uvm_page.c revision 1.146
1/*	$OpenBSD: uvm_page.c,v 1.146 2016/11/07 00:26:33 guenther Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 *
37 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
38 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
39 *
40 *
41 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42 * All rights reserved.
43 *
44 * Permission to use, copy, modify and distribute this software and
45 * its documentation is hereby granted, provided that both the copyright
46 * notice and this permission notice appear in all copies of the
47 * software, derivative works or modified versions, and any portions
48 * thereof, and that both notices appear in supporting documentation.
49 *
50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53 *
54 * Carnegie Mellon requests users of this software to return to
55 *
56 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57 *  School of Computer Science
58 *  Carnegie Mellon University
59 *  Pittsburgh PA 15213-3890
60 *
61 * any improvements or extensions that they make and grant Carnegie the
62 * rights to redistribute these changes.
63 */
64
65/*
66 * uvm_page.c: page ops.
67 */
68
69#include <sys/param.h>
70#include <sys/systm.h>
71#include <sys/sched.h>
72#include <sys/vnode.h>
73#include <sys/mount.h>
74#include <sys/proc.h>
75
76#include <uvm/uvm.h>
77
78/*
79 * for object trees
80 */
81RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
82
83int
84uvm_pagecmp(const struct vm_page *a, const struct vm_page *b)
85{
86	return (a->offset < b->offset ? -1 : a->offset > b->offset);
87}
88
89/*
90 * global vars... XXXCDC: move to uvm. structure.
91 */
92/*
93 * physical memory config is stored in vm_physmem.
94 */
95struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
96int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
97
98/*
99 * Some supported CPUs in a given architecture don't support all
100 * of the things necessary to do idle page zero'ing efficiently.
101 * We therefore provide a way to disable it from machdep code here.
102 */
103
104/*
105 * local variables
106 */
107/*
108 * these variables record the values returned by vm_page_bootstrap,
109 * for debugging purposes.  The implementation of uvm_pageboot_alloc
110 * and pmap_startup here also uses them internally.
111 */
112static vaddr_t      virtual_space_start;
113static vaddr_t      virtual_space_end;
114
115/*
116 * local prototypes
117 */
118static void uvm_pageinsert(struct vm_page *);
119static void uvm_pageremove(struct vm_page *);
120
121/*
122 * inline functions
123 */
124/*
125 * uvm_pageinsert: insert a page in the object
126 *
127 * => caller must lock page queues XXX questionable
128 * => call should have already set pg's object and offset pointers
129 *    and bumped the version counter
130 */
131__inline static void
132uvm_pageinsert(struct vm_page *pg)
133{
134	struct vm_page	*dupe;
135
136	KASSERT((pg->pg_flags & PG_TABLED) == 0);
137	dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg);
138	/* not allowed to insert over another page */
139	KASSERT(dupe == NULL);
140	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
141	pg->uobject->uo_npages++;
142}
143
144/*
145 * uvm_page_remove: remove page from object
146 *
147 * => caller must lock page queues
148 */
149static __inline void
150uvm_pageremove(struct vm_page *pg)
151{
152	KASSERT(pg->pg_flags & PG_TABLED);
153	RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
154
155	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
156	pg->uobject->uo_npages--;
157	pg->uobject = NULL;
158	pg->pg_version++;
159}
160
161/*
162 * uvm_page_init: init the page system.   called from uvm_init().
163 *
164 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
165 */
166void
167uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
168{
169	vsize_t freepages, pagecount, n;
170	vm_page_t pagearray, curpg;
171	int lcv, i;
172	paddr_t paddr, pgno;
173	struct vm_physseg *seg;
174
175	/*
176	 * init the page queues and page queue locks
177	 */
178
179	TAILQ_INIT(&uvm.page_active);
180	TAILQ_INIT(&uvm.page_inactive_swp);
181	TAILQ_INIT(&uvm.page_inactive_obj);
182	mtx_init(&uvm.pageqlock, IPL_NONE);
183	mtx_init(&uvm.fpageqlock, IPL_VM);
184	uvm_pmr_init();
185
186	/*
187	 * allocate vm_page structures.
188	 */
189
190	/*
191	 * sanity check:
192	 * before calling this function the MD code is expected to register
193	 * some free RAM with the uvm_page_physload() function.   our job
194	 * now is to allocate vm_page structures for this memory.
195	 */
196
197	if (vm_nphysseg == 0)
198		panic("uvm_page_bootstrap: no memory pre-allocated");
199
200	/*
201	 * first calculate the number of free pages...
202	 *
203	 * note that we use start/end rather than avail_start/avail_end.
204	 * this allows us to allocate extra vm_page structures in case we
205	 * want to return some memory to the pool after booting.
206	 */
207
208	freepages = 0;
209	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
210		freepages += (seg->end - seg->start);
211
212	/*
213	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
214	 * use.   for each page of memory we use we need a vm_page structure.
