uvm_page.c revision 1.67
1/*	$OpenBSD: uvm_page.c,v 1.67 2008/07/02 15:21:33 art Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#define UVM_PAGE                /* pull in uvm_page.h functions */
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/malloc.h>
78#include <sys/sched.h>
79#include <sys/kernel.h>
80#include <sys/vnode.h>
81#include <sys/mount.h>
82
83#include <uvm/uvm.h>
84
85/*
86 * global vars... XXXCDC: move to uvm. structure.
87 */
88
89/*
90 * physical memory config is stored in vm_physmem.
91 */
92
93struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
94int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
95
96/*
97 * Some supported CPUs in a given architecture don't support all
98 * of the things necessary to do idle page zero'ing efficiently.
99 * We therefore provide a way to disable it from machdep code here.
100 */
101
102/*
103 * XXX disabled until we can find a way to do this without causing
104 * problems for either cpu caches or DMA latency.
105 */
106boolean_t vm_page_zero_enable = FALSE;
107
108/*
109 * local variables
110 */
111
112/*
113 * these variables record the values returned by vm_page_bootstrap,
114 * for debugging purposes.  The implementation of uvm_pageboot_alloc
115 * and pmap_startup here also uses them internally.
116 */
117
118static vaddr_t      virtual_space_start;
119static vaddr_t      virtual_space_end;
120
121/*
122 * we use a hash table with only one bucket during bootup.  we will
123 * later rehash (resize) the hash table once the allocator is ready.
124 * we static allocate the one bootstrap bucket below...
125 */
126
127static struct pglist uvm_bootbucket;
128
129/*
130 * History
131 */
132UVMHIST_DECL(pghist);
133
134/*
135 * local prototypes
136 */
137
138static void uvm_pageinsert(struct vm_page *);
139static void uvm_pageremove(struct vm_page *);
140
141/*
142 * inline functions
143 */
144
145/*
146 * uvm_pageinsert: insert a page in the object and the hash table
147 *
148 * => caller must lock object
149 * => caller must lock page queues
150 * => call should have already set pg's object and offset pointers
151 *    and bumped the version counter
152 */
153
154__inline static void
155uvm_pageinsert(struct vm_page *pg)
156{
157	struct pglist *buck;
158	int s;
159	UVMHIST_FUNC("uvm_pageinsert"); UVMHIST_CALLED(pghist);
160
161	KASSERT((pg->pg_flags & PG_TABLED) == 0);
162	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
163	s = splvm();
164	simple_lock(&uvm.hashlock);
165	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
166	simple_unlock(&uvm.hashlock);
167	splx(s);
168
169	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
170	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
171	pg->uobject->uo_npages++;
172}
173
174/*
175 * uvm_page_remove: remove page from object and hash
176 *
177 * => caller must lock object
178 * => caller must lock page queues
179 */
180
181static __inline void
182uvm_pageremove(struct vm_page *pg)
183{
184	struct pglist *buck;
185	int s;
186	UVMHIST_FUNC("uvm_pageremove"); UVMHIST_CALLED(pghist);
187
188	KASSERT(pg->pg_flags & PG_TABLED);
189	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
190	s = splvm();
191	simple_lock(&uvm.hashlock);
192	TAILQ_REMOVE(buck, pg, hashq);
193	simple_unlock(&uvm.hashlock);
194	splx(s);
195
196#ifdef UBC
197	if (pg->uobject->pgops == &uvm_vnodeops) {
198		uvm_pgcnt_vnode--;
199	}
200#endif
201
202	/* object should be locked */
203	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
204
205	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
206	pg->uobject->uo_npages--;
207	pg->uobject = NULL;
208	pg->pg_version++;
209}
210
211/*
212 * uvm_page_init: init the page system.   called from uvm_init().
213 *
214 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
215 */
216
217void
218uvm_page_init(kvm_startp, kvm_endp)
219	vaddr_t *kvm_startp, *kvm_endp;
220{
221	vsize_t freepages, pagecount, n;
222	vm_page_t pagearray;
223	int lcv, i;
224	paddr_t paddr;
225#if defined(UVMHIST)
226	static struct uvm_history_ent pghistbuf[100];
227#endif
228
229	UVMHIST_FUNC("uvm_page_init");
230	UVMHIST_INIT_STATIC(pghist, pghistbuf);
231	UVMHIST_CALLED(pghist);
232
233	/*
234	 * init the page queues and page queue locks
235	 */
236
237	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
238		for (i = 0; i < PGFL_NQUEUES; i++)
239			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
240	}
241	TAILQ_INIT(&uvm.page_active);
242	TAILQ_INIT(&uvm.page_inactive_swp);
243	TAILQ_INIT(&uvm.page_inactive_obj);
244	simple_lock_init(&uvm.pageqlock);
245	mtx_init(&uvm.fpageqlock, IPL_VM);
246
247	/*
248	 * init the <obj,offset> => <page> hash table.  for now
249	 * we just have one bucket (the bootstrap bucket).  later on we
250	 * will allocate new buckets as we dynamically resize the hash table.
