uvm_page.c revision 1.7
1/*	$NetBSD: uvm_page.c,v 1.23 1999/05/25 01:34:13 thorpej Exp $	*/
2
3/*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 *    notice, this list of conditions and the following disclaimer in the
19 *    documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 *    must display the following acknowledgement:
22 *	This product includes software developed by Charles D. Cranor,
23 *      Washington University, the University of California, Berkeley and
24 *      its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 *    may be used to endorse or promote products derived from this software
27 *    without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61 *  School of Computer Science
62 *  Carnegie Mellon University
63 *  Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69/*
70 * uvm_page.c: page ops.
71 */
72
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/malloc.h>
76#include <sys/proc.h>
77
78#include <vm/vm.h>
79#include <vm/vm_page.h>
80#include <vm/vm_kern.h>
81
82#define UVM_PAGE                /* pull in uvm_page.h functions */
83#include <uvm/uvm.h>
84
85/*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89/*
90 * physical memory config is stored in vm_physmem.
91 */
92
93struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
94int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
95
96/*
97 * local variables
98 */
99
100/*
101 * these variables record the values returned by vm_page_bootstrap,
102 * for debugging purposes.  The implementation of uvm_pageboot_alloc
103 * and pmap_startup here also uses them internally.
104 */
105
106static vaddr_t      virtual_space_start;
107static vaddr_t      virtual_space_end;
108
109/*
110 * we use a hash table with only one bucket during bootup.  we will
111 * later rehash (resize) the hash table once malloc() is ready.
112 * we static allocate the bootstrap bucket below...
113 */
114
115static struct pglist uvm_bootbucket;
116
117/*
118 * local prototypes
119 */
120
121static void uvm_pageinsert __P((struct vm_page *));
122
123
124/*
125 * inline functions
126 */
127
128/*
129 * uvm_pageinsert: insert a page in the object and the hash table
130 *
131 * => caller must lock object
132 * => caller must lock page queues
133 * => call should have already set pg's object and offset pointers
134 *    and bumped the version counter
135 */
136
137__inline static void
138uvm_pageinsert(pg)
139	struct vm_page *pg;
140{
141	struct pglist *buck;
142	int s;
143
144#ifdef DIAGNOSTIC
145	if (pg->flags & PG_TABLED)
146		panic("uvm_pageinsert: already inserted");
147#endif
148
149	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
150	s = splimp();
151	simple_lock(&uvm.hashlock);
152	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
153	simple_unlock(&uvm.hashlock);
154	splx(s);
155
156	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
157	pg->flags |= PG_TABLED;
158	pg->uobject->uo_npages++;
159
160}
161
162/*
163 * uvm_page_remove: remove page from object and hash
164 *
165 * => caller must lock object
166 * => caller must lock page queues
167 */
168
169void __inline
170uvm_pageremove(pg)
171	struct vm_page *pg;
172{
173	struct pglist *buck;
174	int s;
175
176#ifdef DIAGNOSTIC
177	if ((pg->flags & (PG_FAULTING)) != 0)
178		panic("uvm_pageremove: page is faulting");
179#endif
180
181	if ((pg->flags & PG_TABLED) == 0)
182		return;				/* XXX: log */
183
184	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
185	s = splimp();
186	simple_lock(&uvm.hashlock);
187	TAILQ_REMOVE(buck, pg, hashq);
188	simple_unlock(&uvm.hashlock);
189	splx(s);
190
191	/* object should be locked */
192	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
193
194	pg->flags &= ~PG_TABLED;
195	pg->uobject->uo_npages--;
196	pg->uobject = NULL;
197	pg->version++;
198
199}
200
201/*
202 * uvm_page_init: init the page system.   called from uvm_init().