215	 * thus, the total number of pages we can use is the total size of
216	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
217	 * structure.   we add one to freepages as a fudge factor to avoid
218	 * truncation errors (since we can only allocate in terms of whole
219	 * pages).
220	 */
221
222	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
223	    (PAGE_SIZE + sizeof(struct vm_page));
224	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
225	    sizeof(struct vm_page));
226	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
227
228	/* init the vm_page structures and put them in the correct place. */
229	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
230		n = seg->end - seg->start;
231		if (n > pagecount) {
232			panic("uvm_page_init: lost %ld page(s) in init",
233			    (long)(n - pagecount));
234			    /* XXXCDC: shouldn't happen? */
235			/* n = pagecount; */
236		}
237
238		/* set up page array pointers */
239		seg->pgs = pagearray;
240		pagearray += n;
241		pagecount -= n;
242		seg->lastpg = seg->pgs + (n - 1);
243
244		/* init and free vm_pages (we've already zeroed them) */
245		pgno = seg->start;
246		paddr = ptoa(pgno);
247		for (i = 0, curpg = seg->pgs; i < n;
248		    i++, curpg++, pgno++, paddr += PAGE_SIZE) {
249			curpg->phys_addr = paddr;
250			VM_MDPAGE_INIT(curpg);
251			if (pgno >= seg->avail_start &&
252			    pgno < seg->avail_end) {
253				uvmexp.npages++;
254			}
255		}
256
257		/* Add pages to free pool. */
258		uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
259		    seg->avail_end - seg->avail_start);
260	}
261
262	/*
263	 * pass up the values of virtual_space_start and
264	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
265	 * layers of the VM.
266	 */
267
268	*kvm_startp = round_page(virtual_space_start);
269	*kvm_endp = trunc_page(virtual_space_end);
270
271	/* init locks for kernel threads */
272	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
273
274	/*
275	 * init reserve thresholds
276	 * XXXCDC - values may need adjusting
277	 */
278	uvmexp.reserve_pagedaemon = 4;
279	uvmexp.reserve_kernel = 6;
280	uvmexp.anonminpct = 10;
281	uvmexp.vnodeminpct = 10;
282	uvmexp.vtextminpct = 5;
283	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
284	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
285	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
286
287	uvm.page_init_done = TRUE;
288}
289
290/*
291 * uvm_setpagesize: set the page size
292 *
293 * => sets page_shift and page_mask from uvmexp.pagesize.
294 */
295void
296uvm_setpagesize(void)
297{
298	if (uvmexp.pagesize == 0)
299		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
300	uvmexp.pagemask = uvmexp.pagesize - 1;
301	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
302		panic("uvm_setpagesize: page size not a power of two");
303	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
304		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
305			break;
306}
307
308/*
309 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
310 */
311vaddr_t
312uvm_pageboot_alloc(vsize_t size)
313{
314#if defined(PMAP_STEAL_MEMORY)
315	vaddr_t addr;
316
317	/*
318	 * defer bootstrap allocation to MD code (it may want to allocate
319	 * from a direct-mapped segment).  pmap_steal_memory should round
320	 * off virtual_space_start/virtual_space_end.
321	 */
322
323	addr = pmap_steal_memory(size, &virtual_space_start,
324	    &virtual_space_end);
325
326	return(addr);
327
328#else /* !PMAP_STEAL_MEMORY */
329
330	static boolean_t initialized = FALSE;
331	vaddr_t addr, vaddr;
332	paddr_t paddr;
333
334	/* round to page size */
335	size = round_page(size);
336
337	/* on first call to this function, initialize ourselves. */
338	if (initialized == FALSE) {
339		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
340
341		/* round it the way we like it */
342		virtual_space_start = round_page(virtual_space_start);
343		virtual_space_end = trunc_page(virtual_space_end);
344
345		initialized = TRUE;
346	}
347
348	/* allocate virtual memory for this request */
349	if (virtual_space_start == virtual_space_end ||
350	    (virtual_space_end - virtual_space_start) < size)
351		panic("uvm_pageboot_alloc: out of virtual space");
352
353	addr = virtual_space_start;
354
355#ifdef PMAP_GROWKERNEL
356	/*
357	 * If the kernel pmap can't map the requested space,
358	 * then allocate more resources for it.
359	 */
360	if (uvm_maxkaddr < (addr + size)) {
361		uvm_maxkaddr = pmap_growkernel(addr + size);
362		if (uvm_maxkaddr < (addr + size))
363			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
364	}
365#endif
366
367	virtual_space_start += size;
368
369	/* allocate and mapin physical pages to back new virtual pages */
370	for (vaddr = round_page(addr) ; vaddr < addr + size ;
371	    vaddr += PAGE_SIZE) {
372		if (!uvm_page_physget(&paddr))
373			panic("uvm_pageboot_alloc: out of memory");
374
375		/*
376		 * Note this memory is no longer managed, so using
377		 * pmap_kenter is safe.