251	 */
252
253	uvm.page_nhash = 1;			/* 1 bucket */
254	uvm.page_hashmask = 0;			/* mask for hash function */
255	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
256	TAILQ_INIT(uvm.page_hash);		/* init hash table */
257	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
258
259	/*
260	 * allocate vm_page structures.
261	 */
262
263	/*
264	 * sanity check:
265	 * before calling this function the MD code is expected to register
266	 * some free RAM with the uvm_page_physload() function.   our job
267	 * now is to allocate vm_page structures for this memory.
268	 */
269
270	if (vm_nphysseg == 0)
271		panic("uvm_page_bootstrap: no memory pre-allocated");
272
273	/*
274	 * first calculate the number of free pages...
275	 *
276	 * note that we use start/end rather than avail_start/avail_end.
277	 * this allows us to allocate extra vm_page structures in case we
278	 * want to return some memory to the pool after booting.
279	 */
280
281	freepages = 0;
282	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
283		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
284
285	/*
286	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
287	 * use.   for each page of memory we use we need a vm_page structure.
288	 * thus, the total number of pages we can use is the total size of
289	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
290	 * structure.   we add one to freepages as a fudge factor to avoid
291	 * truncation errors (since we can only allocate in terms of whole
292	 * pages).
293	 */
294
295	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
296	    (PAGE_SIZE + sizeof(struct vm_page));
297	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
298	    sizeof(struct vm_page));
299	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
300
301	/*
302	 * init the vm_page structures and put them in the correct place.
303	 */
304
305	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
306		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
307		if (n > pagecount) {
308			printf("uvm_page_init: lost %ld page(s) in init\n",
309			    (long)(n - pagecount));
310			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
311			/* n = pagecount; */
312		}
313
314		/* set up page array pointers */
315		vm_physmem[lcv].pgs = pagearray;
316		pagearray += n;
317		pagecount -= n;
318		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
319
320		/* init and free vm_pages (we've already zeroed them) */
321		paddr = ptoa(vm_physmem[lcv].start);
322		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
323			vm_physmem[lcv].pgs[i].phys_addr = paddr;
324#ifdef __HAVE_VM_PAGE_MD
325			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
326#endif
327			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
328			    atop(paddr) <= vm_physmem[lcv].avail_end) {
329				uvmexp.npages++;
330				/* add page to free pool */
331				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
332			}
333		}
334	}
335
336	/*
337	 * pass up the values of virtual_space_start and
338	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
339	 * layers of the VM.
340	 */
341
342	*kvm_startp = round_page(virtual_space_start);
343	*kvm_endp = trunc_page(virtual_space_end);
344
345	/*
346	 * init locks for kernel threads
347	 */
348
349	simple_lock_init(&uvm.pagedaemon_lock);
350	simple_lock_init(&uvm.aiodoned_lock);
351
352	/*
353	 * init reserve thresholds
354	 * XXXCDC - values may need adjusting
355	 */
356	uvmexp.reserve_pagedaemon = 4;
357	uvmexp.reserve_kernel = 6;
358	uvmexp.anonminpct = 10;
359	uvmexp.vnodeminpct = 10;
360	uvmexp.vtextminpct = 5;
361	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
362	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
363	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
364
365  	/*
366	 * determine if we should zero pages in the idle loop.
367	 */
368
369	uvm.page_idle_zero = vm_page_zero_enable;
370
371	/*
372	 * done!
373	 */
374
375	uvm.page_init_done = TRUE;
376}
377
378/*
379 * uvm_setpagesize: set the page size
380 *
381 * => sets page_shift and page_mask from uvmexp.pagesize.
382 */
383
384void
385uvm_setpagesize()
386{
387	if (uvmexp.pagesize == 0)
388		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
389	uvmexp.pagemask = uvmexp.pagesize - 1;
390	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
391		panic("uvm_setpagesize: page size not a power of two");
392	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
393		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
394			break;
395}
396
397/*
398 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
399 */
400
401vaddr_t
402uvm_pageboot_alloc(size)
403	vsize_t size;
404{
405#if defined(PMAP_STEAL_MEMORY)
406	vaddr_t addr;
407
408	/*
409	 * defer bootstrap allocation to MD code (it may want to allocate
410	 * from a direct-mapped segment).  pmap_steal_memory should round
411	 * off virtual_space_start/virtual_space_end.
412	 */
413
414	addr = pmap_steal_memory(size, &virtual_space_start,
415	    &virtual_space_end);
416
417	return(addr);
418
419#else /* !PMAP_STEAL_MEMORY */
420
421	static boolean_t initialized = FALSE;
422	vaddr_t addr, vaddr;
423	paddr_t paddr;
424
425	/* round to page size */
426	size = round_page(size);
427
428	/*
429	 * on first call to this function, initialize ourselves.
