uvm_page.c revision 1.43
1/*	$OpenBSD: uvm_page.c,v 1.43 2002/06/11 09:45:16 art Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#define UVM_PAGE                /* pull in uvm_page.h functions */
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/malloc.h>
78#include <sys/sched.h>
79#include <sys/kernel.h>
80#include <sys/vnode.h>
81
82#include <uvm/uvm.h>
83
84/*
85 * global vars... XXXCDC: move to uvm. structure.
86 */
87
88/*
89 * physical memory config is stored in vm_physmem.
90 */
91
92struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
93int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
94
95/*
96 * Some supported CPUs in a given architecture don't support all
97 * of the things necessary to do idle page zero'ing efficiently.
98 * We therefore provide a way to disable it from machdep code here.
99 */
100
101/*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105boolean_t vm_page_zero_enable = FALSE;
106
107/*
108 * local variables
109 */
110
111/*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes.  The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117static vaddr_t      virtual_space_start;
118static vaddr_t      virtual_space_end;
119
120/*
121 * we use a hash table with only one bucket during bootup.  we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126static struct pglist uvm_bootbucket;
127
128/*
129 * local prototypes
130 */
131
132static void uvm_pageinsert(struct vm_page *);
133static void uvm_pageremove(struct vm_page *);
134
135/*
136 * inline functions
137 */
138
139/*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 *    and bumped the version counter
146 */
147
148__inline static void
149uvm_pageinsert(pg)
150	struct vm_page *pg;
151{
152	struct pglist *buck;
153	int s;
154
155	KASSERT((pg->flags & PG_TABLED) == 0);
156	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157	s = splvm();
158	simple_lock(&uvm.hashlock);
159	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
160	simple_unlock(&uvm.hashlock);
161	splx(s);
162
163	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164	pg->flags |= PG_TABLED;
165	pg->uobject->uo_npages++;
166}
167
168/*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175static __inline void
176uvm_pageremove(pg)
177	struct vm_page *pg;
178{
179	struct pglist *buck;
180	int s;
181
182	KASSERT(pg->flags & PG_TABLED);
183	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184	s = splvm();
185	simple_lock(&uvm.hashlock);
186	TAILQ_REMOVE(buck, pg, hashq);
187	simple_unlock(&uvm.hashlock);
188	splx(s);
189
190#ifdef UBC
191	if (pg->uobject->pgops == &uvm_vnodeops) {
192		uvm_pgcnt_vnode--;
193	}
194#endif
195
196	/* object should be locked */
197	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199	pg->flags &= ~PG_TABLED;
200	pg->uobject->uo_npages--;
201	pg->uobject = NULL;
202	pg->version++;
203}
204
205/*
206 * uvm_page_init: init the page system.   called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211void
212uvm_page_init(kvm_startp, kvm_endp)
213	vaddr_t *kvm_startp, *kvm_endp;
214{
215	vsize_t freepages, pagecount, n;
216	vm_page_t pagearray;
217	int lcv, i;
218	paddr_t paddr;
219
220	/*
221	 * init the page queues and page queue locks
222	 */
223
224	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225		for (i = 0; i < PGFL_NQUEUES; i++)
226			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227	}
228	TAILQ_INIT(&uvm.page_active);
229	TAILQ_INIT(&uvm.page_inactive_swp);
230	TAILQ_INIT(&uvm.page_inactive_obj);
231	simple_lock_init(&uvm.pageqlock);
232	simple_lock_init(&uvm.fpageqlock);
233
234	/*
235	 * init the <obj,offset> => <page> hash table.  for now
236	 * we just have one bucket (the bootstrap bucket).  later on we
237	 * will allocate new buckets as we dynamically resize the hash table.
238	 */
239
240	uvm.page_nhash = 1;			/* 1 bucket */
241	uvm.page_hashmask = 0;			/* mask for hash function */
242	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
243	TAILQ_INIT(uvm.page_hash);		/* init hash table */
244	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
245
246	/*
247	 * allocate vm_page structures.
248	 */
249
250	/*
251	 * sanity check:
252	 * before calling this function the MD code is expected to register
253	 * some free RAM with the uvm_page_physload() function.   our job
254	 * now is to allocate vm_page structures for this memory.
255	 */
256
257	if (vm_nphysseg == 0)
258		panic("uvm_page_bootstrap: no memory pre-allocated");
259
260	/*
261	 * first calculate the number of free pages...
262	 *
263	 * note that we use start/end rather than avail_start/avail_end.
264	 * this allows us to allocate extra vm_page structures in case we
265	 * want to return some memory to the pool after booting.
