uvm_page.c revision 1.8
1/*	$NetBSD: uvm_page.c,v 1.23 1999/05/25 01:34:13 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_page.c: page ops.
71 */
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/malloc.h>
76#include <sys/proc.h>
77
78#include <vm/vm.h>
79#include <vm/vm_page.h>
80#include <vm/vm_kern.h>
81
82#define UVM_PAGE                /* pull in uvm_page.h functions */
83#include <uvm/uvm.h>
84
85/*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89/*
90 * physical memory config is stored in vm_physmem.
91 */
92
93struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
94int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
95
96/*
97 * local variables
98 */
99
100/*
101 * these variables record the values returned by vm_page_bootstrap,
102 * for debugging purposes.  The implementation of uvm_pageboot_alloc
103 * and pmap_startup here also uses them internally.
104 */
105
106static vaddr_t      virtual_space_start;
107static vaddr_t      virtual_space_end;
108
109/*
110 * we use a hash table with only one bucket during bootup.  we will
111 * later rehash (resize) the hash table once malloc() is ready.
112 * we static allocate the bootstrap bucket below...
113 */
114
115static struct pglist uvm_bootbucket;
116
117/*
118 * local prototypes
119 */
120
121static void uvm_pageinsert __P((struct vm_page *));
122
123
124/*
125 * inline functions
126 */
127
128/*
129 * uvm_pageinsert: insert a page in the object and the hash table
130 *
131 * => caller must lock object
132 * => caller must lock page queues
133 * => call should have already set pg's object and offset pointers
134 *    and bumped the version counter
135 */
136
137__inline static void
138uvm_pageinsert(pg)
139	struct vm_page *pg;
140{
141	struct pglist *buck;
142	int s;
143
144#ifdef DIAGNOSTIC
145	if (pg->flags & PG_TABLED)
146		panic("uvm_pageinsert: already inserted");
147#endif
148
149	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
150	s = splimp();
151	simple_lock(&uvm.hashlock);
152	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
153	simple_unlock(&uvm.hashlock);
154	splx(s);
155
156	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
157	pg->flags |= PG_TABLED;
158	pg->uobject->uo_npages++;
159
160}
161
162/*
163 * uvm_page_remove: remove page from object and hash
164 *
165 * => caller must lock object
166 * => caller must lock page queues
167 */
168
169void __inline
170uvm_pageremove(pg)
171	struct vm_page *pg;
172{
173	struct pglist *buck;
174	int s;
175
176#ifdef DIAGNOSTIC
177	if ((pg->flags & (PG_FAULTING)) != 0)
178		panic("uvm_pageremove: page is faulting");
179#endif
180
181	if ((pg->flags & PG_TABLED) == 0)
182		return;				/* XXX: log */
183
184	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
185	s = splimp();
186	simple_lock(&uvm.hashlock);
187	TAILQ_REMOVE(buck, pg, hashq);
188	simple_unlock(&uvm.hashlock);
189	splx(s);
190
191	/* object should be locked */
192	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
193
194	pg->flags &= ~PG_TABLED;
195	pg->uobject->uo_npages--;
196	pg->uobject = NULL;
197	pg->version++;
198
199}
200
201/*
202 * uvm_page_init: init the page system.   called from uvm_init().
203 *
204 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
205 */
206
207void
208uvm_page_init(kvm_startp, kvm_endp)
209	vaddr_t *kvm_startp, *kvm_endp;
210{
211	int freepages, pagecount;
212	vm_page_t pagearray;
213	int lcv, n, i;
214	paddr_t paddr;
215
216
217	/*
218	 * step 1: init the page queues and page queue locks
219	 */
220	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
221	  TAILQ_INIT(&uvm.page_free[lcv]);
222	TAILQ_INIT(&uvm.page_active);
223	TAILQ_INIT(&uvm.page_inactive_swp);
224	TAILQ_INIT(&uvm.page_inactive_obj);
225	simple_lock_init(&uvm.pageqlock);
226	simple_lock_init(&uvm.fpageqlock);
227
228	/*
229	 * step 2: init the <obj,offset> => <page> hash table. for now
230	 * we just have one bucket (the bootstrap bucket).   later on we
231	 * will malloc() new buckets as we dynamically resize the hash table.
