uvm_page.c revision 1.154
1/*	$OpenBSD: uvm_page.c,v 1.154 2020/12/02 16:32:00 mpi Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
38 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
39 *
40 *
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 * uvm_page.c: page ops.
67 */
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/sched.h>
72#include <sys/vnode.h>
73#include <sys/mount.h>
74#include <sys/proc.h>
75#include <sys/smr.h>
76
77#include <uvm/uvm.h>
78
79/*
80 * for object trees
81 */
82RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
83
84int
85uvm_pagecmp(const struct vm_page *a, const struct vm_page *b)
86{
87	return (a->offset < b->offset ? -1 : a->offset > b->offset);
88}
89
90/*
91 * global vars... XXXCDC: move to uvm. structure.
92 */
93/*
94 * physical memory config is stored in vm_physmem.
95 */
96struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
97int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
98
99/*
100 * Some supported CPUs in a given architecture don't support all
101 * of the things necessary to do idle page zero'ing efficiently.
102 * We therefore provide a way to disable it from machdep code here.
103 */
104
105/*
106 * local variables
107 */
108/*
109 * these variables record the values returned by vm_page_bootstrap,
110 * for debugging purposes.  The implementation of uvm_pageboot_alloc
111 * and pmap_startup here also uses them internally.
112 */
113static vaddr_t      virtual_space_start;
114static vaddr_t      virtual_space_end;
115
116/*
117 * local prototypes
118 */
119static void uvm_pageinsert(struct vm_page *);
120static void uvm_pageremove(struct vm_page *);
121
122/*
123 * inline functions
124 */
125/*
126 * uvm_pageinsert: insert a page in the object
127 *
128 * => caller must lock page queues XXX questionable
129 * => call should have already set pg's object and offset pointers
130 *    and bumped the version counter
131 */
132inline static void
133uvm_pageinsert(struct vm_page *pg)
134{
135	struct vm_page	*dupe;
136
137	KASSERT((pg->pg_flags & PG_TABLED) == 0);
138	dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg);
139	/* not allowed to insert over another page */
140	KASSERT(dupe == NULL);
141	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
142	pg->uobject->uo_npages++;
143}
144
145/*
146 * uvm_page_remove: remove page from object
147 *
148 * => caller must lock page queues
149 */
150static inline void
151uvm_pageremove(struct vm_page *pg)
152{
153	KASSERT(pg->pg_flags & PG_TABLED);
154	RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
155
156	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
157	pg->uobject->uo_npages--;
158	pg->uobject = NULL;
159	pg->pg_version++;
160}
161
162/*
163 * uvm_page_init: init the page system.   called from uvm_init().
164 *
165 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
166 */
167void
168uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
169{
170	vsize_t freepages, pagecount, n;
171	vm_page_t pagearray, curpg;
172	int lcv, i;
173	paddr_t paddr, pgno;
174	struct vm_physseg *seg;
175
176	/*
177	 * init the page queues and page queue locks
178	 */
179
180	TAILQ_INIT(&uvm.page_active);
181	TAILQ_INIT(&uvm.page_inactive_swp);
182	TAILQ_INIT(&uvm.page_inactive_obj);
183	mtx_init(&uvm.pageqlock, IPL_VM);
184	mtx_init(&uvm.fpageqlock, IPL_VM);
185	uvm_pmr_init();
186
187	/*
188	 * allocate vm_page structures.
189	 */
190
191	/*
192	 * sanity check:
193	 * before calling this function the MD code is expected to register
194	 * some free RAM with the uvm_page_physload() function.   our job
195	 * now is to allocate vm_page structures for this memory.
196	 */
197
198	if (vm_nphysseg == 0)
199		panic("uvm_page_bootstrap: no memory pre-allocated");
200
201	/*
202	 * first calculate the number of free pages...
203	 *
204	 * note that we use start/end rather than avail_start/avail_end.
205	 * this allows us to allocate extra vm_page structures in case we
206	 * want to return some memory to the pool after booting.
207	 */
208
209	freepages = 0;
210	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
211		freepages += (seg->end - seg->start);
212
213	/*
214	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
215	 * use.   for each page of memory we use we need a vm_page structure.
216	 * thus, the total number of pages we can use is the total size of
217	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
218	 * structure.   we add one to freepages as a fudge factor to avoid
219	 * truncation errors (since we can only allocate in terms of whole
220	 * pages).