203 *
204 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
205 */
206
207void
208uvm_page_init(kvm_startp, kvm_endp)
209	vaddr_t *kvm_startp, *kvm_endp;
210{
211	int freepages, pagecount;
212	vm_page_t pagearray;
213	int lcv, n, i;
214	paddr_t paddr;
215
216
217	/*
218	 * step 1: init the page queues and page queue locks
219	 */
220	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
221	  TAILQ_INIT(&uvm.page_free[lcv]);
222	TAILQ_INIT(&uvm.page_active);
223	TAILQ_INIT(&uvm.page_inactive_swp);
224	TAILQ_INIT(&uvm.page_inactive_obj);
225	simple_lock_init(&uvm.pageqlock);
226	simple_lock_init(&uvm.fpageqlock);
227
228	/*
229	 * step 2: init the <obj,offset> => <page> hash table. for now
230	 * we just have one bucket (the bootstrap bucket).   later on we
231	 * will malloc() new buckets as we dynamically resize the hash table.
232	 */
233
234	uvm.page_nhash = 1;			/* 1 bucket */
235	uvm.page_hashmask = 0;		/* mask for hash function */
236	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
237	TAILQ_INIT(uvm.page_hash);		/* init hash table */
238	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
239
240	/*
241	 * step 3: allocate vm_page structures.
242	 */
243
244	/*
245	 * sanity check:
246	 * before calling this function the MD code is expected to register
247	 * some free RAM with the uvm_page_physload() function.   our job
248	 * now is to allocate vm_page structures for this memory.
249	 */
250
251	if (vm_nphysseg == 0)
252		panic("vm_page_bootstrap: no memory pre-allocated");
253
254	/*
255	 * first calculate the number of free pages...
256	 *
257	 * note that we use start/end rather than avail_start/avail_end.
258	 * this allows us to allocate extra vm_page structures in case we
259	 * want to return some memory to the pool after booting.
260	 */
261
262	freepages = 0;
263	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
264		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
265
266	/*
267	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
268	 * use.   for each page of memory we use we need a vm_page structure.
269	 * thus, the total number of pages we can use is the total size of
270	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
271	 * structure.   we add one to freepages as a fudge factor to avoid
272	 * truncation errors (since we can only allocate in terms of whole
273	 * pages).
274	 */
275
276	pagecount = ((freepages + 1) << PAGE_SHIFT) /
277	    (PAGE_SIZE + sizeof(struct vm_page));
278	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
279	    sizeof(struct vm_page));
280	bzero(pagearray, pagecount * sizeof(struct vm_page));
281
282	/*
283	 * step 4: init the vm_page structures and put them in the correct
284	 * place...
285	 */
286
287	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
288
289		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
290		if (n > pagecount) {
291			printf("uvm_page_init: lost %d page(s) in init\n",
292			    n - pagecount);
293			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
294			/* n = pagecount; */
295		}
296		/* set up page array pointers */
297		vm_physmem[lcv].pgs = pagearray;
298		pagearray += n;
299		pagecount -= n;
300		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
301
302		/* init and free vm_pages (we've already zeroed them) */
303		paddr = ptoa(vm_physmem[lcv].start);
304		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
305			vm_physmem[lcv].pgs[i].phys_addr = paddr;
306			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
307			    atop(paddr) <= vm_physmem[lcv].avail_end) {
308				uvmexp.npages++;
309				/* add page to free pool */
310				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
311			}
312		}
313	}
314	/*
315	 * step 5: pass up the values of virtual_space_start and
316	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
317	 * layers of the VM.
318	 */
319
320	*kvm_startp = round_page(virtual_space_start);
321	*kvm_endp = trunc_page(virtual_space_end);
322
323	/*
324	 * step 6: init pagedaemon lock
325	 */
326
327	simple_lock_init(&uvm.pagedaemon_lock);
328
329	/*
330	 * step 7: init reserve thresholds
331	 * XXXCDC - values may need adjusting
332	 */
333	uvmexp.reserve_pagedaemon = 1;
334	uvmexp.reserve_kernel = 5;
335
336	/*
337	 * done!
338	 */
339
340}
341
342/*
343 * uvm_setpagesize: set the page size
344 *
345 * => sets page_shift and page_mask from uvmexp.pagesize.
346 * => XXXCDC: move global vars.