232	 */
233
234	uvm.page_nhash = 1;			/* 1 bucket */
235	uvm.page_hashmask = 0;		/* mask for hash function */
236	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
237	TAILQ_INIT(uvm.page_hash);		/* init hash table */
238	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
239
240	/*
241	 * step 3: allocate vm_page structures.
242	 */
243
244	/*
245	 * sanity check:
246	 * before calling this function the MD code is expected to register
247	 * some free RAM with the uvm_page_physload() function.   our job
248	 * now is to allocate vm_page structures for this memory.
249	 */
250
251	if (vm_nphysseg == 0)
252		panic("vm_page_bootstrap: no memory pre-allocated");
253
254	/*
255	 * first calculate the number of free pages...
256	 *
257	 * note that we use start/end rather than avail_start/avail_end.
258	 * this allows us to allocate extra vm_page structures in case we
259	 * want to return some memory to the pool after booting.
260	 */
261
262	freepages = 0;
263	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
264		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
265
266	/*
267	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
268	 * use.   for each page of memory we use we need a vm_page structure.
269	 * thus, the total number of pages we can use is the total size of
270	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
271	 * structure.   we add one to freepages as a fudge factor to avoid
272	 * truncation errors (since we can only allocate in terms of whole
273	 * pages).
274	 */
275
276	pagecount = ((freepages + 1) << PAGE_SHIFT) /
277	    (PAGE_SIZE + sizeof(struct vm_page));
278	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
279	    sizeof(struct vm_page));
280	bzero(pagearray, pagecount * sizeof(struct vm_page));
281
282	/*
283	 * step 4: init the vm_page structures and put them in the correct
284	 * place...
285	 */
286
287	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
288
289		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
290		if (n > pagecount) {
291			printf("uvm_page_init: lost %d page(s) in init\n",
292			    n - pagecount);
293			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
294			/* n = pagecount; */
295		}
296		/* set up page array pointers */
297		vm_physmem[lcv].pgs = pagearray;
298		pagearray += n;
299		pagecount -= n;
300		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
301
302		/* init and free vm_pages (we've already zeroed them) */
303		paddr = ptoa(vm_physmem[lcv].start);
304		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
305			vm_physmem[lcv].pgs[i].phys_addr = paddr;
306			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
307			    atop(paddr) <= vm_physmem[lcv].avail_end) {
308				uvmexp.npages++;
309				/* add page to free pool */
310				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
311			}
312		}
313	}
314	/*
315	 * step 5: pass up the values of virtual_space_start and
316	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
317	 * layers of the VM.
318	 */
319
320	*kvm_startp = round_page(virtual_space_start);
321	*kvm_endp = trunc_page(virtual_space_end);
322
323	/*
324	 * step 6: init pagedaemon lock
325	 */
326
327	simple_lock_init(&uvm.pagedaemon_lock);
328
329	/*
330	 * step 7: init reserve thresholds
331	 * XXXCDC - values may need adjusting
332	 */
333	uvmexp.reserve_pagedaemon = 1;
334	uvmexp.reserve_kernel = 5;
335
336	/*
337	 * done!
338	 */
339
340}
341
342/*
343 * uvm_setpagesize: set the page size
344 *
345 * => sets page_shift and page_mask from uvmexp.pagesize.
346 * => XXXCDC: move global vars.
347 */
348
349void
350uvm_setpagesize()
351{
352	if (uvmexp.pagesize == 0)
353		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
354	uvmexp.pagemask = uvmexp.pagesize - 1;
355	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
356		panic("uvm_setpagesize: page size not a power of two");
357	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
358		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
359			break;
360}
361
362/*
363 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
364 */
365
366vaddr_t
367uvm_pageboot_alloc(size)
368	vsize_t size;
369{
370#if defined(PMAP_STEAL_MEMORY)
371	vaddr_t addr;
372
373	/*
374	 * defer bootstrap allocation to MD code (it may want to allocate
375	 * from a direct-mapped segment).  pmap_steal_memory should round
376	 * off virtual_space_start/virtual_space_end.
