uvm_page.c revision 1.124
1/*	$OpenBSD: uvm_page.c,v 1.124 2013/05/30 15:17:59 tedu Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/sched.h>
77#include <sys/kernel.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80#include <sys/proc.h>
81
82#include <uvm/uvm.h>
83
84/*
85 * for object trees
86 */
87RB_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
88
89int
90uvm_pagecmp(struct vm_page *a, struct vm_page *b)
91{
92	return (a->offset < b->offset ? -1 : a->offset > b->offset);
93}
94
95/*
96 * global vars... XXXCDC: move to uvm. structure.
97 */
98
99/*
100 * physical memory config is stored in vm_physmem.
101 */
102
103struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
104int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
105
106/*
107 * Some supported CPUs in a given architecture don't support all
108 * of the things necessary to do idle page zero'ing efficiently.
109 * We therefore provide a way to disable it from machdep code here.
110 */
111
112/*
113 * XXX disabled until we can find a way to do this without causing
114 * problems for either cpu caches or DMA latency.
115 */
116boolean_t vm_page_zero_enable = FALSE;
117
118/*
119 * local variables
120 */
121
122/*
123 * these variables record the values returned by vm_page_bootstrap,
124 * for debugging purposes.  The implementation of uvm_pageboot_alloc
125 * and pmap_startup here also uses them internally.
126 */
127
128static vaddr_t      virtual_space_start;
129static vaddr_t      virtual_space_end;
130
131/*
132 * local prototypes
133 */
134
135static void uvm_pageinsert(struct vm_page *);
136static void uvm_pageremove(struct vm_page *);
137
138/*
139 * inline functions
140 */
141
142/*
143 * uvm_pageinsert: insert a page in the object
144 *
145 * => caller must lock object
146 * => caller must lock page queues XXX questionable
147 * => call should have already set pg's object and offset pointers
148 *    and bumped the version counter
149 */
150
151__inline static void
152uvm_pageinsert(struct vm_page *pg)
153{
154	struct vm_page	*dupe;
155
156	KASSERT((pg->pg_flags & PG_TABLED) == 0);
157	dupe = RB_INSERT(uvm_objtree, &pg->uobject->memt, pg);
158	/* not allowed to insert over another page */
159	KASSERT(dupe == NULL);
160	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
161	pg->uobject->uo_npages++;
162}
163
164/*
165 * uvm_page_remove: remove page from object
166 *
167 * => caller must lock object
168 * => caller must lock page queues
169 */
170
171static __inline void
172uvm_pageremove(struct vm_page *pg)
173{
174
175	KASSERT(pg->pg_flags & PG_TABLED);
176	RB_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
177
178	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
179	pg->uobject->uo_npages--;
180	pg->uobject = NULL;
181	pg->pg_version++;
182}
183
184/*
185 * uvm_page_init: init the page system.   called from uvm_init().
186 *
187 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
188 */
189
190void
191uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
192{
193	vsize_t freepages, pagecount, n;
194	vm_page_t pagearray, curpg;
195	int lcv, i;
196	paddr_t paddr, pgno;
197	struct vm_physseg *seg;
198
199	/*
200	 * init the page queues and page queue locks
201	 */
202
203	TAILQ_INIT(&uvm.page_active);
204	TAILQ_INIT(&uvm.page_inactive_swp);
205	TAILQ_INIT(&uvm.page_inactive_obj);
206	mtx_init(&uvm.fpageqlock, IPL_VM);
207	uvm_pmr_init();
208
209	/*
210	 * allocate vm_page structures.
211	 */
212
213	/*
214	 * sanity check:
215	 * before calling this function the MD code is expected to register
216	 * some free RAM with the uvm_page_physload() function.   our job
217	 * now is to allocate vm_page structures for this memory.
218	 */
219
220	if (vm_nphysseg == 0)
221		panic("uvm_page_bootstrap: no memory pre-allocated");
222
223	/*
224	 * first calculate the number of free pages...
225	 *
226	 * note that we use start/end rather than avail_start/avail_end.
227	 * this allows us to allocate extra vm_page structures in case we
228	 * want to return some memory to the pool after booting.
229	 */
230
231	freepages = 0;
232	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
233		freepages += (seg->end - seg->start);
234
235	/*
236	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
237	 * use.   for each page of memory we use we need a vm_page structure.
238	 * thus, the total number of pages we can use is the total size of
239	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
240	 * structure.   we add one to freepages as a fudge factor to avoid
241	 * truncation errors (since we can only allocate in terms of whole
242	 * pages).
243	 */
244
245	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
246	    (PAGE_SIZE + sizeof(struct vm_page));
247	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
248	    sizeof(struct vm_page));
249	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
250
251	/*
252	 * init the vm_page structures and put them in the correct place.
253	 */
254
255	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
256		n = seg->end - seg->start;
257		if (n > pagecount) {
258			panic("uvm_page_init: lost %ld page(s) in init",
259			    (long)(n - pagecount));
260			    /* XXXCDC: shouldn't happen? */
261			/* n = pagecount; */
262		}
263
264		/* set up page array pointers */
265		seg->pgs = pagearray;
266		pagearray += n;
267		pagecount -= n;
268		seg->lastpg = seg->pgs + (n - 1);
269
270		/* init and free vm_pages (we've already zeroed them) */
271		pgno = seg->start;
272		paddr = ptoa(pgno);
273		for (i = 0, curpg = seg->pgs; i < n;
274		    i++, curpg++, pgno++, paddr += PAGE_SIZE) {
275			curpg->phys_addr = paddr;
276#ifdef __HAVE_VM_PAGE_MD
277			VM_MDPAGE_INIT(curpg);
278#endif
279			if (pgno >= seg->avail_start &&
280			    pgno <= seg->avail_end) {
281				uvmexp.npages++;
282			}
283		}
284
285		/*
286		 * Add pages to free pool.
