uvm_page.c revision 1.42
1/*	$OpenBSD: uvm_page.c,v 1.42 2002/03/14 01:27:18 millert Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#define UVM_PAGE                /* pull in uvm_page.h functions */
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/malloc.h>
78#include <sys/sched.h>
79#include <sys/kernel.h>
80#include <sys/vnode.h>
81
82#include <uvm/uvm.h>
83
84/*
85 * global vars... XXXCDC: move to uvm. structure.
86 */
87
88/*
89 * physical memory config is stored in vm_physmem.
90 */
91
92struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
93int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
94
95/*
96 * Some supported CPUs in a given architecture don't support all
97 * of the things necessary to do idle page zero'ing efficiently.
98 * We therefore provide a way to disable it from machdep code here.
99 */
100
101/*
102 * XXX disabled until we can find a way to do this without causing
103 * problems for either cpu caches or DMA latency.
104 */
105boolean_t vm_page_zero_enable = FALSE;
106
107/*
108 * local variables
109 */
110
111/*
112 * these variables record the values returned by vm_page_bootstrap,
113 * for debugging purposes.  The implementation of uvm_pageboot_alloc
114 * and pmap_startup here also uses them internally.
115 */
116
117static vaddr_t      virtual_space_start;
118static vaddr_t      virtual_space_end;
119
120/*
121 * we use a hash table with only one bucket during bootup.  we will
122 * later rehash (resize) the hash table once the allocator is ready.
123 * we static allocate the one bootstrap bucket below...
124 */
125
126static struct pglist uvm_bootbucket;
127
128/*
129 * local prototypes
130 */
131
132static void uvm_pageinsert(struct vm_page *);
133static void uvm_pageremove(struct vm_page *);
134
135/*
136 * inline functions
137 */
138
139/*
140 * uvm_pageinsert: insert a page in the object and the hash table
141 *
142 * => caller must lock object
143 * => caller must lock page queues
144 * => call should have already set pg's object and offset pointers
145 *    and bumped the version counter
146 */
147
148__inline static void
149uvm_pageinsert(pg)
150	struct vm_page *pg;
151{
152	struct pglist *buck;
153	int s;
154
155	KASSERT((pg->flags & PG_TABLED) == 0);
156	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157	s = splvm();
158	simple_lock(&uvm.hashlock);
159	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
160	simple_unlock(&uvm.hashlock);
161	splx(s);
162
163	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164	pg->flags |= PG_TABLED;
165	pg->uobject->uo_npages++;
166}
167
168/*
169 * uvm_page_remove: remove page from object and hash
170 *
171 * => caller must lock object
172 * => caller must lock page queues
173 */
174
175static __inline void
176uvm_pageremove(pg)
177	struct vm_page *pg;
178{
179	struct pglist *buck;
180	int s;
181
182	KASSERT(pg->flags & PG_TABLED);
183	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184	s = splvm();
185	simple_lock(&uvm.hashlock);
186	TAILQ_REMOVE(buck, pg, hashq);
187	simple_unlock(&uvm.hashlock);
188	splx(s);
189
190#ifdef UBC
191	if (pg->uobject->pgops == &uvm_vnodeops) {
192		uvm_pgcnt_vnode--;
193	}
194#endif
195
196	/* object should be locked */
197	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198
199	pg->flags &= ~PG_TABLED;
200	pg->uobject->uo_npages--;
201	pg->uobject = NULL;
202	pg->version++;
203}
204
205/*
206 * uvm_page_init: init the page system.   called from uvm_init().
207 *
208 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209 */
210
211void
212uvm_page_init(kvm_startp, kvm_endp)
213	vaddr_t *kvm_startp, *kvm_endp;
214{
215	vsize_t freepages, pagecount, n;
216	vm_page_t pagearray;
217	int lcv, i;
218	paddr_t paddr;
219
220	/*
221	 * init the page queues and page queue locks
222	 */
223
224	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225		for (i = 0; i < PGFL_NQUEUES; i++)
226			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227	}
228	TAILQ_INIT(&uvm.page_active);
229	TAILQ_INIT(&uvm.page_inactive_swp);
230	TAILQ_INIT(&uvm.page_inactive_obj);
231	simple_lock_init(&uvm.pageqlock);
232	simple_lock_init(&uvm.fpageqlock);
233
234	/*
235	 * init the <obj,offset> => <page> hash table.  for now
236	 * we just have one bucket (the bootstrap bucket).  later on we
237	 * will allocate new buckets as we dynamically resize the hash table.
238	 */
239
240	uvm.page_nhash = 1;			/* 1 bucket */
241	uvm.page_hashmask = 0;			/* mask for hash function */
242	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
243	TAILQ_INIT(uvm.page_hash);		/* init hash table */
244	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
245
246	/*
247	 * allocate vm_page structures.
