uvm_page.c revision 1.19
1/*	$OpenBSD: uvm_page.c,v 1.19 2001/07/25 14:47:59 art Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.29 1999/12/30 16:09:47 eeh Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/malloc.h>
77#include <sys/proc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_page.h>
81#include <vm/vm_kern.h>
82
83#define UVM_PAGE                /* pull in uvm_page.h functions */
84#include <uvm/uvm.h>
85
86/*
87 * global vars... XXXCDC: move to uvm. structure.
88 */
89
90/*
91 * physical memory config is stored in vm_physmem.
92 */
93
94struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
95int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
96
97/*
98 * local variables
99 */
100
101/*
102 * these variables record the values returned by vm_page_bootstrap,
103 * for debugging purposes.  The implementation of uvm_pageboot_alloc
104 * and pmap_startup here also uses them internally.
105 */
106
107static vaddr_t      virtual_space_start;
108static vaddr_t      virtual_space_end;
109
110/*
111 * we use a hash table with only one bucket during bootup.  we will
112 * later rehash (resize) the hash table once the allocator is ready.
113 * we static allocate the one bootstrap bucket below...
114 */
115
116static struct pglist uvm_bootbucket;
117
118/*
119 * local prototypes
120 */
121
122static void uvm_pageinsert __P((struct vm_page *));
123
124
125/*
126 * inline functions
127 */
128
129/*
130 * uvm_pageinsert: insert a page in the object and the hash table
131 *
132 * => caller must lock object
133 * => caller must lock page queues
134 * => call should have already set pg's object and offset pointers
135 *    and bumped the version counter
136 */
137
138__inline static void
139uvm_pageinsert(pg)
140	struct vm_page *pg;
141{
142	struct pglist *buck;
143	int s;
144
145#ifdef DIAGNOSTIC
146	if (pg->flags & PG_TABLED)
147		panic("uvm_pageinsert: already inserted");
148#endif
149
150	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
151	s = splimp();
152	simple_lock(&uvm.hashlock);
153	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
154	simple_unlock(&uvm.hashlock);
155	splx(s);
156
157	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
158	pg->flags |= PG_TABLED;
159	pg->uobject->uo_npages++;
160
161}
162
163/*
164 * uvm_page_remove: remove page from object and hash
165 *
166 * => caller must lock object
167 * => caller must lock page queues
168 */
169
170void __inline
171uvm_pageremove(pg)
172	struct vm_page *pg;
173{
174	struct pglist *buck;
175	int s;
176
177#ifdef DIAGNOSTIC
178	if ((pg->flags & (PG_FAULTING)) != 0)
179		panic("uvm_pageremove: page is faulting");
180#endif
181
182	if ((pg->flags & PG_TABLED) == 0)
183		return;				/* XXX: log */
184
185	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
186	s = splimp();
187	simple_lock(&uvm.hashlock);
188	TAILQ_REMOVE(buck, pg, hashq);
189	simple_unlock(&uvm.hashlock);
190	splx(s);
191
192	/* object should be locked */
193	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
194
195	pg->flags &= ~PG_TABLED;
196	pg->uobject->uo_npages--;
197	pg->uobject = NULL;
198	pg->version++;
199
200}
201
202/*
203 * uvm_page_init: init the page system.   called from uvm_init().
204 *
205 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
206 */
207
208void
209uvm_page_init(kvm_startp, kvm_endp)
210	vaddr_t *kvm_startp, *kvm_endp;
211{
212	vsize_t freepages, pagecount, n;
213	vm_page_t pagearray;
214	int lcv, i;
215	paddr_t paddr;
216
217
218	/*
219	 * step 1: init the page queues and page queue locks
220	 */
221	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
222	  TAILQ_INIT(&uvm.page_free[lcv]);
223	TAILQ_INIT(&uvm.page_active);
224	TAILQ_INIT(&uvm.page_inactive_swp);
225	TAILQ_INIT(&uvm.page_inactive_obj);
226	simple_lock_init(&uvm.pageqlock);
227	simple_lock_init(&uvm.fpageqlock);
228
229	/*
230	 * step 2: init the <obj,offset> => <page> hash table. for now
231	 * we just have one bucket (the bootstrap bucket).   later on we
232	 * will allocate new buckets as we dynamically resize the hash table.