430	 */
431	if (initialized == FALSE) {
432		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
433
434		/* round it the way we like it */
435		virtual_space_start = round_page(virtual_space_start);
436		virtual_space_end = trunc_page(virtual_space_end);
437
438		initialized = TRUE;
439	}
440
441	/*
442	 * allocate virtual memory for this request
443	 */
444	if (virtual_space_start == virtual_space_end ||
445	    (virtual_space_end - virtual_space_start) < size)
446		panic("uvm_pageboot_alloc: out of virtual space");
447
448	addr = virtual_space_start;
449
450#ifdef PMAP_GROWKERNEL
451	/*
452	 * If the kernel pmap can't map the requested space,
453	 * then allocate more resources for it.
454	 */
455	if (uvm_maxkaddr < (addr + size)) {
456		uvm_maxkaddr = pmap_growkernel(addr + size);
457		if (uvm_maxkaddr < (addr + size))
458			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
459	}
460#endif
461
462	virtual_space_start += size;
463
464	/*
465	 * allocate and mapin physical pages to back new virtual pages
466	 */
467
468	for (vaddr = round_page(addr) ; vaddr < addr + size ;
469	    vaddr += PAGE_SIZE) {
470
471		if (!uvm_page_physget(&paddr))
472			panic("uvm_pageboot_alloc: out of memory");
473
474		/*
475		 * Note this memory is no longer managed, so using
476		 * pmap_kenter is safe.
477		 */
478		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
479	}
480	pmap_update(pmap_kernel());
481	return(addr);
482#endif	/* PMAP_STEAL_MEMORY */
483}
484
485#if !defined(PMAP_STEAL_MEMORY)
486/*
487 * uvm_page_physget: "steal" one page from the vm_physmem structure.
488 *
489 * => attempt to allocate it off the end of a segment in which the "avail"
490 *    values match the start/end values.   if we can't do that, then we
491 *    will advance both values (making them equal, and removing some
492 *    vm_page structures from the non-avail area).
493 * => return false if out of memory.
494 */
495
496/* subroutine: try to allocate from memory chunks on the specified freelist */
497static boolean_t uvm_page_physget_freelist(paddr_t *, int);
498
499static boolean_t
500uvm_page_physget_freelist(paddrp, freelist)
501	paddr_t *paddrp;
502	int freelist;
503{
504	int lcv, x;
505	UVMHIST_FUNC("uvm_page_physget_freelist"); UVMHIST_CALLED(pghist);
506
507	/* pass 1: try allocating from a matching end */
508#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
509	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
510	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
511#else
512	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
513#endif
514	{
515
516		if (uvm.page_init_done == TRUE)
517			panic("uvm_page_physget: called _after_ bootstrap");
518
519		if (vm_physmem[lcv].free_list != freelist)
520			continue;
521
522		/* try from front */
523		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
524		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
525			*paddrp = ptoa(vm_physmem[lcv].avail_start);
526			vm_physmem[lcv].avail_start++;
527			vm_physmem[lcv].start++;
528			/* nothing left?   nuke it */
529			if (vm_physmem[lcv].avail_start ==
530			    vm_physmem[lcv].end) {
531				if (vm_nphysseg == 1)
532				    panic("uvm_page_physget: out of memory!");
533				vm_nphysseg--;
534				for (x = lcv ; x < vm_nphysseg ; x++)
535					/* structure copy */
536					vm_physmem[x] = vm_physmem[x+1];
537			}
538			return (TRUE);
539		}
540
541		/* try from rear */
542		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
543		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
544			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
545			vm_physmem[lcv].avail_end--;
546			vm_physmem[lcv].end--;
547			/* nothing left?   nuke it */
548			if (vm_physmem[lcv].avail_end ==
549			    vm_physmem[lcv].start) {
550				if (vm_nphysseg == 1)
551				    panic("uvm_page_physget: out of memory!");
552				vm_nphysseg--;
553				for (x = lcv ; x < vm_nphysseg ; x++)
554					/* structure copy */
555					vm_physmem[x] = vm_physmem[x+1];
556			}
557			return (TRUE);
558		}
559	}
560
561	/* pass2: forget about matching ends, just allocate something */
562#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
563	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
564	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
565#else
566	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
567#endif
568	{
569
570		/* any room in this bank? */
571		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
572			continue;  /* nope */
573
574		*paddrp = ptoa(vm_physmem[lcv].avail_start);
575		vm_physmem[lcv].avail_start++;
576		/* truncate! */
577		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
578
579		/* nothing left?   nuke it */
580		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
581			if (vm_nphysseg == 1)
582				panic("uvm_page_physget: out of memory!");
583			vm_nphysseg--;
584			for (x = lcv ; x < vm_nphysseg ; x++)
585				/* structure copy */
586				vm_physmem[x] = vm_physmem[x+1];
587		}
588		return (TRUE);
589	}
590
591	return (FALSE);        /* whoops! */
592}
593
594boolean_t
595uvm_page_physget(paddrp)
596	paddr_t *paddrp;
597{
598	int i;
599	UVMHIST_FUNC("uvm_page_physget"); UVMHIST_CALLED(pghist);
600
601	/* try in the order of freelist preference */
602	for (i = 0; i < VM_NFREELIST; i++)
603		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
604			return (TRUE);
605	return (FALSE);
606}
607#endif /* PMAP_STEAL_MEMORY */
608
609/*
610 * uvm_page_physload: load physical memory into VM system
611 *
612 * => all args are PFs
613 * => all pages in start/end get vm_page structures
614 * => areas marked by avail_start/avail_end get added to the free page pool
615 * => we are limited to VM_PHYSSEG_MAX physical memory segments
616 */
617
618void
619uvm_page_physload(start, end, avail_start, avail_end, free_list)
620	paddr_t start, end, avail_start, avail_end;
621	int free_list;
622{
623	int preload, lcv;
624	psize_t npages;
625	struct vm_page *pgs;
626	struct vm_physseg *ps;
627
628	if (uvmexp.pagesize == 0)
629		panic("uvm_page_physload: page size not set!");
630
631	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
632		panic("uvm_page_physload: bad free list %d", free_list);
633
634	if (start >= end)
635		panic("uvm_page_physload: start >= end");
636
637	/*
638	 * do we have room?
