uvm_page.c revision 1.117
1/*	$OpenBSD: uvm_page.c,v 1.117 2013/03/03 22:37:58 miod Exp $	*/
2/*	$NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * Copyright (c) 1991, 1993, The Regents of the University of California.
7 *
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 *    must display the following acknowledgement:
23 *	This product includes software developed by Charles D. Cranor,
24 *      Washington University, the University of California, Berkeley and
25 *      its contributors.
26 * 4. Neither the name of the University nor the names of its contributors
27 *    may be used to endorse or promote products derived from this software
28 *    without specific prior written permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40 * SUCH DAMAGE.
41 *
42 *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
43 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
44 *
45 *
46 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47 * All rights reserved.
48 *
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
54 *
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58 *
59 * Carnegie Mellon requests users of this software to return to
60 *
61 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62 *  School of Computer Science
63 *  Carnegie Mellon University
64 *  Pittsburgh PA 15213-3890
65 *
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
68 */
69
70/*
71 * uvm_page.c: page ops.
72 */
73
74#include <sys/param.h>
75#include <sys/systm.h>
76#include <sys/sched.h>
77#include <sys/kernel.h>
78#include <sys/vnode.h>
79#include <sys/mount.h>
80#include <sys/proc.h>
81
82#include <uvm/uvm.h>
83
84/*
85 * for object trees
86 */
87RB_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp);
88
89int
90uvm_pagecmp(struct vm_page *a, struct vm_page *b)
91{
92	return (a->offset < b->offset ? -1 : a->offset > b->offset);
93}
94
95/*
96 * global vars... XXXCDC: move to uvm. structure.
97 */
98
99/*
100 * physical memory config is stored in vm_physmem.
101 */
102
103struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
104int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
105
106/*
107 * Some supported CPUs in a given architecture don't support all
108 * of the things necessary to do idle page zero'ing efficiently.
109 * We therefore provide a way to disable it from machdep code here.
110 */
111
112/*
113 * XXX disabled until we can find a way to do this without causing
114 * problems for either cpu caches or DMA latency.
115 */
116boolean_t vm_page_zero_enable = FALSE;
117
118/*
119 * local variables
120 */
121
122/*
123 * these variables record the values returned by vm_page_bootstrap,
124 * for debugging purposes.  The implementation of uvm_pageboot_alloc
125 * and pmap_startup here also uses them internally.
126 */
127
128static vaddr_t      virtual_space_start;
129static vaddr_t      virtual_space_end;
130
131/*
132 * local prototypes
133 */
134
135static void uvm_pageinsert(struct vm_page *);
136static void uvm_pageremove(struct vm_page *);
137
138/*
139 * inline functions
140 */
141
142/*
143 * uvm_pageinsert: insert a page in the object
144 *
145 * => caller must lock object
146 * => caller must lock page queues XXX questionable
147 * => call should have already set pg's object and offset pointers
148 *    and bumped the version counter
149 */
150
151__inline static void
152uvm_pageinsert(struct vm_page *pg)
153{
154	struct vm_page	*dupe;
155
156	KASSERT((pg->pg_flags & PG_TABLED) == 0);
157	dupe = RB_INSERT(uvm_objtree, &pg->uobject->memt, pg);
158	/* not allowed to insert over another page */
159	KASSERT(dupe == NULL);
160	atomic_setbits_int(&pg->pg_flags, PG_TABLED);
161	pg->uobject->uo_npages++;
162}
163
164/*
165 * uvm_page_remove: remove page from object
166 *
167 * => caller must lock object
168 * => caller must lock page queues
169 */
170
171static __inline void
172uvm_pageremove(struct vm_page *pg)
173{
174
175	KASSERT(pg->pg_flags & PG_TABLED);
176	RB_REMOVE(uvm_objtree, &pg->uobject->memt, pg);
177
178	atomic_clearbits_int(&pg->pg_flags, PG_TABLED);
179	pg->uobject->uo_npages--;
180	pg->uobject = NULL;
181	pg->pg_version++;
182}
183
184/*
185 * uvm_page_init: init the page system.   called from uvm_init().
186 *
187 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
188 */
189
190void
191uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
192{
193	vsize_t freepages, pagecount, n;
194	vm_page_t pagearray, curpg;
195	int lcv, i;
196	paddr_t paddr, pgno;
197	struct vm_physseg *seg;
198
199	/*
200	 * init the page queues and page queue locks
201	 */
202
203	TAILQ_INIT(&uvm.page_active);
204	TAILQ_INIT(&uvm.page_inactive_swp);
205	TAILQ_INIT(&uvm.page_inactive_obj);
206	simple_lock_init(&uvm.pageqlock);
207	mtx_init(&uvm.fpageqlock, IPL_VM);
208	uvm_pmr_init();
209
210	/*
211	 * allocate vm_page structures.
212	 */
213
214	/*
215	 * sanity check:
216	 * before calling this function the MD code is expected to register
217	 * some free RAM with the uvm_page_physload() function.   our job
218	 * now is to allocate vm_page structures for this memory.