233	 */
234
235	uvm.page_nhash = 1;			/* 1 bucket */
236	uvm.page_hashmask = 0;		/* mask for hash function */
237	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
238	TAILQ_INIT(uvm.page_hash);		/* init hash table */
239	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
240
241	/*
242	 * step 3: allocate vm_page structures.
243	 */
244
245	/*
246	 * sanity check:
247	 * before calling this function the MD code is expected to register
248	 * some free RAM with the uvm_page_physload() function.   our job
249	 * now is to allocate vm_page structures for this memory.
250	 */
251
252	if (vm_nphysseg == 0)
253		panic("vm_page_bootstrap: no memory pre-allocated");
254
255	/*
256	 * first calculate the number of free pages...
257	 *
258	 * note that we use start/end rather than avail_start/avail_end.
259	 * this allows us to allocate extra vm_page structures in case we
260	 * want to return some memory to the pool after booting.
261	 */
262
263	freepages = 0;
264	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
265		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
266
267	/*
268	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
269	 * use.   for each page of memory we use we need a vm_page structure.
270	 * thus, the total number of pages we can use is the total size of
271	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
272	 * structure.   we add one to freepages as a fudge factor to avoid
273	 * truncation errors (since we can only allocate in terms of whole
274	 * pages).
275	 */
276
277	pagecount = ((freepages + 1) << PAGE_SHIFT) /
278	    (PAGE_SIZE + sizeof(struct vm_page));
279	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
280	    sizeof(struct vm_page));
281	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
282
283	/*
284	 * step 4: init the vm_page structures and put them in the correct
285	 * place...
286	 */
287
288	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
289
290		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
291		if (n > pagecount) {
292			printf("uvm_page_init: lost %ld page(s) in init\n",
293			    (long)(n - pagecount));
294			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
295			/* n = pagecount; */
296		}
297		/* set up page array pointers */
298		vm_physmem[lcv].pgs = pagearray;
299		pagearray += n;
300		pagecount -= n;
301		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
302
303		/* init and free vm_pages (we've already zeroed them) */
304		paddr = ptoa(vm_physmem[lcv].start);
305		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
306			vm_physmem[lcv].pgs[i].phys_addr = paddr;
307			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
308			    atop(paddr) <= vm_physmem[lcv].avail_end) {
309				uvmexp.npages++;
310				/* add page to free pool */
311				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
312			}
313		}
314	}
315	/*
316	 * step 5: pass up the values of virtual_space_start and
317	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
318	 * layers of the VM.
319	 */
320
321	*kvm_startp = round_page(virtual_space_start);
322	*kvm_endp = trunc_page(virtual_space_end);
323
324	/*
325	 * step 6: init pagedaemon lock
326	 */
327
328	simple_lock_init(&uvm.pagedaemon_lock);
329
330	/*
331	 * step 7: init reserve thresholds
332	 * XXXCDC - values may need adjusting
333	 */
334	uvmexp.reserve_pagedaemon = 4;
335	uvmexp.reserve_kernel = 6;
336
337	/*
338	 * done!
339	 */
340
341	uvm.page_init_done = TRUE;
342}
343
344/*
345 * uvm_setpagesize: set the page size
346 *
347 * => sets page_shift and page_mask from uvmexp.pagesize.
348 * => XXXCDC: move global vars.
349 */
350
351void
352uvm_setpagesize()
353{
354	if (uvmexp.pagesize == 0)
355		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
356	uvmexp.pagemask = uvmexp.pagesize - 1;
357	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
358		panic("uvm_setpagesize: page size not a power of two");
359	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
360		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
361			break;
362}
363
364/*
365 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
366 */
367
368vaddr_t
369uvm_pageboot_alloc(size)
370	vsize_t size;
371{
372#if defined(PMAP_STEAL_MEMORY)
373	vaddr_t addr;
374
375	/*
376	 * defer bootstrap allocation to MD code (it may want to allocate
377	 * from a direct-mapped segment).  pmap_steal_memory should round
378	 * off virtual_space_start/virtual_space_end.