221	 */
222
223	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
224	    (PAGE_SIZE + sizeof(struct vm_page));
225	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
226	    sizeof(struct vm_page));
227	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
228
229	/* init the vm_page structures and put them in the correct place. */
230	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
231		n = seg->end - seg->start;
232		if (n > pagecount) {
233			panic("uvm_page_init: lost %ld page(s) in init",
234			    (long)(n - pagecount));
235			    /* XXXCDC: shouldn't happen? */
236			/* n = pagecount; */
237		}
238
239		/* set up page array pointers */
240		seg->pgs = pagearray;
241		pagearray += n;
242		pagecount -= n;
243		seg->lastpg = seg->pgs + (n - 1);
244
245		/* init and free vm_pages (we've already zeroed them) */
246		pgno = seg->start;
247		paddr = ptoa(pgno);
248		for (i = 0, curpg = seg->pgs; i < n;
249		    i++, curpg++, pgno++, paddr += PAGE_SIZE) {
250			curpg->phys_addr = paddr;
251			VM_MDPAGE_INIT(curpg);
252			if (pgno >= seg->avail_start &&
253			    pgno < seg->avail_end) {
254				uvmexp.npages++;
255			}
256		}
257
258		/* Add pages to free pool. */
259		uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
260		    seg->avail_end - seg->avail_start);
261	}
262
263	/*
264	 * pass up the values of virtual_space_start and
265	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
266	 * layers of the VM.
267	 */
268
269	*kvm_startp = round_page(virtual_space_start);
270	*kvm_endp = trunc_page(virtual_space_end);
271
272	/* init locks for kernel threads */
273	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
274
275	/*
276	 * init reserve thresholds
277	 * XXXCDC - values may need adjusting
278	 */
279	uvmexp.reserve_pagedaemon = 4;
280	uvmexp.reserve_kernel = 8;
281	uvmexp.anonminpct = 10;
282	uvmexp.vnodeminpct = 10;
283	uvmexp.vtextminpct = 5;
284	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
285	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
286	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
287
288	uvm.page_init_done = TRUE;
289}
290
291/*
292 * uvm_setpagesize: set the page size
293 *
294 * => sets page_shift and page_mask from uvmexp.pagesize.
295 */
296void
297uvm_setpagesize(void)
298{
299	if (uvmexp.pagesize == 0)
300		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
301	uvmexp.pagemask = uvmexp.pagesize - 1;
302	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
303		panic("uvm_setpagesize: page size not a power of two");
304	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
305		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
306			break;
307}
308
309/*
310 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
311 */
312vaddr_t
313uvm_pageboot_alloc(vsize_t size)
314{
315#if defined(PMAP_STEAL_MEMORY)
316	vaddr_t addr;
317
318	/*
319	 * defer bootstrap allocation to MD code (it may want to allocate
320	 * from a direct-mapped segment).  pmap_steal_memory should round
321	 * off virtual_space_start/virtual_space_end.
322	 */
323
324	addr = pmap_steal_memory(size, &virtual_space_start,
325	    &virtual_space_end);
326
327	return(addr);
328
329#else /* !PMAP_STEAL_MEMORY */
330
331	static boolean_t initialized = FALSE;
332	vaddr_t addr, vaddr;
333	paddr_t paddr;
334
335	/* round to page size */
336	size = round_page(size);
337
338	/* on first call to this function, initialize ourselves. */
339	if (initialized == FALSE) {
340		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
341
342		/* round it the way we like it */
343		virtual_space_start = round_page(virtual_space_start);
344		virtual_space_end = trunc_page(virtual_space_end);
345
346		initialized = TRUE;
347	}
348
349	/* allocate virtual memory for this request */
350	if (virtual_space_start == virtual_space_end ||
351	    (virtual_space_end - virtual_space_start) < size)
352		panic("uvm_pageboot_alloc: out of virtual space");
353
354	addr = virtual_space_start;
355
356#ifdef PMAP_GROWKERNEL
357	/*
358	 * If the kernel pmap can't map the requested space,
359	 * then allocate more resources for it.
360	 */
361	if (uvm_maxkaddr < (addr + size)) {
362		uvm_maxkaddr = pmap_growkernel(addr + size);
363		if (uvm_maxkaddr < (addr + size))
364			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
365	}
366#endif
367
368	virtual_space_start += size;
369
370	/* allocate and mapin physical pages to back new virtual pages */
371	for (vaddr = round_page(addr) ; vaddr < addr + size ;
372	    vaddr += PAGE_SIZE) {
373		if (!uvm_page_physget(&paddr))
374			panic("uvm_pageboot_alloc: out of memory");
375
376		/*
377		 * Note this memory is no longer managed, so using
378		 * pmap_kenter is safe.
379		 */
380		pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE);
381	}
382	pmap_update(pmap_kernel());
383	return(addr);
384#endif	/* PMAP_STEAL_MEMORY */
385}
386
387#if !defined(PMAP_STEAL_MEMORY)
388/*
389 * uvm_page_physget: "steal" one page from the vm_physmem structure.