347 */
348
349void
350uvm_setpagesize()
351{
352	if (uvmexp.pagesize == 0)
353		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
354	uvmexp.pagemask = uvmexp.pagesize - 1;
355	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
356		panic("uvm_setpagesize: page size not a power of two");
357	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
358		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
359			break;
360}
361
362/*
363 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
364 */
365
366vaddr_t
367uvm_pageboot_alloc(size)
368	vsize_t size;
369{
370#if defined(PMAP_STEAL_MEMORY)
371	vaddr_t addr;
372
373	/*
374	 * defer bootstrap allocation to MD code (it may want to allocate
375	 * from a direct-mapped segment).  pmap_steal_memory should round
376	 * off virtual_space_start/virtual_space_end.
377	 */
378
379	addr = pmap_steal_memory(size, &virtual_space_start,
380	    &virtual_space_end);
381
382	return(addr);
383
384#else /* !PMAP_STEAL_MEMORY */
385
386	static boolean_t initialized = FALSE;
387	vaddr_t addr, vaddr;
388	paddr_t paddr;
389
390	/* round to page size */
391	size = round_page(size);
392
393	/*
394	 * on first call to this function, initialize ourselves.
395	 */
396	if (initialized == FALSE) {
397		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
398
399		/* round it the way we like it */
400		virtual_space_start = round_page(virtual_space_start);
401		virtual_space_end = trunc_page(virtual_space_end);
402
403		initialized = TRUE;
404	}
405
406	/*
407	 * allocate virtual memory for this request
408	 */
409	if (virtual_space_start == virtual_space_end ||
410	    (virtual_space_end - virtual_space_start) < size)
411		panic("uvm_pageboot_alloc: out of virtual space");
412
413	addr = virtual_space_start;
414
415#ifdef PMAP_GROWKERNEL
416	/*
417	 * If the kernel pmap can't map the requested space,
418	 * then allocate more resources for it.
419	 */
420	if (uvm_maxkaddr < (addr + size)) {
421		uvm_maxkaddr = pmap_growkernel(addr + size);
422		if (uvm_maxkaddr < (addr + size))
423			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
424	}
425#endif
426
427	virtual_space_start += size;
428
429	/*
430	 * allocate and mapin physical pages to back new virtual pages
431	 */
432
433	for (vaddr = round_page(addr) ; vaddr < addr + size ;
434	    vaddr += PAGE_SIZE) {
435
436		if (!uvm_page_physget(&paddr))
437			panic("uvm_pageboot_alloc: out of memory");
438
439		/* XXX: should be wired, but some pmaps don't like that ... */
440#if defined(PMAP_NEW)
441		/*
442		 * Note this memory is no longer managed, so using
443		 * pmap_kenter is safe.
444		 */
445		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
446#else
447		pmap_enter(pmap_kernel(), vaddr, paddr,
448		    VM_PROT_READ|VM_PROT_WRITE, FALSE,
449		    VM_PROT_READ|VM_PROT_WRITE);
450#endif
451
452	}
453	return(addr);
454#endif	/* PMAP_STEAL_MEMORY */
455}
456
457#if !defined(PMAP_STEAL_MEMORY)
458/*
459 * uvm_page_physget: "steal" one page from the vm_physmem structure.
460 *
461 * => attempt to allocate it off the end of a segment in which the "avail"
462 *    values match the start/end values.   if we can't do that, then we
463 *    will advance both values (making them equal, and removing some
464 *    vm_page structures from the non-avail area).
465 * => return false if out of memory.