379	 */
380
381	addr = pmap_steal_memory(size, &virtual_space_start,
382	    &virtual_space_end);
383
384	return(addr);
385
386#else /* !PMAP_STEAL_MEMORY */
387
388	static boolean_t initialized = FALSE;
389	vaddr_t addr, vaddr;
390	paddr_t paddr;
391
392	/* round to page size */
393	size = round_page(size);
394
395	/*
396	 * on first call to this function, initialize ourselves.
397	 */
398	if (initialized == FALSE) {
399		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
400
401		/* round it the way we like it */
402		virtual_space_start = round_page(virtual_space_start);
403		virtual_space_end = trunc_page(virtual_space_end);
404
405		initialized = TRUE;
406	}
407
408	/*
409	 * allocate virtual memory for this request
410	 */
411	if (virtual_space_start == virtual_space_end ||
412	    (virtual_space_end - virtual_space_start) < size)
413		panic("uvm_pageboot_alloc: out of virtual space");
414
415	addr = virtual_space_start;
416
417#ifdef PMAP_GROWKERNEL
418	/*
419	 * If the kernel pmap can't map the requested space,
420	 * then allocate more resources for it.
421	 */
422	if (uvm_maxkaddr < (addr + size)) {
423		uvm_maxkaddr = pmap_growkernel(addr + size);
424		if (uvm_maxkaddr < (addr + size))
425			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
426	}
427#endif
428
429	virtual_space_start += size;
430
431	/*
432	 * allocate and mapin physical pages to back new virtual pages
433	 */
434
435	for (vaddr = round_page(addr) ; vaddr < addr + size ;
436	    vaddr += PAGE_SIZE) {
437
438		if (!uvm_page_physget(&paddr))
439			panic("uvm_pageboot_alloc: out of memory");
440
441		/*
442		 * Note this memory is no longer managed, so using
443		 * pmap_kenter is safe.
444		 */
445		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
446	}
447	return(addr);
448#endif	/* PMAP_STEAL_MEMORY */
449}
450
451#if !defined(PMAP_STEAL_MEMORY)
452/*
453 * uvm_page_physget: "steal" one page from the vm_physmem structure.
454 *
455 * => attempt to allocate it off the end of a segment in which the "avail"
456 *    values match the start/end values.   if we can't do that, then we
457 *    will advance both values (making them equal, and removing some
458 *    vm_page structures from the non-avail area).
459 * => return false if out of memory.
460 */
461
462/* subroutine: try to allocate from memory chunks on the specified freelist */
463static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
464
465static boolean_t
466uvm_page_physget_freelist(paddrp, freelist)
467	paddr_t *paddrp;
468	int freelist;
469{
470	int lcv, x;
471
472	/* pass 1: try allocating from a matching end */
473#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
474	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
475	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
476#else
477	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
478#endif
479	{
480
481		if (uvm.page_init_done == TRUE)
482			panic("vm_page_physget: called _after_ bootstrap");
483
484		if (vm_physmem[lcv].free_list != freelist)
485			continue;
486
487		/* try from front */
488		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
489		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
490			*paddrp = ptoa(vm_physmem[lcv].avail_start);
491			vm_physmem[lcv].avail_start++;
492			vm_physmem[lcv].start++;
493			/* nothing left?   nuke it */
494			if (vm_physmem[lcv].avail_start ==
495			    vm_physmem[lcv].end) {
496				if (vm_nphysseg == 1)