390 *
391 * => attempt to allocate it off the end of a segment in which the "avail"
392 *    values match the start/end values.   if we can't do that, then we
393 *    will advance both values (making them equal, and removing some
394 *    vm_page structures from the non-avail area).
395 * => return false if out of memory.
396 */
397
398boolean_t
399uvm_page_physget(paddr_t *paddrp)
400{
401	int lcv;
402	struct vm_physseg *seg;
403
404	/* pass 1: try allocating from a matching end */
405#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
406	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
407	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
408	    lcv--, seg--)
409#else
410	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
411#endif
412	{
413		if (uvm.page_init_done == TRUE)
414			panic("uvm_page_physget: called _after_ bootstrap");
415
416		/* try from front */
417		if (seg->avail_start == seg->start &&
418		    seg->avail_start < seg->avail_end) {
419			*paddrp = ptoa(seg->avail_start);
420			seg->avail_start++;
421			seg->start++;
422			/* nothing left?   nuke it */
423			if (seg->avail_start == seg->end) {
424				if (vm_nphysseg == 1)
425				    panic("uvm_page_physget: out of memory!");
426				vm_nphysseg--;
427				for (; lcv < vm_nphysseg; lcv++, seg++)
428					/* structure copy */
429					seg[0] = seg[1];
430			}
431			return (TRUE);
432		}
433
434		/* try from rear */
435		if (seg->avail_end == seg->end &&
436		    seg->avail_start < seg->avail_end) {
437			*paddrp = ptoa(seg->avail_end - 1);
438			seg->avail_end--;
439			seg->end--;
440			/* nothing left?   nuke it */
441			if (seg->avail_end == seg->start) {
442				if (vm_nphysseg == 1)
443				    panic("uvm_page_physget: out of memory!");
444				vm_nphysseg--;
445				for (; lcv < vm_nphysseg ; lcv++, seg++)
446					/* structure copy */
447					seg[0] = seg[1];
448			}
449			return (TRUE);
450		}
451	}
452
453	/* pass2: forget about matching ends, just allocate something */
454#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
455	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
456	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
457	    lcv--, seg--)
458#else
459	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
460#endif
461	{
462
463		/* any room in this bank? */
464		if (seg->avail_start >= seg->avail_end)
465			continue;  /* nope */
466
467		*paddrp = ptoa(seg->avail_start);
468		seg->avail_start++;
469		/* truncate! */
470		seg->start = seg->avail_start;
471
472		/* nothing left?   nuke it */
473		if (seg->avail_start == seg->end) {
474			if (vm_nphysseg == 1)
475				panic("uvm_page_physget: out of memory!");
476			vm_nphysseg--;
477			for (; lcv < vm_nphysseg ; lcv++, seg++)
478				/* structure copy */
479				seg[0] = seg[1];
480		}
481		return (TRUE);
482	}
483
484	return (FALSE);        /* whoops! */
485}
486
487#endif /* PMAP_STEAL_MEMORY */
488
489/*
490 * uvm_page_physload: load physical memory into VM system
491 *
492 * => all args are PFs
493 * => all pages in start/end get vm_page structures
494 * => areas marked by avail_start/avail_end get added to the free page pool
495 * => we are limited to VM_PHYSSEG_MAX physical memory segments
496 */
497
498void
499uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
500    paddr_t avail_end, int flags)
501{
502	int preload, lcv;
503	psize_t npages;
504	struct vm_page *pgs;
505	struct vm_physseg *ps, *seg;
506
507#ifdef DIAGNOSTIC
508	if (uvmexp.pagesize == 0)
509		panic("uvm_page_physload: page size not set!");
510
511	if (start >= end)
512		panic("uvm_page_physload: start >= end");
513#endif
514
515	/* do we have room? */
516	if (vm_nphysseg == VM_PHYSSEG_MAX) {
517		printf("uvm_page_physload: unable to load physical memory "
518		    "segment\n");
519		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
520		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
521		printf("\tincrease VM_PHYSSEG_MAX\n");
522		return;
523	}
524
525	/*
526	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
527	 * called yet, so malloc is not available).
528	 */
529	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
530		if (seg->pgs)
531			break;
532	}
533	preload = (lcv == vm_nphysseg);
534
535	/* if VM is already running, attempt to malloc() vm_page structures */
536	if (!preload) {
537		/*
538		 * XXXCDC: need some sort of lockout for this case
539		 * right now it is only used by devices so it should be alright.
