uvm_page.c revision 1.18
1/*	$OpenBSD: uvm_page.c,v 1.18 2001/07/19 14:31:32 art Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.25 1999/09/12 01:17:38 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/malloc.h>
77#include <sys/proc.h>
78
79#include <vm/vm.h>
80#include <vm/vm_page.h>
81#include <vm/vm_kern.h>
82
83#define UVM_PAGE                /* pull in uvm_page.h functions */
84#include <uvm/uvm.h>
85
86/*
87 * global vars... XXXCDC: move to uvm. structure.
88 */
89
90/*
91 * physical memory config is stored in vm_physmem.
92 */
93
94struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
95int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
96
97/*
98 * local variables
99 */
100
101/*
102 * these variables record the values returned by vm_page_bootstrap,
103 * for debugging purposes.  The implementation of uvm_pageboot_alloc
104 * and pmap_startup here also uses them internally.
105 */
106
107static vaddr_t      virtual_space_start;
108static vaddr_t      virtual_space_end;
109
110/*
111 * we use a hash table with only one bucket during bootup.  we will
112 * later rehash (resize) the hash table once the allocator is ready.
113 * we static allocate the one bootstrap bucket below...
114 */
115
116static struct pglist uvm_bootbucket;
117
118/*
119 * local prototypes
120 */
121
122static void uvm_pageinsert __P((struct vm_page *));
123
124
125/*
126 * inline functions
127 */
128
129/*
130 * uvm_pageinsert: insert a page in the object and the hash table
131 *
132 * => caller must lock object
133 * => caller must lock page queues
134 * => call should have already set pg's object and offset pointers
135 *    and bumped the version counter
136 */
137
138__inline static void
139uvm_pageinsert(pg)
140	struct vm_page *pg;
141{
142	struct pglist *buck;
143	int s;
144
145#ifdef DIAGNOSTIC
146	if (pg->flags & PG_TABLED)
147		panic("uvm_pageinsert: already inserted");
148#endif
149
150	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
151	s = splimp();
152	simple_lock(&uvm.hashlock);
153	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
154	simple_unlock(&uvm.hashlock);
155	splx(s);
156
157	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
158	pg->flags |= PG_TABLED;
159	pg->uobject->uo_npages++;
160
161}
162
163/*
164 * uvm_page_remove: remove page from object and hash
165 *
166 * => caller must lock object
167 * => caller must lock page queues
168 */
169
170void __inline
171uvm_pageremove(pg)
172	struct vm_page *pg;
173{
174	struct pglist *buck;
175	int s;
176
177#ifdef DIAGNOSTIC
178	if ((pg->flags & (PG_FAULTING)) != 0)
179		panic("uvm_pageremove: page is faulting");
180#endif
181
182	if ((pg->flags & PG_TABLED) == 0)
183		return;				/* XXX: log */
184
185	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
186	s = splimp();
187	simple_lock(&uvm.hashlock);
188	TAILQ_REMOVE(buck, pg, hashq);
189	simple_unlock(&uvm.hashlock);
190	splx(s);
191
192	/* object should be locked */
193	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
194
195	pg->flags &= ~PG_TABLED;
196	pg->uobject->uo_npages--;
197	pg->uobject = NULL;
198	pg->version++;
199
200}
201
202/*
203 * uvm_page_init: init the page system.   called from uvm_init().
204 *
205 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
206 */
207
208void
209uvm_page_init(kvm_startp, kvm_endp)
210	vaddr_t *kvm_startp, *kvm_endp;
211{
212	int freepages, pagecount;
213	vm_page_t pagearray;
214	int lcv, n, i;
215	paddr_t paddr;
216
217
218	/*
219	 * step 1: init the page queues and page queue locks
220	 */
221	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
222	  TAILQ_INIT(&uvm.page_free[lcv]);
223	TAILQ_INIT(&uvm.page_active);
224	TAILQ_INIT(&uvm.page_inactive_swp);
225	TAILQ_INIT(&uvm.page_inactive_obj);
226	simple_lock_init(&uvm.pageqlock);
227	simple_lock_init(&uvm.fpageqlock);
228
229	/*
230	 * step 2: init the <obj,offset> => <page> hash table. for now
231	 * we just have one bucket (the bootstrap bucket).   later on we
232	 * will allocate new buckets as we dynamically resize the hash table.