497				    panic("vm_page_physget: out of memory!");
498				vm_nphysseg--;
499				for (x = lcv ; x < vm_nphysseg ; x++)
500					/* structure copy */
501					vm_physmem[x] = vm_physmem[x+1];
502			}
503			return (TRUE);
504		}
505
506		/* try from rear */
507		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
508		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
509			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
510			vm_physmem[lcv].avail_end--;
511			vm_physmem[lcv].end--;
512			/* nothing left?   nuke it */
513			if (vm_physmem[lcv].avail_end ==
514			    vm_physmem[lcv].start) {
515				if (vm_nphysseg == 1)
516				    panic("vm_page_physget: out of memory!");
517				vm_nphysseg--;
518				for (x = lcv ; x < vm_nphysseg ; x++)
519					/* structure copy */
520					vm_physmem[x] = vm_physmem[x+1];
521			}
522			return (TRUE);
523		}
524	}
525
526	/* pass2: forget about matching ends, just allocate something */
527#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
528	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
529	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
530#else
531	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
532#endif
533	{
534
535		/* any room in this bank? */
536		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
537			continue;  /* nope */
538
539		*paddrp = ptoa(vm_physmem[lcv].avail_start);
540		vm_physmem[lcv].avail_start++;
541		/* truncate! */
542		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
543
544		/* nothing left?   nuke it */
545		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
546			if (vm_nphysseg == 1)
547				panic("vm_page_physget: out of memory!");
548			vm_nphysseg--;
549			for (x = lcv ; x < vm_nphysseg ; x++)
550				/* structure copy */
551				vm_physmem[x] = vm_physmem[x+1];
552		}
553		return (TRUE);
554	}
555
556	return (FALSE);        /* whoops! */
557}
558
559boolean_t
560uvm_page_physget(paddrp)
561	paddr_t *paddrp;
562{
563	int i;
564
565	/* try in the order of freelist preference */
566	for (i = 0; i < VM_NFREELIST; i++)
567		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
568			return (TRUE);
569	return (FALSE);
570}
571#endif /* PMAP_STEAL_MEMORY */
572
573/*
574 * uvm_page_physload: load physical memory into VM system
575 *
576 * => all args are PFs
577 * => all pages in start/end get vm_page structures
578 * => areas marked by avail_start/avail_end get added to the free page pool
579 * => we are limited to VM_PHYSSEG_MAX physical memory segments
580 */
581
582void
583uvm_page_physload(start, end, avail_start, avail_end, free_list)
584	paddr_t start, end, avail_start, avail_end;
585	int free_list;
586{
587	int preload, lcv;
588	psize_t npages;
589	struct vm_page *pgs;
590	struct vm_physseg *ps;
591
592	if (uvmexp.pagesize == 0)
593		panic("uvm_page_physload: page size not set!");
594
595	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
596		panic("uvm_page_physload: bad free list %d\n", free_list);
597
598	if (start >= end)
599		panic("uvm_page_physload: start >= end");
600
601	/*
602	 * do we have room?
603	 */
604	if (vm_nphysseg == VM_PHYSSEG_MAX) {
605		printf("uvm_page_physload: unable to load physical memory "
606		    "segment\n");
607		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
608		    VM_PHYSSEG_MAX, start, end);
609		return;
610	}
611
612	/*
613	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
614	 * called yet, so malloc is not available).