639	 */
640	if (vm_nphysseg == VM_PHYSSEG_MAX) {
641		printf("uvm_page_physload: unable to load physical memory "
642		    "segment\n");
643		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
644		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
645		printf("\tincrease VM_PHYSSEG_MAX\n");
646		return;
647	}
648
649	/*
650	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
651	 * called yet, so malloc is not available).
652	 */
653	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
654		if (vm_physmem[lcv].pgs)
655			break;
656	}
657	preload = (lcv == vm_nphysseg);
658
659	/*
660	 * if VM is already running, attempt to malloc() vm_page structures
661	 */
662	if (!preload) {
663#if defined(VM_PHYSSEG_NOADD)
664		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
665#else
666		/* XXXCDC: need some sort of lockout for this case */
667		paddr_t paddr;
668		npages = end - start;  /* # of pages */
669		pgs = (vm_page *)uvm_km_alloc(kernel_map,
670		    sizeof(struct vm_page) * npages);
671		if (pgs == NULL) {
672			printf("uvm_page_physload: can not malloc vm_page "
673			    "structs for segment\n");
674			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
675			return;
676		}
677		/* zero data, init phys_addr and free_list, and free pages */
678		memset(pgs, 0, sizeof(struct vm_page) * npages);
679		for (lcv = 0, paddr = ptoa(start) ;
680				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
681			pgs[lcv].phys_addr = paddr;
682			pgs[lcv].free_list = free_list;
683			if (atop(paddr) >= avail_start &&
684			    atop(paddr) <= avail_end)
685				uvm_pagefree(&pgs[lcv]);
686		}
687		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
688		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
689#endif
690	} else {
691
692		/* gcc complains if these don't get init'd */
693		pgs = NULL;
694		npages = 0;
695
696	}
697
698	/*
699	 * now insert us in the proper place in vm_physmem[]
700	 */
701
702#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
703
704	/* random: put it at the end (easy!) */
705	ps = &vm_physmem[vm_nphysseg];
706
707#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
708
709	{
710		int x;
711		/* sort by address for binary search */
712		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
713			if (start < vm_physmem[lcv].start)
714				break;
715		ps = &vm_physmem[lcv];
716		/* move back other entries, if necessary ... */
717		for (x = vm_nphysseg ; x > lcv ; x--)
718			/* structure copy */
719			vm_physmem[x] = vm_physmem[x - 1];
720	}
721
722#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
723
724	{
725		int x;
726		/* sort by largest segment first */
727		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
728			if ((end - start) >
729			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
730				break;
731		ps = &vm_physmem[lcv];
732		/* move back other entries, if necessary ... */
733		for (x = vm_nphysseg ; x > lcv ; x--)
734			/* structure copy */
735			vm_physmem[x] = vm_physmem[x - 1];
736	}
737
738#else
739
740	panic("uvm_page_physload: unknown physseg strategy selected!");
741
742#endif
743
744	ps->start = start;
745	ps->end = end;
746	ps->avail_start = avail_start;
747	ps->avail_end = avail_end;
748	if (preload) {
749		ps->pgs = NULL;
750	} else {
751		ps->pgs = pgs;
752		ps->lastpg = pgs + npages - 1;
753	}
754	ps->free_list = free_list;
755	vm_nphysseg++;
756
757	/*
758	 * done!
759	 */
760
761	if (!preload)
762		uvm_page_rehash();
763
764	return;
765}
766
767/*
768 * uvm_page_rehash: reallocate hash table based on number of free pages.