233	 */
234
235	uvm.page_nhash = 1;			/* 1 bucket */
236	uvm.page_hashmask = 0;		/* mask for hash function */
237	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
238	TAILQ_INIT(uvm.page_hash);		/* init hash table */
239	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
240
241	/*
242	 * step 3: allocate vm_page structures.
243	 */
244
245	/*
246	 * sanity check:
247	 * before calling this function the MD code is expected to register
248	 * some free RAM with the uvm_page_physload() function.   our job
249	 * now is to allocate vm_page structures for this memory.
250	 */
251
252	if (vm_nphysseg == 0)
253		panic("vm_page_bootstrap: no memory pre-allocated");
254
255	/*
256	 * first calculate the number of free pages...
257	 *
258	 * note that we use start/end rather than avail_start/avail_end.
259	 * this allows us to allocate extra vm_page structures in case we
260	 * want to return some memory to the pool after booting.
261	 */
262
263	freepages = 0;
264	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
265		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
266
267	/*
268	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
269	 * use.   for each page of memory we use we need a vm_page structure.
270	 * thus, the total number of pages we can use is the total size of
271	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
272	 * structure.   we add one to freepages as a fudge factor to avoid
273	 * truncation errors (since we can only allocate in terms of whole
274	 * pages).
275	 */
276
277	pagecount = ((freepages + 1) << PAGE_SHIFT) /
278	    (PAGE_SIZE + sizeof(struct vm_page));
279	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
280	    sizeof(struct vm_page));
281	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
282
283	/*
284	 * step 4: init the vm_page structures and put them in the correct
285	 * place...
286	 */
287
288	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
289
290		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
291		if (n > pagecount) {
292			printf("uvm_page_init: lost %d page(s) in init\n",
293			    n - pagecount);
294			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
295			/* n = pagecount; */
296		}
297		/* set up page array pointers */
298		vm_physmem[lcv].pgs = pagearray;
299		pagearray += n;
300		pagecount -= n;
301		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
302
303		/* init and free vm_pages (we've already zeroed them) */
304		paddr = ptoa(vm_physmem[lcv].start);
305		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
306			vm_physmem[lcv].pgs[i].phys_addr = paddr;
307			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
308			    atop(paddr) <= vm_physmem[lcv].avail_end) {
309				uvmexp.npages++;
310				/* add page to free pool */
311				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
312			}
313		}
314	}
315	/*
316	 * step 5: pass up the values of virtual_space_start and
317	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
318	 * layers of the VM.
319	 */
320
321	*kvm_startp = round_page(virtual_space_start);
322	*kvm_endp = trunc_page(virtual_space_end);
323
324	/*
325	 * step 6: init pagedaemon lock
326	 */
327
328	simple_lock_init(&uvm.pagedaemon_lock);
329
330	/*
331	 * step 7: init reserve thresholds
332	 * XXXCDC - values may need adjusting
333	 */
334	uvmexp.reserve_pagedaemon = 4;
335	uvmexp.reserve_kernel = 6;
336
337	/*
338	 * done!
339	 */
340
341	uvm.page_init_done = TRUE;
342}
343
344/*
345 * uvm_setpagesize: set the page size
346 *
347 * => sets page_shift and page_mask from uvmexp.pagesize.
348 * => XXXCDC: move global vars.