615	 */
616	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
617		if (vm_physmem[lcv].pgs)
618			break;
619	}
620	preload = (lcv == vm_nphysseg);
621
622	/*
623	 * if VM is already running, attempt to malloc() vm_page structures
624	 */
625	if (!preload) {
626#if defined(VM_PHYSSEG_NOADD)
627		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
628#else
629		/* XXXCDC: need some sort of lockout for this case */
630		paddr_t paddr;
631		npages = end - start;  /* # of pages */
632		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
633					 M_VMPAGE, M_NOWAIT);
634		if (pgs == NULL) {
635			printf("uvm_page_physload: can not malloc vm_page "
636			    "structs for segment\n");
637			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
638			return;
639		}
640		/* zero data, init phys_addr and free_list, and free pages */
641		memset(pgs, 0, sizeof(struct vm_page) * npages);
642		for (lcv = 0, paddr = ptoa(start) ;
643				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
644			pgs[lcv].phys_addr = paddr;
645			pgs[lcv].free_list = free_list;
646			if (atop(paddr) >= avail_start &&
647			    atop(paddr) <= avail_end)
648				uvm_pagefree(&pgs[lcv]);
649		}
650		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
651		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
652#endif
653	} else {
654
655		/* gcc complains if these don't get init'd */
656		pgs = NULL;
657		npages = 0;
658
659	}
660
661	/*
662	 * now insert us in the proper place in vm_physmem[]
663	 */
664
665#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
666
667	/* random: put it at the end (easy!) */
668	ps = &vm_physmem[vm_nphysseg];
669
670#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
671
672	{
673		int x;
674		/* sort by address for binary search */
675		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
676			if (start < vm_physmem[lcv].start)
677				break;
678		ps = &vm_physmem[lcv];
679		/* move back other entries, if necessary ... */
680		for (x = vm_nphysseg ; x > lcv ; x--)
681			/* structure copy */
682			vm_physmem[x] = vm_physmem[x - 1];
683	}
684
685#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
686
687	{
688		int x;
689		/* sort by largest segment first */
690		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
691			if ((end - start) >
692			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
693				break;
694		ps = &vm_physmem[lcv];
695		/* move back other entries, if necessary ... */
696		for (x = vm_nphysseg ; x > lcv ; x--)
697			/* structure copy */
698			vm_physmem[x] = vm_physmem[x - 1];
699	}
700
701#else
702
703	panic("uvm_page_physload: unknown physseg strategy selected!");
704
705#endif
706
707	ps->start = start;
708	ps->end = end;
709	ps->avail_start = avail_start;
710	ps->avail_end = avail_end;
711	if (preload) {
712		ps->pgs = NULL;
713	} else {
714		ps->pgs = pgs;
715		ps->lastpg = pgs + npages - 1;
716	}
717	ps->free_list = free_list;
718	vm_nphysseg++;
719
720	/*
721	 * done!
722	 */
723
724	if (!preload)
725		uvm_page_rehash();
726
727	return;
728}
729
730/*
731 * uvm_page_rehash: reallocate hash table based on number of free pages.
732 */
733
734void
735uvm_page_rehash()
736{
737	int freepages, lcv, bucketcount, s, oldcount;
738	struct pglist *newbuckets, *oldbuckets;
739	struct vm_page *pg;
740
741	/*
742	 * compute number of pages that can go in the free pool
743	 */
744
745	freepages = 0;
746	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
747		freepages +=
748		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
749
750	/*
751	 * compute number of buckets needed for this number of pages
752	 */
753
754	bucketcount = 1;
755	while (bucketcount < freepages)
756		bucketcount = bucketcount * 2;
757
758	/*
759	 * malloc new buckets
760	 */
761
762	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
763					 M_VMPBUCKET, M_NOWAIT);
764	if (newbuckets == NULL) {
765		printf("uvm_page_physrehash: WARNING: could not grow page "
766		    "hash table\n");
767		return;
768	}
769	for (lcv = 0 ; lcv < bucketcount ; lcv++)
770		TAILQ_INIT(&newbuckets[lcv]);
771
772	/*
773	 * now replace the old buckets with the new ones and rehash everything
774	 */
775
776	s = splimp();
777	simple_lock(&uvm.hashlock);
778	/* swap old for new ... */
779	oldbuckets = uvm.page_hash;
780	oldcount = uvm.page_nhash;
781	uvm.page_hash = newbuckets;
782	uvm.page_nhash = bucketcount;
783	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
784
785	/* ... and rehash */
786	for (lcv = 0 ; lcv < oldcount ; lcv++) {
787		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
788			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
789			TAILQ_INSERT_TAIL(
790			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
791			  pg, hashq);
792		}
793	}
794	simple_unlock(&uvm.hashlock);
795	splx(s);
796
797	/*
798	 * free old bucket array if is not the boot-time table
799	 */
800
801	if (oldbuckets != &uvm_bootbucket)
802		FREE(oldbuckets, M_VMPBUCKET);
803
804	/*
805	 * done
806	 */
807	return;
808}
809
810
811#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
812
813void uvm_page_physdump __P((void)); /* SHUT UP GCC */
814
815/* call from DDB */
816void
817uvm_page_physdump()
818{
819	int lcv;
820
821	printf("rehash: physical memory config [segs=%d of %d]:\n",
822				 vm_nphysseg, VM_PHYSSEG_MAX);
823	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
824		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
825		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
826		    vm_physmem[lcv].avail_end);
827	printf("STRATEGY = ");
828	switch (VM_PHYSSEG_STRAT) {
829	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
830	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
831	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
832	default: printf("<<UNKNOWN>>!!!!\n");
833	}
834	printf("number of buckets = %d\n", uvm.page_nhash);
835}
836#endif
837
838/*
839 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
840 *
841 * => return null if no pages free
842 * => wake up pagedaemon if number of free pages drops below low water mark
843 * => if obj != NULL, obj must be locked (to put in hash)
844 * => if anon != NULL, anon must be locked (to put in anon)
845 * => only one of obj or anon can be non-null
846 * => caller must activate/deactivate page if it is not wired.