540		 */
541 		paddr_t paddr;
542
543 		npages = end - start;  /* # of pages */
544
545		pgs = (struct vm_page *)uvm_km_zalloc(kernel_map,
546		    npages * sizeof(*pgs));
547		if (pgs == NULL) {
548			printf("uvm_page_physload: can not malloc vm_page "
549			    "structs for segment\n");
550			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
551			return;
552		}
553		/* init phys_addr and free pages, XXX uvmexp.npages */
554		for (lcv = 0, paddr = ptoa(start); lcv < npages;
555		    lcv++, paddr += PAGE_SIZE) {
556			pgs[lcv].phys_addr = paddr;
557			VM_MDPAGE_INIT(&pgs[lcv]);
558			if (atop(paddr) >= avail_start &&
559			    atop(paddr) < avail_end) {
560				if (flags & PHYSLOAD_DEVICE) {
561					atomic_setbits_int(&pgs[lcv].pg_flags,
562					    PG_DEV);
563					pgs[lcv].wire_count = 1;
564				} else {
565#if defined(VM_PHYSSEG_NOADD)
566		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
567#endif
568				}
569			}
570		}
571
572		/* Add pages to free pool. */
573		if ((flags & PHYSLOAD_DEVICE) == 0) {
574			uvm_pmr_freepages(&pgs[avail_start - start],
575			    avail_end - avail_start);
576		}
577
578		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
579	} else {
580		/* gcc complains if these don't get init'd */
581		pgs = NULL;
582		npages = 0;
583
584	}
585
586	/* now insert us in the proper place in vm_physmem[] */
587#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
588	/* random: put it at the end (easy!) */
589	ps = &vm_physmem[vm_nphysseg];
590#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
591	{
592		int x;
593		/* sort by address for binary search */
594		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
595			if (start < seg->start)
596				break;
597		ps = seg;
598		/* move back other entries, if necessary ... */
599		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
600		    x--, seg--)
601			/* structure copy */
602			seg[1] = seg[0];
603	}
604#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
605	{
606		int x;
607		/* sort by largest segment first */
608		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
609			if ((end - start) >
610			    (seg->end - seg->start))
611				break;
612		ps = &vm_physmem[lcv];
613		/* move back other entries, if necessary ... */
614		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
615		    x--, seg--)
616			/* structure copy */
617			seg[1] = seg[0];
618	}
619#else
620	panic("uvm_page_physload: unknown physseg strategy selected!");
621#endif
622
623	ps->start = start;
624	ps->end = end;
625	ps->avail_start = avail_start;
626	ps->avail_end = avail_end;
627	if (preload) {
628		ps->pgs = NULL;
629	} else {
630		ps->pgs = pgs;
631		ps->lastpg = pgs + npages - 1;
632	}
633	vm_nphysseg++;
634
635	return;
636}
637
638#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
639
640void uvm_page_physdump(void); /* SHUT UP GCC */
641
642/* call from DDB */
643void
644uvm_page_physdump(void)
645{
646	int lcv;
647	struct vm_physseg *seg;
648
649	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
650	    vm_nphysseg, VM_PHYSSEG_MAX);
651	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
652		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
653		    (long long)seg->start,
654		    (long long)seg->end,
655		    (long long)seg->avail_start,
656		    (long long)seg->avail_end);
657	printf("STRATEGY = ");
658	switch (VM_PHYSSEG_STRAT) {
659	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
660	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
661	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
662	default: printf("<<UNKNOWN>>!!!!\n");
663	}
664}
665#endif
666
667void
668uvm_shutdown(void)
669{
670#ifdef UVM_SWAP_ENCRYPT
671	uvm_swap_finicrypt_all();
672#endif
673	smr_flush();
674}
675
676/*
677 * Perform insert of a given page in the specified anon of obj.
678 * This is basically, uvm_pagealloc, but with the page already given.
679 */
680void
681uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
682    struct vm_anon *anon)
683{
684	int	flags;
685
686	flags = PG_BUSY | PG_FAKE;
687	pg->offset = off;
688	pg->uobject = obj;
689	pg->uanon = anon;
690
691	if (anon) {
692		anon->an_page = pg;
693		flags |= PQ_ANON;
694	} else if (obj)
695		uvm_pageinsert(pg);
696	atomic_setbits_int(&pg->pg_flags, flags);
697#if defined(UVM_PAGE_TRKOWN)
698	pg->owner_tag = NULL;
699#endif
700	UVM_PAGE_OWN(pg, "new alloc");
701}
702
703/*
704 * uvm_pglistalloc: allocate a list of pages
705 *
706 * => allocated pages are placed at the tail of rlist.  rlist is
707 *    assumed to be properly initialized by caller.
708 * => returns 0 on success or errno on failure
709 * => doesn't take into account clean non-busy pages on inactive list
710 *	that could be used(?)
711 * => params:
712 *	size		the size of the allocation, rounded to page size.
713 *	low		the low address of the allowed allocation range.
714 *	high		the high address of the allowed allocation range.