266	 */
267
268	freepages = 0;
269	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271
272	/*
273	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274	 * use.   for each page of memory we use we need a vm_page structure.
275	 * thus, the total number of pages we can use is the total size of
276	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277	 * structure.   we add one to freepages as a fudge factor to avoid
278	 * truncation errors (since we can only allocate in terms of whole
279	 * pages).
280	 */
281
282	pagecount = ((freepages + 1) << PAGE_SHIFT) /
283	    (PAGE_SIZE + sizeof(struct vm_page));
284	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285	    sizeof(struct vm_page));
286	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287
288	/*
289	 * init the vm_page structures and put them in the correct place.
290	 */
291
292	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294		if (n > pagecount) {
295			printf("uvm_page_init: lost %ld page(s) in init\n",
296			    (long)(n - pagecount));
297			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
298			/* n = pagecount; */
299		}
300
301		/* set up page array pointers */
302		vm_physmem[lcv].pgs = pagearray;
303		pagearray += n;
304		pagecount -= n;
305		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306
307		/* init and free vm_pages (we've already zeroed them) */
308		paddr = ptoa(vm_physmem[lcv].start);
309		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310			vm_physmem[lcv].pgs[i].phys_addr = paddr;
311#ifdef __HAVE_VM_PAGE_MD
312			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
313#endif
314			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
315			    atop(paddr) <= vm_physmem[lcv].avail_end) {
316				uvmexp.npages++;
317				/* add page to free pool */
318				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
319			}
320		}
321	}
322
323	/*
324	 * pass up the values of virtual_space_start and
325	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
326	 * layers of the VM.
327	 */
328
329	*kvm_startp = round_page(virtual_space_start);
330	*kvm_endp = trunc_page(virtual_space_end);
331
332	/*
333	 * init locks for kernel threads
334	 */
335
336	simple_lock_init(&uvm.pagedaemon_lock);
337	simple_lock_init(&uvm.aiodoned_lock);
338
339	/*
340	 * init reserve thresholds
341	 * XXXCDC - values may need adjusting
342	 */
343	uvmexp.reserve_pagedaemon = 4;
344	uvmexp.reserve_kernel = 6;
345	uvmexp.anonminpct = 10;
346	uvmexp.vnodeminpct = 10;
347	uvmexp.vtextminpct = 5;
348	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
349	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
350	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
351
352  	/*
353	 * determine if we should zero pages in the idle loop.
354	 */
355
356	uvm.page_idle_zero = vm_page_zero_enable;
357
358	/*
359	 * done!
360	 */
361
362	uvm.page_init_done = TRUE;
363}
364
365/*
366 * uvm_setpagesize: set the page size
367 *
368 * => sets page_shift and page_mask from uvmexp.pagesize.
369 */
370
371void
372uvm_setpagesize()
373{
374	if (uvmexp.pagesize == 0)
375		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
376	uvmexp.pagemask = uvmexp.pagesize - 1;
377	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
378		panic("uvm_setpagesize: page size not a power of two");
379	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
380		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
381			break;
382}
383
384/*
385 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
386 */
387
388vaddr_t
389uvm_pageboot_alloc(size)
390	vsize_t size;
391{
392#if defined(PMAP_STEAL_MEMORY)
393	vaddr_t addr;
394
395	/*
396	 * defer bootstrap allocation to MD code (it may want to allocate
397	 * from a direct-mapped segment).  pmap_steal_memory should round
398	 * off virtual_space_start/virtual_space_end.
399	 */
400
401	addr = pmap_steal_memory(size, &virtual_space_start,
402	    &virtual_space_end);
403
404	return(addr);
405
406#else /* !PMAP_STEAL_MEMORY */
407
408	static boolean_t initialized = FALSE;
409	vaddr_t addr, vaddr;
410	paddr_t paddr;
411
412	/* round to page size */
413	size = round_page(size);
414
415	/*
416	 * on first call to this function, initialize ourselves.
417	 */
418	if (initialized == FALSE) {
419		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
420
421		/* round it the way we like it */
422		virtual_space_start = round_page(virtual_space_start);
423		virtual_space_end = trunc_page(virtual_space_end);
424
425		initialized = TRUE;
426	}
427
428	/*
429	 * allocate virtual memory for this request
430	 */
431	if (virtual_space_start == virtual_space_end ||
432	    (virtual_space_end - virtual_space_start) < size)
433		panic("uvm_pageboot_alloc: out of virtual space");
434
435	addr = virtual_space_start;
436
437#ifdef PMAP_GROWKERNEL
438	/*
439	 * If the kernel pmap can't map the requested space,
440	 * then allocate more resources for it.