349 */
350
351void
352uvm_setpagesize()
353{
354	if (uvmexp.pagesize == 0)
355		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
356	uvmexp.pagemask = uvmexp.pagesize - 1;
357	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
358		panic("uvm_setpagesize: page size not a power of two");
359	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
360		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
361			break;
362}
363
364/*
365 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
366 */
367
368vaddr_t
369uvm_pageboot_alloc(size)
370	vsize_t size;
371{
372#if defined(PMAP_STEAL_MEMORY)
373	vaddr_t addr;
374
375	/*
376	 * defer bootstrap allocation to MD code (it may want to allocate
377	 * from a direct-mapped segment).  pmap_steal_memory should round
378	 * off virtual_space_start/virtual_space_end.
379	 */
380
381	addr = pmap_steal_memory(size, &virtual_space_start,
382	    &virtual_space_end);
383
384	return(addr);
385
386#else /* !PMAP_STEAL_MEMORY */
387
388	static boolean_t initialized = FALSE;
389	vaddr_t addr, vaddr;
390	paddr_t paddr;
391
392	/* round to page size */
393	size = round_page(size);
394
395	/*
396	 * on first call to this function, initialize ourselves.
397	 */
398	if (initialized == FALSE) {
399		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
400
401		/* round it the way we like it */
402		virtual_space_start = round_page(virtual_space_start);
403		virtual_space_end = trunc_page(virtual_space_end);
404
405		initialized = TRUE;
406	}
407
408	/*
409	 * allocate virtual memory for this request
410	 */
411	if (virtual_space_start == virtual_space_end ||
412	    (virtual_space_end - virtual_space_start) < size)
413		panic("uvm_pageboot_alloc: out of virtual space");
414
415	addr = virtual_space_start;
416
417#ifdef PMAP_GROWKERNEL
418	/*
419	 * If the kernel pmap can't map the requested space,
420	 * then allocate more resources for it.
421	 */
422	if (uvm_maxkaddr < (addr + size)) {
423		uvm_maxkaddr = pmap_growkernel(addr + size);
424		if (uvm_maxkaddr < (addr + size))
425			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
426	}
427#endif
428
429	virtual_space_start += size;
430
431	/*
432	 * allocate and mapin physical pages to back new virtual pages
433	 */
434
435	for (vaddr = round_page(addr) ; vaddr < addr + size ;
436	    vaddr += PAGE_SIZE) {
437
438		if (!uvm_page_physget(&paddr))
439			panic("uvm_pageboot_alloc: out of memory");
440
441		/*
442		 * Note this memory is no longer managed, so using
443		 * pmap_kenter is safe.
444		 */
445		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
446	}
447	return(addr);
448#endif	/* PMAP_STEAL_MEMORY */
449}
450
451#if !defined(PMAP_STEAL_MEMORY)
452/*
453 * uvm_page_physget: "steal" one page from the vm_physmem structure.
454 *
455 * => attempt to allocate it off the end of a segment in which the "avail"
456 *    values match the start/end values.   if we can't do that, then we
457 *    will advance both values (making them equal, and removing some
458 *    vm_page structures from the non-avail area).
459 * => return false if out of memory.