287		 */
288		uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
289		    seg->avail_end - seg->avail_start);
290	}
291
292	/*
293	 * pass up the values of virtual_space_start and
294	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
295	 * layers of the VM.
296	 */
297
298	*kvm_startp = round_page(virtual_space_start);
299	*kvm_endp = trunc_page(virtual_space_end);
300
301	/*
302	 * init locks for kernel threads
303	 */
304	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
305
306	/*
307	 * init reserve thresholds
308	 * XXXCDC - values may need adjusting
309	 */
310	uvmexp.reserve_pagedaemon = 4;
311	uvmexp.reserve_kernel = 6;
312	uvmexp.anonminpct = 10;
313	uvmexp.vnodeminpct = 10;
314	uvmexp.vtextminpct = 5;
315	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
316	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
317	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
318
319  	/*
320	 * determine if we should zero pages in the idle loop.
321	 */
322
323	uvm.page_idle_zero = vm_page_zero_enable;
324
325	/*
326	 * done!
327	 */
328
329	uvm.page_init_done = TRUE;
330}
331
332/*
333 * uvm_setpagesize: set the page size
334 *
335 * => sets page_shift and page_mask from uvmexp.pagesize.
336 */
337
338void
339uvm_setpagesize(void)
340{
341	if (uvmexp.pagesize == 0)
342		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
343	uvmexp.pagemask = uvmexp.pagesize - 1;
344	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
345		panic("uvm_setpagesize: page size not a power of two");
346	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
347		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
348			break;
349}
350
351/*
352 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
353 */
354
355vaddr_t
356uvm_pageboot_alloc(vsize_t size)
357{
358#if defined(PMAP_STEAL_MEMORY)
359	vaddr_t addr;
360
361	/*
362	 * defer bootstrap allocation to MD code (it may want to allocate
363	 * from a direct-mapped segment).  pmap_steal_memory should round
364	 * off virtual_space_start/virtual_space_end.
365	 */
366
367	addr = pmap_steal_memory(size, &virtual_space_start,
368	    &virtual_space_end);
369
370	return(addr);
371
372#else /* !PMAP_STEAL_MEMORY */
373
374	static boolean_t initialized = FALSE;
375	vaddr_t addr, vaddr;
376	paddr_t paddr;
377
378	/* round to page size */
379	size = round_page(size);
380
381	/*
382	 * on first call to this function, initialize ourselves.
383	 */
384	if (initialized == FALSE) {
385		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
386
387		/* round it the way we like it */
388		virtual_space_start = round_page(virtual_space_start);
389		virtual_space_end = trunc_page(virtual_space_end);
390
391		initialized = TRUE;
392	}
393
394	/*
395	 * allocate virtual memory for this request
396	 */
397	if (virtual_space_start == virtual_space_end ||
398	    (virtual_space_end - virtual_space_start) < size)
399		panic("uvm_pageboot_alloc: out of virtual space");
400
401	addr = virtual_space_start;
402
403#ifdef PMAP_GROWKERNEL
404	/*
405	 * If the kernel pmap can't map the requested space,
406	 * then allocate more resources for it.
407	 */
408	if (uvm_maxkaddr < (addr + size)) {
409		uvm_maxkaddr = pmap_growkernel(addr + size);
410		if (uvm_maxkaddr < (addr + size))
411			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
412	}
413#endif
414
415	virtual_space_start += size;
416
417	/*
418	 * allocate and mapin physical pages to back new virtual pages
419	 */
420
421	for (vaddr = round_page(addr) ; vaddr < addr + size ;
422	    vaddr += PAGE_SIZE) {
423
424		if (!uvm_page_physget(&paddr))
425			panic("uvm_pageboot_alloc: out of memory");
426
427		/*
428		 * Note this memory is no longer managed, so using
429		 * pmap_kenter is safe.
430		 */
431		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
432	}
433	pmap_update(pmap_kernel());
434	return(addr);
435#endif	/* PMAP_STEAL_MEMORY */
436}
437
438#if !defined(PMAP_STEAL_MEMORY)
439/*
440 * uvm_page_physget: "steal" one page from the vm_physmem structure.
441 *
442 * => attempt to allocate it off the end of a segment in which the "avail"
443 *    values match the start/end values.   if we can't do that, then we
444 *    will advance both values (making them equal, and removing some
445 *    vm_page structures from the non-avail area).
446 * => return false if out of memory.