847 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
848 */
849
850struct vm_page *
851uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
852	struct uvm_object *obj;
853	vaddr_t off;
854	int flags;
855	struct vm_anon *anon;
856	int strat, free_list;
857{
858	int lcv, s;
859	struct vm_page *pg;
860	struct pglist *freeq;
861	boolean_t use_reserve;
862
863#ifdef DIAGNOSTIC
864	/* sanity check */
865	if (obj && anon)
866		panic("uvm_pagealloc: obj and anon != NULL");
867#endif
868
869	s = uvm_lock_fpageq();		/* lock free page queue */
870
871	/*
872	 * check to see if we need to generate some free pages waking
873	 * the pagedaemon.
874	 */
875
876	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
877	    uvmexp.inactive < uvmexp.inactarg))
878		wakeup(&uvm.pagedaemon);
879
880	/*
881	 * fail if any of these conditions is true:
882	 * [1]  there really are no free pages, or
883	 * [2]  only kernel "reserved" pages remain and
884	 *        the page isn't being allocated to a kernel object.
885	 * [3]  only pagedaemon "reserved" pages remain and
886	 *        the requestor isn't the pagedaemon.
887	 */
888
889	use_reserve = (flags & UVM_PGA_USERESERVE) ||
890		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
891	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
892	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
893	     !(use_reserve && (curproc == uvm.pagedaemon_proc ||
894				curproc == syncerproc))))
895		goto fail;
896
897 again:
898	switch (strat) {
899	case UVM_PGA_STRAT_NORMAL:
900		/* Check all freelists in descending priority order. */
901		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
902			freeq = &uvm.page_free[lcv];
903			if ((pg = freeq->tqh_first) != NULL)
904				goto gotit;
905		}
906
907		/* No pages free! */
908		goto fail;
909
910	case UVM_PGA_STRAT_ONLY:
911	case UVM_PGA_STRAT_FALLBACK:
912		/* Attempt to allocate from the specified free list. */
913#ifdef DIAGNOSTIC
914		if (free_list >= VM_NFREELIST || free_list < 0)
915			panic("uvm_pagealloc_strat: bad free list %d",
916			    free_list);
917#endif
918		freeq = &uvm.page_free[free_list];
919		if ((pg = freeq->tqh_first) != NULL)
920			goto gotit;
921
922		/* Fall back, if possible. */
923		if (strat == UVM_PGA_STRAT_FALLBACK) {
924			strat = UVM_PGA_STRAT_NORMAL;
925			goto again;
926		}
927
928		/* No pages free! */
929		goto fail;
930
931	default:
932		panic("uvm_pagealloc_strat: bad strat %d", strat);
933		/* NOTREACHED */
934	}
935
936 gotit:
937	TAILQ_REMOVE(freeq, pg, pageq);
938	uvmexp.free--;
939
940	uvm_unlock_fpageq(s);		/* unlock free page queue */
941
942	pg->offset = off;
943	pg->uobject = obj;
944	pg->uanon = anon;
945	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
946	pg->version++;
947	pg->wire_count = 0;
948	pg->loan_count = 0;
949	if (anon) {
950		anon->u.an_page = pg;
951		pg->pqflags = PQ_ANON;
952	} else {
953		if (obj)
954			uvm_pageinsert(pg);
955		pg->pqflags = 0;
956	}
957#if defined(UVM_PAGE_TRKOWN)
958	pg->owner_tag = NULL;
959#endif
960	UVM_PAGE_OWN(pg, "new alloc");
961
962	return(pg);
963
964 fail:
965	uvm_unlock_fpageq(s);
966	return (NULL);
967}
968
969/*
970 * uvm_pagealloc_contig: allocate contiguous memory.