460 */
461
462boolean_t
463uvm_page_physget(paddrp)
464	paddr_t *paddrp;
465{
466	int lcv, x;
467
468	/* pass 1: try allocating from a matching end */
469#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
470	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
471	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
472#else
473	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
474#endif
475	{
476
477		if (uvm.page_init_done == TRUE)
478			panic("vm_page_physget: called _after_ bootstrap");
479
480		/* try from front */
481		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
482		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
483			*paddrp = ptoa(vm_physmem[lcv].avail_start);
484			vm_physmem[lcv].avail_start++;
485			vm_physmem[lcv].start++;
486			/* nothing left?   nuke it */
487			if (vm_physmem[lcv].avail_start ==
488			    vm_physmem[lcv].end) {
489				if (vm_nphysseg == 1)
490				    panic("vm_page_physget: out of memory!");
491				vm_nphysseg--;
492				for (x = lcv ; x < vm_nphysseg ; x++)
493					/* structure copy */
494					vm_physmem[x] = vm_physmem[x+1];
495			}
496			return (TRUE);
497		}
498
499		/* try from rear */
500		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
501		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
502			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
503			vm_physmem[lcv].avail_end--;
504			vm_physmem[lcv].end--;
505			/* nothing left?   nuke it */
506			if (vm_physmem[lcv].avail_end ==
507			    vm_physmem[lcv].start) {
508				if (vm_nphysseg == 1)
509				    panic("vm_page_physget: out of memory!");
510				vm_nphysseg--;
511				for (x = lcv ; x < vm_nphysseg ; x++)
512					/* structure copy */
513					vm_physmem[x] = vm_physmem[x+1];
514			}
515			return (TRUE);
516		}
517	}
518
519	/* pass2: forget about matching ends, just allocate something */
520#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
521	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
522	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
523#else
524	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
525#endif
526	{
527
528		/* any room in this bank? */
529		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
530			continue;  /* nope */
531
532		*paddrp = ptoa(vm_physmem[lcv].avail_start);
533		vm_physmem[lcv].avail_start++;
534		/* truncate! */
535		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
536
537		/* nothing left?   nuke it */
538		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
539			if (vm_nphysseg == 1)
540				panic("vm_page_physget: out of memory!");
541			vm_nphysseg--;
542			for (x = lcv ; x < vm_nphysseg ; x++)
543				/* structure copy */
544				vm_physmem[x] = vm_physmem[x+1];
545		}
546		return (TRUE);
547	}
548
549	return (FALSE);        /* whoops! */
550}
551#endif /* PMAP_STEAL_MEMORY */
552
553/*
554 * uvm_page_physload: load physical memory into VM system
555 *
556 * => all args are PFs
557 * => all pages in start/end get vm_page structures
558 * => areas marked by avail_start/avail_end get added to the free page pool
559 * => we are limited to VM_PHYSSEG_MAX physical memory segments
560 */
561
562void
563uvm_page_physload(start, end, avail_start, avail_end, free_list)
564	vaddr_t start, end, avail_start, avail_end;
565	int free_list;
566{
567	int preload, lcv;
568	psize_t npages;
569	struct vm_page *pgs;
570	struct vm_physseg *ps;
571
572	if (uvmexp.pagesize == 0)
573		panic("uvm_page_physload: page size not set!");
574
575	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
576		panic("uvm_page_physload: bad free list %d\n", free_list);
577
578	/*
579	 * do we have room?
580	 */
581	if (vm_nphysseg == VM_PHYSSEG_MAX) {
582		printf("uvm_page_physload: unable to load physical memory "
583		    "segment\n");
584		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
585		    VM_PHYSSEG_MAX, start, end);
586		return;
587	}
588
589	/*
590	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
591	 * called yet, so malloc is not available).
592	 */
593	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
594		if (vm_physmem[lcv].pgs)
595			break;
596	}
597	preload = (lcv == vm_nphysseg);
598
599	/*
600	 * if VM is already running, attempt to malloc() vm_page structures
601	 */
602	if (!preload) {
603#if defined(VM_PHYSSEG_NOADD)
604		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
605#else
606		/* XXXCDC: need some sort of lockout for this case */
607		paddr_t paddr;
608		npages = end - start;  /* # of pages */
609		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
610					 M_VMPAGE, M_NOWAIT);
611		if (pgs == NULL) {
612			printf("uvm_page_physload: can not malloc vm_page "
613			    "structs for segment\n");
614			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
615			return;
616		}
617		/* zero data, init phys_addr and free_list, and free pages */
618		memset(pgs, 0, sizeof(struct vm_page) * npages);
619		for (lcv = 0, paddr = ptoa(start) ;
620				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
621			pgs[lcv].phys_addr = paddr;
622			pgs[lcv].free_list = free_list;
623			if (atop(paddr) >= avail_start &&
624			    atop(paddr) <= avail_end)