378		 */
379		pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE);
380	}
381	pmap_update(pmap_kernel());
382	return(addr);
383#endif	/* PMAP_STEAL_MEMORY */
384}
385
386#if !defined(PMAP_STEAL_MEMORY)
387/*
388 * uvm_page_physget: "steal" one page from the vm_physmem structure.
389 *
390 * => attempt to allocate it off the end of a segment in which the "avail"
391 *    values match the start/end values.   if we can't do that, then we
392 *    will advance both values (making them equal, and removing some
393 *    vm_page structures from the non-avail area).
394 * => return false if out of memory.
395 */
396
397boolean_t
398uvm_page_physget(paddr_t *paddrp)
399{
400	int lcv;
401	struct vm_physseg *seg;
402
403	/* pass 1: try allocating from a matching end */
404#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
405	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
406	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
407	    lcv--, seg--)
408#else
409	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
410#endif
411	{
412		if (uvm.page_init_done == TRUE)
413			panic("uvm_page_physget: called _after_ bootstrap");
414
415		/* try from front */
416		if (seg->avail_start == seg->start &&
417		    seg->avail_start < seg->avail_end) {
418			*paddrp = ptoa(seg->avail_start);
419			seg->avail_start++;
420			seg->start++;
421			/* nothing left?   nuke it */
422			if (seg->avail_start == seg->end) {
423				if (vm_nphysseg == 1)
424				    panic("uvm_page_physget: out of memory!");
425				vm_nphysseg--;
426				for (; lcv < vm_nphysseg; lcv++, seg++)
427					/* structure copy */
428					seg[0] = seg[1];
429			}
430			return (TRUE);
431		}
432
433		/* try from rear */
434		if (seg->avail_end == seg->end &&
435		    seg->avail_start < seg->avail_end) {
436			*paddrp = ptoa(seg->avail_end - 1);
437			seg->avail_end--;
438			seg->end--;
439			/* nothing left?   nuke it */
440			if (seg->avail_end == seg->start) {
441				if (vm_nphysseg == 1)
442				    panic("uvm_page_physget: out of memory!");
443				vm_nphysseg--;
444				for (; lcv < vm_nphysseg ; lcv++, seg++)
445					/* structure copy */
446					seg[0] = seg[1];
447			}
448			return (TRUE);
449		}
450	}
451
452	/* pass2: forget about matching ends, just allocate something */
453#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
454	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
455	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
456	    lcv--, seg--)
457#else
458	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
459#endif
460	{
461
462		/* any room in this bank? */
463		if (seg->avail_start >= seg->avail_end)
464			continue;  /* nope */
465
466		*paddrp = ptoa(seg->avail_start);
467		seg->avail_start++;
468		/* truncate! */
469		seg->start = seg->avail_start;
470
471		/* nothing left?   nuke it */
472		if (seg->avail_start == seg->end) {
473			if (vm_nphysseg == 1)
474				panic("uvm_page_physget: out of memory!");
475			vm_nphysseg--;
476			for (; lcv < vm_nphysseg ; lcv++, seg++)
477				/* structure copy */
478				seg[0] = seg[1];
479		}
480		return (TRUE);
481	}
482
483	return (FALSE);        /* whoops! */
484}
485
486#endif /* PMAP_STEAL_MEMORY */
487
488/*
489 * uvm_page_physload: load physical memory into VM system
490 *
491 * => all args are PFs
492 * => all pages in start/end get vm_page structures
493 * => areas marked by avail_start/avail_end get added to the free page pool
494 * => we are limited to VM_PHYSSEG_MAX physical memory segments
495 */
496
497void
498uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
499    paddr_t avail_end, int flags)
500{
501	int preload, lcv;
502	psize_t npages;
503	struct vm_page *pgs;
504	struct vm_physseg *ps, *seg;
505
506#ifdef DIAGNOSTIC
507	if (uvmexp.pagesize == 0)
508		panic("uvm_page_physload: page size not set!");
509
510	if (start >= end)
511		panic("uvm_page_physload: start >= end");
512#endif
513
514	/* do we have room? */
515	if (vm_nphysseg == VM_PHYSSEG_MAX) {
516		printf("uvm_page_physload: unable to load physical memory "
517		    "segment\n");
518		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
519		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
520		printf("\tincrease VM_PHYSSEG_MAX\n");
521		return;
522	}
523
524	/*
525	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
526	 * called yet, so malloc is not available).
527	 */
528	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
529		if (seg->pgs)
530			break;
531	}
532	preload = (lcv == vm_nphysseg);
533
534	/* if VM is already running, attempt to malloc() vm_page structures */
535	if (!preload) {
536		/*
537		 * XXXCDC: need some sort of lockout for this case
538		 * right now it is only used by devices so it should be alright.
