe >= vm_physmem[lcv].start &&
1359		    pframe < vm_physmem[lcv].end) {
1360			if (offp)
1361				*offp = pframe - vm_physmem[lcv].start;
1362			return(lcv);		   /* got it */
1363		}
1364	}
1365	return(-1);
1366
1367#endif
1368}
1369
1370/*
1371 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1372 * back from an I/O mapping (ugh!).   used in some MD code as well.
1373 */
1374struct vm_page *
1375PHYS_TO_VM_PAGE(paddr_t pa)
1376{
1377	paddr_t pf = atop(pa);
1378	int	off;
1379	int	psi;
1380
1381	psi = vm_physseg_find(pf, &off);
1382
1383	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1384}
1385#endif /* VM_PHYSSEG_MAX > 1 */
1386
1387/*
1388 * uvm_pagelookup: look up a page
1389 *
1390 * => caller should lock object to keep someone from pulling the page
1391 *	out from under it
1392 */
1393struct vm_page *
1394uvm_pagelookup(struct uvm_object *obj, voff_t off)
1395{
1396	struct vm_page *pg;
1397	struct pglist *buck;
1398
1399	mtx_enter(&uvm.hashlock);
1400	buck = &uvm.page_hash[uvm_pagehash(obj,off)];
1401
1402	TAILQ_FOREACH(pg, buck, fq.queues.hashq) {
1403		if (pg->uobject == obj && pg->offset == off) {
1404			break;
1405		}
1406	}
1407	mtx_leave(&uvm.hashlock);
1408	return(pg);
1409}
1410
1411/*
1412 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1413 *
1414 * => caller must lock page queues
1415 */
1416void
1417uvm_pagewire(struct vm_page *pg)
1418{
1419	if (pg->wire_count == 0) {
1420		if (pg->pg_flags & PQ_ACTIVE) {
1421			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1422			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1423			uvmexp.active--;
1424		}
1425		if (pg->pg_flags & PQ_INACTIVE) {
1426			if (pg->pg_flags & PQ_SWAPBACKED)
1427				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1428			else
1429				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1430			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1431			uvmexp.inactive--;
1432		}
1433		uvmexp.wired++;
1434	}
1435	pg->wire_count++;
1436}
1437
1438/*
1439 * uvm_pageunwire: unwire the page.
1440 *
1441 * => activate if wire count goes to zero.
1442 * => caller must lock page queues
1443 */
1444void
1445uvm_pageunwire(struct vm_page *pg)
1446{
1447	pg->wire_count--;
1448	if (pg->wire_count == 0) {
1449		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1450		uvmexp.active++;
1451		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1452		uvmexp.wired--;
1453	}
1454}
1455
1456/*
1457 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1458 *
1459 * => caller must lock page queues
1460 * => caller must check to make sure page is not wired
1461 * => object that page belongs to must be locked (so we can adjust pg->flags)
1462 */
1463void
1464uvm_pagedeactivate(struct vm_page *pg)
1465{
1466	if (pg->pg_flags & PQ_ACTIVE) {
1467		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1468		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1469		uvmexp.active--;
1470	}
1471	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1472		KASSERT(pg->wire_count == 0);
1473		if (pg->pg_flags & PQ_SWAPBACKED)
1474			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1475		else
1476			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1477		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1478		uvmexp.inactive++;
1479		pmap_clear_reference(pg);
1480		/*
1481		 * update the "clean" bit.  this isn't 100%
1482		 * accurate, and doesn't have to be.  we'll
1483		 * re-sync it after we zap all mappings when
1484		 * scanning the inactive list.
1485		 */
1486		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1487		    pmap_is_modified(pg))
1488			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1489	}
1490}
1491
1492/*
1493 * uvm_pageactivate: activate page
1494 *
1495 * => caller must lock page queues
1496 */
1497void
1498uvm_pageactivate(struct vm_page *pg)
1499{
1500	if (pg->pg_flags & PQ_INACTIVE) {
1501		if (pg->pg_flags & PQ_SWAPBACKED)
1502			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1503		else
1504			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1505		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1506		uvmexp.inactive--;
1507	}
1508	if (pg->wire_count == 0) {
1509
1510		/*
1511		 * if page is already active, remove it from list so we
1512		 * can put it at tail.  if it wasn't active, then mark
1513		 * it active and bump active count
1514		 */
1515		if (pg->pg_flags & PQ_ACTIVE)
1516			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1517		else {
1518			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1519			uvmexp.active++;
1520		}
1521
1522		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1523	}
1524}
1525
1526/*
1527 * uvm_pagezero: zero fill a page
1528 *
1529 * => if page is part of an object then the object should be locked
1530 *	to protect pg->flags.
1531 */
1532void
1533uvm_pagezero(struct vm_page *pg)
1534{
1535	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1536	pmap_zero_page(pg);
1537}
1538
1539/*
1540 * uvm_pagecopy: copy a page
1541 *
1542 * => if page is part of an object then the object should be locked
1543 *	to protect pg->flags.
1544 */
1545void
1546uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1547{
1548	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1549	pmap_copy_page(src, dst);
1550}
1551
1552/*
1553 * uvm_page_lookup_freelist: look up the free list for the specified page
1554 */
1555int
1556uvm_page_lookup_freelist(struct vm_page *pg)
1557{
1558#if VM_PHYSSEG_MAX == 1
1559	return (vm_physmem[0].free_list);
1560#else
1561	int lcv;
1562
1563	lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1564	KASSERT(lcv != -1);
1565	return (vm_physmem[lcv].free_list);
1566#endif
1567}
1568