466 */
467
468boolean_t
469uvm_page_physget(paddrp)
470	paddr_t *paddrp;
471{
472	int lcv, x;
473
474	/* pass 1: try allocating from a matching end */
475#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
476	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
477#else
478	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
479#endif
480	{
481
482		if (vm_physmem[lcv].pgs)
483			panic("vm_page_physget: called _after_ bootstrap");
484
485		/* try from front */
486		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
487		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
488			*paddrp = ptoa(vm_physmem[lcv].avail_start);
489			vm_physmem[lcv].avail_start++;
490			vm_physmem[lcv].start++;
491			/* nothing left?   nuke it */
492			if (vm_physmem[lcv].avail_start ==
493			    vm_physmem[lcv].end) {
494				if (vm_nphysseg == 1)
495				    panic("vm_page_physget: out of memory!");
496				vm_nphysseg--;
497				for (x = lcv ; x < vm_nphysseg ; x++)
498					/* structure copy */
499					vm_physmem[x] = vm_physmem[x+1];
500			}
501			return (TRUE);
502		}
503
504		/* try from rear */
505		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
506		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
507			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
508			vm_physmem[lcv].avail_end--;
509			vm_physmem[lcv].end--;
510			/* nothing left?   nuke it */
511			if (vm_physmem[lcv].avail_end ==
512			    vm_physmem[lcv].start) {
513				if (vm_nphysseg == 1)
514				    panic("vm_page_physget: out of memory!");
515				vm_nphysseg--;
516				for (x = lcv ; x < vm_nphysseg ; x++)
517					/* structure copy */
518					vm_physmem[x] = vm_physmem[x+1];
519			}
520			return (TRUE);
521		}
522	}
523
524	/* pass2: forget about matching ends, just allocate something */
525#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
526	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
527#else
528	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
529#endif
530	{
531
532		/* any room in this bank? */
533		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
534			continue;  /* nope */
535
536		*paddrp = ptoa(vm_physmem[lcv].avail_start);
537		vm_physmem[lcv].avail_start++;
538		/* truncate! */
539		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
540
541		/* nothing left?   nuke it */
542		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
543			if (vm_nphysseg == 1)
544				panic("vm_page_physget: out of memory!");
545			vm_nphysseg--;
546			for (x = lcv ; x < vm_nphysseg ; x++)
547				/* structure copy */
548				vm_physmem[x] = vm_physmem[x+1];
549		}
550		return (TRUE);
551	}
552
553	return (FALSE);        /* whoops! */
554}
555#endif /* PMAP_STEAL_MEMORY */
556
557/*
558 * uvm_page_physload: load physical memory into VM system
559 *
560 * => all args are PFs
561 * => all pages in start/end get vm_page structures
562 * => areas marked by avail_start/avail_end get added to the free page pool
563 * => we are limited to VM_PHYSSEG_MAX physical memory segments
564 */
565
566void
567uvm_page_physload(start, end, avail_start, avail_end, free_list)
568	vaddr_t start, end, avail_start, avail_end;
569	int free_list;
570{
571	int preload, lcv;
572	psize_t npages;
573	struct vm_page *pgs;
574	struct vm_physseg *ps;
575
576	if (uvmexp.pagesize == 0)
577		panic("vm_page_physload: page size not set!");
578
579	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
580		panic("uvm_page_physload: bad free list %d\n", free_list);
581
582	/*
583	 * do we have room?
584	 */
585	if (vm_nphysseg == VM_PHYSSEG_MAX) {
586		printf("vm_page_physload: unable to load physical memory "
587		    "segment\n");
588		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
589		    VM_PHYSSEG_MAX, start, end);
590		return;
591	}
592
593	/*
594	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
595	 * called yet, so malloc is not available).