539		 */
540 		paddr_t paddr;
541
542 		npages = end - start;  /* # of pages */
543
544		pgs = (struct vm_page *)uvm_km_zalloc(kernel_map,
545		    npages * sizeof(*pgs));
546		if (pgs == NULL) {
547			printf("uvm_page_physload: can not malloc vm_page "
548			    "structs for segment\n");
549			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
550			return;
551		}
552		/* init phys_addr and free pages, XXX uvmexp.npages */
553		for (lcv = 0, paddr = ptoa(start); lcv < npages;
554		    lcv++, paddr += PAGE_SIZE) {
555			pgs[lcv].phys_addr = paddr;
556			VM_MDPAGE_INIT(&pgs[lcv]);
557			if (atop(paddr) >= avail_start &&
558			    atop(paddr) < avail_end) {
559				if (flags & PHYSLOAD_DEVICE) {
560					atomic_setbits_int(&pgs[lcv].pg_flags,
561					    PG_DEV);
562					pgs[lcv].wire_count = 1;
563				} else {
564#if defined(VM_PHYSSEG_NOADD)
565		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
566#endif
567				}
568			}
569		}
570
571		/* Add pages to free pool. */
572		if ((flags & PHYSLOAD_DEVICE) == 0) {
573			uvm_pmr_freepages(&pgs[avail_start - start],
574			    avail_end - avail_start);
575		}
576
577		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
578	} else {
579		/* gcc complains if these don't get init'd */
580		pgs = NULL;
581		npages = 0;
582
583	}
584
585	/* now insert us in the proper place in vm_physmem[] */
586#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
587	/* random: put it at the end (easy!) */
588	ps = &vm_physmem[vm_nphysseg];
589#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
590	{
591		int x;
592		/* sort by address for binary search */
593		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
594			if (start < seg->start)
595				break;
596		ps = seg;
597		/* move back other entries, if necessary ... */
598		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
599		    x--, seg--)
600			/* structure copy */
601			seg[1] = seg[0];
602	}
603#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
604	{
605		int x;
606		/* sort by largest segment first */
607		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
608			if ((end - start) >
609			    (seg->end - seg->start))
610				break;
611		ps = &vm_physmem[lcv];
612		/* move back other entries, if necessary ... */
613		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
614		    x--, seg--)
615			/* structure copy */
616			seg[1] = seg[0];
617	}
618#else
619	panic("uvm_page_physload: unknown physseg strategy selected!");
620#endif
621
622	ps->start = start;
623	ps->end = end;
624	ps->avail_start = avail_start;
625	ps->avail_end = avail_end;
626	if (preload) {
627		ps->pgs = NULL;
628	} else {
629		ps->pgs = pgs;
630		ps->lastpg = pgs + npages - 1;
631	}
632	vm_nphysseg++;
633
634	return;
635}
636
637#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
638
639void uvm_page_physdump(void); /* SHUT UP GCC */
640
641/* call from DDB */
642void
643uvm_page_physdump(void)
644{
645	int lcv;
646	struct vm_physseg *seg;
647
648	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
649	    vm_nphysseg, VM_PHYSSEG_MAX);
650	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
651		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
652		    (long long)seg->start,
653		    (long long)seg->end,
654		    (long long)seg->avail_start,
655		    (long long)seg->avail_end);
656	printf("STRATEGY = ");
657	switch (VM_PHYSSEG_STRAT) {
658	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
659	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
660	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
661	default: printf("<<UNKNOWN>>!!!!\n");
662	}
663}
664#endif
665
666void
667uvm_shutdown(void)
668{
669#ifdef UVM_SWAP_ENCRYPT
670	uvm_swap_finicrypt_all();
671#endif
672}
673
674/*
675 * Perform insert of a given page in the specified anon of obj.
676 * This is basically, uvm_pagealloc, but with the page already given.
677 */
678void
679uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
680    struct vm_anon *anon)
681{
682	int	flags;
683
684	flags = PG_BUSY | PG_FAKE;
685	pg->offset = off;
686	pg->uobject = obj;
687	pg->uanon = anon;
688
689	if (anon) {
690		anon->an_page = pg;
691		flags |= PQ_ANON;
692	} else if (obj)
693		uvm_pageinsert(pg);
694	atomic_setbits_int(&pg->pg_flags, flags);
695#if defined(UVM_PAGE_TRKOWN)
696	pg->owner_tag = NULL;
697#endif
698	UVM_PAGE_OWN(pg, "new alloc");
699}
700
701/*
702 * uvm_pglistalloc: allocate a list of pages
703 *
704 * => allocated pages are placed at the tail of rlist.  rlist is
705 *    assumed to be properly initialized by caller.
706 * => returns 0 on success or errno on failure
707 * => doesn't take into account clean non-busy pages on inactive list
708 *	that could be used(?)