248	 */
249
250	/*
251	 * sanity check:
252	 * before calling this function the MD code is expected to register
253	 * some free RAM with the uvm_page_physload() function.   our job
254	 * now is to allocate vm_page structures for this memory.
255	 */
256
257	if (vm_nphysseg == 0)
258		panic("uvm_page_bootstrap: no memory pre-allocated");
259
260	/*
261	 * first calculate the number of free pages...
262	 *
263	 * note that we use start/end rather than avail_start/avail_end.
264	 * this allows us to allocate extra vm_page structures in case we
265	 * want to return some memory to the pool after booting.
266	 */
267
268	freepages = 0;
269	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271
272	/*
273	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274	 * use.   for each page of memory we use we need a vm_page structure.
275	 * thus, the total number of pages we can use is the total size of
276	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277	 * structure.   we add one to freepages as a fudge factor to avoid
278	 * truncation errors (since we can only allocate in terms of whole
279	 * pages).
280	 */
281
282	pagecount = ((freepages + 1) << PAGE_SHIFT) /
283	    (PAGE_SIZE + sizeof(struct vm_page));
284	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285	    sizeof(struct vm_page));
286	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287
288	/*
289	 * init the vm_page structures and put them in the correct place.
290	 */
291
292	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294		if (n > pagecount) {
295			printf("uvm_page_init: lost %ld page(s) in init\n",
296			    (long)(n - pagecount));
297			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
298			/* n = pagecount; */
299		}
300
301		/* set up page array pointers */
302		vm_physmem[lcv].pgs = pagearray;
303		pagearray += n;
304		pagecount -= n;
305		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306
307		/* init and free vm_pages (we've already zeroed them) */
308		paddr = ptoa(vm_physmem[lcv].start);
309		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310			vm_physmem[lcv].pgs[i].phys_addr = paddr;
311			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
312			    atop(paddr) <= vm_physmem[lcv].avail_end) {
313				uvmexp.npages++;
314				/* add page to free pool */
315				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
316			}
317		}
318	}
319
320	/*
321	 * pass up the values of virtual_space_start and
322	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
323	 * layers of the VM.
324	 */
325
326	*kvm_startp = round_page(virtual_space_start);
327	*kvm_endp = trunc_page(virtual_space_end);
328
329	/*
330	 * init locks for kernel threads
331	 */
332
333	simple_lock_init(&uvm.pagedaemon_lock);
334	simple_lock_init(&uvm.aiodoned_lock);
335
336	/*
337	 * init reserve thresholds
338	 * XXXCDC - values may need adjusting
339	 */
340	uvmexp.reserve_pagedaemon = 4;
341	uvmexp.reserve_kernel = 6;
342	uvmexp.anonminpct = 10;
343	uvmexp.vnodeminpct = 10;
344	uvmexp.vtextminpct = 5;
345	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
346	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
347	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
348
349  	/*
350	 * determine if we should zero pages in the idle loop.
351	 */
352
353	uvm.page_idle_zero = vm_page_zero_enable;
354
355	/*
356	 * done!
357	 */
358
359	uvm.page_init_done = TRUE;
360}
361
362/*
363 * uvm_setpagesize: set the page size
364 *
365 * => sets page_shift and page_mask from uvmexp.pagesize.
366 */
367
368void
369uvm_setpagesize()
370{
371	if (uvmexp.pagesize == 0)
372		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
373	uvmexp.pagemask = uvmexp.pagesize - 1;
374	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
375		panic("uvm_setpagesize: page size not a power of two");
376	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
377		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
378			break;
379}
380
381/*
382 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
383 */
384
385vaddr_t
386uvm_pageboot_alloc(size)
387	vsize_t size;
388{
389#if defined(PMAP_STEAL_MEMORY)
390	vaddr_t addr;
391
392	/*
393	 * defer bootstrap allocation to MD code (it may want to allocate
394	 * from a direct-mapped segment).  pmap_steal_memory should round
395	 * off virtual_space_start/virtual_space_end.
396	 */
397
398	addr = pmap_steal_memory(size, &virtual_space_start,
399	    &virtual_space_end);
400
401	return(addr);
402
403#else /* !PMAP_STEAL_MEMORY */
404
405	static boolean_t initialized = FALSE;
406	vaddr_t addr, vaddr;
407	paddr_t paddr;
408
409	/* round to page size */
410	size = round_page(size);
411
412	/*
413	 * on first call to this function, initialize ourselves.