441	 */
442	if (uvm_maxkaddr < (addr + size)) {
443		uvm_maxkaddr = pmap_growkernel(addr + size);
444		if (uvm_maxkaddr < (addr + size))
445			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
446	}
447#endif
448
449	virtual_space_start += size;
450
451	/*
452	 * allocate and mapin physical pages to back new virtual pages
453	 */
454
455	for (vaddr = round_page(addr) ; vaddr < addr + size ;
456	    vaddr += PAGE_SIZE) {
457
458		if (!uvm_page_physget(&paddr))
459			panic("uvm_pageboot_alloc: out of memory");
460
461		/*
462		 * Note this memory is no longer managed, so using
463		 * pmap_kenter is safe.
464		 */
465		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
466	}
467	return(addr);
468#endif	/* PMAP_STEAL_MEMORY */
469}
470
471#if !defined(PMAP_STEAL_MEMORY)
472/*
473 * uvm_page_physget: "steal" one page from the vm_physmem structure.
474 *
475 * => attempt to allocate it off the end of a segment in which the "avail"
476 *    values match the start/end values.   if we can't do that, then we
477 *    will advance both values (making them equal, and removing some
478 *    vm_page structures from the non-avail area).
479 * => return false if out of memory.
480 */
481
482/* subroutine: try to allocate from memory chunks on the specified freelist */
483static boolean_t uvm_page_physget_freelist(paddr_t *, int);
484
485static boolean_t
486uvm_page_physget_freelist(paddrp, freelist)
487	paddr_t *paddrp;
488	int freelist;
489{
490	int lcv, x;
491
492	/* pass 1: try allocating from a matching end */
493#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
494	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
495	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
496#else
497	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
498#endif
499	{
500
501		if (uvm.page_init_done == TRUE)
502			panic("uvm_page_physget: called _after_ bootstrap");
503
504		if (vm_physmem[lcv].free_list != freelist)
505			continue;
506
507		/* try from front */
508		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
509		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
510			*paddrp = ptoa(vm_physmem[lcv].avail_start);
511			vm_physmem[lcv].avail_start++;
512			vm_physmem[lcv].start++;
513			/* nothing left?   nuke it */
514			if (vm_physmem[lcv].avail_start ==
515			    vm_physmem[lcv].end) {
516				if (vm_nphysseg == 1)
517				    panic("vum_page_physget: out of memory!");
518				vm_nphysseg--;
519				for (x = lcv ; x < vm_nphysseg ; x++)
520					/* structure copy */
521					vm_physmem[x] = vm_physmem[x+1];
522			}
523			return (TRUE);
524		}
525
526		/* try from rear */
527		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
528		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
529			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
530			vm_physmem[lcv].avail_end--;
531			vm_physmem[lcv].end--;
532			/* nothing left?   nuke it */
533			if (vm_physmem[lcv].avail_end ==
534			    vm_physmem[lcv].start) {
535				if (vm_nphysseg == 1)
536				    panic("uvm_page_physget: out of memory!");
537				vm_nphysseg--;
538				for (x = lcv ; x < vm_nphysseg ; x++)
539					/* structure copy */
540					vm_physmem[x] = vm_physmem[x+1];
541			}
542			return (TRUE);
543		}
544	}
545
546	/* pass2: forget about matching ends, just allocate something */
547#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
548	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
549	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
550#else
551	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
552#endif
553	{
554
555		/* any room in this bank? */
556		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
557			continue;  /* nope */
558
559		*paddrp = ptoa(vm_physmem[lcv].avail_start);
560		vm_physmem[lcv].avail_start++;
561		/* truncate! */
562		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
563
564		/* nothing left?   nuke it */
565		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
566			if (vm_nphysseg == 1)
567				panic("uvm_page_physget: out of memory!");
568			vm_nphysseg--;
569			for (x = lcv ; x < vm_nphysseg ; x++)
570				/* structure copy */
571				vm_physmem[x] = vm_physmem[x+1];
572		}
573		return (TRUE);
574	}
575
576	return (FALSE);        /* whoops! */
577}
578
579boolean_t
580uvm_page_physget(paddrp)
581	paddr_t *paddrp;
582{
583	int i;
584
585	/* try in the order of freelist preference */
586	for (i = 0; i < VM_NFREELIST; i++)
587		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
588			return (TRUE);
589	return (FALSE);
590}
591#endif /* PMAP_STEAL_MEMORY */
592
593/*
594 * uvm_page_physload: load physical memory into VM system
595 *
596 * => all args are PFs
597 * => all pages in start/end get vm_page structures
598 * => areas marked by avail_start/avail_end get added to the free page pool
599 * => we are limited to VM_PHYSSEG_MAX physical memory segments
600 */
601
602void
603uvm_page_physload(start, end, avail_start, avail_end, free_list)
604	paddr_t start, end, avail_start, avail_end;
605	int free_list;
606{
607	int preload, lcv;
608	psize_t npages;
609	struct vm_page *pgs;
610	struct vm_physseg *ps;
611
612	if (uvmexp.pagesize == 0)
613		panic("uvm_page_physload: page size not set!");
614
615	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
616		panic("uvm_page_physload: bad free list %d\n", free_list);
617
618	if (start >= end)
619		panic("uvm_page_physload: start >= end");
620
621	/*
622	 * do we have room?