709 * => params:
710 *	size		the size of the allocation, rounded to page size.
711 *	low		the low address of the allowed allocation range.
712 *	high		the high address of the allowed allocation range.
713 *	alignment	memory must be aligned to this power-of-two boundary.
714 *	boundary	no segment in the allocation may cross this
715 *			power-of-two boundary (relative to zero).
716 * => flags:
717 *	UVM_PLA_NOWAIT	fail if allocation fails
718 *	UVM_PLA_WAITOK	wait for memory to become avail
719 *	UVM_PLA_ZERO	return zeroed memory
720 */
721int
722uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
723    paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
724{
725	KASSERT((alignment & (alignment - 1)) == 0);
726	KASSERT((boundary & (boundary - 1)) == 0);
727	KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
728
729	if (size == 0)
730		return (EINVAL);
731	size = atop(round_page(size));
732
733	/*
734	 * check to see if we need to generate some free pages waking
735	 * the pagedaemon.
736	 */
737	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
738	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
739	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
740		wakeup(&uvm.pagedaemon);
741
742	/*
743	 * XXX uvm_pglistalloc is currently only used for kernel
744	 * objects. Unlike the checks in uvm_pagealloc, below, here
745	 * we are always allowed to use the kernel reserve. However, we
746	 * have to enforce the pagedaemon reserve here or allocations
747	 * via this path could consume everything and we can't
748	 * recover in the page daemon.
749	 */
750 again:
751	if ((uvmexp.free <= uvmexp.reserve_pagedaemon + size &&
752	    !((curproc == uvm.pagedaemon_proc) ||
753		(curproc == syncerproc)))) {
754		if (flags & UVM_PLA_WAITOK) {
755			uvm_wait("uvm_pglistalloc");
756			goto again;
757		}
758		return (ENOMEM);
759	}
760
761	if ((high & PAGE_MASK) != PAGE_MASK) {
762		printf("uvm_pglistalloc: Upper boundary 0x%lx "
763		    "not on pagemask.\n", (unsigned long)high);
764	}
765
766	/*
767	 * Our allocations are always page granularity, so our alignment
768	 * must be, too.
769	 */
770	if (alignment < PAGE_SIZE)
771		alignment = PAGE_SIZE;
772
773	low = atop(roundup(low, alignment));
774	/*
775	 * high + 1 may result in overflow, in which case high becomes 0x0,
776	 * which is the 'don't care' value.
777	 * The only requirement in that case is that low is also 0x0, or the
778	 * low<high assert will fail.
779	 */
780	high = atop(high + 1);
781	alignment = atop(alignment);
782	if (boundary < PAGE_SIZE && boundary != 0)
783		boundary = PAGE_SIZE;
784	boundary = atop(boundary);
785
786	return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
787	    flags, rlist);
788}
789
790/*
791 * uvm_pglistfree: free a list of pages
792 *
793 * => pages should already be unmapped
794 */
795void
796uvm_pglistfree(struct pglist *list)
797{
798	uvm_pmr_freepageq(list);
799}
800
801/*
802 * interface used by the buffer cache to allocate a buffer at a time.
803 * The pages are allocated wired in DMA accessible memory
804 */
805int
806uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
807    int flags)
808{
809	struct pglist    plist;
810	struct vm_page  *pg;
811	int              i, r;
812
813
814	TAILQ_INIT(&plist);
815	r = uvm_pglistalloc(size, dma_constraint.ucr_low,
816	    dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
817	    flags);
818	if (r == 0) {
819		i = 0;
820		while ((pg = TAILQ_FIRST(&plist)) != NULL) {
821			pg->wire_count = 1;
822			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
823			KASSERT((pg->pg_flags & PG_DEV) == 0);
824			TAILQ_REMOVE(&plist, pg, pageq);
825			uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
826		}
827	}
828	return r;
829}
830
831/*
832 * interface used by the buffer cache to reallocate a buffer at a time.
833 * The pages are reallocated wired outside the DMA accessible region.
834 *
835 */
836int
837uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
838    int flags, struct uvm_constraint_range *where)
839{
840	struct pglist    plist;
841	struct vm_page  *pg, *tpg;
842	int              i, r;
843	voff_t		offset;
844
845
846	TAILQ_INIT(&plist);
847	if (size == 0)
848		panic("size 0 uvm_pagerealloc");
849	r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
850	    0, &plist, atop(round_page(size)), flags);
851	if (r == 0) {
852		i = 0;
853		while((pg = TAILQ_FIRST(&plist)) != NULL) {
854			offset = off + ptoa(i++);
855			tpg = uvm_pagelookup(obj, offset);
856			pg->wire_count = 1;
857			atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
858			KASSERT((pg->pg_flags & PG_DEV) == 0);
859			TAILQ_REMOVE(&plist, pg, pageq);
860			uvm_pagecopy(tpg, pg);
861			uvm_pagefree(tpg);
862			uvm_pagealloc_pg(pg, obj, offset, NULL);
863		}
864	}
865	return r;
866}
867
868/*
869 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
870 *
871 * => return null if no pages free
872 * => wake up pagedaemon if number of free pages drops below low water mark
873 * => only one of obj or anon can be non-null
874 * => caller must activate/deactivate page if it is not wired.