377	 */
378
379	addr = pmap_steal_memory(size, &virtual_space_start,
380	    &virtual_space_end);
381
382	return(addr);
383
384#else /* !PMAP_STEAL_MEMORY */
385
386	static boolean_t initialized = FALSE;
387	vaddr_t addr, vaddr;
388	paddr_t paddr;
389
390	/* round to page size */
391	size = round_page(size);
392
393	/*
394	 * on first call to this function, initialize ourselves.
395	 */
396	if (initialized == FALSE) {
397		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
398
399		/* round it the way we like it */
400		virtual_space_start = round_page(virtual_space_start);
401		virtual_space_end = trunc_page(virtual_space_end);
402
403		initialized = TRUE;
404	}
405
406	/*
407	 * allocate virtual memory for this request
408	 */
409	if (virtual_space_start == virtual_space_end ||
410	    (virtual_space_end - virtual_space_start) < size)
411		panic("uvm_pageboot_alloc: out of virtual space");
412
413	addr = virtual_space_start;
414
415#ifdef PMAP_GROWKERNEL
416	/*
417	 * If the kernel pmap can't map the requested space,
418	 * then allocate more resources for it.
419	 */
420	if (uvm_maxkaddr < (addr + size)) {
421		uvm_maxkaddr = pmap_growkernel(addr + size);
422		if (uvm_maxkaddr < (addr + size))
423			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
424	}
425#endif
426
427	virtual_space_start += size;
428
429	/*
430	 * allocate and mapin physical pages to back new virtual pages
431	 */
432
433	for (vaddr = round_page(addr) ; vaddr < addr + size ;
434	    vaddr += PAGE_SIZE) {
435
436		if (!uvm_page_physget(&paddr))
437			panic("uvm_pageboot_alloc: out of memory");
438
439		/* XXX: should be wired, but some pmaps don't like that ... */
440#if defined(PMAP_NEW)
441		/*
442		 * Note this memory is no longer managed, so using
443		 * pmap_kenter is safe.
444		 */
445		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
446#else
447		pmap_enter(pmap_kernel(), vaddr, paddr,
448		    VM_PROT_READ|VM_PROT_WRITE, FALSE,
449		    VM_PROT_READ|VM_PROT_WRITE);
450#endif
451
452	}
453	return(addr);
454#endif	/* PMAP_STEAL_MEMORY */
455}
456
457#if !defined(PMAP_STEAL_MEMORY)
458/*
459 * uvm_page_physget: "steal" one page from the vm_physmem structure.
460 *
461 * => attempt to allocate it off the end of a segment in which the "avail"
462 *    values match the start/end values.   if we can't do that, then we
463 *    will advance both values (making them equal, and removing some
464 *    vm_page structures from the non-avail area).
465 * => return false if out of memory.