447 */
448
449boolean_t
450uvm_page_physget(paddr_t *paddrp)
451{
452	int lcv;
453	struct vm_physseg *seg;
454
455	/* pass 1: try allocating from a matching end */
456#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
457	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
458	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
459	    lcv--, seg--)
460#else
461	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
462#endif
463	{
464		if (uvm.page_init_done == TRUE)
465			panic("uvm_page_physget: called _after_ bootstrap");
466
467		/* try from front */
468		if (seg->avail_start == seg->start &&
469		    seg->avail_start < seg->avail_end) {
470			*paddrp = ptoa(seg->avail_start);
471			seg->avail_start++;
472			seg->start++;
473			/* nothing left?   nuke it */
474			if (seg->avail_start == seg->end) {
475				if (vm_nphysseg == 1)
476				    panic("uvm_page_physget: out of memory!");
477				vm_nphysseg--;
478				for (; lcv < vm_nphysseg; lcv++, seg++)
479					/* structure copy */
480					seg[0] = seg[1];
481			}
482			return (TRUE);
483		}
484
485		/* try from rear */
486		if (seg->avail_end == seg->end &&
487		    seg->avail_start < seg->avail_end) {
488			*paddrp = ptoa(seg->avail_end - 1);
489			seg->avail_end--;
490			seg->end--;
491			/* nothing left?   nuke it */
492			if (seg->avail_end == seg->start) {
493				if (vm_nphysseg == 1)
494				    panic("uvm_page_physget: out of memory!");
495				vm_nphysseg--;
496				for (; lcv < vm_nphysseg ; lcv++, seg++)
497					/* structure copy */
498					seg[0] = seg[1];
499			}
500			return (TRUE);
501		}
502	}
503
504	/* pass2: forget about matching ends, just allocate something */
505#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
506	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
507	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
508	    lcv--, seg--)
509#else
510	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
511#endif
512	{
513
514		/* any room in this bank? */
515		if (seg->avail_start >= seg->avail_end)
516			continue;  /* nope */
517
518		*paddrp = ptoa(seg->avail_start);
519		seg->avail_start++;
520		/* truncate! */
521		seg->start = seg->avail_start;
522
523		/* nothing left?   nuke it */
524		if (seg->avail_start == seg->end) {
525			if (vm_nphysseg == 1)
526				panic("uvm_page_physget: out of memory!");
527			vm_nphysseg--;
528			for (; lcv < vm_nphysseg ; lcv++, seg++)
529				/* structure copy */
530				seg[0] = seg[1];
531		}
532		return (TRUE);
533	}
534
535	return (FALSE);        /* whoops! */
536}
537
538#endif /* PMAP_STEAL_MEMORY */
539
540/*
541 * uvm_page_physload: load physical memory into VM system
542 *
543 * => all args are PFs
544 * => all pages in start/end get vm_page structures
545 * => areas marked by avail_start/avail_end get added to the free page pool
546 * => we are limited to VM_PHYSSEG_MAX physical memory segments
547 */
548
549void
550uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
551    paddr_t avail_end, int flags)
552{
553	int preload, lcv;
554	psize_t npages;
555	struct vm_page *pgs;
556	struct vm_physseg *ps, *seg;
557
558#ifdef DIAGNOSTIC
559	if (uvmexp.pagesize == 0)
560		panic("uvm_page_physload: page size not set!");
561
562	if (start >= end)
563		panic("uvm_page_physload: start >= end");
564#endif
565
566	/*
567	 * do we have room?
568	 */
569	if (vm_nphysseg == VM_PHYSSEG_MAX) {
570		printf("uvm_page_physload: unable to load physical memory "
571		    "segment\n");
572		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
573		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
574		printf("\tincrease VM_PHYSSEG_MAX\n");
575		return;
576	}
577
578	/*
579	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
580	 * called yet, so malloc is not available).
581	 */
582	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
583		if (seg->pgs)
584			break;
585	}
586	preload = (lcv == vm_nphysseg);
587
588	/*
589	 * if VM is already running, attempt to malloc() vm_page structures
590	 */
591	if (!preload) {
592		/*
593		 * XXXCDC: need some sort of lockout for this case
594		 * right now it is only used by devices so it should be alright.
595		 */
596 		paddr_t paddr;
597
598 		npages = end - start;  /* # of pages */
599
600		pgs = (struct vm_page *)uvm_km_zalloc(kernel_map,
601		    npages * sizeof(*pgs));
602		if (pgs == NULL) {
603			printf("uvm_page_physload: can not malloc vm_page "
604			    "structs for segment\n");
605			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
606			return;
607		}
608		/* init phys_addr and free pages, XXX uvmexp.npages */
609		for (lcv = 0, paddr = ptoa(start); lcv < npages;
610		    lcv++, paddr += PAGE_SIZE) {
611			pgs[lcv].phys_addr = paddr;
612#ifdef __HAVE_VM_PAGE_MD
613			VM_MDPAGE_INIT(&pgs[lcv]);
614#endif
615			if (atop(paddr) >= avail_start &&
616			    atop(paddr) <= avail_end) {
617				if (flags & PHYSLOAD_DEVICE) {
618					atomic_setbits_int(&pgs[lcv].pg_flags,
619					    PG_DEV);
620					pgs[lcv].wire_count = 1;
621				} else {
622#if defined(VM_PHYSSEG_NOADD)
623		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
624#endif
625				}
626			}
627		}
628
629		/*
630		 * Add pages to free pool.