971 *
972 * XXX - fix comment.
973 */
974
975vaddr_t
976uvm_pagealloc_contig(size, low, high, alignment)
977	vaddr_t size;
978	vaddr_t low, high;
979	vaddr_t alignment;
980{
981	struct pglist pglist;
982	struct vm_page *pg;
983	vaddr_t addr, temp_addr;
984
985	size = round_page(size);
986
987	TAILQ_INIT(&pglist);
988	if (uvm_pglistalloc(size, low, high, alignment, 0,
989			    &pglist, 1, FALSE))
990		return 0;
991	addr = vm_map_min(kernel_map);
992	if (uvm_map(kernel_map, &addr, size, NULL, UVM_UNKNOWN_OFFSET,
993		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
994				UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
995		uvm_pglistfree(&pglist);
996		return 0;
997	}
998	temp_addr = addr;
999	for (pg = TAILQ_FIRST(&pglist); pg != NULL;
1000	     pg = TAILQ_NEXT(pg, pageq)) {
1001	        pg->uobject = uvm.kernel_object;
1002		pg->offset = temp_addr - vm_map_min(kernel_map);
1003		uvm_pageinsert(pg);
1004		uvm_pagewire(pg);
1005		pmap_kenter_pa(temp_addr, VM_PAGE_TO_PHYS(pg),
1006			       VM_PROT_READ|VM_PROT_WRITE);
1007		temp_addr += PAGE_SIZE;
1008	}
1009	return addr;
1010}
1011
1012/*
1013 * uvm_pagerealloc: reallocate a page from one object to another
1014 *
1015 * => both objects must be locked
1016 */
1017
1018void
1019uvm_pagerealloc(pg, newobj, newoff)
1020	struct vm_page *pg;
1021	struct uvm_object *newobj;
1022	vaddr_t newoff;
1023{
1024	/*
1025	 * remove it from the old object
1026	 */
1027
1028	if (pg->uobject) {
1029		uvm_pageremove(pg);
1030	}
1031
1032	/*
1033	 * put it in the new object
1034	 */
1035
1036	if (newobj) {
1037		pg->uobject = newobj;
1038		pg->offset = newoff;
1039		pg->version++;
1040		uvm_pageinsert(pg);
1041	}
1042
1043	return;
1044}
1045
1046
1047/*
1048 * uvm_pagefree: free page
1049 *
1050 * => erase page's identity (i.e. remove from hash/object)
1051 * => put page on free list
1052 * => caller must lock owning object (either anon or uvm_object)
1053 * => caller must lock page queues
1054 * => assumes all valid mappings of pg are gone
1055 */
1056
1057void uvm_pagefree(pg)
1058
1059struct vm_page *pg;
1060
1061{
1062	int s;
1063	int saved_loan_count = pg->loan_count;
1064
1065	/*
1066	 * if the page was an object page (and thus "TABLED"), remove it
1067	 * from the object.
1068	 */
1069
1070	if (pg->flags & PG_TABLED) {
1071
1072		/*
1073		 * if the object page is on loan we are going to drop ownership.