596	 */
597	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
598		if (vm_physmem[lcv].pgs)
599			break;
600	}
601	preload = (lcv == vm_nphysseg);
602
603	/*
604	 * if VM is already running, attempt to malloc() vm_page structures
605	 */
606	if (!preload) {
607#if defined(VM_PHYSSEG_NOADD)
608		panic("vm_page_physload: tried to add RAM after vm_mem_init");
609#else
610		/* XXXCDC: need some sort of lockout for this case */
611		paddr_t paddr;
612		npages = end - start;  /* # of pages */
613		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
614					 M_VMPAGE, M_NOWAIT);
615		if (pgs == NULL) {
616			printf("vm_page_physload: can not malloc vm_page "
617			    "structs for segment\n");
618			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
619			return;
620		}
621		/* zero data, init phys_addr and free_list, and free pages */
622		bzero(pgs, sizeof(struct vm_page) * npages);
623		for (lcv = 0, paddr = ptoa(start) ;
624				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
625			pgs[lcv].phys_addr = paddr;
626			pgs[lcv].free_list = free_list;
627			if (atop(paddr) >= avail_start &&
628			    atop(paddr) <= avail_end)
629				uvm_pagefree(&pgs[lcv]);
630		}
631		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
632		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
633#endif
634	} else {
635
636		/* gcc complains if these don't get init'd */
637		pgs = NULL;
638		npages = 0;
639
640	}
641
642	/*
643	 * now insert us in the proper place in vm_physmem[]
644	 */
645
646#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
647
648	/* random: put it at the end (easy!) */
649	ps = &vm_physmem[vm_nphysseg];
650
651#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
652
653	{
654		int x;
655		/* sort by address for binary search */
656		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
657			if (start < vm_physmem[lcv].start)
658				break;
659		ps = &vm_physmem[lcv];
660		/* move back other entries, if necessary ... */
661		for (x = vm_nphysseg ; x > lcv ; x--)
662			/* structure copy */
663			vm_physmem[x] = vm_physmem[x - 1];
664	}
665
666#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
667
668	{
669		int x;
670		/* sort by largest segment first */
671		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
672			if ((end - start) >
673			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
674				break;
675		ps = &vm_physmem[lcv];
676		/* move back other entries, if necessary ... */
677		for (x = vm_nphysseg ; x > lcv ; x--)
678			/* structure copy */
679			vm_physmem[x] = vm_physmem[x - 1];
680	}
681
682#else
683
684	panic("vm_page_physload: unknown physseg strategy selected!");
685
686#endif
687
688	ps->start = start;
689	ps->end = end;
690	ps->avail_start = avail_start;
691	ps->avail_end = avail_end;
692	if (preload) {
693		ps->pgs = NULL;
694	} else {
695		ps->pgs = pgs;
696		ps->lastpg = pgs + npages - 1;
697	}
698	ps->free_list = free_list;
699	vm_nphysseg++;
700
701	/*
702	 * done!
703	 */
704
705	if (!preload)
706		uvm_page_rehash();
707
708	return;
709}
710
711/*
712 * uvm_page_rehash: reallocate hash table based on number of free pages.
713 */
714
715void
716uvm_page_rehash()
717{
718	int freepages, lcv, bucketcount, s, oldcount;
719	struct pglist *newbuckets, *oldbuckets;
720	struct vm_page *pg;
721
722	/*
723	 * compute number of pages that can go in the free pool
724	 */
725
726	freepages = 0;
727	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
728		freepages +=
729		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
730
731	/*
732	 * compute number of buckets needed for this number of pages
733	 */
734
735	bucketcount = 1;
736	while (bucketcount < freepages)
737		bucketcount = bucketcount * 2;
738
739	/*
740	 * malloc new buckets
741	 */
742
743	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
744					 M_VMPBUCKET, M_NOWAIT);
745	if (newbuckets == NULL) {
746		printf("vm_page_physrehash: WARNING: could not grow page "
747		    "hash table\n");
748		return;
749	}
750	for (lcv = 0 ; lcv < bucketcount ; lcv++)
751		TAILQ_INIT(&newbuckets[lcv]);
752
753	/*
754	 * now replace the old buckets with the new ones and rehash everything
755	 */
756
757	s = splimp();
758	simple_lock(&uvm.hashlock);
759	/* swap old for new ... */
760	oldbuckets = uvm.page_hash;
761	oldcount = uvm.page_nhash;
762	uvm.page_hash = newbuckets;
763	uvm.page_nhash = bucketcount;
764	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
765
766	/* ... and rehash */
767	for (lcv = 0 ; lcv < oldcount ; lcv++) {
768		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
769			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
770			TAILQ_INSERT_TAIL(
771			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
772			  pg, hashq);
773		}
774	}
775	simple_unlock(&uvm.hashlock);
776	splx(s);
777
778	/*
779	 * free old bucket array if we malloc'd it previously
780	 */
781
782	if (oldbuckets != &uvm_bootbucket)
783		FREE(oldbuckets, M_VMPBUCKET);
784
785	/*
786	 * done
787	 */
788	return;
789}
790
791
792#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
793
794void uvm_page_physdump __P((void)); /* SHUT UP GCC */
795
796/* call from DDB */
797void
798uvm_page_physdump()
799{
800	int lcv;
801
802	printf("rehash: physical memory config [segs=%d of %d]:\n",
803				 vm_nphysseg, VM_PHYSSEG_MAX);
804	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
805		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
806		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
807		    vm_physmem[lcv].avail_end);
808	printf("STRATEGY = ");
809	switch (VM_PHYSSEG_STRAT) {
810	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
811	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
812	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
813	default: printf("<<UNKNOWN>>!!!!\n");
814	}
815	printf("number of buckets = %d\n", uvm.page_nhash);
816}
817#endif
818
819/*
820 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
821 *
822 * => return null if no pages free
823 * => wake up pagedaemon if number of free pages drops below low water mark
824 * => if obj != NULL, obj must be locked (to put in hash)
825 * => if anon != NULL, anon must be locked (to put in anon)
826 * => only one of obj or anon can be non-null
827 * => caller must activate/deactivate page if it is not wired.