414	 */
415	if (initialized == FALSE) {
416		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
417
418		/* round it the way we like it */
419		virtual_space_start = round_page(virtual_space_start);
420		virtual_space_end = trunc_page(virtual_space_end);
421
422		initialized = TRUE;
423	}
424
425	/*
426	 * allocate virtual memory for this request
427	 */
428	if (virtual_space_start == virtual_space_end ||
429	    (virtual_space_end - virtual_space_start) < size)
430		panic("uvm_pageboot_alloc: out of virtual space");
431
432	addr = virtual_space_start;
433
434#ifdef PMAP_GROWKERNEL
435	/*
436	 * If the kernel pmap can't map the requested space,
437	 * then allocate more resources for it.
438	 */
439	if (uvm_maxkaddr < (addr + size)) {
440		uvm_maxkaddr = pmap_growkernel(addr + size);
441		if (uvm_maxkaddr < (addr + size))
442			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
443	}
444#endif
445
446	virtual_space_start += size;
447
448	/*
449	 * allocate and mapin physical pages to back new virtual pages
450	 */
451
452	for (vaddr = round_page(addr) ; vaddr < addr + size ;
453	    vaddr += PAGE_SIZE) {
454
455		if (!uvm_page_physget(&paddr))
456			panic("uvm_pageboot_alloc: out of memory");
457
458		/*
459		 * Note this memory is no longer managed, so using
460		 * pmap_kenter is safe.
461		 */
462		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
463	}
464	return(addr);
465#endif	/* PMAP_STEAL_MEMORY */
466}
467
468#if !defined(PMAP_STEAL_MEMORY)
469/*
470 * uvm_page_physget: "steal" one page from the vm_physmem structure.
471 *
472 * => attempt to allocate it off the end of a segment in which the "avail"
473 *    values match the start/end values.   if we can't do that, then we
474 *    will advance both values (making them equal, and removing some
475 *    vm_page structures from the non-avail area).
476 * => return false if out of memory.
477 */
478
479/* subroutine: try to allocate from memory chunks on the specified freelist */
480static boolean_t uvm_page_physget_freelist(paddr_t *, int);
481
482static boolean_t
483uvm_page_physget_freelist(paddrp, freelist)
484	paddr_t *paddrp;
485	int freelist;
486{
487	int lcv, x;
488
489	/* pass 1: try allocating from a matching end */
490#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
491	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
492	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
493#else
494	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
495#endif
496	{
497
498		if (uvm.page_init_done == TRUE)
499			panic("uvm_page_physget: called _after_ bootstrap");
500
501		if (vm_physmem[lcv].free_list != freelist)
502			continue;
503
504		/* try from front */
505		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
506		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
507			*paddrp = ptoa(vm_physmem[lcv].avail_start);
508			vm_physmem[lcv].avail_start++;
509			vm_physmem[lcv].start++;
510			/* nothing left?   nuke it */
511			if (vm_physmem[lcv].avail_start ==
512			    vm_physmem[lcv].end) {
513				if (vm_nphysseg == 1)
514				    panic("vum_page_physget: out of memory!");
515				vm_nphysseg--;
516				for (x = lcv ; x < vm_nphysseg ; x++)
517					/* structure copy */
518					vm_physmem[x] = vm_physmem[x+1];
519			}
520			return (TRUE);
521		}
522
523		/* try from rear */
524		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
525		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
526			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
527			vm_physmem[lcv].avail_end--;
528			vm_physmem[lcv].end--;
529			/* nothing left?   nuke it */
530			if (vm_physmem[lcv].avail_end ==
531			    vm_physmem[lcv].start) {
532				if (vm_nphysseg == 1)
533				    panic("uvm_page_physget: out of memory!");
534				vm_nphysseg--;
535				for (x = lcv ; x < vm_nphysseg ; x++)
536					/* structure copy */
537					vm_physmem[x] = vm_physmem[x+1];
538			}
539			return (TRUE);
540		}
541	}
542
543	/* pass2: forget about matching ends, just allocate something */
544#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
545	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
546	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
547#else
548	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
549#endif
550	{
551
552		/* any room in this bank? */
553		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
554			continue;  /* nope */
555
556		*paddrp = ptoa(vm_physmem[lcv].avail_start);
557		vm_physmem[lcv].avail_start++;
558		/* truncate! */
559		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
560
561		/* nothing left?   nuke it */
562		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
563			if (vm_nphysseg == 1)
564				panic("uvm_page_physget: out of memory!");
565			vm_nphysseg--;
566			for (x = lcv ; x < vm_nphysseg ; x++)
567				/* structure copy */
568				vm_physmem[x] = vm_physmem[x+1];
569		}
570		return (TRUE);
571	}
572
573	return (FALSE);        /* whoops! */
574}
575
576boolean_t
577uvm_page_physget(paddrp)
578	paddr_t *paddrp;
579{
580	int i;
581
582	/* try in the order of freelist preference */
583	for (i = 0; i < VM_NFREELIST; i++)
584		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
585			return (TRUE);
586	return (FALSE);
587}
588#endif /* PMAP_STEAL_MEMORY */
589
590/*
591 * uvm_page_physload: load physical memory into VM system
592 *
593 * => all args are PFs
594 * => all pages in start/end get vm_page structures
595 * => areas marked by avail_start/avail_end get added to the free page pool
596 * => we are limited to VM_PHYSSEG_MAX physical memory segments
597 */
598
599void
600uvm_page_physload(start, end, avail_start, avail_end, free_list)
601	paddr_t start, end, avail_start, avail_end;
602	int free_list;
603{
604	int preload, lcv;
605	psize_t npages;
606	struct vm_page *pgs;
607	struct vm_physseg *ps;
608
609	if (uvmexp.pagesize == 0)
610		panic("uvm_page_physload: page size not set!");
611
612	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
613		panic("uvm_page_physload: bad free list %d\n", free_list);
614
615	if (start >= end)
616		panic("uvm_page_physload: start >= end");
617
618	/*
619	 * do we have room?