715 *	alignment	memory must be aligned to this power-of-two boundary.
716 *	boundary	no segment in the allocation may cross this
717 *			power-of-two boundary (relative to zero).
718 * => flags:
719 *	UVM_PLA_NOWAIT	fail if allocation fails
720 *	UVM_PLA_WAITOK	wait for memory to become avail
721 *	UVM_PLA_ZERO	return zeroed memory
722 */
723int
724uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
725    paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
726{
727	KASSERT((alignment & (alignment - 1)) == 0);
728	KASSERT((boundary & (boundary - 1)) == 0);
729	KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
730
731	if (size == 0)
732		return (EINVAL);
733	size = atop(round_page(size));
734
735	/*
736	 * XXX uvm_pglistalloc is currently only used for kernel
737	 * objects. Unlike the checks in uvm_pagealloc, below, here
738	 * we are always allowed to use the kernel reserve.
739	 */
740	flags |= UVM_PLA_USERESERVE;
741
742	if ((high & PAGE_MASK) != PAGE_MASK) {
743		printf("uvm_pglistalloc: Upper boundary 0x%lx "
744		    "not on pagemask.\n", (unsigned long)high);
745	}
746
747	/*
748	 * Our allocations are always page granularity, so our alignment
749	 * must be, too.
750	 */
751	if (alignment < PAGE_SIZE)
752		alignment = PAGE_SIZE;
753
754	low = atop(roundup(low, alignment));
755	/*
756	 * high + 1 may result in overflow, in which case high becomes 0x0,
757	 * which is the 'don't care' value.
758	 * The only requirement in that case is that low is also 0x0, or the
759	 * low<high assert will fail.
760	 */
761	high = atop(high + 1);
762	alignment = atop(alignment);
763	if (boundary < PAGE_SIZE && boundary != 0)
764		boundary = PAGE_SIZE;
765	boundary = atop(boundary);
766
767	return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
768	    flags, rlist);
769}
770
771/*
772 * uvm_pglistfree: free a list of pages
773 *
774 * => pages should already be unmapped
775 */
776void
777uvm_pglistfree(struct pglist *list)
778{
779	uvm_pmr_freepageq(list);
780}
781
782/*
783 * interface used by the buffer cache to allocate a buffer at a time.
784 * The pages are allocated wired in DMA accessible memory
785 */
786int
787uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
788    int flags)
789{
790	struct pglist    plist;
791	struct vm_page  *pg;
792	int              i, r;
793
794
795	TAILQ_INIT(&plist);
796	r = uvm_pglistalloc(size, dma_constraint.ucr_low,
797	    dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
798	    flags);
799	if (r == 0) {
800		i = 0;
801		while ((pg = TAILQ_FIRST(&plist)) != NULL) {
802			pg->wire_count = 1;
803			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
804			KASSERT((pg->pg_flags & PG_DEV) == 0);
805			TAILQ_REMOVE(&plist, pg, pageq);
806			uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
807		}
808	}
809	return r;
810}
811
812/*
813 * interface used by the buffer cache to reallocate a buffer at a time.
814 * The pages are reallocated wired outside the DMA accessible region.
815 *
816 */
817int
818uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
819    int flags, struct uvm_constraint_range *where)
820{
821	struct pglist    plist;
822	struct vm_page  *pg, *tpg;
823	int              i, r;
824	voff_t		offset;
825
826
827	TAILQ_INIT(&plist);
828	if (size == 0)
829		panic("size 0 uvm_pagerealloc");
830	r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
831	    0, &plist, atop(round_page(size)), flags);
832	if (r == 0) {
833		i = 0;
834		while((pg = TAILQ_FIRST(&plist)) != NULL) {
835			offset = off + ptoa(i++);
836			tpg = uvm_pagelookup(obj, offset);
837			KASSERT(tpg != NULL);
838			pg->wire_count = 1;
839			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
840			KASSERT((pg->pg_flags & PG_DEV) == 0);
841			TAILQ_REMOVE(&plist, pg, pageq);
842			uvm_pagecopy(tpg, pg);
843			KASSERT(tpg->wire_count == 1);
844			tpg->wire_count = 0;
845			uvm_pagefree(tpg);
846			uvm_pagealloc_pg(pg, obj, offset, NULL);
847		}
848	}
849	return r;
850}
851
852/*
853 * uvm_pagealloc: allocate vm_page from a particular free list.
854 *
855 * => return null if no pages free
856 * => wake up pagedaemon if number of free pages drops below low water mark
857 * => only one of obj or anon can be non-null
858 * => caller must activate/deactivate page if it is not wired.