625				uvm_pagefree(&pgs[lcv]);
626		}
627		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
628		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
629#endif
630	} else {
631
632		/* gcc complains if these don't get init'd */
633		pgs = NULL;
634		npages = 0;
635
636	}
637
638	/*
639	 * now insert us in the proper place in vm_physmem[]
640	 */
641
642#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
643
644	/* random: put it at the end (easy!) */
645	ps = &vm_physmem[vm_nphysseg];
646
647#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
648
649	{
650		int x;
651		/* sort by address for binary search */
652		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
653			if (start < vm_physmem[lcv].start)
654				break;
655		ps = &vm_physmem[lcv];
656		/* move back other entries, if necessary ... */
657		for (x = vm_nphysseg ; x > lcv ; x--)
658			/* structure copy */
659			vm_physmem[x] = vm_physmem[x - 1];
660	}
661
662#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
663
664	{
665		int x;
666		/* sort by largest segment first */
667		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
668			if ((end - start) >
669			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
670				break;
671		ps = &vm_physmem[lcv];
672		/* move back other entries, if necessary ... */
673		for (x = vm_nphysseg ; x > lcv ; x--)
674			/* structure copy */
675			vm_physmem[x] = vm_physmem[x - 1];
676	}
677
678#else
679
680	panic("uvm_page_physload: unknown physseg strategy selected!");
681
682#endif
683
684	ps->start = start;
685	ps->end = end;
686	ps->avail_start = avail_start;
687	ps->avail_end = avail_end;
688	if (preload) {
689		ps->pgs = NULL;
690	} else {
691		ps->pgs = pgs;
692		ps->lastpg = pgs + npages - 1;
693	}
694	ps->free_list = free_list;
695	vm_nphysseg++;
696
697	/*
698	 * done!
699	 */
700
701	if (!preload)
702		uvm_page_rehash();
703
704	return;
705}
706
707/*
708 * uvm_page_rehash: reallocate hash table based on number of free pages.
709 */
710
711void
712uvm_page_rehash()
713{
714	int freepages, lcv, bucketcount, s, oldcount;
715	struct pglist *newbuckets, *oldbuckets;
716	struct vm_page *pg;
717
718	/*
719	 * compute number of pages that can go in the free pool
720	 */
721
722	freepages = 0;
723	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
724		freepages +=
725		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
726
727	/*
728	 * compute number of buckets needed for this number of pages
729	 */
730
731	bucketcount = 1;
732	while (bucketcount < freepages)
733		bucketcount = bucketcount * 2;
734
735	/*
736	 * malloc new buckets
737	 */
738
739	MALLOC(newbuckets, struct pglist *, sizeof(struct pglist) * bucketcount,
740					 M_VMPBUCKET, M_NOWAIT);
741	if (newbuckets == NULL) {
742		printf("uvm_page_physrehash: WARNING: could not grow page "
743		    "hash table\n");
744		return;
745	}
746	for (lcv = 0 ; lcv < bucketcount ; lcv++)
747		TAILQ_INIT(&newbuckets[lcv]);
748
749	/*
750	 * now replace the old buckets with the new ones and rehash everything
751	 */
752
753	s = splimp();
754	simple_lock(&uvm.hashlock);
755	/* swap old for new ... */
756	oldbuckets = uvm.page_hash;
757	oldcount = uvm.page_nhash;
758	uvm.page_hash = newbuckets;
759	uvm.page_nhash = bucketcount;
760	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
761
762	/* ... and rehash */
763	for (lcv = 0 ; lcv < oldcount ; lcv++) {
764		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
765			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
766			TAILQ_INSERT_TAIL(
767			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
768			  pg, hashq);
769		}
770	}
771	simple_unlock(&uvm.hashlock);
772	splx(s);
773
774	/*
775	 * free old bucket array if is not the boot-time table
776	 */
777
778	if (oldbuckets != &uvm_bootbucket)
779		FREE(oldbuckets, M_VMPBUCKET);
780
781	/*
782	 * done
783	 */
784	return;
785}
786
787
788#if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
789
790void uvm_page_physdump __P((void)); /* SHUT UP GCC */
791
792/* call from DDB */
793void
794uvm_page_physdump()
795{
796	int lcv;
797
798	printf("rehash: physical memory config [segs=%d of %d]:\n",
799				 vm_nphysseg, VM_PHYSSEG_MAX);
800	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
801		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
802		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
803		    vm_physmem[lcv].avail_end);
804	printf("STRATEGY = ");
805	switch (VM_PHYSSEG_STRAT) {
806	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
807	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
808	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
809	default: printf("<<UNKNOWN>>!!!!\n");
810	}
811	printf("number of buckets = %d\n", uvm.page_nhash);
812}
813#endif
814
815/*
816 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
817 *
818 * => return null if no pages free
819 * => wake up pagedaemon if number of free pages drops below low water mark
820 * => if obj != NULL, obj must be locked (to put in hash)
821 * => if anon != NULL, anon must be locked (to put in anon)
822 * => only one of obj or anon can be non-null
823 * => caller must activate/deactivate page if it is not wired.