769 */
770
771void
772uvm_page_rehash()
773{
774	int freepages, lcv, bucketcount, s, oldcount;
775	struct pglist *newbuckets, *oldbuckets;
776	struct vm_page *pg;
777	size_t newsize, oldsize;
778
779	/*
780	 * compute number of pages that can go in the free pool
781	 */
782
783	freepages = 0;
784	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
785		freepages +=
786		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
787
788	/*
789	 * compute number of buckets needed for this number of pages
790	 */
791
792	bucketcount = 1;
793	while (bucketcount < freepages)
794		bucketcount = bucketcount * 2;
795
796	/*
797	 * compute the size of the current table and new table.
798	 */
799
800	oldbuckets = uvm.page_hash;
801	oldcount = uvm.page_nhash;
802	oldsize = round_page(sizeof(struct pglist) * oldcount);
803	newsize = round_page(sizeof(struct pglist) * bucketcount);
804
805	/*
806	 * allocate the new buckets
807	 */
808
809	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
810	if (newbuckets == NULL) {
811		printf("uvm_page_physrehash: WARNING: could not grow page "
812		    "hash table\n");
813		return;
814	}
815	for (lcv = 0 ; lcv < bucketcount ; lcv++)
816		TAILQ_INIT(&newbuckets[lcv]);
817
818	/*
819	 * now replace the old buckets with the new ones and rehash everything
820	 */
821
822	s = splvm();
823	simple_lock(&uvm.hashlock);
824	uvm.page_hash = newbuckets;
825	uvm.page_nhash = bucketcount;
826	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
827
828	/* ... and rehash */
829	for (lcv = 0 ; lcv < oldcount ; lcv++) {
830		while ((pg = TAILQ_FIRST(&oldbuckets[lcv])) != NULL) {
831			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
832			TAILQ_INSERT_TAIL(
833			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
834			  pg, hashq);
835		}
836	}
837	simple_unlock(&uvm.hashlock);
838	splx(s);
839
840	/*
841	 * free old bucket array if is not the boot-time table
842	 */
843
844	if (oldbuckets != &uvm_bootbucket)
845		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
846
847	/*
848	 * done
849	 */
850	return;
851}
852
853
854#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
855
856void uvm_page_physdump(void); /* SHUT UP GCC */
857
858/* call from DDB */
859void
860uvm_page_physdump()
861{
862	int lcv;
863
864	printf("rehash: physical memory config [segs=%d of %d]:\n",
865				 vm_nphysseg, VM_PHYSSEG_MAX);
866	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
867		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
868		    (long long)vm_physmem[lcv].start,
869		    (long long)vm_physmem[lcv].end,
870		    (long long)vm_physmem[lcv].avail_start,
871		    (long long)vm_physmem[lcv].avail_end);
872	printf("STRATEGY = ");
873	switch (VM_PHYSSEG_STRAT) {
874	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
875	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
876	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
877	default: printf("<<UNKNOWN>>!!!!\n");
878	}
879	printf("number of buckets = %d\n", uvm.page_nhash);
880}
881#endif
882
883void
884uvm_shutdown(void)
885{
886#ifdef UVM_SWAP_ENCRYPT
887	uvm_swap_finicrypt_all();
888#endif
889}
890
891/*
892 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
893 *
894 * => return null if no pages free
895 * => wake up pagedaemon if number of free pages drops below low water mark
896 * => if obj != NULL, obj must be locked (to put in hash)
897 * => if anon != NULL, anon must be locked (to put in anon)
898 * => only one of obj or anon can be non-null
899 * => caller must activate/deactivate page if it is not wired.
900 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
901 * => policy decision: it is more important to pull a page off of the
902 *	appropriate priority free list than it is to get a zero'd or
903 *	unknown contents page.  This is because we live with the
904 *	consequences of a bad free list decision for the entire
905 *	lifetime of the page, e.g. if the page comes from memory that
906 *	is slower to access.
907 */
908
909struct vm_page *
910uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
911	struct uvm_object *obj;
912	voff_t off;
913	int flags;
914	struct vm_anon *anon;
915	int strat, free_list;
916{
917	int lcv, try1, try2, zeroit = 0;
918	struct vm_page *pg;
919	struct pglist *freeq;
920	struct pgfreelist *pgfl;
921	boolean_t use_reserve;
922	UVMHIST_FUNC("uvm_pagealloc_strat"); UVMHIST_CALLED(pghist);
923
924	KASSERT(obj == NULL || anon == NULL);
925	KASSERT(off == trunc_page(off));
926
927	uvm_lock_fpageq();
928
929	/*
930	 * check to see if we need to generate some free pages waking
931	 * the pagedaemon.
932	 */
933	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
934	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
935	     uvmexp.inactive < uvmexp.inactarg))
936		wakeup(&uvm.pagedaemon);
937
938	/*
939	 * fail if any of these conditions is true:
940	 * [1]  there really are no free pages, or
941	 * [2]  only kernel "reserved" pages remain and
942	 *        the page isn't being allocated to a kernel object.
943	 * [3]  only pagedaemon "reserved" pages remain and
944	 *        the requestor isn't the pagedaemon.