466 */
467
468boolean_t
469uvm_page_physget(paddrp)
470	paddr_t *paddrp;
471{
472	int lcv, x;
473
474	/* pass 1: try allocating from a matching end */
475#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
476	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
477	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
478#else
479	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
480#endif
481	{
482
483		if (vm_physmem[lcv].pgs)
484			panic("vm_page_physget: called _after_ bootstrap");
485
486		/* try from front */
487		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
488		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
489			*paddrp = ptoa(vm_physmem[lcv].avail_start);
490			vm_physmem[lcv].avail_start++;
491			vm_physmem[lcv].start++;
492			/* nothing left?   nuke it */
493			if (vm_physmem[lcv].avail_start ==
494			    vm_physmem[lcv].end) {
495				if (vm_nphysseg == 1)
496				    panic("vm_page_physget: out of memory!");
497				vm_nphysseg--;
498				for (x = lcv ; x < vm_nphysseg ; x++)
499					/* structure copy */
500					vm_physmem[x] = vm_physmem[x+1];
501			}
502			return (TRUE);
503		}
504
505		/* try from rear */
506		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
507		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
508			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
509			vm_physmem[lcv].avail_end--;
510			vm_physmem[lcv].end--;
511			/* nothing left?   nuke it */
512			if (vm_physmem[lcv].avail_end ==
513			    vm_physmem[lcv].start) {
514				if (vm_nphysseg == 1)
515				    panic("vm_page_physget: out of memory!");
516				vm_nphysseg--;
517				for (x = lcv ; x < vm_nphysseg ; x++)
518					/* structure copy */
519					vm_physmem[x] = vm_physmem[x+1];
520			}
521			return (TRUE);
522		}
523	}
524
525	/* pass2: forget about matching ends, just allocate something */
526#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
527	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
528	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
529#else
530	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
531#endif
532	{
533
534		/* any room in this bank? */
535		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
536			continue;  /* nope */
537
538		*paddrp = ptoa(vm_physmem[lcv].avail_start);
539		vm_physmem[lcv].avail_start++;
540		/* truncate! */
541		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
542
543		/* nothing left?   nuke it */
544		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
545			if (vm_nphysseg == 1)
546				panic("vm_page_physget: out of memory!");
547			vm_nphysseg--;
548			for (x = lcv ; x < vm_nphysseg ; x++)
549				/* structure copy */
550				vm_physmem[x] = vm_physmem[x+1];
551		}
552		return (TRUE);
553	}
554
555	return (FALSE);        /* whoops! */
556}
557#endif /* PMAP_STEAL_MEMORY */
558
559/*
560 * uvm_page_physload: load physical memory into VM system
561 *
562 * => all args are PFs
563 * => all pages in start/end get vm_page structures
564 * => areas marked by avail_start/avail_end get added to the free page pool
565 * => we are limited to VM_PHYSSEG_MAX physical memory segments
566 */
567
568void
569uvm_page_physload(start, end, avail_start, avail_end, free_list)
570	vaddr_t start, end, avail_start, avail_end;
571	int free_list;
572{
573	int preload, lcv;
574	psize_t npages;
575	struct vm_page *pgs;
576	struct vm_physseg *ps;
577
578	if (uvmexp.pagesize == 0)
579		panic("vm_page_physload: page size not set!");
580
581	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
582		panic("uvm_page_physload: bad free list %d\n", free_list);
583
584	/*
585	 * do we have room?
586	 */
587	if (vm_nphysseg == VM_PHYSSEG_MAX) {
588		printf("vm_page_physload: unable to load physical memory "
589		    "segment\n");
590		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
591		    VM_PHYSSEG_MAX, start, end);
592		return;
593	}
594
595	/*
596	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
597	 * called yet, so malloc is not available).