824 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
825 */
826
827struct vm_page *
828uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
829	struct uvm_object *obj;
830	vaddr_t off;
831	int flags;
832	struct vm_anon *anon;
833	int strat, free_list;
834{
835	int lcv, s;
836	struct vm_page *pg;
837	struct pglist *freeq;
838	boolean_t use_reserve;
839
840#ifdef DIAGNOSTIC
841	/* sanity check */
842	if (obj && anon)
843		panic("uvm_pagealloc: obj and anon != NULL");
844#endif
845
846	s = uvm_lock_fpageq();		/* lock free page queue */
847
848	/*
849	 * check to see if we need to generate some free pages waking
850	 * the pagedaemon.
851	 */
852
853	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
854	    uvmexp.inactive < uvmexp.inactarg))
855		wakeup(&uvm.pagedaemon);
856
857	/*
858	 * fail if any of these conditions is true:
859	 * [1]  there really are no free pages, or
860	 * [2]  only kernel "reserved" pages remain and
861	 *        the page isn't being allocated to a kernel object.
862	 * [3]  only pagedaemon "reserved" pages remain and
863	 *        the requestor isn't the pagedaemon.
864	 */
865
866	use_reserve = (flags & UVM_PGA_USERESERVE) ||
867		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
868	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
869	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
870	     !(use_reserve && (curproc == uvm.pagedaemon_proc ||
871				curproc == syncerproc))))
872		goto fail;
873
874 again:
875	switch (strat) {
876	case UVM_PGA_STRAT_NORMAL:
877		/* Check all freelists in descending priority order. */
878		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
879			freeq = &uvm.page_free[lcv];
880			if ((pg = freeq->tqh_first) != NULL)
881				goto gotit;
882		}
883
884		/* No pages free! */
885		goto fail;
886
887	case UVM_PGA_STRAT_ONLY:
888	case UVM_PGA_STRAT_FALLBACK:
889		/* Attempt to allocate from the specified free list. */
890#ifdef DIAGNOSTIC
891		if (free_list >= VM_NFREELIST || free_list < 0)
892			panic("uvm_pagealloc_strat: bad free list %d",
893			    free_list);
894#endif
895		freeq = &uvm.page_free[free_list];
896		if ((pg = freeq->tqh_first) != NULL)
897			goto gotit;
898
899		/* Fall back, if possible. */
900		if (strat == UVM_PGA_STRAT_FALLBACK) {
901			strat = UVM_PGA_STRAT_NORMAL;
902			goto again;
903		}
904
905		/* No pages free! */
906		goto fail;
907
908	default:
909		panic("uvm_pagealloc_strat: bad strat %d", strat);
910		/* NOTREACHED */
911	}
912
913 gotit:
914	TAILQ_REMOVE(freeq, pg, pageq);
915	uvmexp.free--;
916
917	uvm_unlock_fpageq(s);		/* unlock free page queue */
918
919	pg->offset = off;
920	pg->uobject = obj;
921	pg->uanon = anon;
922	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
923	pg->version++;
924	pg->wire_count = 0;
925	pg->loan_count = 0;
926	if (anon) {
927		anon->u.an_page = pg;
928		pg->pqflags = PQ_ANON;
929	} else {
930		if (obj)
931			uvm_pageinsert(pg);
932		pg->pqflags = 0;
933	}
934#if defined(UVM_PAGE_TRKOWN)
935	pg->owner_tag = NULL;
936#endif
937	UVM_PAGE_OWN(pg, "new alloc");
938
939	return(pg);
940
941 fail:
942	uvm_unlock_fpageq(s);
943	return (NULL);
944}
945
946/*
947 * uvm_pagealloc_contig: allocate contiguous memory.