945	 */
946
947	use_reserve = (flags & UVM_PGA_USERESERVE) ||
948		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
949	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
950	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
951	     !((curproc == uvm.pagedaemon_proc) ||
952	      (curproc == syncerproc))))
953		goto fail;
954
955#if PGFL_NQUEUES != 2
956#error uvm_pagealloc_strat needs to be updated
957#endif
958
959	/*
960	 * If we want a zero'd page, try the ZEROS queue first, otherwise
961	 * we try the UNKNOWN queue first.
962	 */
963	if (flags & UVM_PGA_ZERO) {
964		try1 = PGFL_ZEROS;
965		try2 = PGFL_UNKNOWN;
966	} else {
967		try1 = PGFL_UNKNOWN;
968		try2 = PGFL_ZEROS;
969	}
970
971	UVMHIST_LOG(pghist, "obj=%p off=%lx anon=%p flags=%lx",
972	    obj, (u_long)off, anon, flags);
973	UVMHIST_LOG(pghist, "strat=%ld free_list=%ld", strat, free_list, 0, 0);
974 again:
975	switch (strat) {
976	case UVM_PGA_STRAT_NORMAL:
977		/* Check all freelists in descending priority order. */
978		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
979			pgfl = &uvm.page_free[lcv];
980			if ((pg = TAILQ_FIRST((freeq =
981			      &pgfl->pgfl_queues[try1]))) != NULL ||
982			    (pg = TAILQ_FIRST((freeq =
983			      &pgfl->pgfl_queues[try2]))) != NULL)
984				goto gotit;
985		}
986
987		/* No pages free! */
988		goto fail;
989
990	case UVM_PGA_STRAT_ONLY:
991	case UVM_PGA_STRAT_FALLBACK:
992		/* Attempt to allocate from the specified free list. */
993		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
994		pgfl = &uvm.page_free[free_list];
995		if ((pg = TAILQ_FIRST((freeq =
996		      &pgfl->pgfl_queues[try1]))) != NULL ||
997		    (pg = TAILQ_FIRST((freeq =
998		      &pgfl->pgfl_queues[try2]))) != NULL)
999			goto gotit;
1000
1001		/* Fall back, if possible. */
1002		if (strat == UVM_PGA_STRAT_FALLBACK) {
1003			strat = UVM_PGA_STRAT_NORMAL;
1004			goto again;
1005		}
1006
1007		/* No pages free! */
1008		goto fail;
1009
1010	default:
1011		panic("uvm_pagealloc_strat: bad strat %d", strat);
1012		/* NOTREACHED */
1013	}
1014
1015 gotit:
1016	TAILQ_REMOVE(freeq, pg, pageq);
1017	uvmexp.free--;
1018
1019	/* update zero'd page count */
1020	if (pg->pg_flags & PG_ZERO)
1021		uvmexp.zeropages--;
1022
1023	/*
1024	 * update allocation statistics and remember if we have to
1025	 * zero the page
1026	 */
1027	if (flags & UVM_PGA_ZERO) {
1028		if (pg->pg_flags & PG_ZERO) {
1029			uvmexp.pga_zerohit++;
1030			zeroit = 0;
1031		} else {
1032			uvmexp.pga_zeromiss++;
1033			zeroit = 1;
1034		}
1035	}
1036
1037	uvm_unlock_fpageq();		/* unlock free page queue */
1038
1039	pg->offset = off;
1040	pg->uobject = obj;
1041	pg->uanon = anon;
1042	pg->pg_flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1043	pg->pg_version++;
1044	if (anon) {
1045		anon->an_page = pg;
1046		atomic_setbits_int(&pg->pg_flags, PQ_ANON);
1047#ifdef UBC
1048		uvm_pgcnt_anon++;
1049#endif
1050	} else {
1051		if (obj)
1052			uvm_pageinsert(pg);
1053	}
1054#if defined(UVM_PAGE_TRKOWN)
1055	pg->owner_tag = NULL;
1056#endif
1057	UVM_PAGE_OWN(pg, "new alloc");
1058
1059	if (flags & UVM_PGA_ZERO) {
1060		/*
1061		 * A zero'd page is not clean.  If we got a page not already
1062		 * zero'd, then we have to zero it ourselves.