219	 */
220
221	if (vm_nphysseg == 0)
222		panic("uvm_page_bootstrap: no memory pre-allocated");
223
224	/*
225	 * first calculate the number of free pages...
226	 *
227	 * note that we use start/end rather than avail_start/avail_end.
228	 * this allows us to allocate extra vm_page structures in case we
229	 * want to return some memory to the pool after booting.
230	 */
231
232	freepages = 0;
233	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
234		freepages += (seg->end - seg->start);
235
236	/*
237	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
238	 * use.   for each page of memory we use we need a vm_page structure.
239	 * thus, the total number of pages we can use is the total size of
240	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
241	 * structure.   we add one to freepages as a fudge factor to avoid
242	 * truncation errors (since we can only allocate in terms of whole
243	 * pages).
244	 */
245
246	pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) /
247	    (PAGE_SIZE + sizeof(struct vm_page));
248	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
249	    sizeof(struct vm_page));
250	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
251
252	/*
253	 * init the vm_page structures and put them in the correct place.
254	 */
255
256	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
257		n = seg->end - seg->start;
258		if (n > pagecount) {
259			panic("uvm_page_init: lost %ld page(s) in init",
260			    (long)(n - pagecount));
261			    /* XXXCDC: shouldn't happen? */
262			/* n = pagecount; */
263		}
264
265		/* set up page array pointers */
266		seg->pgs = pagearray;
267		pagearray += n;
268		pagecount -= n;
269		seg->lastpg = seg->pgs + (n - 1);
270
271		/* init and free vm_pages (we've already zeroed them) */
272		pgno = seg->start;
273		paddr = ptoa(pgno);
274		for (i = 0, curpg = seg->pgs; i < n;
275		    i++, curpg++, pgno++, paddr += PAGE_SIZE) {
276			curpg->phys_addr = paddr;
277#ifdef __HAVE_VM_PAGE_MD
278			VM_MDPAGE_INIT(curpg);
279#endif
280			if (pgno >= seg->avail_start &&
281			    pgno <= seg->avail_end) {
282				uvmexp.npages++;
283			}
284		}
285
286		/*
287		 * Add pages to free pool.
288		 */
289		uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start],
290		    seg->avail_end - seg->avail_start);
291	}
292
293	/*
294	 * pass up the values of virtual_space_start and
295	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
296	 * layers of the VM.
297	 */
298
299	*kvm_startp = round_page(virtual_space_start);
300	*kvm_endp = trunc_page(virtual_space_end);
301
302	/*
303	 * init locks for kernel threads
304	 */
305	mtx_init(&uvm.aiodoned_lock, IPL_BIO);
306
307	/*
308	 * init reserve thresholds
309	 * XXXCDC - values may need adjusting
310	 */
311	uvmexp.reserve_pagedaemon = 4;
312	uvmexp.reserve_kernel = 6;
313	uvmexp.anonminpct = 10;
314	uvmexp.vnodeminpct = 10;
315	uvmexp.vtextminpct = 5;
316	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
317	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
318	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
319
320  	/*
321	 * determine if we should zero pages in the idle loop.
322	 */
323
324	uvm.page_idle_zero = vm_page_zero_enable;
325
326	/*
327	 * done!
328	 */
329
330	uvm.page_init_done = TRUE;
331}
332
333/*
334 * uvm_setpagesize: set the page size
335 *
336 * => sets page_shift and page_mask from uvmexp.pagesize.
337 */
338
339void
340uvm_setpagesize(void)
341{
342	if (uvmexp.pagesize == 0)
343		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
344	uvmexp.pagemask = uvmexp.pagesize - 1;
345	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
346		panic("uvm_setpagesize: page size not a power of two");
347	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
348		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
349			break;
350}
351
352/*
353 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
354 */
355
356vaddr_t
357uvm_pageboot_alloc(vsize_t size)
358{
359#if defined(PMAP_STEAL_MEMORY)
360	vaddr_t addr;
361
362	/*
363	 * defer bootstrap allocation to MD code (it may want to allocate
364	 * from a direct-mapped segment).  pmap_steal_memory should round
365	 * off virtual_space_start/virtual_space_end.
366	 */
367
368	addr = pmap_steal_memory(size, &virtual_space_start,
369	    &virtual_space_end);
370
371	return(addr);
372
373#else /* !PMAP_STEAL_MEMORY */
374
375	static boolean_t initialized = FALSE;
376	vaddr_t addr, vaddr;
377	paddr_t paddr;
378
379	/* round to page size */
380	size = round_page(size);
381
382	/*
383	 * on first call to this function, initialize ourselves.