948 *
949 * XXX - fix comment.
950 */
951
952vaddr_t
953uvm_pagealloc_contig(size, low, high, alignment)
954	vaddr_t size;
955	vaddr_t low, high;
956	vaddr_t alignment;
957{
958	struct pglist pglist;
959	struct vm_page *pg;
960	vaddr_t addr, temp_addr;
961
962	size = round_page(size);
963
964	TAILQ_INIT(&pglist);
965	if (uvm_pglistalloc(size, low, high, alignment, 0,
966			    &pglist, 1, FALSE))
967		return 0;
968	addr = vm_map_min(kernel_map);
969	if (uvm_map(kernel_map, &addr, size, NULL, UVM_UNKNOWN_OFFSET,
970		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
971				UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
972		uvm_pglistfree(&pglist);
973		return 0;
974	}
975	temp_addr = addr;
976	for (pg = TAILQ_FIRST(&pglist); pg != NULL;
977	     pg = TAILQ_NEXT(pg, pageq)) {
978	        pg->uobject = uvm.kernel_object;
979		pg->offset = temp_addr - vm_map_min(kernel_map);
980		uvm_pageinsert(pg);
981		uvm_pagewire(pg);
982		pmap_kenter_pa(temp_addr, VM_PAGE_TO_PHYS(pg),
983			       VM_PROT_READ|VM_PROT_WRITE);
984		temp_addr += PAGE_SIZE;
985	}
986	return addr;
987}
988
989/*
990 * uvm_pagerealloc: reallocate a page from one object to another
991 *
992 * => both objects must be locked
993 */
994
995void
996uvm_pagerealloc(pg, newobj, newoff)
997	struct vm_page *pg;
998	struct uvm_object *newobj;
999	vaddr_t newoff;
1000{
1001	/*
1002	 * remove it from the old object
1003	 */
1004
1005	if (pg->uobject) {
1006		uvm_pageremove(pg);
1007	}
1008
1009	/*
1010	 * put it in the new object
1011	 */
1012
1013	if (newobj) {
1014		pg->uobject = newobj;
1015		pg->offset = newoff;
1016		pg->version++;
1017		uvm_pageinsert(pg);
1018	}
1019
1020	return;
1021}
1022
1023
1024/*
1025 * uvm_pagefree: free page
1026 *
1027 * => erase page's identity (i.e. remove from hash/object)
1028 * => put page on free list
1029 * => caller must lock owning object (either anon or uvm_object)
1030 * => caller must lock page queues
1031 * => assumes all valid mappings of pg are gone
1032 */
1033
1034void uvm_pagefree(pg)
1035
1036struct vm_page *pg;
1037
1038{
1039	int s;
1040	int saved_loan_count = pg->loan_count;
1041
1042	/*
1043	 * if the page was an object page (and thus "TABLED"), remove it
1044	 * from the object.
1045	 */
1046
1047	if (pg->flags & PG_TABLED) {
1048
1049		/*
1050		 * if the object page is on loan we are going to drop ownership.
1051		 * it is possible that an anon will take over as owner for this
1052		 * page later on.   the anon will want a !PG_CLEAN page so that
1053		 * it knows it needs to allocate swap if it wants to page the
1054		 * page out.