1063		 */
1064		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1065		if (zeroit)
1066			pmap_zero_page(pg);
1067	}
1068
1069	UVMHIST_LOG(pghist, "allocated pg %p/%lx", pg,
1070	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1071	return(pg);
1072
1073 fail:
1074	uvm_unlock_fpageq();
1075	UVMHIST_LOG(pghist, "failed!", 0, 0, 0, 0);
1076	return (NULL);
1077}
1078
1079/*
1080 * uvm_pagerealloc: reallocate a page from one object to another
1081 *
1082 * => both objects must be locked
1083 */
1084
1085void
1086uvm_pagerealloc(pg, newobj, newoff)
1087	struct vm_page *pg;
1088	struct uvm_object *newobj;
1089	voff_t newoff;
1090{
1091
1092	UVMHIST_FUNC("uvm_pagerealloc"); UVMHIST_CALLED(pghist);
1093
1094	/*
1095	 * remove it from the old object
1096	 */
1097
1098	if (pg->uobject) {
1099		uvm_pageremove(pg);
1100	}
1101
1102	/*
1103	 * put it in the new object
1104	 */
1105
1106	if (newobj) {
1107		pg->uobject = newobj;
1108		pg->offset = newoff;
1109		pg->pg_version++;
1110		uvm_pageinsert(pg);
1111	}
1112}
1113
1114
1115/*
1116 * uvm_pagefree: free page
1117 *
1118 * => erase page's identity (i.e. remove from hash/object)
1119 * => put page on free list
1120 * => caller must lock owning object (either anon or uvm_object)
1121 * => caller must lock page queues
1122 * => assumes all valid mappings of pg are gone
1123 */
1124
1125void
1126uvm_pagefree(struct vm_page *pg)
1127{
1128	int saved_loan_count = pg->loan_count;
1129	UVMHIST_FUNC("uvm_pagefree"); UVMHIST_CALLED(pghist);
1130
1131#ifdef DEBUG
1132	if (pg->uobject == (void *)0xdeadbeef &&
1133	    pg->uanon == (void *)0xdeadbeef) {
1134		panic("uvm_pagefree: freeing free page %p", pg);
1135	}
1136#endif
1137
1138	UVMHIST_LOG(pghist, "freeing pg %p/%lx", pg,
1139	    (u_long)VM_PAGE_TO_PHYS(pg), 0, 0);
1140
1141	/*
1142	 * if the page was an object page (and thus "TABLED"), remove it
1143	 * from the object.
1144	 */
1145
1146	if (pg->pg_flags & PG_TABLED) {
1147
1148		/*
1149		 * if the object page is on loan we are going to drop ownership.
1150		 * it is possible that an anon will take over as owner for this
1151		 * page later on.   the anon will want a !PG_CLEAN page so that
1152		 * it knows it needs to allocate swap if it wants to page the
1153		 * page out.
1154		 */
1155
1156		/* in case an anon takes over */
1157		if (saved_loan_count)
1158			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1159		uvm_pageremove(pg);
1160
1161		/*
1162		 * if our page was on loan, then we just lost control over it
1163		 * (in fact, if it was loaned to an anon, the anon may have
1164		 * already taken over ownership of the page by now and thus
1165		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1166		 * return (when the last loan is dropped, then the page can be
1167		 * freed by whatever was holding the last loan).
1168		 */
1169
1170		if (saved_loan_count)
1171			return;
1172	} else if (saved_loan_count && pg->uanon) {
1173		/*
1174		 * if our page is owned by an anon and is loaned out to the
1175		 * kernel then we just want to drop ownership and return.
1176		 * the kernel must free the page when all its loans clear ...
1177		 * note that the kernel can't change the loan status of our
1178		 * page as long as we are holding PQ lock.
1179		 */
1180		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1181		pg->uanon->an_page = NULL;
1182		pg->uanon = NULL;
1183		return;
1184	}
1185	KASSERT(saved_loan_count == 0);
1186
1187	/*
1188	 * now remove the page from the queues
1189	 */
1190
1191	if (pg->pg_flags & PQ_ACTIVE) {
1192		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1193		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1194		uvmexp.active--;
1195	}
1196	if (pg->pg_flags & PQ_INACTIVE) {
1197		if (pg->pg_flags & PQ_SWAPBACKED)
1198			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1199		else
1200			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1201		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1202		uvmexp.inactive--;
1203	}
1204
1205	/*
1206	 * if the page was wired, unwire it now.
1207	 */
1208
1209	if (pg->wire_count) {
1210		pg->wire_count = 0;
1211		uvmexp.wired--;
1212	}
1213	if (pg->uanon) {
1214		pg->uanon->an_page = NULL;
1215#ifdef UBC
1216		uvm_pgcnt_anon--;
1217#endif
1218	}
1219
1220	/*
1221	 * and put on free queue
1222	 */
1223
1224	atomic_clearbits_int(&pg->pg_flags, PG_ZERO);
1225
1226	uvm_lock_fpageq();
1227	TAILQ_INSERT_TAIL(&uvm.page_free[
1228	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1229	atomic_clearbits_int(&pg->pg_flags, PQ_MASK);
1230	atomic_setbits_int(&pg->pg_flags, PQ_FREE);
1231#ifdef DEBUG
1232	pg->uobject = (void *)0xdeadbeef;
1233	pg->offset = 0xdeadbeef;
1234	pg->uanon = (void *)0xdeadbeef;
1235#endif
1236	uvmexp.free++;
1237
1238	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1239		uvm.page_idle_zero = vm_page_zero_enable;
1240
1241	uvm_unlock_fpageq();
1242}
1243
1244/*
1245 * uvm_page_unbusy: unbusy an array of pages.