828 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
829 */
830
831struct vm_page *
832uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
833	struct uvm_object *obj;
834	vaddr_t off;
835	int flags;
836	struct vm_anon *anon;
837	int strat, free_list;
838{
839	int lcv, s;
840	struct vm_page *pg;
841	struct pglist *freeq;
842	boolean_t use_reserve;
843
844#ifdef DIAGNOSTIC
845	/* sanity check */
846	if (obj && anon)
847		panic("uvm_pagealloc: obj and anon != NULL");
848#endif
849
850	s = uvm_lock_fpageq();		/* lock free page queue */
851
852	/*
853	 * check to see if we need to generate some free pages waking
854	 * the pagedaemon.
855	 */
856
857	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
858	    uvmexp.inactive < uvmexp.inactarg))
859		thread_wakeup(&uvm.pagedaemon);
860
861	/*
862	 * fail if any of these conditions is true:
863	 * [1]  there really are no free pages, or
864	 * [2]  only kernel "reserved" pages remain and
865	 *        the page isn't being allocated to a kernel object.
866	 * [3]  only pagedaemon "reserved" pages remain and
867	 *        the requestor isn't the pagedaemon.
868	 */
869
870	use_reserve = (flags & UVM_PGA_USERESERVE) ||
871		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
872	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
873	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
874	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
875		goto fail;
876
877 again:
878	switch (strat) {
879	case UVM_PGA_STRAT_NORMAL:
880		/* Check all freelists in descending priority order. */
881		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
882			freeq = &uvm.page_free[lcv];
883			if ((pg = freeq->tqh_first) != NULL)
884				goto gotit;
885		}
886
887		/* No pages free! */
888		goto fail;
889
890	case UVM_PGA_STRAT_ONLY:
891	case UVM_PGA_STRAT_FALLBACK:
892		/* Attempt to allocate from the specified free list. */
893#ifdef DIAGNOSTIC
894		if (free_list >= VM_NFREELIST || free_list < 0)
895			panic("uvm_pagealloc_strat: bad free list %d",
896			    free_list);
897#endif
898		freeq = &uvm.page_free[free_list];
899		if ((pg = freeq->tqh_first) != NULL)
900			goto gotit;
901
902		/* Fall back, if possible. */
903		if (strat == UVM_PGA_STRAT_FALLBACK) {
904			strat = UVM_PGA_STRAT_NORMAL;
905			goto again;
906		}
907
908		/* No pages free! */
909		goto fail;
910
911	default:
912		panic("uvm_pagealloc_strat: bad strat %d", strat);
913		/* NOTREACHED */
914	}
915
916 gotit:
917	TAILQ_REMOVE(freeq, pg, pageq);
918	uvmexp.free--;
919
920	uvm_unlock_fpageq(s);		/* unlock free page queue */
921
922	pg->offset = off;
923	pg->uobject = obj;
924	pg->uanon = anon;
925	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
926	pg->version++;
927	pg->wire_count = 0;
928	pg->loan_count = 0;
929	if (anon) {
930		anon->u.an_page = pg;
931		pg->pqflags = PQ_ANON;
932	} else {
933		if (obj)
934			uvm_pageinsert(pg);
935		pg->pqflags = 0;
936	}
937#if defined(UVM_PAGE_TRKOWN)
938	pg->owner_tag = NULL;
939#endif
940	UVM_PAGE_OWN(pg, "new alloc");
941
942	return(pg);
943
944 fail:
945	uvm_unlock_fpageq(s);
946	return (NULL);
947}
948
949/*
950 * uvm_pagealloc_contig: allocate contiguous memory.