631		 */
632		if ((flags & PHYSLOAD_DEVICE) == 0) {
633			uvm_pmr_freepages(&pgs[avail_start - start],
634			    avail_end - avail_start);
635		}
636
637		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
638	} else {
639
640		/* gcc complains if these don't get init'd */
641		pgs = NULL;
642		npages = 0;
643
644	}
645
646	/*
647	 * now insert us in the proper place in vm_physmem[]
648	 */
649
650#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
651
652	/* random: put it at the end (easy!) */
653	ps = &vm_physmem[vm_nphysseg];
654
655#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
656
657	{
658		int x;
659		/* sort by address for binary search */
660		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
661			if (start < seg->start)
662				break;
663		ps = seg;
664		/* move back other entries, if necessary ... */
665		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
666		    x--, seg--)
667			/* structure copy */
668			seg[1] = seg[0];
669	}
670
671#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
672
673	{
674		int x;
675		/* sort by largest segment first */
676		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
677			if ((end - start) >
678			    (seg->end - seg->start))
679				break;
680		ps = &vm_physmem[lcv];
681		/* move back other entries, if necessary ... */
682		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
683		    x--, seg--)
684			/* structure copy */
685			seg[1] = seg[0];
686	}
687
688#else
689
690	panic("uvm_page_physload: unknown physseg strategy selected!");
691
692#endif
693
694	ps->start = start;
695	ps->end = end;
696	ps->avail_start = avail_start;
697	ps->avail_end = avail_end;
698	if (preload) {
699		ps->pgs = NULL;
700	} else {
701		ps->pgs = pgs;
702		ps->lastpg = pgs + npages - 1;
703	}
704	vm_nphysseg++;
705
706	/*
707	 * done!
708	 */
709
710	return;
711}
712
713#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
714
715void uvm_page_physdump(void); /* SHUT UP GCC */
716
717/* call from DDB */
718void
719uvm_page_physdump(void)
720{
721	int lcv;
722	struct vm_physseg *seg;
723
724	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
725	    vm_nphysseg, VM_PHYSSEG_MAX);
726	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
727		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
728		    (long long)seg->start,
729		    (long long)seg->end,
730		    (long long)seg->avail_start,
731		    (long long)seg->avail_end);
732	printf("STRATEGY = ");
733	switch (VM_PHYSSEG_STRAT) {
734	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
735	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
736	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
737	default: printf("<<UNKNOWN>>!!!!\n");
738	}
739}
740#endif
741
742void
743uvm_shutdown(void)
744{
745#ifdef UVM_SWAP_ENCRYPT
746	uvm_swap_finicrypt_all();
747#endif
748}
749
750/*
751 * Perform insert of a given page in the specified anon of obj.
752 * This is basically, uvm_pagealloc, but with the page already given.
753 */
754void
755uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
756    struct vm_anon *anon)
757{
758	int	flags;
759
760	flags = PG_BUSY | PG_FAKE;
761	pg->offset = off;
762	pg->uobject = obj;
763	pg->uanon = anon;
764
765	if (anon) {
766		anon->an_page = pg;
767		flags |= PQ_ANON;
768	} else if (obj)
769		uvm_pageinsert(pg);
770	atomic_setbits_int(&pg->pg_flags, flags);
771#if defined(UVM_PAGE_TRKOWN)
772	pg->owner_tag = NULL;
773#endif
774	UVM_PAGE_OWN(pg, "new alloc");
775}
776
777/*
778 * uvm_pglistalloc: allocate a list of pages
779 *
780 * => allocated pages are placed at the tail of rlist.  rlist is
781 *    assumed to be properly initialized by caller.
782 * => returns 0 on success or errno on failure
783 * => doesn't take into account clean non-busy pages on inactive list
784 *	that could be used(?)
785 * => params:
786 *	size		the size of the allocation, rounded to page size.
787 *	low		the low address of the allowed allocation range.
788 *	high		the high address of the allowed allocation range.
789 *	alignment	memory must be aligned to this power-of-two boundary.
790 *	boundary	no segment in the allocation may cross this
791 *			power-of-two boundary (relative to zero).
792 * => flags:
793 *	UVM_PLA_NOWAIT	fail if allocation fails
794 *	UVM_PLA_WAITOK	wait for memory to become avail
795 *	UVM_PLA_ZERO	return zeroed memory
796 */
797int
798uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
799    paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
800{
801	KASSERT((alignment & (alignment - 1)) == 0);
802	KASSERT((boundary & (boundary - 1)) == 0);
803	KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
804
805	if (size == 0)
806		return (EINVAL);
807	size = atop(round_page(size));
808
809	/*
810	 * check to see if we need to generate some free pages waking
811	 * the pagedaemon.
812	 */
813	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
814	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
815	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
816		wakeup(&uvm.pagedaemon);
817
818	/*
819	 * XXX uvm_pglistalloc is currently only used for kernel
820	 * objects. Unlike the checks in uvm_pagealloc, below, here
821	 * we are always allowed to use the kernel reseve. However, we
822	 * have to enforce the pagedaemon reserve here or allocations
823	 * via this path could consume everything and we can't
824	 * recover in the page daemon.
825	 */
826 again:
827	if ((uvmexp.free <= uvmexp.reserve_pagedaemon + size &&
828	    !((curproc == uvm.pagedaemon_proc) ||
829		(curproc == syncerproc)))) {
830		if (flags & UVM_PLA_WAITOK) {
831			uvm_wait("uvm_pglistalloc");
832			goto again;
833		}
834		return (ENOMEM);
835	}
836
837	if ((high & PAGE_MASK) != PAGE_MASK) {
838		printf("uvm_pglistalloc: Upper boundary 0x%lx "
839		    "not on pagemask.\n", (unsigned long)high);
840	}
841
842	/*
843	 * Our allocations are always page granularity, so our alignment
844	 * must be, too.
845	 */
846	if (alignment < PAGE_SIZE)
847		alignment = PAGE_SIZE;
848
849	low = atop(roundup(low, alignment));
850	/*
851	 * high + 1 may result in overflow, in which case high becomes 0x0,
852	 * which is the 'don't care' value.