623	 */
624	if (vm_nphysseg == VM_PHYSSEG_MAX) {
625		printf("uvm_page_physload: unable to load physical memory "
626		    "segment\n");
627		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
628		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
629		printf("\tincrease VM_PHYSSEG_MAX\n");
630		return;
631	}
632
633	/*
634	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
635	 * called yet, so malloc is not available).
636	 */
637	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
638		if (vm_physmem[lcv].pgs)
639			break;
640	}
641	preload = (lcv == vm_nphysseg);
642
643	/*
644	 * if VM is already running, attempt to malloc() vm_page structures
645	 */
646	if (!preload) {
647#if defined(VM_PHYSSEG_NOADD)
648		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
649#else
650		/* XXXCDC: need some sort of lockout for this case */
651		paddr_t paddr;
652		npages = end - start;  /* # of pages */
653		pgs = (vm_page *)uvm_km_alloc(kernel_map,
654		    sizeof(struct vm_page) * npages);
655		if (pgs == NULL) {
656			printf("uvm_page_physload: can not malloc vm_page "
657			    "structs for segment\n");
658			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
659			return;
660		}
661		/* zero data, init phys_addr and free_list, and free pages */
662		memset(pgs, 0, sizeof(struct vm_page) * npages);
663		for (lcv = 0, paddr = ptoa(start) ;
664				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
665			pgs[lcv].phys_addr = paddr;
666			pgs[lcv].free_list = free_list;
667			if (atop(paddr) >= avail_start &&
668			    atop(paddr) <= avail_end)
669				uvm_pagefree(&pgs[lcv]);
670		}
671		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
672		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
673#endif
674	} else {
675
676		/* gcc complains if these don't get init'd */
677		pgs = NULL;
678		npages = 0;
679
680	}
681
682	/*
683	 * now insert us in the proper place in vm_physmem[]
684	 */
685
686#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
687
688	/* random: put it at the end (easy!) */
689	ps = &vm_physmem[vm_nphysseg];
690
691#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
692
693	{
694		int x;
695		/* sort by address for binary search */
696		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
697			if (start < vm_physmem[lcv].start)
698				break;
699		ps = &vm_physmem[lcv];
700		/* move back other entries, if necessary ... */
701		for (x = vm_nphysseg ; x > lcv ; x--)
702			/* structure copy */
703			vm_physmem[x] = vm_physmem[x - 1];
704	}
705
706#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
707
708	{
709		int x;
710		/* sort by largest segment first */
711		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
712			if ((end - start) >
713			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
714				break;
715		ps = &vm_physmem[lcv];
716		/* move back other entries, if necessary ... */
717		for (x = vm_nphysseg ; x > lcv ; x--)
718			/* structure copy */
719			vm_physmem[x] = vm_physmem[x - 1];
720	}
721
722#else
723
724	panic("uvm_page_physload: unknown physseg strategy selected!");
725
726#endif
727
728	ps->start = start;
729	ps->end = end;
730	ps->avail_start = avail_start;
731	ps->avail_end = avail_end;
732	if (preload) {
733		ps->pgs = NULL;
734	} else {
735		ps->pgs = pgs;
736		ps->lastpg = pgs + npages - 1;
737	}
738	ps->free_list = free_list;
739	vm_nphysseg++;
740
741	/*
742	 * done!
743	 */
744
745	if (!preload)
746		uvm_page_rehash();
747
748	return;
749}
750
751/*
752 * uvm_page_rehash: reallocate hash table based on number of free pages.