1055		 */
1056
1057		if (saved_loan_count)
1058			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1059
1060		uvm_pageremove(pg);
1061
1062		/*
1063		 * if our page was on loan, then we just lost control over it
1064		 * (in fact, if it was loaned to an anon, the anon may have
1065		 * already taken over ownership of the page by now and thus
1066		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1067		 * return (when the last loan is dropped, then the page can be
1068		 * freed by whatever was holding the last loan).
1069		 */
1070		if (saved_loan_count)
1071			return;
1072
1073	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1074
1075		/*
1076		 * if our page is owned by an anon and is loaned out to the
1077		 * kernel then we just want to drop ownership and return.
1078		 * the kernel must free the page when all its loans clear ...
1079		 * note that the kernel can't change the loan status of our
1080		 * page as long as we are holding PQ lock.
1081		 */
1082		pg->pqflags &= ~PQ_ANON;
1083		pg->uanon = NULL;
1084		return;
1085	}
1086
1087#ifdef DIAGNOSTIC
1088	if (saved_loan_count) {
1089		printf("uvm_pagefree: warning: freeing page with a loan "
1090		    "count of %d\n", saved_loan_count);
1091		panic("uvm_pagefree: loan count");
1092	}
1093#endif
1094
1095
1096	/*
1097	 * now remove the page from the queues
1098	 */
1099
1100	if (pg->pqflags & PQ_ACTIVE) {
1101		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1102		pg->pqflags &= ~PQ_ACTIVE;
1103		uvmexp.active--;
1104	}
1105	if (pg->pqflags & PQ_INACTIVE) {
1106		if (pg->pqflags & PQ_SWAPBACKED)
1107			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1108		else
1109			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1110		pg->pqflags &= ~PQ_INACTIVE;
1111		uvmexp.inactive--;
1112	}
1113
1114	/*
1115	 * if the page was wired, unwire it now.
1116	 */
1117	if (pg->wire_count)
1118	{
1119		pg->wire_count = 0;
1120		uvmexp.wired--;
1121	}
1122
1123	/*
1124	 * and put on free queue
1125	 */
1126
1127	s = uvm_lock_fpageq();
1128	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1129	    pg, pageq);
1130	pg->pqflags = PQ_FREE;
1131#ifdef DEBUG
1132	pg->uobject = (void *)0xdeadbeef;
1133	pg->offset = 0xdeadbeef;
1134	pg->uanon = (void *)0xdeadbeef;
1135#endif
1136	uvmexp.free++;
1137	uvm_unlock_fpageq(s);
1138}
1139
1140#if defined(UVM_PAGE_TRKOWN)
1141/*
1142 * uvm_page_own: set or release page ownership
1143 *
1144 * => this is a debugging function that keeps track of who sets PG_BUSY
1145 *	and where they do it.   it can be used to track down problems
1146 *	such a process setting "PG_BUSY" and never releasing it.
1147 * => page's object [if any] must be locked
1148 * => if "tag" is NULL then we are releasing page ownership
1149 */
1150void
1151uvm_page_own(pg, tag)
1152	struct vm_page *pg;
1153	char *tag;
1154{
1155	/* gain ownership? */
1156	if (tag) {
1157		if (pg->owner_tag) {
1158			printf("uvm_page_own: page %p already owned "
1159			    "by proc %d [%s]\n", pg,
1160			     pg->owner, pg->owner_tag);
1161			panic("uvm_page_own");
1162		}
1163		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1164		pg->owner_tag = tag;
1165		return;
1166	}
1167
1168	/* drop ownership */
1169	if (pg->owner_tag == NULL) {
1170		printf("uvm_page_own: dropping ownership of an non-owned "
1171		    "page (%p)\n", pg);
1172		panic("uvm_page_own");
1173	}
1174	pg->owner_tag = NULL;
1175	return;
1176}
1177#endif
1178