620	 */
621	if (vm_nphysseg == VM_PHYSSEG_MAX) {
622		printf("uvm_page_physload: unable to load physical memory "
623		    "segment\n");
624		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
625		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
626		printf("\tincrease VM_PHYSSEG_MAX\n");
627		return;
628	}
629
630	/*
631	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
632	 * called yet, so malloc is not available).
633	 */
634	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
635		if (vm_physmem[lcv].pgs)
636			break;
637	}
638	preload = (lcv == vm_nphysseg);
639
640	/*
641	 * if VM is already running, attempt to malloc() vm_page structures
642	 */
643	if (!preload) {
644#if defined(VM_PHYSSEG_NOADD)
645		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
646#else
647		/* XXXCDC: need some sort of lockout for this case */
648		paddr_t paddr;
649		npages = end - start;  /* # of pages */
650		pgs = (vm_page *)uvm_km_alloc(kernel_map,
651		    sizeof(struct vm_page) * npages);
652		if (pgs == NULL) {
653			printf("uvm_page_physload: can not malloc vm_page "
654			    "structs for segment\n");
655			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
656			return;
657		}
658		/* zero data, init phys_addr and free_list, and free pages */
659		memset(pgs, 0, sizeof(struct vm_page) * npages);
660		for (lcv = 0, paddr = ptoa(start) ;
661				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
662			pgs[lcv].phys_addr = paddr;
663			pgs[lcv].free_list = free_list;
664			if (atop(paddr) >= avail_start &&
665			    atop(paddr) <= avail_end)
666				uvm_pagefree(&pgs[lcv]);
667		}
668		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
669		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
670#endif
671	} else {
672
673		/* gcc complains if these don't get init'd */
674		pgs = NULL;
675		npages = 0;
676
677	}
678
679	/*
680	 * now insert us in the proper place in vm_physmem[]
681	 */
682
683#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
684
685	/* random: put it at the end (easy!) */
686	ps = &vm_physmem[vm_nphysseg];
687
688#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
689
690	{
691		int x;
692		/* sort by address for binary search */
693		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
694			if (start < vm_physmem[lcv].start)
695				break;
696		ps = &vm_physmem[lcv];
697		/* move back other entries, if necessary ... */
698		for (x = vm_nphysseg ; x > lcv ; x--)
699			/* structure copy */
700			vm_physmem[x] = vm_physmem[x - 1];
701	}
702
703#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
704
705	{
706		int x;
707		/* sort by largest segment first */
708		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
709			if ((end - start) >
710			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
711				break;
712		ps = &vm_physmem[lcv];
713		/* move back other entries, if necessary ... */
714		for (x = vm_nphysseg ; x > lcv ; x--)
715			/* structure copy */
716			vm_physmem[x] = vm_physmem[x - 1];
717	}
718
719#else
720
721	panic("uvm_page_physload: unknown physseg strategy selected!");
722
723#endif
724
725	ps->start = start;
726	ps->end = end;
727	ps->avail_start = avail_start;
728	ps->avail_end = avail_end;
729	if (preload) {
730		ps->pgs = NULL;
731	} else {
732		ps->pgs = pgs;
733		ps->lastpg = pgs + npages - 1;
734	}
735	ps->free_list = free_list;
736	vm_nphysseg++;
737
738	/*
739	 * done!
740	 */
741
742	if (!preload)
743		uvm_page_rehash();
744
745	return;
746}
747
748/*
749 * uvm_page_rehash: reallocate hash table based on number of free pages.