875 */
876
877struct vm_page *
878uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
879    int flags)
880{
881	struct vm_page *pg;
882	struct pglist pgl;
883	int pmr_flags;
884	boolean_t use_reserve;
885
886	KASSERT(obj == NULL || anon == NULL);
887	KASSERT(off == trunc_page(off));
888
889	/*
890	 * check to see if we need to generate some free pages waking
891	 * the pagedaemon.
892	 */
893	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
894	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
895	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
896		wakeup(&uvm.pagedaemon);
897
898	/*
899	 * fail if any of these conditions is true:
900	 * [1]  there really are no free pages, or
901	 * [2]  only kernel "reserved" pages remain and
902	 *        the page isn't being allocated to a kernel object.
903	 * [3]  only pagedaemon "reserved" pages remain and
904	 *        the requestor isn't the pagedaemon.
905	 */
906	use_reserve = (flags & UVM_PGA_USERESERVE) ||
907		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
908	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
909	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
910	     !((curproc == uvm.pagedaemon_proc) ||
911	      (curproc == syncerproc))))
912		goto fail;
913
914	pmr_flags = UVM_PLA_NOWAIT;
915	if (flags & UVM_PGA_ZERO)
916		pmr_flags |= UVM_PLA_ZERO;
917	TAILQ_INIT(&pgl);
918	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
919		goto fail;
920
921	pg = TAILQ_FIRST(&pgl);
922	KASSERT(pg != NULL && TAILQ_NEXT(pg, pageq) == NULL);
923
924	uvm_pagealloc_pg(pg, obj, off, anon);
925	KASSERT((pg->pg_flags & PG_DEV) == 0);
926	if (flags & UVM_PGA_ZERO)
927		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
928	else
929		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
930
931	return(pg);
932
933fail:
934	return (NULL);
935}
936
937/*
938 * uvm_pagerealloc: reallocate a page from one object to another
939 */
940
941void
942uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
943{
944
945	/* remove it from the old object */
946	if (pg->uobject) {
947		uvm_pageremove(pg);
948	}
949
950	/* put it in the new object */
951	if (newobj) {
952		pg->uobject = newobj;
953		pg->offset = newoff;
954		pg->pg_version++;
955		uvm_pageinsert(pg);
956	}
957}
958
959
960/*
961 * uvm_pagefree: free page
962 *
963 * => erase page's identity (i.e. remove from object)
964 * => put page on free list
965 * => caller must lock page queues
966 * => assumes all valid mappings of pg are gone
967 */
968void
969uvm_pagefree(struct vm_page *pg)
970{
971	u_int flags_to_clear = 0;
972
973#ifdef DEBUG
974	if (pg->uobject == (void *)0xdeadbeef &&
975	    pg->uanon == (void *)0xdeadbeef) {
976		panic("uvm_pagefree: freeing free page %p", pg);
977	}
978#endif
979
980	KASSERT((pg->pg_flags & PG_DEV) == 0);
981
982	/*
983	 * if the page was an object page (and thus "TABLED"), remove it
984	 * from the object.
985	 */
986	if (pg->pg_flags & PG_TABLED)
987		uvm_pageremove(pg);
988
989	/* now remove the page from the queues */
990	if (pg->pg_flags & PQ_ACTIVE) {
991		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
992		flags_to_clear |= PQ_ACTIVE;
993		uvmexp.active--;
994	}
995	if (pg->pg_flags & PQ_INACTIVE) {
996		if (pg->pg_flags & PQ_SWAPBACKED)
997			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
998		else
999			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1000		flags_to_clear |= PQ_INACTIVE;
1001		uvmexp.inactive--;
1002	}
1003
1004	/* if the page was wired, unwire it now. */
1005	if (pg->wire_count) {
1006		pg->wire_count = 0;
1007		uvmexp.wired--;
1008	}
1009	if (pg->uanon) {
1010		pg->uanon->an_page = NULL;
1011		pg->uanon = NULL;
1012	}
1013
1014	/* Clean page state bits. */
1015	flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|
1016	    PG_RELEASED|PG_CLEAN|PG_CLEANCHK;
1017	atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
1018
1019	/* and put on free queue */
1020#ifdef DEBUG
1021	pg->uobject = (void *)0xdeadbeef;
1022	pg->offset = 0xdeadbeef;
1023	pg->uanon = (void *)0xdeadbeef;
1024#endif
1025
1026	uvm_pmr_freepages(pg, 1);
1027}
1028
1029/*
1030 * uvm_page_unbusy: unbusy an array of pages.