853	 * The only requirement in that case is that low is also 0x0, or the
854	 * low<high assert will fail.
855	 */
856	high = atop(high + 1);
857	alignment = atop(alignment);
858	if (boundary < PAGE_SIZE && boundary != 0)
859		boundary = PAGE_SIZE;
860	boundary = atop(boundary);
861
862	return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
863	    flags, rlist);
864}
865
866/*
867 * uvm_pglistfree: free a list of pages
868 *
869 * => pages should already be unmapped
870 */
871void
872uvm_pglistfree(struct pglist *list)
873{
874	uvm_pmr_freepageq(list);
875}
876
877/*
878 * interface used by the buffer cache to allocate a buffer at a time.
879 * The pages are allocated wired in DMA accessible memory
880 */
881void
882uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
883    int flags)
884{
885	struct pglist    plist;
886	struct vm_page  *pg;
887	int              i;
888
889
890	TAILQ_INIT(&plist);
891	(void) uvm_pglistalloc(size, dma_constraint.ucr_low,
892	    dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
893	    UVM_PLA_WAITOK);
894	i = 0;
895	while ((pg = TAILQ_FIRST(&plist)) != NULL) {
896		pg->wire_count = 1;
897		atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
898		KASSERT((pg->pg_flags & PG_DEV) == 0);
899		TAILQ_REMOVE(&plist, pg, pageq);
900		uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
901	}
902}
903
904/*
905 * interface used by the buffer cache to reallocate a buffer at a time.
906 * The pages are reallocated wired outside the DMA accessible region.
907 *
908 */
909void
910uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
911    int flags, struct uvm_constraint_range *where)
912{
913	struct pglist    plist;
914	struct vm_page  *pg, *tpg;
915	int              i;
916	voff_t		offset;
917
918
919	TAILQ_INIT(&plist);
920	if (size == 0)
921		panic("size 0 uvm_pagerealloc");
922	(void) uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
923	    0, &plist, atop(round_page(size)), UVM_PLA_WAITOK);
924	i = 0;
925	while((pg = TAILQ_FIRST(&plist)) != NULL) {
926		offset = off + ptoa(i++);
927		tpg = uvm_pagelookup(obj, offset);
928		pg->wire_count = 1;
929		atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
930		KASSERT((pg->pg_flags & PG_DEV) == 0);
931		TAILQ_REMOVE(&plist, pg, pageq);
932		uvm_pagecopy(tpg, pg);
933		uvm_pagefree(tpg);
934		uvm_pagealloc_pg(pg, obj, offset, NULL);
935	}
936}
937
938/*
939 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
940 *
941 * => return null if no pages free
942 * => wake up pagedaemon if number of free pages drops below low water mark
943 * => if obj != NULL, obj must be locked (to put in tree)
944 * => if anon != NULL, anon must be locked (to put in anon)
945 * => only one of obj or anon can be non-null
946 * => caller must activate/deactivate page if it is not wired.
947 */
948
949struct vm_page *
950uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
951    int flags)
952{
953	struct vm_page *pg;
954	struct pglist pgl;
955	int pmr_flags;
956	boolean_t use_reserve;
957
958	KASSERT(obj == NULL || anon == NULL);
959	KASSERT(off == trunc_page(off));
960
961	/*
962	 * check to see if we need to generate some free pages waking
963	 * the pagedaemon.
964	 */
965	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
966	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
967	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
968		wakeup(&uvm.pagedaemon);
969
970	/*
971	 * fail if any of these conditions is true:
972	 * [1]  there really are no free pages, or
973	 * [2]  only kernel "reserved" pages remain and
974	 *        the page isn't being allocated to a kernel object.
975	 * [3]  only pagedaemon "reserved" pages remain and
976	 *        the requestor isn't the pagedaemon.
977	 */
978
979	use_reserve = (flags & UVM_PGA_USERESERVE) ||
980		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
981	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
982	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
983	     !((curproc == uvm.pagedaemon_proc) ||
984	      (curproc == syncerproc))))
985		goto fail;
986
987	pmr_flags = UVM_PLA_NOWAIT;
988	if (flags & UVM_PGA_ZERO)
989		pmr_flags |= UVM_PLA_ZERO;
990	TAILQ_INIT(&pgl);
991	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
992		goto fail;
993
994	pg = TAILQ_FIRST(&pgl);
995	KASSERT(pg != NULL && TAILQ_NEXT(pg, pageq) == NULL);
996
997	uvm_pagealloc_pg(pg, obj, off, anon);
998	KASSERT((pg->pg_flags & PG_DEV) == 0);
999	if (flags & UVM_PGA_ZERO)
1000		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1001	else
1002		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
1003
1004	return(pg);
1005
1006 fail:
1007	return (NULL);
1008}
1009
1010/*
1011 * uvm_pagerealloc: reallocate a page from one object to another
1012 *
1013 * => both objects must be locked
1014 */
1015
1016void
1017uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1018{
1019
1020	/*
1021	 * remove it from the old object
1022	 */
1023
1024	if (pg->uobject) {
1025		uvm_pageremove(pg);
1026	}
1027
1028	/*
1029	 * put it in the new object
1030	 */
1031
1032	if (newobj) {
1033		pg->uobject = newobj;
1034		pg->offset = newoff;
1035		pg->pg_version++;
1036		uvm_pageinsert(pg);
1037	}
1038}
1039
1040
1041/*
1042 * uvm_pagefree: free page
1043 *
1044 * => erase page's identity (i.e. remove from object)
1045 * => put page on free list
1046 * => caller must lock owning object (either anon or uvm_object)
1047 * => caller must lock page queues
1048 * => assumes all valid mappings of pg are gone
1049 */
1050
1051void
1052uvm_pagefree(struct vm_page *pg)
1053{
1054	int saved_loan_count = pg->loan_count;
1055	u_int flags_to_clear = 0;
1056
1057#ifdef DEBUG
1058	if (pg->uobject == (void *)0xdeadbeef &&
1059	    pg->uanon == (void *)0xdeadbeef) {
1060		panic("uvm_pagefree: freeing free page %p", pg);
1061	}
1062#endif
1063
1064	KASSERT((pg->pg_flags & PG_DEV) == 0);
1065
1066	/*
1067	 * if the page was an object page (and thus "TABLED"), remove it
1068	 * from the object.