598	 */
599	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
600		if (vm_physmem[lcv].pgs)
601			break;
602	}
603	preload = (lcv == vm_nphysseg);
604
605	/*
606	 * if VM is already running, attempt to malloc() vm_page structures
607	 */
608	if (!preload) {
609#if defined(VM_PHYSSEG_NOADD)
610		panic("vm_page_physload: tried to add RAM after vm_mem_init");
611#else
612		/* XXXCDC: need some sort of lockout for this case */
613		paddr_t paddr;
614		npages = end - start;  /* # of pages */
615		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
616					 M_VMPAGE, M_NOWAIT);
617		if (pgs == NULL) {
618			printf("vm_page_physload: can not malloc vm_page "
619			    "structs for segment\n");
620			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
621			return;
622		}
623		/* zero data, init phys_addr and free_list, and free pages */
624		bzero(pgs, sizeof(struct vm_page) * npages);
625		for (lcv = 0, paddr = ptoa(start) ;
626				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
627			pgs[lcv].phys_addr = paddr;
628			pgs[lcv].free_list = free_list;
629			if (atop(paddr) >= avail_start &&
630			    atop(paddr) <= avail_end)
631				uvm_pagefree(&pgs[lcv]);
632		}
633		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
634		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
635#endif
636	} else {
637
638		/* gcc complains if these don't get init'd */
639		pgs = NULL;
640		npages = 0;
641
642	}
643
644	/*
645	 * now insert us in the proper place in vm_physmem[]
646	 */
647
648#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
649
650	/* random: put it at the end (easy!) */
651	ps = &vm_physmem[vm_nphysseg];
652
653#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
654
655	{
656		int x;
657		/* sort by address for binary search */
658		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
659			if (start < vm_physmem[lcv].start)
660				break;
661		ps = &vm_physmem[lcv];
662		/* move back other entries, if necessary ... */
663		for (x = vm_nphysseg ; x > lcv ; x--)
664			/* structure copy */
665			vm_physmem[x] = vm_physmem[x - 1];
666	}
667
668#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
669
670	{
671		int x;
672		/* sort by largest segment first */
673		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
674			if ((end - start) >
675			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
676				break;
677		ps = &vm_physmem[lcv];
678		/* move back other entries, if necessary ... */
679		for (x = vm_nphysseg ; x > lcv ; x--)
680			/* structure copy */
681			vm_physmem[x] = vm_physmem[x - 1];
682	}
683
684#else
685
686	panic("vm_page_physload: unknown physseg strategy selected!");
687
688#endif
689
690	ps->start = start;
691	ps->end = end;
692	ps->avail_start = avail_start;
693	ps->avail_end = avail_end;
694	if (preload) {
695		ps->pgs = NULL;
696	} else {
697		ps->pgs = pgs;
698		ps->lastpg = pgs + npages - 1;
699	}
700	ps->free_list = free_list;
701	vm_nphysseg++;
702
703	/*
704	 * done!
705	 */
706
707	if (!preload)
708		uvm_page_rehash();
709
710	return;
711}
712
713/*
714 * uvm_page_rehash: reallocate hash table based on number of free pages.
715 */
716
717void
718uvm_page_rehash()
719{
720	int freepages, lcv, bucketcount, s, oldcount;
721	struct pglist *newbuckets, *oldbuckets;
722	struct vm_page *pg;
723
724	/*
725	 * compute number of pages that can go in the free pool
726	 */
727
728	freepages = 0;
729	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
730		freepages +=
731		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
732
733	/*
734	 * compute number of buckets needed for this number of pages
735	 */
736
737	bucketcount = 1;
738	while (bucketcount < freepages)
739		bucketcount = bucketcount * 2;
740
741	/*
742	 * malloc new buckets
743	 */
744
745	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
746					 M_VMPBUCKET, M_NOWAIT);
747	if (newbuckets == NULL) {
748		printf("vm_page_physrehash: WARNING: could not grow page "
749		    "hash table\n");
750		return;
751	}
752	for (lcv = 0 ; lcv < bucketcount ; lcv++)
753		TAILQ_INIT(&newbuckets[lcv]);
754
755	/*
756	 * now replace the old buckets with the new ones and rehash everything
757	 */
758
759	s = splimp();
760	simple_lock(&uvm.hashlock);
761	/* swap old for new ... */
762	oldbuckets = uvm.page_hash;
763	oldcount = uvm.page_nhash;
764	uvm.page_hash = newbuckets;
765	uvm.page_nhash = bucketcount;
766	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
767
768	/* ... and rehash */
769	for (lcv = 0 ; lcv < oldcount ; lcv++) {
770		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
771			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
772			TAILQ_INSERT_TAIL(
773			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
774			  pg, hashq);
775		}
776	}
777	simple_unlock(&uvm.hashlock);
778	splx(s);
779
780	/*
781	 * free old bucket array if we malloc'd it previously
782	 */
783
784	if (oldbuckets != &uvm_bootbucket)
785		FREE(oldbuckets, M_VMPBUCKET);
786
787	/*
788	 * done
789	 */
790	return;
791}
792
793
794#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
795
796void uvm_page_physdump __P((void)); /* SHUT UP GCC */
797
798/* call from DDB */
799void
800uvm_page_physdump()
801{
802	int lcv;
803
804	printf("rehash: physical memory config [segs=%d of %d]:\n",
805				 vm_nphysseg, VM_PHYSSEG_MAX);
806	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
807		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
808		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
809		    vm_physmem[lcv].avail_end);
810	printf("STRATEGY = ");
811	switch (VM_PHYSSEG_STRAT) {
812	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
813	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
814	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
815	default: printf("<<UNKNOWN>>!!!!\n");
816	}
817	printf("number of buckets = %d\n", uvm.page_nhash);
818}
819#endif
820
821/*
822 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
823 *
824 * => return null if no pages free
825 * => wake up pagedaemon if number of free pages drops below low water mark
826 * => if obj != NULL, obj must be locked (to put in hash)
827 * => if anon != NULL, anon must be locked (to put in anon)
828 * => only one of obj or anon can be non-null
829 * => caller must activate/deactivate page if it is not wired.