951 *
952 * XXX - fix comment.
953 */
954
955vaddr_t
956uvm_pagealloc_contig(size, low, high, alignment)
957	vaddr_t size;
958	vaddr_t low, high;
959	vaddr_t alignment;
960{
961	struct pglist pglist;
962	struct vm_page *pg;
963	vaddr_t addr, temp_addr;
964
965	size = round_page(size);
966
967	TAILQ_INIT(&pglist);
968	if (uvm_pglistalloc(size, low, high, alignment, 0,
969			    &pglist, 1, FALSE))
970		return 0;
971	addr = vm_map_min(kernel_map);
972	if (uvm_map(kernel_map, &addr, size, NULL, UVM_UNKNOWN_OFFSET,
973		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
974				UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
975		uvm_pglistfree(&pglist);
976		return 0;
977	}
978	temp_addr = addr;
979	for (pg = TAILQ_FIRST(&pglist); pg != NULL;
980	     pg = TAILQ_NEXT(pg, pageq)) {
981	        pg->uobject = uvm.kernel_object;
982		pg->offset = temp_addr - vm_map_min(kernel_map);
983		uvm_pageinsert(pg);
984		uvm_pagewire(pg);
985#if defined(PMAP_NEW)
986		pmap_kenter_pa(temp_addr, VM_PAGE_TO_PHYS(pg),
987			       VM_PROT_READ|VM_PROT_WRITE);
988#else
989		pmap_enter(pmap_kernel(), temp_addr, VM_PAGE_TO_PHYS(pg),
990			   VM_PROT_READ|VM_PROT_WRITE, TRUE,
991			   VM_PROT_READ|VM_PROT_WRITE);
992#endif
993		temp_addr += PAGE_SIZE;
994	}
995	return addr;
996}
997
998/*
999 * uvm_pagerealloc: reallocate a page from one object to another
1000 *
1001 * => both objects must be locked
1002 */
1003
1004void
1005uvm_pagerealloc(pg, newobj, newoff)
1006	struct vm_page *pg;
1007	struct uvm_object *newobj;
1008	vaddr_t newoff;
1009{
1010	/*
1011	 * remove it from the old object
1012	 */
1013
1014	if (pg->uobject) {
1015		uvm_pageremove(pg);
1016	}
1017
1018	/*
1019	 * put it in the new object
1020	 */
1021
1022	if (newobj) {
1023		pg->uobject = newobj;
1024		pg->offset = newoff;
1025		pg->version++;
1026		uvm_pageinsert(pg);
1027	}
1028
1029	return;
1030}
1031
1032
1033/*
1034 * uvm_pagefree: free page
1035 *
1036 * => erase page's identity (i.e. remove from hash/object)
1037 * => put page on free list
1038 * => caller must lock owning object (either anon or uvm_object)
1039 * => caller must lock page queues
1040 * => assumes all valid mappings of pg are gone
1041 */
1042
1043void uvm_pagefree(pg)
1044
1045struct vm_page *pg;
1046
1047{
1048	int s;
1049	int saved_loan_count = pg->loan_count;
1050
1051	/*
1052	 * if the page was an object page (and thus "TABLED"), remove it
1053	 * from the object.
1054	 */
1055
1056	if (pg->flags & PG_TABLED) {
1057
1058		/*
1059		 * if the object page is on loan we are going to drop ownership.