750 */
751
752void
753uvm_page_rehash()
754{
755	int freepages, lcv, bucketcount, s, oldcount;
756	struct pglist *newbuckets, *oldbuckets;
757	struct vm_page *pg;
758	size_t newsize, oldsize;
759
760	/*
761	 * compute number of pages that can go in the free pool
762	 */
763
764	freepages = 0;
765	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
766		freepages +=
767		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
768
769	/*
770	 * compute number of buckets needed for this number of pages
771	 */
772
773	bucketcount = 1;
774	while (bucketcount < freepages)
775		bucketcount = bucketcount * 2;
776
777	/*
778	 * compute the size of the current table and new table.
779	 */
780
781	oldbuckets = uvm.page_hash;
782	oldcount = uvm.page_nhash;
783	oldsize = round_page(sizeof(struct pglist) * oldcount);
784	newsize = round_page(sizeof(struct pglist) * bucketcount);
785
786	/*
787	 * allocate the new buckets
788	 */
789
790	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
791	if (newbuckets == NULL) {
792		printf("uvm_page_physrehash: WARNING: could not grow page "
793		    "hash table\n");
794		return;
795	}
796	for (lcv = 0 ; lcv < bucketcount ; lcv++)
797		TAILQ_INIT(&newbuckets[lcv]);
798
799	/*
800	 * now replace the old buckets with the new ones and rehash everything
801	 */
802
803	s = splvm();
804	simple_lock(&uvm.hashlock);
805	uvm.page_hash = newbuckets;
806	uvm.page_nhash = bucketcount;
807	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
808
809	/* ... and rehash */
810	for (lcv = 0 ; lcv < oldcount ; lcv++) {
811		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
812			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
813			TAILQ_INSERT_TAIL(
814			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
815			  pg, hashq);
816		}
817	}
818	simple_unlock(&uvm.hashlock);
819	splx(s);
820
821	/*
822	 * free old bucket array if is not the boot-time table
823	 */
824
825	if (oldbuckets != &uvm_bootbucket)
826		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
827
828	/*
829	 * done
830	 */
831	return;
832}
833
834
835#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
836
837void uvm_page_physdump(void); /* SHUT UP GCC */
838
839/* call from DDB */
840void
841uvm_page_physdump()
842{
843	int lcv;
844
845	printf("rehash: physical memory config [segs=%d of %d]:\n",
846				 vm_nphysseg, VM_PHYSSEG_MAX);
847	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
848		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
849		    (long long)vm_physmem[lcv].start,
850		    (long long)vm_physmem[lcv].end,
851		    (long long)vm_physmem[lcv].avail_start,
852		    (long long)vm_physmem[lcv].avail_end);
853	printf("STRATEGY = ");
854	switch (VM_PHYSSEG_STRAT) {
855	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
856	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
857	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
858	default: printf("<<UNKNOWN>>!!!!\n");
859	}
860	printf("number of buckets = %d\n", uvm.page_nhash);
861}
862#endif
863
864/*
865 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
866 *
867 * => return null if no pages free
868 * => wake up pagedaemon if number of free pages drops below low water mark
869 * => if obj != NULL, obj must be locked (to put in hash)
870 * => if anon != NULL, anon must be locked (to put in anon)
871 * => only one of obj or anon can be non-null
872 * => caller must activate/deactivate page if it is not wired.
873 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
874 * => policy decision: it is more important to pull a page off of the
875 *	appropriate priority free list than it is to get a zero'd or
876 *	unknown contents page.  This is because we live with the
877 *	consequences of a bad free list decision for the entire
878 *	lifetime of the page, e.g. if the page comes from memory that
879 *	is slower to access.
880 */
881
882struct vm_page *
883uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
884	struct uvm_object *obj;
885	voff_t off;
886	int flags;
887	struct vm_anon *anon;
888	int strat, free_list;
889{
890	int lcv, try1, try2, s, zeroit = 0;
891	struct vm_page *pg;
892	struct pglist *freeq;
893	struct pgfreelist *pgfl;
894	boolean_t use_reserve;
895
896	KASSERT(obj == NULL || anon == NULL);
897	KASSERT(off == trunc_page(off));
898	s = uvm_lock_fpageq();
899
900	/*
901	 * check to see if we need to generate some free pages waking
902	 * the pagedaemon.
903	 */
904
905#ifdef UBC
906	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
907	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
908	     uvmexp.inactive < uvmexp.inactarg)) {
909		wakeup(&uvm.pagedaemon);
910	}
911#else
912	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
913	    uvmexp.inactive < uvmexp.inactarg))
914		wakeup(&uvm.pagedaemon);
915#endif
916
917	/*
918	 * fail if any of these conditions is true:
919	 * [1]  there really are no free pages, or
920	 * [2]  only kernel "reserved" pages remain and
921	 *        the page isn't being allocated to a kernel object.