859 */
860
861struct vm_page *
862uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
863    int flags)
864{
865	struct vm_page *pg;
866	struct pglist pgl;
867	int pmr_flags;
868
869	KASSERT(obj == NULL || anon == NULL);
870	KASSERT(anon == NULL || off == 0);
871	KASSERT(off == trunc_page(off));
872
873	pmr_flags = UVM_PLA_NOWAIT;
874
875	/*
876	 * We're allowed to use the kernel reserve if the page is
877	 * being allocated to a kernel object.
878	 */
879	if ((flags & UVM_PGA_USERESERVE) ||
880	    (obj != NULL && UVM_OBJ_IS_KERN_OBJECT(obj)))
881	    	pmr_flags |= UVM_PLA_USERESERVE;
882
883	if (flags & UVM_PGA_ZERO)
884		pmr_flags |= UVM_PLA_ZERO;
885	TAILQ_INIT(&pgl);
886	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
887		goto fail;
888
889	pg = TAILQ_FIRST(&pgl);
890	KASSERT(pg != NULL && TAILQ_NEXT(pg, pageq) == NULL);
891
892	uvm_pagealloc_pg(pg, obj, off, anon);
893	KASSERT((pg->pg_flags & PG_DEV) == 0);
894	if (flags & UVM_PGA_ZERO)
895		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
896	else
897		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
898
899	return(pg);
900
901fail:
902	return (NULL);
903}
904
905/*
906 * uvm_pagerealloc: reallocate a page from one object to another
907 */
908
909void
910uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
911{
912
913	/* remove it from the old object */
914	if (pg->uobject) {
915		uvm_pageremove(pg);
916	}
917
918	/* put it in the new object */
919	if (newobj) {
920		pg->uobject = newobj;
921		pg->offset = newoff;
922		pg->pg_version++;
923		uvm_pageinsert(pg);
924	}
925}
926
927/*
928 * uvm_pageclean: clean page
929 *
930 * => erase page's identity (i.e. remove from object)
931 * => caller must lock page queues if `pg' is managed
932 * => assumes all valid mappings of pg are gone
933 */
934void
935uvm_pageclean(struct vm_page *pg)
936{
937	u_int flags_to_clear = 0;
938
939#if all_pmap_are_fixed
940	if (pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE))
941		MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
942#endif
943
944#ifdef DEBUG
945	if (pg->uobject == (void *)0xdeadbeef &&
946	    pg->uanon == (void *)0xdeadbeef) {
947		panic("uvm_pagefree: freeing free page %p", pg);
948	}
949#endif
950
951	KASSERT((pg->pg_flags & PG_DEV) == 0);
952
953	/*
954	 * if the page was an object page (and thus "TABLED"), remove it
955	 * from the object.
956	 */
957	if (pg->pg_flags & PG_TABLED)
958		uvm_pageremove(pg);
959
960	/* now remove the page from the queues */
961	if (pg->pg_flags & PQ_ACTIVE) {
962		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
963		flags_to_clear |= PQ_ACTIVE;
964		uvmexp.active--;
965	}
966	if (pg->pg_flags & PQ_INACTIVE) {
967		if (pg->pg_flags & PQ_SWAPBACKED)
968			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
969		else
970			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
971		flags_to_clear |= PQ_INACTIVE;
972		uvmexp.inactive--;
973	}
974
975	/* if the page was wired, unwire it now. */
976	if (pg->wire_count) {
977		pg->wire_count = 0;
978		uvmexp.wired--;
979	}
980	if (pg->uanon) {
981		pg->uanon->an_page = NULL;
982		pg->uanon = NULL;
983	}
984
985	/* Clean page state bits. */
986	flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|
987	    PG_RELEASED|PG_CLEAN|PG_CLEANCHK;
988	atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
989
990#ifdef DEBUG
991	pg->uobject = (void *)0xdeadbeef;
992	pg->offset = 0xdeadbeef;
993	pg->uanon = (void *)0xdeadbeef;
994#endif
995}
996
997/*
998 * uvm_pagefree: free page
999 *
1000 * => erase page's identity (i.e. remove from object)
1001 * => put page on free list
1002 * => caller must lock page queues if `pg' is managed
1003 * => assumes all valid mappings of pg are gone
1004 */
1005void
1006uvm_pagefree(struct vm_page *pg)
1007{
1008#if all_pmap_are_fixed
1009	if (pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE))
1010		MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1011#endif
1012
1013	uvm_pageclean(pg);
1014	uvm_pmr_freepages(pg, 1);
1015}
1016
1017/*
1018 * uvm_page_unbusy: unbusy an array of pages.
1019 *
1020 * => pages must either all belong to the same object, or all belong to anons.
1021 * => if pages are anon-owned, anons must have 0 refcount.