753 */
754
755void
756uvm_page_rehash()
757{
758	int freepages, lcv, bucketcount, s, oldcount;
759	struct pglist *newbuckets, *oldbuckets;
760	struct vm_page *pg;
761	size_t newsize, oldsize;
762
763	/*
764	 * compute number of pages that can go in the free pool
765	 */
766
767	freepages = 0;
768	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
769		freepages +=
770		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
771
772	/*
773	 * compute number of buckets needed for this number of pages
774	 */
775
776	bucketcount = 1;
777	while (bucketcount < freepages)
778		bucketcount = bucketcount * 2;
779
780	/*
781	 * compute the size of the current table and new table.
782	 */
783
784	oldbuckets = uvm.page_hash;
785	oldcount = uvm.page_nhash;
786	oldsize = round_page(sizeof(struct pglist) * oldcount);
787	newsize = round_page(sizeof(struct pglist) * bucketcount);
788
789	/*
790	 * allocate the new buckets
791	 */
792
793	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
794	if (newbuckets == NULL) {
795		printf("uvm_page_physrehash: WARNING: could not grow page "
796		    "hash table\n");
797		return;
798	}
799	for (lcv = 0 ; lcv < bucketcount ; lcv++)
800		TAILQ_INIT(&newbuckets[lcv]);
801
802	/*
803	 * now replace the old buckets with the new ones and rehash everything
804	 */
805
806	s = splvm();
807	simple_lock(&uvm.hashlock);
808	uvm.page_hash = newbuckets;
809	uvm.page_nhash = bucketcount;
810	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
811
812	/* ... and rehash */
813	for (lcv = 0 ; lcv < oldcount ; lcv++) {
814		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
815			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
816			TAILQ_INSERT_TAIL(
817			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
818			  pg, hashq);
819		}
820	}
821	simple_unlock(&uvm.hashlock);
822	splx(s);
823
824	/*
825	 * free old bucket array if is not the boot-time table
826	 */
827
828	if (oldbuckets != &uvm_bootbucket)
829		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
830
831	/*
832	 * done
833	 */
834	return;
835}
836
837
838#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
839
840void uvm_page_physdump(void); /* SHUT UP GCC */
841
842/* call from DDB */
843void
844uvm_page_physdump()
845{
846	int lcv;
847
848	printf("rehash: physical memory config [segs=%d of %d]:\n",
849				 vm_nphysseg, VM_PHYSSEG_MAX);
850	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
851		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
852		    (long long)vm_physmem[lcv].start,
853		    (long long)vm_physmem[lcv].end,
854		    (long long)vm_physmem[lcv].avail_start,
855		    (long long)vm_physmem[lcv].avail_end);
856	printf("STRATEGY = ");
857	switch (VM_PHYSSEG_STRAT) {
858	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
859	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
860	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
861	default: printf("<<UNKNOWN>>!!!!\n");
862	}
863	printf("number of buckets = %d\n", uvm.page_nhash);
864}
865#endif
866
867/*
868 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
869 *
870 * => return null if no pages free
871 * => wake up pagedaemon if number of free pages drops below low water mark
872 * => if obj != NULL, obj must be locked (to put in hash)
873 * => if anon != NULL, anon must be locked (to put in anon)
874 * => only one of obj or anon can be non-null
875 * => caller must activate/deactivate page if it is not wired.
876 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
877 * => policy decision: it is more important to pull a page off of the
878 *	appropriate priority free list than it is to get a zero'd or
879 *	unknown contents page.  This is because we live with the
880 *	consequences of a bad free list decision for the entire
881 *	lifetime of the page, e.g. if the page comes from memory that
882 *	is slower to access.
883 */
884
885struct vm_page *
886uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
887	struct uvm_object *obj;
888	voff_t off;
889	int flags;
890	struct vm_anon *anon;
891	int strat, free_list;
892{
893	int lcv, try1, try2, s, zeroit = 0;
894	struct vm_page *pg;
895	struct pglist *freeq;
896	struct pgfreelist *pgfl;
897	boolean_t use_reserve;
898
899	KASSERT(obj == NULL || anon == NULL);
900	KASSERT(off == trunc_page(off));
901	s = uvm_lock_fpageq();
902
903	/*
904	 * check to see if we need to generate some free pages waking
905	 * the pagedaemon.
906	 */
907
908#ifdef UBC
909	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
910	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
911	     uvmexp.inactive < uvmexp.inactarg)) {
912		wakeup(&uvm.pagedaemon);
913	}
914#else
915	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
916	    uvmexp.inactive < uvmexp.inactarg))
917		wakeup(&uvm.pagedaemon);
918#endif
919
920	/*
921	 * fail if any of these conditions is true:
922	 * [1]  there really are no free pages, or
923	 * [2]  only kernel "reserved" pages remain and
924	 *        the page isn't being allocated to a kernel object.