830 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
831 */
832
833struct vm_page *
834uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
835	struct uvm_object *obj;
836	vaddr_t off;
837	int flags;
838	struct vm_anon *anon;
839	int strat, free_list;
840{
841	int lcv, s;
842	struct vm_page *pg;
843	struct pglist *freeq;
844	boolean_t use_reserve;
845
846#ifdef DIAGNOSTIC
847	/* sanity check */
848	if (obj && anon)
849		panic("uvm_pagealloc: obj and anon != NULL");
850#endif
851
852	s = uvm_lock_fpageq();		/* lock free page queue */
853
854	/*
855	 * check to see if we need to generate some free pages waking
856	 * the pagedaemon.
857	 */
858
859	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
860	    uvmexp.inactive < uvmexp.inactarg))
861		thread_wakeup(&uvm.pagedaemon);
862
863	/*
864	 * fail if any of these conditions is true:
865	 * [1]  there really are no free pages, or
866	 * [2]  only kernel "reserved" pages remain and
867	 *        the page isn't being allocated to a kernel object.
868	 * [3]  only pagedaemon "reserved" pages remain and
869	 *        the requestor isn't the pagedaemon.
870	 */
871
872	use_reserve = (flags & UVM_PGA_USERESERVE) ||
873		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
874	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
875	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
876	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
877		goto fail;
878
879 again:
880	switch (strat) {
881	case UVM_PGA_STRAT_NORMAL:
882		/* Check all freelists in descending priority order. */
883		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
884			freeq = &uvm.page_free[lcv];
885			if ((pg = freeq->tqh_first) != NULL)
886				goto gotit;
887		}
888
889		/* No pages free! */
890		goto fail;
891
892	case UVM_PGA_STRAT_ONLY:
893	case UVM_PGA_STRAT_FALLBACK:
894		/* Attempt to allocate from the specified free list. */
895#ifdef DIAGNOSTIC
896		if (free_list >= VM_NFREELIST || free_list < 0)
897			panic("uvm_pagealloc_strat: bad free list %d",
898			    free_list);
899#endif
900		freeq = &uvm.page_free[free_list];
901		if ((pg = freeq->tqh_first) != NULL)
902			goto gotit;
903
904		/* Fall back, if possible. */
905		if (strat == UVM_PGA_STRAT_FALLBACK) {
906			strat = UVM_PGA_STRAT_NORMAL;
907			goto again;
908		}
909
910		/* No pages free! */
911		goto fail;
912
913	default:
914		panic("uvm_pagealloc_strat: bad strat %d", strat);
915		/* NOTREACHED */
916	}
917
918 gotit:
919	TAILQ_REMOVE(freeq, pg, pageq);
920	uvmexp.free--;
921
922	uvm_unlock_fpageq(s);		/* unlock free page queue */
923
924	pg->offset = off;
925	pg->uobject = obj;
926	pg->uanon = anon;
927	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
928	pg->version++;
929	pg->wire_count = 0;
930	pg->loan_count = 0;
931	if (anon) {
932		anon->u.an_page = pg;
933		pg->pqflags = PQ_ANON;
934	} else {
935		if (obj)
936			uvm_pageinsert(pg);
937		pg->pqflags = 0;
938	}
939#if defined(UVM_PAGE_TRKOWN)
940	pg->owner_tag = NULL;
941#endif
942	UVM_PAGE_OWN(pg, "new alloc");
943
944	return(pg);
945
946 fail:
947	uvm_unlock_fpageq(s);
948	return (NULL);
949}
950
951/*
952 * uvm_pagealloc_contig: allocate contiguous memory.