1022 */
1023void
1024uvm_page_unbusy(struct vm_page **pgs, int npgs)
1025{
1026	struct vm_page *pg;
1027	struct uvm_object *uobj;
1028	int i;
1029
1030	for (i = 0; i < npgs; i++) {
1031		pg = pgs[i];
1032
1033		if (pg == NULL || pg == PGO_DONTCARE) {
1034			continue;
1035		}
1036		if (pg->pg_flags & PG_WANTED) {
1037			wakeup(pg);
1038		}
1039		if (pg->pg_flags & PG_RELEASED) {
1040			uobj = pg->uobject;
1041			if (uobj != NULL) {
1042				uvm_lock_pageq();
1043				pmap_page_protect(pg, PROT_NONE);
1044				/* XXX won't happen right now */
1045				if (pg->pg_flags & PQ_AOBJ)
1046					uao_dropswap(uobj,
1047					    pg->offset >> PAGE_SHIFT);
1048				uvm_pagefree(pg);
1049				uvm_unlock_pageq();
1050			} else {
1051				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1052				UVM_PAGE_OWN(pg, NULL);
1053				uvm_anfree(pg->uanon);
1054			}
1055		} else {
1056			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1057			UVM_PAGE_OWN(pg, NULL);
1058		}
1059	}
1060}
1061
1062#if defined(UVM_PAGE_TRKOWN)
1063/*
1064 * uvm_page_own: set or release page ownership
1065 *
1066 * => this is a debugging function that keeps track of who sets PG_BUSY
1067 *	and where they do it.   it can be used to track down problems
1068 *	such a thread setting "PG_BUSY" and never releasing it.
1069 * => if "tag" is NULL then we are releasing page ownership
1070 */
1071void
1072uvm_page_own(struct vm_page *pg, char *tag)
1073{
1074	/* gain ownership? */
1075	if (tag) {
1076		if (pg->owner_tag) {
1077			printf("uvm_page_own: page %p already owned "
1078			    "by thread %d [%s]\n", pg,
1079			     pg->owner, pg->owner_tag);
1080			panic("uvm_page_own");
1081		}
1082		pg->owner = (curproc) ? curproc->p_tid :  (pid_t) -1;
1083		pg->owner_tag = tag;
1084		return;
1085	}
1086
1087	/* drop ownership */
1088	if (pg->owner_tag == NULL) {
1089		printf("uvm_page_own: dropping ownership of an non-owned "
1090		    "page (%p)\n", pg);
1091		panic("uvm_page_own");
1092	}
1093	pg->owner_tag = NULL;
1094	return;
1095}
1096#endif
1097
1098/*
1099 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1100 */
1101
1102#if VM_PHYSSEG_MAX > 1
1103/*
1104 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1105 */
1106int
1107vm_physseg_find(paddr_t pframe, int *offp)
1108{
1109	struct vm_physseg *seg;
1110
1111#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1112	/* binary search for it */
1113	int	start, len, try;
1114
1115	/*
1116	 * if try is too large (thus target is less than than try) we reduce
1117	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1118	 *
1119	 * if the try is too small (thus target is greater than try) then
1120	 * we set the new start to be (try + 1).   this means we need to
1121	 * reduce the length to (round(len/2) - 1).
1122	 *
1123	 * note "adjust" below which takes advantage of the fact that
1124	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1125	 * for any value of len we may have
1126	 */
1127
1128	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1129		try = start + (len / 2);	/* try in the middle */
1130		seg = vm_physmem + try;
1131
1132		/* start past our try? */
1133		if (pframe >= seg->start) {
1134			/* was try correct? */
1135			if (pframe < seg->end) {
1136				if (offp)
1137					*offp = pframe - seg->start;
1138				return(try);            /* got it */
1139			}
1140			start = try + 1;	/* next time, start here */
1141			len--;			/* "adjust" */
1142		} else {
1143			/*
1144			 * pframe before try, just reduce length of
1145			 * region, done in "for" loop
1146			 */
1147		}
1148	}
1149	return(-1);
1150
1151#else
1152	/* linear search for it */
1153	int	lcv;
1154
1155	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
1156		if (pframe >= seg->start && pframe < seg->end) {
1157			if (offp)
1158				*offp = pframe - seg->start;
1159			return(lcv);		   /* got it */
1160		}
1161	}
1162	return(-1);
1163
1164#endif
1165}
1166
1167/*
1168 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1169 * back from an I/O mapping (ugh!).   used in some MD code as well.