1060		 * it is possible that an anon will take over as owner for this
1061		 * page later on.   the anon will want a !PG_CLEAN page so that
1062		 * it knows it needs to allocate swap if it wants to page the
1063		 * page out.
1064		 */
1065
1066		if (saved_loan_count)
1067			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1068
1069		uvm_pageremove(pg);
1070
1071		/*
1072		 * if our page was on loan, then we just lost control over it
1073		 * (in fact, if it was loaned to an anon, the anon may have
1074		 * already taken over ownership of the page by now and thus
1075		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1076		 * return (when the last loan is dropped, then the page can be
1077		 * freed by whatever was holding the last loan).
1078		 */
1079		if (saved_loan_count)
1080			return;
1081
1082	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1083
1084		/*
1085		 * if our page is owned by an anon and is loaned out to the
1086		 * kernel then we just want to drop ownership and return.
1087		 * the kernel must free the page when all its loans clear ...
1088		 * note that the kernel can't change the loan status of our
1089		 * page as long as we are holding PQ lock.
1090		 */
1091		pg->pqflags &= ~PQ_ANON;
1092		pg->uanon = NULL;
1093		return;
1094	}
1095
1096#ifdef DIAGNOSTIC
1097	if (saved_loan_count) {
1098		printf("uvm_pagefree: warning: freeing page with a loan "
1099		    "count of %d\n", saved_loan_count);
1100		panic("uvm_pagefree: loan count");
1101	}
1102#endif
1103
1104
1105	/*
1106	 * now remove the page from the queues
1107	 */
1108
1109	if (pg->pqflags & PQ_ACTIVE) {
1110		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1111		pg->pqflags &= ~PQ_ACTIVE;
1112		uvmexp.active--;
1113	}
1114	if (pg->pqflags & PQ_INACTIVE) {
1115		if (pg->pqflags & PQ_SWAPBACKED)
1116			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1117		else
1118			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1119		pg->pqflags &= ~PQ_INACTIVE;
1120		uvmexp.inactive--;
1121	}
1122
1123	/*
1124	 * if the page was wired, unwire it now.
1125	 */
1126	if (pg->wire_count)
1127	{
1128		pg->wire_count = 0;
1129		uvmexp.wired--;
1130	}
1131
1132	/*
1133	 * and put on free queue
1134	 */
1135
1136	s = uvm_lock_fpageq();
1137	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1138	    pg, pageq);
1139	pg->pqflags = PQ_FREE;
1140#ifdef DEBUG
1141	pg->uobject = (void *)0xdeadbeef;
1142	pg->offset = 0xdeadbeef;
1143	pg->uanon = (void *)0xdeadbeef;
1144#endif
1145	uvmexp.free++;
1146	uvm_unlock_fpageq(s);
1147}
1148
1149#if defined(UVM_PAGE_TRKOWN)
1150/*
1151 * uvm_page_own: set or release page ownership
1152 *
1153 * => this is a debugging function that keeps track of who sets PG_BUSY
1154 *	and where they do it.   it can be used to track down problems
1155 *	such a process setting "PG_BUSY" and never releasing it.
1156 * => page's object [if any] must be locked
1157 * => if "tag" is NULL then we are releasing page ownership
1158 */
1159void
1160uvm_page_own(pg, tag)
1161	struct vm_page *pg;
1162	char *tag;
1163{
1164	/* gain ownership? */
1165	if (tag) {
1166		if (pg->owner_tag) {
1167			printf("uvm_page_own: page %p already owned "
1168			    "by proc %d [%s]\n", pg,
1169			     pg->owner, pg->owner_tag);
1170			panic("uvm_page_own");
1171		}
1172		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1173		pg->owner_tag = tag;
1174		return;
1175	}
1176
1177	/* drop ownership */
1178	if (pg->owner_tag == NULL) {
1179		printf("uvm_page_own: dropping ownership of an non-owned "
1180		    "page (%p)\n", pg);
1181		panic("uvm_page_own");
1182	}
1183	pg->owner_tag = NULL;
1184	return;
1185}
1186#endif
1187