953 *
954 * XXX - fix comment.
955 */
956
957vaddr_t
958uvm_pagealloc_contig(size, low, high, alignment)
959	vaddr_t size;
960	vaddr_t low, high;
961	vaddr_t alignment;
962{
963	struct pglist pglist;
964	struct vm_page *pg;
965	vaddr_t addr, temp_addr;
966
967	size = round_page(size);
968
969	TAILQ_INIT(&pglist);
970	if (uvm_pglistalloc(size, low, high, alignment, 0,
971			    &pglist, 1, FALSE))
972		return 0;
973	addr = vm_map_min(kernel_map);
974	if (uvm_map(kernel_map, &addr, size, NULL, UVM_UNKNOWN_OFFSET,
975		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
976				UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
977		uvm_pglistfree(&pglist);
978		return 0;
979	}
980	temp_addr = addr;
981	for (pg = TAILQ_FIRST(&pglist); pg != NULL;
982	     pg = TAILQ_NEXT(pg, pageq)) {
983	        pg->uobject = uvm.kernel_object;
984		pg->offset = temp_addr - vm_map_min(kernel_map);
985		uvm_pageinsert(pg);
986		uvm_pagewire(pg);
987#if defined(PMAP_NEW)
988		pmap_kenter_pa(temp_addr, VM_PAGE_TO_PHYS(pg),
989			       VM_PROT_READ|VM_PROT_WRITE);
990#else
991		pmap_enter(pmap_kernel(), temp_addr, VM_PAGE_TO_PHYS(pg),
992			   VM_PROT_READ|VM_PROT_WRITE, TRUE,
993			   VM_PROT_READ|VM_PROT_WRITE);
994#endif
995		temp_addr += PAGE_SIZE;
996	}
997	return addr;
998}
999
1000/*
1001 * uvm_pagerealloc: reallocate a page from one object to another
1002 *
1003 * => both objects must be locked
1004 */
1005
1006void
1007uvm_pagerealloc(pg, newobj, newoff)
1008	struct vm_page *pg;
1009	struct uvm_object *newobj;
1010	vaddr_t newoff;
1011{
1012	/*
1013	 * remove it from the old object
1014	 */
1015
1016	if (pg->uobject) {
1017		uvm_pageremove(pg);
1018	}
1019
1020	/*
1021	 * put it in the new object
1022	 */
1023
1024	if (newobj) {
1025		pg->uobject = newobj;
1026		pg->offset = newoff;
1027		pg->version++;
1028		uvm_pageinsert(pg);
1029	}
1030
1031	return;
1032}
1033
1034
1035/*
1036 * uvm_pagefree: free page
1037 *
1038 * => erase page's identity (i.e. remove from hash/object)
1039 * => put page on free list
1040 * => caller must lock owning object (either anon or uvm_object)
1041 * => caller must lock page queues
1042 * => assumes all valid mappings of pg are gone
1043 */
1044
1045void uvm_pagefree(pg)
1046
1047struct vm_page *pg;
1048
1049{
1050	int s;
1051	int saved_loan_count = pg->loan_count;
1052
1053	/*
1054	 * if the page was an object page (and thus "TABLED"), remove it
1055	 * from the object.
1056	 */
1057
1058	if (pg->flags & PG_TABLED) {
1059
1060		/*
1061		 * if the object page is on loan we are going to drop ownership.