1069	 */
1070
1071	if (pg->pg_flags & PG_TABLED) {
1072
1073		/*
1074		 * if the object page is on loan we are going to drop ownership.
1075		 * it is possible that an anon will take over as owner for this
1076		 * page later on.   the anon will want a !PG_CLEAN page so that
1077		 * it knows it needs to allocate swap if it wants to page the
1078		 * page out.
1079		 */
1080
1081		/* in case an anon takes over */
1082		if (saved_loan_count)
1083			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1084		uvm_pageremove(pg);
1085
1086		/*
1087		 * if our page was on loan, then we just lost control over it
1088		 * (in fact, if it was loaned to an anon, the anon may have
1089		 * already taken over ownership of the page by now and thus
1090		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1091		 * return (when the last loan is dropped, then the page can be
1092		 * freed by whatever was holding the last loan).
1093		 */
1094
1095		if (saved_loan_count)
1096			return;
1097	} else if (saved_loan_count && pg->uanon) {
1098		/*
1099		 * if our page is owned by an anon and is loaned out to the
1100		 * kernel then we just want to drop ownership and return.
1101		 * the kernel must free the page when all its loans clear ...
1102		 * note that the kernel can't change the loan status of our
1103		 * page as long as we are holding PQ lock.
1104		 */
1105		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1106		pg->uanon->an_page = NULL;
1107		pg->uanon = NULL;
1108		return;
1109	}
1110	KASSERT(saved_loan_count == 0);
1111
1112	/*
1113	 * now remove the page from the queues
1114	 */
1115
1116	if (pg->pg_flags & PQ_ACTIVE) {
1117		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1118		flags_to_clear |= PQ_ACTIVE;
1119		uvmexp.active--;
1120	}
1121	if (pg->pg_flags & PQ_INACTIVE) {
1122		if (pg->pg_flags & PQ_SWAPBACKED)
1123			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1124		else
1125			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1126		flags_to_clear |= PQ_INACTIVE;
1127		uvmexp.inactive--;
1128	}
1129
1130	/*
1131	 * if the page was wired, unwire it now.
1132	 */
1133
1134	if (pg->wire_count) {
1135		pg->wire_count = 0;
1136		uvmexp.wired--;
1137	}
1138	if (pg->uanon) {
1139		pg->uanon->an_page = NULL;
1140		pg->uanon = NULL;
1141		flags_to_clear |= PQ_ANON;
1142	}
1143
1144	/*
1145	 * Clean page state bits.
1146	 */
1147	flags_to_clear |= PQ_AOBJ; /* XXX: find culprit */
1148	flags_to_clear |= PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY|PG_RELEASED|
1149	    PG_CLEAN|PG_CLEANCHK;
1150	atomic_clearbits_int(&pg->pg_flags, flags_to_clear);
1151
1152	/*
1153	 * and put on free queue
1154	 */
1155
1156#ifdef DEBUG
1157	pg->uobject = (void *)0xdeadbeef;
1158	pg->offset = 0xdeadbeef;
1159	pg->uanon = (void *)0xdeadbeef;
1160#endif
1161
1162	uvm_pmr_freepages(pg, 1);
1163
1164	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1165		uvm.page_idle_zero = vm_page_zero_enable;
1166}
1167
1168/*
1169 * uvm_page_unbusy: unbusy an array of pages.
1170 *
1171 * => pages must either all belong to the same object, or all belong to anons.
1172 * => if pages are object-owned, object must be locked.
1173 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1174 */
1175
1176void
1177uvm_page_unbusy(struct vm_page **pgs, int npgs)
1178{
1179	struct vm_page *pg;
1180	struct uvm_object *uobj;
1181	int i;
1182
1183	for (i = 0; i < npgs; i++) {
1184		pg = pgs[i];
1185
1186		if (pg == NULL || pg == PGO_DONTCARE) {
1187			continue;
1188		}
1189		if (pg->pg_flags & PG_WANTED) {
1190			wakeup(pg);
1191		}
1192		if (pg->pg_flags & PG_RELEASED) {
1193			uobj = pg->uobject;
1194			if (uobj != NULL) {
1195				uvm_lock_pageq();
1196				pmap_page_protect(pg, VM_PROT_NONE);
1197				/* XXX won't happen right now */
1198				if (pg->pg_flags & PQ_AOBJ)
1199					uao_dropswap(uobj,
1200					    pg->offset >> PAGE_SHIFT);
1201				uvm_pagefree(pg);
1202				uvm_unlock_pageq();
1203			} else {
1204				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1205				UVM_PAGE_OWN(pg, NULL);
1206				uvm_anfree(pg->uanon);
1207			}
1208		} else {
1209			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1210			UVM_PAGE_OWN(pg, NULL);
1211		}
1212	}
1213}
1214
1215#if defined(UVM_PAGE_TRKOWN)
1216/*
1217 * uvm_page_own: set or release page ownership
1218 *
1219 * => this is a debugging function that keeps track of who sets PG_BUSY
1220 *	and where they do it.   it can be used to track down problems
1221 *	such a process setting "PG_BUSY" and never releasing it.