922	 * [3]  only pagedaemon "reserved" pages remain and
923	 *        the requestor isn't the pagedaemon.
924	 */
925
926	use_reserve = (flags & UVM_PGA_USERESERVE) ||
927		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
928	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
929	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
930	     !(use_reserve && (curproc == uvm.pagedaemon_proc ||
931				curproc == syncerproc))))
932		goto fail;
933
934#if PGFL_NQUEUES != 2
935#error uvm_pagealloc_strat needs to be updated
936#endif
937
938	/*
939	 * If we want a zero'd page, try the ZEROS queue first, otherwise
940	 * we try the UNKNOWN queue first.
941	 */
942	if (flags & UVM_PGA_ZERO) {
943		try1 = PGFL_ZEROS;
944		try2 = PGFL_UNKNOWN;
945	} else {
946		try1 = PGFL_UNKNOWN;
947		try2 = PGFL_ZEROS;
948	}
949
950 again:
951	switch (strat) {
952	case UVM_PGA_STRAT_NORMAL:
953		/* Check all freelists in descending priority order. */
954		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
955			pgfl = &uvm.page_free[lcv];
956			if ((pg = TAILQ_FIRST((freeq =
957			      &pgfl->pgfl_queues[try1]))) != NULL ||
958			    (pg = TAILQ_FIRST((freeq =
959			      &pgfl->pgfl_queues[try2]))) != NULL)
960				goto gotit;
961		}
962
963		/* No pages free! */
964		goto fail;
965
966	case UVM_PGA_STRAT_ONLY:
967	case UVM_PGA_STRAT_FALLBACK:
968		/* Attempt to allocate from the specified free list. */
969		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
970		pgfl = &uvm.page_free[free_list];
971		if ((pg = TAILQ_FIRST((freeq =
972		      &pgfl->pgfl_queues[try1]))) != NULL ||
973		    (pg = TAILQ_FIRST((freeq =
974		      &pgfl->pgfl_queues[try2]))) != NULL)
975			goto gotit;
976
977		/* Fall back, if possible. */
978		if (strat == UVM_PGA_STRAT_FALLBACK) {
979			strat = UVM_PGA_STRAT_NORMAL;
980			goto again;
981		}
982
983		/* No pages free! */
984		goto fail;
985
986	default:
987		panic("uvm_pagealloc_strat: bad strat %d", strat);
988		/* NOTREACHED */
989	}
990
991 gotit:
992	TAILQ_REMOVE(freeq, pg, pageq);
993	uvmexp.free--;
994
995	/* update zero'd page count */
996	if (pg->flags & PG_ZERO)
997		uvmexp.zeropages--;
998
999	/*
1000	 * update allocation statistics and remember if we have to
1001	 * zero the page
1002	 */
1003	if (flags & UVM_PGA_ZERO) {
1004		if (pg->flags & PG_ZERO) {
1005			uvmexp.pga_zerohit++;
1006			zeroit = 0;
1007		} else {
1008			uvmexp.pga_zeromiss++;
1009			zeroit = 1;
1010		}
1011	}
1012
1013	uvm_unlock_fpageq(s);		/* unlock free page queue */
1014
1015	pg->offset = off;
1016	pg->uobject = obj;
1017	pg->uanon = anon;
1018	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1019	pg->version++;
1020	if (anon) {
1021		anon->u.an_page = pg;
1022		pg->pqflags = PQ_ANON;
1023#ifdef UBC
1024		uvm_pgcnt_anon++;
1025#endif
1026	} else {
1027		if (obj)
1028			uvm_pageinsert(pg);
1029		pg->pqflags = 0;
1030	}
1031#if defined(UVM_PAGE_TRKOWN)
1032	pg->owner_tag = NULL;
1033#endif
1034	UVM_PAGE_OWN(pg, "new alloc");
1035
1036	if (flags & UVM_PGA_ZERO) {
1037		/*
1038		 * A zero'd page is not clean.  If we got a page not already
1039		 * zero'd, then we have to zero it ourselves.