1031 *
1032 * => pages must either all belong to the same object, or all belong to anons.
1033 * => if pages are anon-owned, anons must have 0 refcount.
1034 */
1035void
1036uvm_page_unbusy(struct vm_page **pgs, int npgs)
1037{
1038	struct vm_page *pg;
1039	struct uvm_object *uobj;
1040	int i;
1041
1042	for (i = 0; i < npgs; i++) {
1043		pg = pgs[i];
1044
1045		if (pg == NULL || pg == PGO_DONTCARE) {
1046			continue;
1047		}
1048		if (pg->pg_flags & PG_WANTED) {
1049			wakeup(pg);
1050		}
1051		if (pg->pg_flags & PG_RELEASED) {
1052			uobj = pg->uobject;
1053			if (uobj != NULL) {
1054				uvm_lock_pageq();
1055				pmap_page_protect(pg, PROT_NONE);
1056				/* XXX won't happen right now */
1057				if (pg->pg_flags & PQ_AOBJ)
1058					uao_dropswap(uobj,
1059					    pg->offset >> PAGE_SHIFT);
1060				uvm_pagefree(pg);
1061				uvm_unlock_pageq();
1062			} else {
1063				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1064				UVM_PAGE_OWN(pg, NULL);
1065				uvm_anfree(pg->uanon);
1066			}
1067		} else {
1068			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1069			UVM_PAGE_OWN(pg, NULL);
1070		}
1071	}
1072}
1073
1074#if defined(UVM_PAGE_TRKOWN)
1075/*
1076 * uvm_page_own: set or release page ownership
1077 *
1078 * => this is a debugging function that keeps track of who sets PG_BUSY
1079 *	and where they do it.   it can be used to track down problems
1080 *	such a thread setting "PG_BUSY" and never releasing it.
1081 * => if "tag" is NULL then we are releasing page ownership
1082 */
1083void
1084uvm_page_own(struct vm_page *pg, char *tag)
1085{
1086	/* gain ownership? */
1087	if (tag) {
1088		if (pg->owner_tag) {
1089			printf("uvm_page_own: page %p already owned "
1090			    "by thread %d [%s]\n", pg,
1091			     pg->owner, pg->owner_tag);
1092			panic("uvm_page_own");
1093		}
1094		pg->owner = (curproc) ? curproc->p_tid :  (pid_t) -1;
1095		pg->owner_tag = tag;
1096		return;
1097	}
1098
1099	/* drop ownership */
1100	if (pg->owner_tag == NULL) {
1101		printf("uvm_page_own: dropping ownership of an non-owned "
1102		    "page (%p)\n", pg);
1103		panic("uvm_page_own");
1104	}
1105	pg->owner_tag = NULL;
1106	return;
1107}
1108#endif
1109
1110/*
1111 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1112 */
1113
1114#if VM_PHYSSEG_MAX > 1
1115/*
1116 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1117 */
1118int
1119vm_physseg_find(paddr_t pframe, int *offp)
1120{
1121	struct vm_physseg *seg;
1122
1123#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1124	/* binary search for it */
1125	int	start, len, try;
1126
1127	/*
1128	 * if try is too large (thus target is less than than try) we reduce
1129	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1130	 *
1131	 * if the try is too small (thus target is greater than try) then
1132	 * we set the new start to be (try + 1).   this means we need to
1133	 * reduce the length to (round(len/2) - 1).
1134	 *
1135	 * note "adjust" below which takes advantage of the fact that
1136	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1137	 * for any value of len we may have
1138	 */
1139
1140	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1141		try = start + (len / 2);	/* try in the middle */
1142		seg = vm_physmem + try;
1143
1144		/* start past our try? */
1145		if (pframe >= seg->start) {
1146			/* was try correct? */
1147			if (pframe < seg->end) {
1148				if (offp)
1149					*offp = pframe - seg->start;
1150				return(try);            /* got it */
1151			}
1152			start = try + 1;	/* next time, start here */
1153			len--;			/* "adjust" */
1154		} else {
1155			/*
1156			 * pframe before try, just reduce length of
1157			 * region, done in "for" loop
1158			 */
1159		}
1160	}
1161	return(-1);
1162
1163#else
1164	/* linear search for it */
1165	int	lcv;
1166
1167	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
1168		if (pframe >= seg->start && pframe < seg->end) {
1169			if (offp)
1170				*offp = pframe - seg->start;
1171			return(lcv);		   /* got it */
1172		}
1173	}
1174	return(-1);
1175
1176#endif
1177}
1178
1179/*
1180 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1181 * back from an I/O mapping (ugh!).   used in some MD code as well.