1222 * => page's object [if any] must be locked
1223 * => if "tag" is NULL then we are releasing page ownership
1224 */
1225void
1226uvm_page_own(struct vm_page *pg, char *tag)
1227{
1228	/* gain ownership? */
1229	if (tag) {
1230		if (pg->owner_tag) {
1231			printf("uvm_page_own: page %p already owned "
1232			    "by proc %d [%s]\n", pg,
1233			     pg->owner, pg->owner_tag);
1234			panic("uvm_page_own");
1235		}
1236		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1237		pg->owner_tag = tag;
1238		return;
1239	}
1240
1241	/* drop ownership */
1242	if (pg->owner_tag == NULL) {
1243		printf("uvm_page_own: dropping ownership of an non-owned "
1244		    "page (%p)\n", pg);
1245		panic("uvm_page_own");
1246	}
1247	pg->owner_tag = NULL;
1248	return;
1249}
1250#endif
1251
1252/*
1253 * uvm_pageidlezero: zero free pages while the system is idle.
1254 *
1255 * => we do at least one iteration per call, if we are below the target.
1256 * => we loop until we either reach the target or whichqs indicates that
1257 *	there is a process ready to run.
1258 */
1259void
1260uvm_pageidlezero(void)
1261{
1262#if 0 /* disabled: need new code */
1263	struct vm_page *pg;
1264	struct pgfreelist *pgfl;
1265	int free_list;
1266
1267	do {
1268		uvm_lock_fpageq();
1269
1270		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1271			uvm.page_idle_zero = FALSE;
1272			uvm_unlock_fpageq();
1273			return;
1274		}
1275
1276		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1277			pgfl = &uvm.page_free[free_list];
1278			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1279			    PGFL_UNKNOWN])) != NULL)
1280				break;
1281		}
1282
1283		if (pg == NULL) {
1284			/*
1285			 * No non-zero'd pages; don't bother trying again
1286			 * until we know we have non-zero'd pages free.
1287			 */
1288			uvm.page_idle_zero = FALSE;
1289			uvm_unlock_fpageq();
1290			return;
1291		}
1292
1293		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1294		uvmexp.free--;
1295		uvm_unlock_fpageq();
1296
1297#ifdef PMAP_PAGEIDLEZERO
1298		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1299			/*
1300			 * The machine-dependent code detected some
1301			 * reason for us to abort zeroing pages,
1302			 * probably because there is a process now
1303			 * ready to run.
1304			 */
1305			uvm_lock_fpageq();
1306			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1307			    pg, pageq);
1308			uvmexp.free++;
1309			uvmexp.zeroaborts++;
1310			uvm_unlock_fpageq();
1311			return;
1312		}
1313#else
1314		/*
1315		 * XXX This will toast the cache unless the pmap_zero_page()
1316		 * XXX implementation does uncached access.
1317		 */
1318		pmap_zero_page(pg);
1319#endif
1320		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1321
1322		uvm_lock_fpageq();
1323		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1324		uvmexp.free++;
1325		uvmexp.zeropages++;
1326		uvm_unlock_fpageq();
1327	} while (curcpu_is_idle());
1328#endif /* 0 */
1329}
1330
1331/*
1332 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1333 */
1334
1335#if VM_PHYSSEG_MAX > 1
1336/*
1337 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1338 */
1339int
1340vm_physseg_find(paddr_t pframe, int *offp)
1341{
1342	struct vm_physseg *seg;
1343
1344#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1345	/* binary search for it */
1346	int	start, len, try;
1347
1348	/*
1349	 * if try is too large (thus target is less than than try) we reduce
1350	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1351	 *
1352	 * if the try is too small (thus target is greater than try) then
1353	 * we set the new start to be (try + 1).   this means we need to
1354	 * reduce the length to (round(len/2) - 1).
1355	 *
1356	 * note "adjust" below which takes advantage of the fact that
1357	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1358	 * for any value of len we may have
1359	 */
1360
1361	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1362		try = start + (len / 2);	/* try in the middle */
1363		seg = vm_physmem + try;
1364
1365		/* start past our try? */
1366		if (pframe >= seg->start) {
1367			/* was try correct? */
1368			if (pframe < seg->end) {
1369				if (offp)
1370					*offp = pframe - seg->start;
1371				return(try);            /* got it */
1372			}
1373			start = try + 1;	/* next time, start here */
1374			len--;			/* "adjust" */
1375		} else {
1376			/*
1377			 * pframe before try, just reduce length of
1378			 * region, done in "for" loop
1379			 */
1380		}
1381	}
1382	return(-1);
1383
1384#else
1385	/* linear search for it */
1386	int	lcv;
1387
1388	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
1389		if (pframe >= seg->start && pframe < seg->end) {
1390			if (offp)
1391				*offp = pframe - seg->start;
1392			return(lcv);		   /* got it */
1393		}
1394	}
1395	return(-1);
1396
1397#endif
1398}
1399
1400/*
1401 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1402 * back from an I/O mapping (ugh!).   used in some MD code as well.