1074		 * it is possible that an anon will take over as owner for this
1075		 * page later on.   the anon will want a !PG_CLEAN page so that
1076		 * it knows it needs to allocate swap if it wants to page the
1077		 * page out.
1078		 */
1079
1080		if (saved_loan_count)
1081			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1082
1083		uvm_pageremove(pg);
1084
1085		/*
1086		 * if our page was on loan, then we just lost control over it
1087		 * (in fact, if it was loaned to an anon, the anon may have
1088		 * already taken over ownership of the page by now and thus
1089		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1090		 * return (when the last loan is dropped, then the page can be
1091		 * freed by whatever was holding the last loan).
1092		 */
1093		if (saved_loan_count)
1094			return;
1095
1096	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1097
1098		/*
1099		 * if our page is owned by an anon and is loaned out to the
1100		 * kernel then we just want to drop ownership and return.
1101		 * the kernel must free the page when all its loans clear ...
1102		 * note that the kernel can't change the loan status of our
1103		 * page as long as we are holding PQ lock.
1104		 */
1105		pg->pqflags &= ~PQ_ANON;
1106		pg->uanon = NULL;
1107		return;
1108	}
1109
1110#ifdef DIAGNOSTIC
1111	if (saved_loan_count) {
1112		printf("uvm_pagefree: warning: freeing page with a loan "
1113		    "count of %d\n", saved_loan_count);
1114		panic("uvm_pagefree: loan count");
1115	}
1116#endif
1117
1118
1119	/*
1120	 * now remove the page from the queues
1121	 */
1122
1123	if (pg->pqflags & PQ_ACTIVE) {
1124		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1125		pg->pqflags &= ~PQ_ACTIVE;
1126		uvmexp.active--;
1127	}
1128	if (pg->pqflags & PQ_INACTIVE) {
1129		if (pg->pqflags & PQ_SWAPBACKED)
1130			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1131		else
1132			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1133		pg->pqflags &= ~PQ_INACTIVE;
1134		uvmexp.inactive--;
1135	}
1136
1137	/*
1138	 * if the page was wired, unwire it now.
1139	 */
1140	if (pg->wire_count)
1141	{
1142		pg->wire_count = 0;
1143		uvmexp.wired--;
1144	}
1145
1146	/*
1147	 * and put on free queue
1148	 */
1149
1150	s = uvm_lock_fpageq();
1151	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1152	    pg, pageq);
1153	pg->pqflags = PQ_FREE;
1154#ifdef DEBUG
1155	pg->uobject = (void *)0xdeadbeef;
1156	pg->offset = 0xdeadbeef;
1157	pg->uanon = (void *)0xdeadbeef;
1158#endif
1159	uvmexp.free++;
1160	uvm_unlock_fpageq(s);
1161}
1162
1163#if defined(UVM_PAGE_TRKOWN)
1164/*
1165 * uvm_page_own: set or release page ownership
1166 *
1167 * => this is a debugging function that keeps track of who sets PG_BUSY
1168 *	and where they do it.   it can be used to track down problems
1169 *	such a process setting "PG_BUSY" and never releasing it.
1170 * => page's object [if any] must be locked
1171 * => if "tag" is NULL then we are releasing page ownership
1172 */
1173void
1174uvm_page_own(pg, tag)
1175	struct vm_page *pg;
1176	char *tag;
1177{
1178	/* gain ownership? */
1179	if (tag) {
1180		if (pg->owner_tag) {
1181			printf("uvm_page_own: page %p already owned "
1182			    "by proc %d [%s]\n", pg,
1183			     pg->owner, pg->owner_tag);
1184			panic("uvm_page_own");
1185		}
1186		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1187		pg->owner_tag = tag;
1188		return;
1189	}
1190
1191	/* drop ownership */
1192	if (pg->owner_tag == NULL) {
1193		printf("uvm_page_own: dropping ownership of an non-owned "
1194		    "page (%p)\n", pg);
1195		panic("uvm_page_own");
1196	}
1197	pg->owner_tag = NULL;
1198	return;
1199}
1200#endif
1201