1182 */
1183struct vm_page *
1184PHYS_TO_VM_PAGE(paddr_t pa)
1185{
1186	paddr_t pf = atop(pa);
1187	int	off;
1188	int	psi;
1189
1190	psi = vm_physseg_find(pf, &off);
1191
1192	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1193}
1194#endif /* VM_PHYSSEG_MAX > 1 */
1195
1196/*
1197 * uvm_pagelookup: look up a page
1198 */
1199struct vm_page *
1200uvm_pagelookup(struct uvm_object *obj, voff_t off)
1201{
1202	/* XXX if stack is too much, handroll */
1203	struct vm_page pg;
1204
1205	pg.offset = off;
1206	return (RBT_FIND(uvm_objtree, &obj->memt, &pg));
1207}
1208
1209/*
1210 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1211 *
1212 * => caller must lock page queues
1213 */
1214void
1215uvm_pagewire(struct vm_page *pg)
1216{
1217	if (pg->wire_count == 0) {
1218		if (pg->pg_flags & PQ_ACTIVE) {
1219			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1220			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1221			uvmexp.active--;
1222		}
1223		if (pg->pg_flags & PQ_INACTIVE) {
1224			if (pg->pg_flags & PQ_SWAPBACKED)
1225				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1226			else
1227				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1228			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1229			uvmexp.inactive--;
1230		}
1231		uvmexp.wired++;
1232	}
1233	pg->wire_count++;
1234}
1235
1236/*
1237 * uvm_pageunwire: unwire the page.
1238 *
1239 * => activate if wire count goes to zero.
1240 * => caller must lock page queues
1241 */
1242void
1243uvm_pageunwire(struct vm_page *pg)
1244{
1245	pg->wire_count--;
1246	if (pg->wire_count == 0) {
1247		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1248		uvmexp.active++;
1249		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1250		uvmexp.wired--;
1251	}
1252}
1253
1254/*
1255 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1256 *
1257 * => caller must lock page queues
1258 * => caller must check to make sure page is not wired
1259 * => object that page belongs to must be locked (so we can adjust pg->flags)
1260 */
1261void
1262uvm_pagedeactivate(struct vm_page *pg)
1263{
1264	if (pg->pg_flags & PQ_ACTIVE) {
1265		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1266		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1267		uvmexp.active--;
1268	}
1269	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1270		KASSERT(pg->wire_count == 0);
1271		if (pg->pg_flags & PQ_SWAPBACKED)
1272			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1273		else
1274			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1275		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1276		uvmexp.inactive++;
1277		pmap_clear_reference(pg);
1278		/*
1279		 * update the "clean" bit.  this isn't 100%
1280		 * accurate, and doesn't have to be.  we'll
1281		 * re-sync it after we zap all mappings when
1282		 * scanning the inactive list.
1283		 */
1284		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1285		    pmap_is_modified(pg))
1286			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1287	}
1288}
1289
1290/*
1291 * uvm_pageactivate: activate page
1292 *
1293 * => caller must lock page queues
1294 */
1295void
1296uvm_pageactivate(struct vm_page *pg)
1297{
1298	if (pg->pg_flags & PQ_INACTIVE) {
1299		if (pg->pg_flags & PQ_SWAPBACKED)
1300			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1301		else
1302			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1303		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1304		uvmexp.inactive--;
1305	}
1306	if (pg->wire_count == 0) {
1307		/*
1308		 * if page is already active, remove it from list so we
1309		 * can put it at tail.  if it wasn't active, then mark
1310		 * it active and bump active count
1311		 */
1312		if (pg->pg_flags & PQ_ACTIVE)
1313			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1314		else {
1315			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1316			uvmexp.active++;
1317		}
1318
1319		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1320	}
1321}
1322
1323/*
1324 * uvm_pagezero: zero fill a page
1325 */
1326void
1327uvm_pagezero(struct vm_page *pg)
1328{
1329	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1330	pmap_zero_page(pg);
1331}
1332
1333/*
1334 * uvm_pagecopy: copy a page
1335 */
1336void
1337uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1338{
1339	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1340	pmap_copy_page(src, dst);
1341}
1342
1343/*
1344 * uvm_pagecount: count the number of physical pages in the address range.
1345 */
1346psize_t
1347uvm_pagecount(struct uvm_constraint_range* constraint)
1348{
1349	int lcv;
1350	psize_t sz;
1351	paddr_t low, high;
1352	paddr_t ps_low, ps_high;
1353
1354	/* Algorithm uses page numbers. */
1355	low = atop(constraint->ucr_low);
1356	high = atop(constraint->ucr_high);
1357
1358	sz = 0;
1359	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1360		ps_low = MAX(low, vm_physmem[lcv].avail_start);
1361		ps_high = MIN(high, vm_physmem[lcv].avail_end);
1362		if (ps_low < ps_high)
1363			sz += ps_high - ps_low;
1364	}
1365	return sz;
1366}
1367