1246 *
1247 * => pages must either all belong to the same object, or all belong to anons.
1248 * => if pages are object-owned, object must be locked.
1249 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1250 */
1251
1252void
1253uvm_page_unbusy(pgs, npgs)
1254	struct vm_page **pgs;
1255	int npgs;
1256{
1257	struct vm_page *pg;
1258	struct uvm_object *uobj;
1259	int i;
1260	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(pdhist);
1261
1262	for (i = 0; i < npgs; i++) {
1263		pg = pgs[i];
1264
1265		if (pg == NULL || pg == PGO_DONTCARE) {
1266			continue;
1267		}
1268		if (pg->pg_flags & PG_WANTED) {
1269			wakeup(pg);
1270		}
1271		if (pg->pg_flags & PG_RELEASED) {
1272			UVMHIST_LOG(pdhist, "releasing pg %p", pg,0,0,0);
1273			uobj = pg->uobject;
1274			if (uobj != NULL) {
1275				uobj->pgops->pgo_releasepg(pg, NULL);
1276			} else {
1277				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1278				UVM_PAGE_OWN(pg, NULL);
1279				uvm_anfree(pg->uanon);
1280			}
1281		} else {
1282			UVMHIST_LOG(pdhist, "unbusying pg %p", pg,0,0,0);
1283			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1284			UVM_PAGE_OWN(pg, NULL);
1285		}
1286	}
1287}
1288
1289#if defined(UVM_PAGE_TRKOWN)
1290/*
1291 * uvm_page_own: set or release page ownership
1292 *
1293 * => this is a debugging function that keeps track of who sets PG_BUSY
1294 *	and where they do it.   it can be used to track down problems
1295 *	such a process setting "PG_BUSY" and never releasing it.
1296 * => page's object [if any] must be locked
1297 * => if "tag" is NULL then we are releasing page ownership
1298 */
1299void
1300uvm_page_own(pg, tag)
1301	struct vm_page *pg;
1302	char *tag;
1303{
1304	/* gain ownership? */
1305	if (tag) {
1306		if (pg->owner_tag) {
1307			printf("uvm_page_own: page %p already owned "
1308			    "by proc %d [%s]\n", pg,
1309			     pg->owner, pg->owner_tag);
1310			panic("uvm_page_own");
1311		}
1312		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1313		pg->owner_tag = tag;
1314		return;
1315	}
1316
1317	/* drop ownership */
1318	if (pg->owner_tag == NULL) {
1319		printf("uvm_page_own: dropping ownership of an non-owned "
1320		    "page (%p)\n", pg);
1321		panic("uvm_page_own");
1322	}
1323	pg->owner_tag = NULL;
1324	return;
1325}
1326#endif
1327
1328/*
1329 * uvm_pageidlezero: zero free pages while the system is idle.
1330 *
1331 * => we do at least one iteration per call, if we are below the target.
1332 * => we loop until we either reach the target or whichqs indicates that
1333 *	there is a process ready to run.
1334 */
1335void
1336uvm_pageidlezero()
1337{
1338	struct vm_page *pg;
1339	struct pgfreelist *pgfl;
1340	int free_list;
1341	UVMHIST_FUNC("uvm_pageidlezero"); UVMHIST_CALLED(pghist);
1342
1343	do {
1344		uvm_lock_fpageq();
1345
1346		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1347			uvm.page_idle_zero = FALSE;
1348			uvm_unlock_fpageq();
1349			return;
1350		}
1351
1352		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1353			pgfl = &uvm.page_free[free_list];
1354			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1355			    PGFL_UNKNOWN])) != NULL)
1356				break;
1357		}
1358
1359		if (pg == NULL) {
1360			/*
1361			 * No non-zero'd pages; don't bother trying again
1362			 * until we know we have non-zero'd pages free.
1363			 */
1364			uvm.page_idle_zero = FALSE;
1365			uvm_unlock_fpageq();
1366			return;
1367		}
1368
1369		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1370		uvmexp.free--;
1371		uvm_unlock_fpageq();
1372
1373#ifdef PMAP_PAGEIDLEZERO
1374		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1375			/*
1376			 * The machine-dependent code detected some
1377			 * reason for us to abort zeroing pages,
1378			 * probably because there is a process now
1379			 * ready to run.
1380			 */
1381			uvm_lock_fpageq();
1382			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1383			    pg, pageq);
1384			uvmexp.free++;
1385			uvmexp.zeroaborts++;
1386			uvm_unlock_fpageq();
1387			return;
1388		}
1389#else
1390		/*
1391		 * XXX This will toast the cache unless the pmap_zero_page()
1392		 * XXX implementation does uncached access.
1393		 */
1394		pmap_zero_page(pg);
1395#endif
1396		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1397
1398		uvm_lock_fpageq();
1399		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1400		uvmexp.free++;
1401		uvmexp.zeropages++;
1402		uvm_unlock_fpageq();
1403	} while (sched_is_idle());
1404}
1405