925	 * [3]  only pagedaemon "reserved" pages remain and
926	 *        the requestor isn't the pagedaemon.
927	 */
928
929	use_reserve = (flags & UVM_PGA_USERESERVE) ||
930		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
931	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
932	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
933	     !(use_reserve && (curproc == uvm.pagedaemon_proc ||
934				curproc == syncerproc))))
935		goto fail;
936
937#if PGFL_NQUEUES != 2
938#error uvm_pagealloc_strat needs to be updated
939#endif
940
941	/*
942	 * If we want a zero'd page, try the ZEROS queue first, otherwise
943	 * we try the UNKNOWN queue first.
944	 */
945	if (flags & UVM_PGA_ZERO) {
946		try1 = PGFL_ZEROS;
947		try2 = PGFL_UNKNOWN;
948	} else {
949		try1 = PGFL_UNKNOWN;
950		try2 = PGFL_ZEROS;
951	}
952
953 again:
954	switch (strat) {
955	case UVM_PGA_STRAT_NORMAL:
956		/* Check all freelists in descending priority order. */
957		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
958			pgfl = &uvm.page_free[lcv];
959			if ((pg = TAILQ_FIRST((freeq =
960			      &pgfl->pgfl_queues[try1]))) != NULL ||
961			    (pg = TAILQ_FIRST((freeq =
962			      &pgfl->pgfl_queues[try2]))) != NULL)
963				goto gotit;
964		}
965
966		/* No pages free! */
967		goto fail;
968
969	case UVM_PGA_STRAT_ONLY:
970	case UVM_PGA_STRAT_FALLBACK:
971		/* Attempt to allocate from the specified free list. */
972		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
973		pgfl = &uvm.page_free[free_list];
974		if ((pg = TAILQ_FIRST((freeq =
975		      &pgfl->pgfl_queues[try1]))) != NULL ||
976		    (pg = TAILQ_FIRST((freeq =
977		      &pgfl->pgfl_queues[try2]))) != NULL)
978			goto gotit;
979
980		/* Fall back, if possible. */
981		if (strat == UVM_PGA_STRAT_FALLBACK) {
982			strat = UVM_PGA_STRAT_NORMAL;
983			goto again;
984		}
985
986		/* No pages free! */
987		goto fail;
988
989	default:
990		panic("uvm_pagealloc_strat: bad strat %d", strat);
991		/* NOTREACHED */
992	}
993
994 gotit:
995	TAILQ_REMOVE(freeq, pg, pageq);
996	uvmexp.free--;
997
998	/* update zero'd page count */
999	if (pg->flags & PG_ZERO)
1000		uvmexp.zeropages--;
1001
1002	/*
1003	 * update allocation statistics and remember if we have to
1004	 * zero the page
1005	 */
1006	if (flags & UVM_PGA_ZERO) {
1007		if (pg->flags & PG_ZERO) {
1008			uvmexp.pga_zerohit++;
1009			zeroit = 0;
1010		} else {
1011			uvmexp.pga_zeromiss++;
1012			zeroit = 1;
1013		}
1014	}
1015
1016	uvm_unlock_fpageq(s);		/* unlock free page queue */
1017
1018	pg->offset = off;
1019	pg->uobject = obj;
1020	pg->uanon = anon;
1021	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1022	pg->version++;
1023	if (anon) {
1024		anon->u.an_page = pg;
1025		pg->pqflags = PQ_ANON;
1026#ifdef UBC
1027		uvm_pgcnt_anon++;
1028#endif
1029	} else {
1030		if (obj)
1031			uvm_pageinsert(pg);
1032		pg->pqflags = 0;
1033	}
1034#if defined(UVM_PAGE_TRKOWN)
1035	pg->owner_tag = NULL;
1036#endif
1037	UVM_PAGE_OWN(pg, "new alloc");
1038
1039	if (flags & UVM_PGA_ZERO) {
1040		/*
1041		 * A zero'd page is not clean.  If we got a page not already
1042		 * zero'd, then we have to zero it ourselves.