1403 */
1404struct vm_page *
1405PHYS_TO_VM_PAGE(paddr_t pa)
1406{
1407	paddr_t pf = atop(pa);
1408	int	off;
1409	int	psi;
1410
1411	psi = vm_physseg_find(pf, &off);
1412
1413	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1414}
1415#endif /* VM_PHYSSEG_MAX > 1 */
1416
1417/*
1418 * uvm_pagelookup: look up a page
1419 *
1420 * => caller should lock object to keep someone from pulling the page
1421 *	out from under it
1422 */
1423struct vm_page *
1424uvm_pagelookup(struct uvm_object *obj, voff_t off)
1425{
1426	/* XXX if stack is too much, handroll */
1427	struct vm_page pg;
1428
1429	pg.offset = off;
1430	return (RB_FIND(uvm_objtree, &obj->memt, &pg));
1431}
1432
1433/*
1434 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1435 *
1436 * => caller must lock page queues
1437 */
1438void
1439uvm_pagewire(struct vm_page *pg)
1440{
1441	if (pg->wire_count == 0) {
1442		if (pg->pg_flags & PQ_ACTIVE) {
1443			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1444			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1445			uvmexp.active--;
1446		}
1447		if (pg->pg_flags & PQ_INACTIVE) {
1448			if (pg->pg_flags & PQ_SWAPBACKED)
1449				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1450			else
1451				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1452			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1453			uvmexp.inactive--;
1454		}
1455		uvmexp.wired++;
1456	}
1457	pg->wire_count++;
1458}
1459
1460/*
1461 * uvm_pageunwire: unwire the page.
1462 *
1463 * => activate if wire count goes to zero.
1464 * => caller must lock page queues
1465 */
1466void
1467uvm_pageunwire(struct vm_page *pg)
1468{
1469	pg->wire_count--;
1470	if (pg->wire_count == 0) {
1471		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1472		uvmexp.active++;
1473		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1474		uvmexp.wired--;
1475	}
1476}
1477
1478/*
1479 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1480 *
1481 * => caller must lock page queues
1482 * => caller must check to make sure page is not wired
1483 * => object that page belongs to must be locked (so we can adjust pg->flags)
1484 */
1485void
1486uvm_pagedeactivate(struct vm_page *pg)
1487{
1488	if (pg->pg_flags & PQ_ACTIVE) {
1489		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1490		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1491		uvmexp.active--;
1492	}
1493	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1494		KASSERT(pg->wire_count == 0);
1495		if (pg->pg_flags & PQ_SWAPBACKED)
1496			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1497		else
1498			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1499		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1500		uvmexp.inactive++;
1501		pmap_clear_reference(pg);
1502		/*
1503		 * update the "clean" bit.  this isn't 100%
1504		 * accurate, and doesn't have to be.  we'll
1505		 * re-sync it after we zap all mappings when
1506		 * scanning the inactive list.
1507		 */
1508		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1509		    pmap_is_modified(pg))
1510			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1511	}
1512}
1513
1514/*
1515 * uvm_pageactivate: activate page
1516 *
1517 * => caller must lock page queues
1518 */
1519void
1520uvm_pageactivate(struct vm_page *pg)
1521{
1522	if (pg->pg_flags & PQ_INACTIVE) {
1523		if (pg->pg_flags & PQ_SWAPBACKED)
1524			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1525		else
1526			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1527		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1528		uvmexp.inactive--;
1529	}
1530	if (pg->wire_count == 0) {
1531
1532		/*
1533		 * if page is already active, remove it from list so we
1534		 * can put it at tail.  if it wasn't active, then mark
1535		 * it active and bump active count
1536		 */
1537		if (pg->pg_flags & PQ_ACTIVE)
1538			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1539		else {
1540			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1541			uvmexp.active++;
1542		}
1543
1544		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1545	}
1546}
1547
1548/*
1549 * uvm_pagezero: zero fill a page
1550 *
1551 * => if page is part of an object then the object should be locked
1552 *	to protect pg->flags.
1553 */
1554void
1555uvm_pagezero(struct vm_page *pg)
1556{
1557	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1558	pmap_zero_page(pg);
1559}
1560
1561/*
1562 * uvm_pagecopy: copy a page
1563 *
1564 * => if page is part of an object then the object should be locked
1565 *	to protect pg->flags.
1566 */
1567void
1568uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1569{
1570	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1571	pmap_copy_page(src, dst);
1572}
1573
1574/*
1575 * uvm_pagecount: count the number of physical pages in the address range.
1576 */
1577psize_t
1578uvm_pagecount(struct uvm_constraint_range* constraint)
1579{
1580	int lcv;
1581	psize_t sz;
1582	paddr_t low, high;
1583	paddr_t ps_low, ps_high;
1584
1585	/* Algorithm uses page numbers. */
1586	low = atop(constraint->ucr_low);
1587	high = atop(constraint->ucr_high);
1588
1589	sz = 0;
1590	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1591		ps_low = MAX(low, vm_physmem[lcv].avail_start);
1592		ps_high = MIN(high, vm_physmem[lcv].avail_end);
1593		if (ps_low < ps_high)
1594			sz += ps_high - ps_low;
1595	}
1596	return sz;
1597}
1598