1170 */
1171struct vm_page *
1172PHYS_TO_VM_PAGE(paddr_t pa)
1173{
1174	paddr_t pf = atop(pa);
1175	int	off;
1176	int	psi;
1177
1178	psi = vm_physseg_find(pf, &off);
1179
1180	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1181}
1182#endif /* VM_PHYSSEG_MAX > 1 */
1183
1184/*
1185 * uvm_pagelookup: look up a page
1186 */
1187struct vm_page *
1188uvm_pagelookup(struct uvm_object *obj, voff_t off)
1189{
1190	/* XXX if stack is too much, handroll */
1191	struct vm_page pg;
1192
1193	pg.offset = off;
1194	return (RBT_FIND(uvm_objtree, &obj->memt, &pg));
1195}
1196
1197/*
1198 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1199 *
1200 * => caller must lock page queues
1201 */
1202void
1203uvm_pagewire(struct vm_page *pg)
1204{
1205	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1206
1207	if (pg->wire_count == 0) {
1208		if (pg->pg_flags & PQ_ACTIVE) {
1209			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1210			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1211			uvmexp.active--;
1212		}
1213		if (pg->pg_flags & PQ_INACTIVE) {
1214			if (pg->pg_flags & PQ_SWAPBACKED)
1215				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1216			else
1217				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1218			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1219			uvmexp.inactive--;
1220		}
1221		uvmexp.wired++;
1222	}
1223	pg->wire_count++;
1224}
1225
1226/*
1227 * uvm_pageunwire: unwire the page.
1228 *
1229 * => activate if wire count goes to zero.
1230 * => caller must lock page queues
1231 */
1232void
1233uvm_pageunwire(struct vm_page *pg)
1234{
1235	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1236
1237	pg->wire_count--;
1238	if (pg->wire_count == 0) {
1239		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1240		uvmexp.active++;
1241		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1242		uvmexp.wired--;
1243	}
1244}
1245
1246/*
1247 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1248 *
1249 * => caller must lock page queues
1250 * => caller must check to make sure page is not wired
1251 * => object that page belongs to must be locked (so we can adjust pg->flags)
1252 */
1253void
1254uvm_pagedeactivate(struct vm_page *pg)
1255{
1256	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1257
1258	if (pg->pg_flags & PQ_ACTIVE) {
1259		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1260		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1261		uvmexp.active--;
1262	}
1263	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1264		KASSERT(pg->wire_count == 0);
1265		if (pg->pg_flags & PQ_SWAPBACKED)
1266			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1267		else
1268			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1269		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1270		uvmexp.inactive++;
1271		pmap_clear_reference(pg);
1272		/*
1273		 * update the "clean" bit.  this isn't 100%
1274		 * accurate, and doesn't have to be.  we'll
1275		 * re-sync it after we zap all mappings when
1276		 * scanning the inactive list.
1277		 */
1278		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1279		    pmap_is_modified(pg))
1280			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1281	}
1282}
1283
1284/*
1285 * uvm_pageactivate: activate page
1286 *
1287 * => caller must lock page queues
1288 */
1289void
1290uvm_pageactivate(struct vm_page *pg)
1291{
1292	MUTEX_ASSERT_LOCKED(&uvm.pageqlock);
1293
1294	if (pg->pg_flags & PQ_INACTIVE) {
1295		if (pg->pg_flags & PQ_SWAPBACKED)
1296			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1297		else
1298			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1299		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1300		uvmexp.inactive--;
1301	}
1302	if (pg->wire_count == 0) {
1303		/*
1304		 * if page is already active, remove it from list so we
1305		 * can put it at tail.  if it wasn't active, then mark
1306		 * it active and bump active count
1307		 */
1308		if (pg->pg_flags & PQ_ACTIVE)
1309			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1310		else {
1311			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1312			uvmexp.active++;
1313		}
1314
1315		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1316	}
1317}
1318
1319/*
1320 * uvm_pagezero: zero fill a page
1321 */
1322void
1323uvm_pagezero(struct vm_page *pg)
1324{
1325	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1326	pmap_zero_page(pg);
1327}
1328
1329/*
1330 * uvm_pagecopy: copy a page
1331 */
1332void
1333uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1334{
1335	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1336	pmap_copy_page(src, dst);
1337}
1338
1339/*
1340 * uvm_pagecount: count the number of physical pages in the address range.
1341 */
1342psize_t
1343uvm_pagecount(struct uvm_constraint_range* constraint)
1344{
1345	int lcv;
1346	psize_t sz;
1347	paddr_t low, high;
1348	paddr_t ps_low, ps_high;
1349
1350	/* Algorithm uses page numbers. */
1351	low = atop(constraint->ucr_low);
1352	high = atop(constraint->ucr_high);
1353
1354	sz = 0;
1355	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1356		ps_low = MAX(low, vm_physmem[lcv].avail_start);
1357		ps_high = MIN(high, vm_physmem[lcv].avail_end);
1358		if (ps_low < ps_high)
1359			sz += ps_high - ps_low;
1360	}
1361	return sz;
1362}
1363