1040		 */
1041		pg->flags &= ~PG_CLEAN;
1042		if (zeroit)
1043			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1044	}
1045
1046	return(pg);
1047
1048 fail:
1049	uvm_unlock_fpageq(s);
1050	return (NULL);
1051}
1052
1053/*
1054 * uvm_pagerealloc: reallocate a page from one object to another
1055 *
1056 * => both objects must be locked
1057 */
1058
1059void
1060uvm_pagerealloc(pg, newobj, newoff)
1061	struct vm_page *pg;
1062	struct uvm_object *newobj;
1063	voff_t newoff;
1064{
1065	/*
1066	 * remove it from the old object
1067	 */
1068
1069	if (pg->uobject) {
1070		uvm_pageremove(pg);
1071	}
1072
1073	/*
1074	 * put it in the new object
1075	 */
1076
1077	if (newobj) {
1078		pg->uobject = newobj;
1079		pg->offset = newoff;
1080		pg->version++;
1081		uvm_pageinsert(pg);
1082	}
1083}
1084
1085
1086/*
1087 * uvm_pagefree: free page
1088 *
1089 * => erase page's identity (i.e. remove from hash/object)
1090 * => put page on free list
1091 * => caller must lock owning object (either anon or uvm_object)
1092 * => caller must lock page queues
1093 * => assumes all valid mappings of pg are gone
1094 */
1095
1096void
1097uvm_pagefree(pg)
1098	struct vm_page *pg;
1099{
1100	int s;
1101	int saved_loan_count = pg->loan_count;
1102
1103#ifdef DEBUG
1104	if (pg->uobject == (void *)0xdeadbeef &&
1105	    pg->uanon == (void *)0xdeadbeef) {
1106		panic("uvm_pagefree: freeing free page %p\n", pg);
1107	}
1108#endif
1109
1110	/*
1111	 * if the page was an object page (and thus "TABLED"), remove it
1112	 * from the object.
1113	 */
1114
1115	if (pg->flags & PG_TABLED) {
1116
1117		/*
1118		 * if the object page is on loan we are going to drop ownership.
1119		 * it is possible that an anon will take over as owner for this
1120		 * page later on.   the anon will want a !PG_CLEAN page so that
1121		 * it knows it needs to allocate swap if it wants to page the
1122		 * page out.
1123		 */
1124
1125		if (saved_loan_count)
1126			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1127		uvm_pageremove(pg);
1128
1129		/*
1130		 * if our page was on loan, then we just lost control over it
1131		 * (in fact, if it was loaned to an anon, the anon may have
1132		 * already taken over ownership of the page by now and thus
1133		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1134		 * return (when the last loan is dropped, then the page can be
1135		 * freed by whatever was holding the last loan).
1136		 */
1137
1138		if (saved_loan_count)
1139			return;
1140	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1141
1142		/*
1143		 * if our page is owned by an anon and is loaned out to the
1144		 * kernel then we just want to drop ownership and return.
1145		 * the kernel must free the page when all its loans clear ...
1146		 * note that the kernel can't change the loan status of our
1147		 * page as long as we are holding PQ lock.
1148		 */
1149
1150		pg->pqflags &= ~PQ_ANON;
1151		pg->uanon = NULL;
1152		return;
1153	}
1154	KASSERT(saved_loan_count == 0);
1155
1156	/*
1157	 * now remove the page from the queues
1158	 */
1159
1160	if (pg->pqflags & PQ_ACTIVE) {
1161		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1162		pg->pqflags &= ~PQ_ACTIVE;
1163		uvmexp.active--;
1164	}
1165	if (pg->pqflags & PQ_INACTIVE) {
1166		if (pg->pqflags & PQ_SWAPBACKED)
1167			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1168		else
1169			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1170		pg->pqflags &= ~PQ_INACTIVE;
1171		uvmexp.inactive--;
1172	}
1173
1174	/*
1175	 * if the page was wired, unwire it now.
1176	 */
1177
1178	if (pg->wire_count) {
1179		pg->wire_count = 0;
1180		uvmexp.wired--;
1181	}
1182#ifdef UBC
1183	if (pg->uanon) {
1184		uvm_pgcnt_anon--;
1185	}
1186#endif
1187
1188	/*
1189	 * and put on free queue
1190	 */
1191
1192	pg->flags &= ~PG_ZERO;
1193
1194	s = uvm_lock_fpageq();
1195	TAILQ_INSERT_TAIL(&uvm.page_free[
1196	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1197	pg->pqflags = PQ_FREE;
1198#ifdef DEBUG
1199	pg->uobject = (void *)0xdeadbeef;
1200	pg->offset = 0xdeadbeef;
1201	pg->uanon = (void *)0xdeadbeef;
1202#endif
1203	uvmexp.free++;
1204
1205	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1206		uvm.page_idle_zero = vm_page_zero_enable;
1207
1208	uvm_unlock_fpageq(s);
1209}
1210
1211/*
1212 * uvm_page_unbusy: unbusy an array of pages.
1213 *
1214 * => pages must either all belong to the same object, or all belong to anons.