1043		 */
1044		pg->flags &= ~PG_CLEAN;
1045		if (zeroit)
1046			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1047	}
1048
1049	return(pg);
1050
1051 fail:
1052	uvm_unlock_fpageq(s);
1053	return (NULL);
1054}
1055
1056/*
1057 * uvm_pagerealloc: reallocate a page from one object to another
1058 *
1059 * => both objects must be locked
1060 */
1061
1062void
1063uvm_pagerealloc(pg, newobj, newoff)
1064	struct vm_page *pg;
1065	struct uvm_object *newobj;
1066	voff_t newoff;
1067{
1068	/*
1069	 * remove it from the old object
1070	 */
1071
1072	if (pg->uobject) {
1073		uvm_pageremove(pg);
1074	}
1075
1076	/*
1077	 * put it in the new object
1078	 */
1079
1080	if (newobj) {
1081		pg->uobject = newobj;
1082		pg->offset = newoff;
1083		pg->version++;
1084		uvm_pageinsert(pg);
1085	}
1086}
1087
1088
1089/*
1090 * uvm_pagefree: free page
1091 *
1092 * => erase page's identity (i.e. remove from hash/object)
1093 * => put page on free list
1094 * => caller must lock owning object (either anon or uvm_object)
1095 * => caller must lock page queues
1096 * => assumes all valid mappings of pg are gone
1097 */
1098
1099void
1100uvm_pagefree(pg)
1101	struct vm_page *pg;
1102{
1103	int s;
1104	int saved_loan_count = pg->loan_count;
1105
1106#ifdef DEBUG
1107	if (pg->uobject == (void *)0xdeadbeef &&
1108	    pg->uanon == (void *)0xdeadbeef) {
1109		panic("uvm_pagefree: freeing free page %p\n", pg);
1110	}
1111#endif
1112
1113	/*
1114	 * if the page was an object page (and thus "TABLED"), remove it
1115	 * from the object.
1116	 */
1117
1118	if (pg->flags & PG_TABLED) {
1119
1120		/*
1121		 * if the object page is on loan we are going to drop ownership.
1122		 * it is possible that an anon will take over as owner for this
1123		 * page later on.   the anon will want a !PG_CLEAN page so that
1124		 * it knows it needs to allocate swap if it wants to page the
1125		 * page out.
1126		 */
1127
1128		if (saved_loan_count)
1129			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1130		uvm_pageremove(pg);
1131
1132		/*
1133		 * if our page was on loan, then we just lost control over it
1134		 * (in fact, if it was loaned to an anon, the anon may have
1135		 * already taken over ownership of the page by now and thus
1136		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1137		 * return (when the last loan is dropped, then the page can be
1138		 * freed by whatever was holding the last loan).
1139		 */
1140
1141		if (saved_loan_count)
1142			return;
1143	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1144
1145		/*
1146		 * if our page is owned by an anon and is loaned out to the
1147		 * kernel then we just want to drop ownership and return.
1148		 * the kernel must free the page when all its loans clear ...
1149		 * note that the kernel can't change the loan status of our
1150		 * page as long as we are holding PQ lock.
1151		 */
1152
1153		pg->pqflags &= ~PQ_ANON;
1154		pg->uanon = NULL;
1155		return;
1156	}
1157	KASSERT(saved_loan_count == 0);
1158
1159	/*
1160	 * now remove the page from the queues
1161	 */
1162
1163	if (pg->pqflags & PQ_ACTIVE) {
1164		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1165		pg->pqflags &= ~PQ_ACTIVE;
1166		uvmexp.active--;
1167	}
1168	if (pg->pqflags & PQ_INACTIVE) {
1169		if (pg->pqflags & PQ_SWAPBACKED)
1170			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1171		else
1172			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1173		pg->pqflags &= ~PQ_INACTIVE;
1174		uvmexp.inactive--;
1175	}
1176
1177	/*
1178	 * if the page was wired, unwire it now.
1179	 */
1180
1181	if (pg->wire_count) {
1182		pg->wire_count = 0;
1183		uvmexp.wired--;
1184	}
1185#ifdef UBC
1186	if (pg->uanon) {
1187		uvm_pgcnt_anon--;
1188	}
1189#endif
1190
1191	/*
1192	 * and put on free queue
1193	 */
1194
1195	pg->flags &= ~PG_ZERO;
1196
1197	s = uvm_lock_fpageq();
1198	TAILQ_INSERT_TAIL(&uvm.page_free[
1199	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1200	pg->pqflags = PQ_FREE;
1201#ifdef DEBUG
1202	pg->uobject = (void *)0xdeadbeef;
1203	pg->offset = 0xdeadbeef;
1204	pg->uanon = (void *)0xdeadbeef;
1205#endif
1206	uvmexp.free++;
1207
1208	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1209		uvm.page_idle_zero = vm_page_zero_enable;
1210
1211	uvm_unlock_fpageq(s);
1212}
1213
1214/*
1215 * uvm_page_unbusy: unbusy an array of pages.
1216 *
1217 * => pages must either all belong to the same object, or all belong to anons.
1218 * => if pages are object-owned, object must be locked.