1062		 * it is possible that an anon will take over as owner for this
1063		 * page later on.   the anon will want a !PG_CLEAN page so that
1064		 * it knows it needs to allocate swap if it wants to page the
1065		 * page out.
1066		 */
1067
1068		if (saved_loan_count)
1069			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1070
1071		uvm_pageremove(pg);
1072
1073		/*
1074		 * if our page was on loan, then we just lost control over it
1075		 * (in fact, if it was loaned to an anon, the anon may have
1076		 * already taken over ownership of the page by now and thus
1077		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1078		 * return (when the last loan is dropped, then the page can be
1079		 * freed by whatever was holding the last loan).
1080		 */
1081		if (saved_loan_count)
1082			return;
1083
1084	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1085
1086		/*
1087		 * if our page is owned by an anon and is loaned out to the
1088		 * kernel then we just want to drop ownership and return.
1089		 * the kernel must free the page when all its loans clear ...
1090		 * note that the kernel can't change the loan status of our
1091		 * page as long as we are holding PQ lock.
1092		 */
1093		pg->pqflags &= ~PQ_ANON;
1094		pg->uanon = NULL;
1095		return;
1096	}
1097
1098#ifdef DIAGNOSTIC
1099	if (saved_loan_count) {
1100		printf("uvm_pagefree: warning: freeing page with a loan "
1101		    "count of %d\n", saved_loan_count);
1102		panic("uvm_pagefree: loan count");
1103	}
1104#endif
1105
1106
1107	/*
1108	 * now remove the page from the queues
1109	 */
1110
1111	if (pg->pqflags & PQ_ACTIVE) {
1112		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1113		pg->pqflags &= ~PQ_ACTIVE;
1114		uvmexp.active--;
1115	}
1116	if (pg->pqflags & PQ_INACTIVE) {
1117		if (pg->pqflags & PQ_SWAPBACKED)
1118			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1119		else
1120			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1121		pg->pqflags &= ~PQ_INACTIVE;
1122		uvmexp.inactive--;
1123	}
1124
1125	/*
1126	 * if the page was wired, unwire it now.
1127	 */
1128	if (pg->wire_count)
1129	{
1130		pg->wire_count = 0;
1131		uvmexp.wired--;
1132	}
1133
1134	/*
1135	 * and put on free queue
1136	 */
1137
1138	s = uvm_lock_fpageq();
1139	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1140	    pg, pageq);
1141	pg->pqflags = PQ_FREE;
1142#ifdef DEBUG
1143	pg->uobject = (void *)0xdeadbeef;
1144	pg->offset = 0xdeadbeef;
1145	pg->uanon = (void *)0xdeadbeef;
1146#endif
1147	uvmexp.free++;
1148	uvm_unlock_fpageq(s);
1149}
1150
1151#if defined(UVM_PAGE_TRKOWN)
1152/*
1153 * uvm_page_own: set or release page ownership
1154 *
1155 * => this is a debugging function that keeps track of who sets PG_BUSY
1156 *	and where they do it.   it can be used to track down problems
1157 *	such a process setting "PG_BUSY" and never releasing it.
1158 * => page's object [if any] must be locked
1159 * => if "tag" is NULL then we are releasing page ownership
1160 */
1161void
1162uvm_page_own(pg, tag)
1163	struct vm_page *pg;
1164	char *tag;
1165{
1166	/* gain ownership? */
1167	if (tag) {
1168		if (pg->owner_tag) {
1169			printf("uvm_page_own: page %p already owned "
1170			    "by proc %d [%s]\n", pg,
1171			     pg->owner, pg->owner_tag);
1172			panic("uvm_page_own");
1173		}
1174		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1175		pg->owner_tag = tag;
1176		return;
1177	}
1178
1179	/* drop ownership */
1180	if (pg->owner_tag == NULL) {
1181		printf("uvm_page_own: dropping ownership of an non-owned "
1182		    "page (%p)\n", pg);
1183		panic("uvm_page_own");
1184	}
1185	pg->owner_tag = NULL;
1186	return;
1187}
1188#endif
1189