1215 * => if pages are object-owned, object must be locked.
1216 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1217 */
1218
1219void
1220uvm_page_unbusy(pgs, npgs)
1221	struct vm_page **pgs;
1222	int npgs;
1223{
1224	struct vm_page *pg;
1225	struct uvm_object *uobj;
1226	int i;
1227	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1228
1229	for (i = 0; i < npgs; i++) {
1230		pg = pgs[i];
1231
1232		if (pg == NULL) {
1233			continue;
1234		}
1235		if (pg->flags & PG_WANTED) {
1236			wakeup(pg);
1237		}
1238		if (pg->flags & PG_RELEASED) {
1239			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1240			uobj = pg->uobject;
1241			if (uobj != NULL) {
1242				uobj->pgops->pgo_releasepg(pg, NULL);
1243			} else {
1244				pg->flags &= ~(PG_BUSY);
1245				UVM_PAGE_OWN(pg, NULL);
1246				uvm_anfree(pg->uanon);
1247			}
1248		} else {
1249			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1250			pg->flags &= ~(PG_WANTED|PG_BUSY);
1251			UVM_PAGE_OWN(pg, NULL);
1252		}
1253	}
1254}
1255
1256#if defined(UVM_PAGE_TRKOWN)
1257/*
1258 * uvm_page_own: set or release page ownership
1259 *
1260 * => this is a debugging function that keeps track of who sets PG_BUSY
1261 *	and where they do it.   it can be used to track down problems
1262 *	such a process setting "PG_BUSY" and never releasing it.
1263 * => page's object [if any] must be locked
1264 * => if "tag" is NULL then we are releasing page ownership
1265 */
1266void
1267uvm_page_own(pg, tag)
1268	struct vm_page *pg;
1269	char *tag;
1270{
1271	/* gain ownership? */
1272	if (tag) {
1273		if (pg->owner_tag) {
1274			printf("uvm_page_own: page %p already owned "
1275			    "by proc %d [%s]\n", pg,
1276			     pg->owner, pg->owner_tag);
1277			panic("uvm_page_own");
1278		}
1279		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1280		pg->owner_tag = tag;
1281		return;
1282	}
1283
1284	/* drop ownership */
1285	if (pg->owner_tag == NULL) {
1286		printf("uvm_page_own: dropping ownership of an non-owned "
1287		    "page (%p)\n", pg);
1288		panic("uvm_page_own");
1289	}
1290	pg->owner_tag = NULL;
1291	return;
1292}
1293#endif
1294
1295/*
1296 * uvm_pageidlezero: zero free pages while the system is idle.
1297 *
1298 * => we do at least one iteration per call, if we are below the target.
1299 * => we loop until we either reach the target or whichqs indicates that
1300 *	there is a process ready to run.
1301 */
1302void
1303uvm_pageidlezero()
1304{
1305	struct vm_page *pg;
1306	struct pgfreelist *pgfl;
1307	int free_list, s;
1308
1309	do {
1310		s = uvm_lock_fpageq();
1311
1312		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1313			uvm.page_idle_zero = FALSE;
1314			uvm_unlock_fpageq(s);
1315			return;
1316		}
1317
1318		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1319			pgfl = &uvm.page_free[free_list];
1320			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1321			    PGFL_UNKNOWN])) != NULL)
1322				break;
1323		}
1324
1325		if (pg == NULL) {
1326			/*
1327			 * No non-zero'd pages; don't bother trying again
1328			 * until we know we have non-zero'd pages free.
1329			 */
1330			uvm.page_idle_zero = FALSE;
1331			uvm_unlock_fpageq(s);
1332			return;
1333		}
1334
1335		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1336		uvmexp.free--;
1337		uvm_unlock_fpageq(s);
1338
1339#ifdef PMAP_PAGEIDLEZERO
1340		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1341			/*
1342			 * The machine-dependent code detected some
1343			 * reason for us to abort zeroing pages,
1344			 * probably because there is a process now
1345			 * ready to run.
1346			 */
1347			s = uvm_lock_fpageq();
1348			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1349			    pg, pageq);
1350			uvmexp.free++;
1351			uvmexp.zeroaborts++;
1352			uvm_unlock_fpageq(s);
1353			return;
1354		}
1355#else
1356		/*
1357		 * XXX This will toast the cache unless the pmap_zero_page()
1358		 * XXX implementation does uncached access.
1359		 */
1360		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1361#endif
1362		pg->flags |= PG_ZERO;
1363
1364		s = uvm_lock_fpageq();
1365		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1366		uvmexp.free++;
1367		uvmexp.zeropages++;
1368		uvm_unlock_fpageq(s);
1369	} while (whichqs == 0);
1370}
1371