1219 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1220 */
1221
1222void
1223uvm_page_unbusy(pgs, npgs)
1224	struct vm_page **pgs;
1225	int npgs;
1226{
1227	struct vm_page *pg;
1228	struct uvm_object *uobj;
1229	int i;
1230	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1231
1232	for (i = 0; i < npgs; i++) {
1233		pg = pgs[i];
1234
1235		if (pg == NULL) {
1236			continue;
1237		}
1238		if (pg->flags & PG_WANTED) {
1239			wakeup(pg);
1240		}
1241		if (pg->flags & PG_RELEASED) {
1242			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1243			uobj = pg->uobject;
1244			if (uobj != NULL) {
1245				uobj->pgops->pgo_releasepg(pg, NULL);
1246			} else {
1247				pg->flags &= ~(PG_BUSY);
1248				UVM_PAGE_OWN(pg, NULL);
1249				uvm_anfree(pg->uanon);
1250			}
1251		} else {
1252			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1253			pg->flags &= ~(PG_WANTED|PG_BUSY);
1254			UVM_PAGE_OWN(pg, NULL);
1255		}
1256	}
1257}
1258
1259#if defined(UVM_PAGE_TRKOWN)
1260/*
1261 * uvm_page_own: set or release page ownership
1262 *
1263 * => this is a debugging function that keeps track of who sets PG_BUSY
1264 *	and where they do it.   it can be used to track down problems
1265 *	such a process setting "PG_BUSY" and never releasing it.
1266 * => page's object [if any] must be locked
1267 * => if "tag" is NULL then we are releasing page ownership
1268 */
1269void
1270uvm_page_own(pg, tag)
1271	struct vm_page *pg;
1272	char *tag;
1273{
1274	/* gain ownership? */
1275	if (tag) {
1276		if (pg->owner_tag) {
1277			printf("uvm_page_own: page %p already owned "
1278			    "by proc %d [%s]\n", pg,
1279			     pg->owner, pg->owner_tag);
1280			panic("uvm_page_own");
1281		}
1282		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1283		pg->owner_tag = tag;
1284		return;
1285	}
1286
1287	/* drop ownership */
1288	if (pg->owner_tag == NULL) {
1289		printf("uvm_page_own: dropping ownership of an non-owned "
1290		    "page (%p)\n", pg);
1291		panic("uvm_page_own");
1292	}
1293	pg->owner_tag = NULL;
1294	return;
1295}
1296#endif
1297
1298/*
1299 * uvm_pageidlezero: zero free pages while the system is idle.
1300 *
1301 * => we do at least one iteration per call, if we are below the target.
1302 * => we loop until we either reach the target or whichqs indicates that
1303 *	there is a process ready to run.
1304 */
1305void
1306uvm_pageidlezero()
1307{
1308	struct vm_page *pg;
1309	struct pgfreelist *pgfl;
1310	int free_list, s;
1311
1312	do {
1313		s = uvm_lock_fpageq();
1314
1315		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1316			uvm.page_idle_zero = FALSE;
1317			uvm_unlock_fpageq(s);
1318			return;
1319		}
1320
1321		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1322			pgfl = &uvm.page_free[free_list];
1323			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1324			    PGFL_UNKNOWN])) != NULL)
1325				break;
1326		}
1327
1328		if (pg == NULL) {
1329			/*
1330			 * No non-zero'd pages; don't bother trying again
1331			 * until we know we have non-zero'd pages free.
1332			 */
1333			uvm.page_idle_zero = FALSE;
1334			uvm_unlock_fpageq(s);
1335			return;
1336		}
1337
1338		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1339		uvmexp.free--;
1340		uvm_unlock_fpageq(s);
1341
1342#ifdef PMAP_PAGEIDLEZERO
1343		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1344			/*
1345			 * The machine-dependent code detected some
1346			 * reason for us to abort zeroing pages,
1347			 * probably because there is a process now
1348			 * ready to run.
1349			 */
1350			s = uvm_lock_fpageq();
1351			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1352			    pg, pageq);
1353			uvmexp.free++;
1354			uvmexp.zeroaborts++;
1355			uvm_unlock_fpageq(s);
1356			return;
1357		}
1358#else
1359		/*
1360		 * XXX This will toast the cache unless the pmap_zero_page()
1361		 * XXX implementation does uncached access.
1362		 */
1363		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1364#endif
1365		pg->flags |= PG_ZERO;
1366
1367		s = uvm_lock_fpageq();
1368		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1369		uvmexp.free++;
1370		uvmexp.zeropages++;
1371		uvm_unlock_fpageq(s);
1372	} while (whichqs == 0);
1373}
1374