384	 */
385	if (initialized == FALSE) {
386		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
387
388		/* round it the way we like it */
389		virtual_space_start = round_page(virtual_space_start);
390		virtual_space_end = trunc_page(virtual_space_end);
391
392		initialized = TRUE;
393	}
394
395	/*
396	 * allocate virtual memory for this request
397	 */
398	if (virtual_space_start == virtual_space_end ||
399	    (virtual_space_end - virtual_space_start) < size)
400		panic("uvm_pageboot_alloc: out of virtual space");
401
402	addr = virtual_space_start;
403
404#ifdef PMAP_GROWKERNEL
405	/*
406	 * If the kernel pmap can't map the requested space,
407	 * then allocate more resources for it.
408	 */
409	if (uvm_maxkaddr < (addr + size)) {
410		uvm_maxkaddr = pmap_growkernel(addr + size);
411		if (uvm_maxkaddr < (addr + size))
412			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
413	}
414#endif
415
416	virtual_space_start += size;
417
418	/*
419	 * allocate and mapin physical pages to back new virtual pages
420	 */
421
422	for (vaddr = round_page(addr) ; vaddr < addr + size ;
423	    vaddr += PAGE_SIZE) {
424
425		if (!uvm_page_physget(&paddr))
426			panic("uvm_pageboot_alloc: out of memory");
427
428		/*
429		 * Note this memory is no longer managed, so using
430		 * pmap_kenter is safe.
431		 */
432		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
433	}
434	pmap_update(pmap_kernel());
435	return(addr);
436#endif	/* PMAP_STEAL_MEMORY */
437}
438
439#if !defined(PMAP_STEAL_MEMORY)
440/*
441 * uvm_page_physget: "steal" one page from the vm_physmem structure.
442 *
443 * => attempt to allocate it off the end of a segment in which the "avail"
444 *    values match the start/end values.   if we can't do that, then we
445 *    will advance both values (making them equal, and removing some
446 *    vm_page structures from the non-avail area).
447 * => return false if out of memory.
448 */
449
450boolean_t
451uvm_page_physget(paddr_t *paddrp)
452{
453	int lcv;
454	struct vm_physseg *seg;
455
456	/* pass 1: try allocating from a matching end */
457#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
458	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
459	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
460	    lcv--, seg--)
461#else
462	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
463#endif
464	{
465		if (uvm.page_init_done == TRUE)
466			panic("uvm_page_physget: called _after_ bootstrap");
467
468		/* try from front */
469		if (seg->avail_start == seg->start &&
470		    seg->avail_start < seg->avail_end) {
471			*paddrp = ptoa(seg->avail_start);
472			seg->avail_start++;
473			seg->start++;
474			/* nothing left?   nuke it */
475			if (seg->avail_start == seg->end) {
476				if (vm_nphysseg == 1)
477				    panic("uvm_page_physget: out of memory!");
478				vm_nphysseg--;
479				for (; lcv < vm_nphysseg; lcv++, seg++)
480					/* structure copy */
481					seg[0] = seg[1];
482			}
483			return (TRUE);
484		}
485
486		/* try from rear */
487		if (seg->avail_end == seg->end &&
488		    seg->avail_start < seg->avail_end) {
489			*paddrp = ptoa(seg->avail_end - 1);
490			seg->avail_end--;
491			seg->end--;
492			/* nothing left?   nuke it */
493			if (seg->avail_end == seg->start) {
494				if (vm_nphysseg == 1)
495				    panic("uvm_page_physget: out of memory!");
496				vm_nphysseg--;
497				for (; lcv < vm_nphysseg ; lcv++, seg++)
498					/* structure copy */
499					seg[0] = seg[1];
500			}
501			return (TRUE);
502		}
503	}
504
505	/* pass2: forget about matching ends, just allocate something */
506#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \
507	(VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
508	for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0;
509	    lcv--, seg--)
510#else
511	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
512#endif
513	{
514
515		/* any room in this bank? */
516		if (seg->avail_start >= seg->avail_end)
517			continue;  /* nope */
518
519		*paddrp = ptoa(seg->avail_start);
520		seg->avail_start++;
521		/* truncate! */
522		seg->start = seg->avail_start;
523
524		/* nothing left?   nuke it */
525		if (seg->avail_start == seg->end) {
526			if (vm_nphysseg == 1)
527				panic("uvm_page_physget: out of memory!");
528			vm_nphysseg--;
529			for (; lcv < vm_nphysseg ; lcv++, seg++)
530				/* structure copy */
531				seg[0] = seg[1];
532		}
533		return (TRUE);
534	}
535
536	return (FALSE);        /* whoops! */
537}
538
539#endif /* PMAP_STEAL_MEMORY */
540
541/*
542 * uvm_page_physload: load physical memory into VM system
543 *
544 * => all args are PFs
545 * => all pages in start/end get vm_page structures
546 * => areas marked by avail_start/avail_end get added to the free page pool
547 * => we are limited to VM_PHYSSEG_MAX physical memory segments
548 */
549
550void
551uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
552    paddr_t avail_end, int flags)
553{
554	int preload, lcv;
555	psize_t npages;
556	struct vm_page *pgs;
557	struct vm_physseg *ps, *seg;
558
559#ifdef DIAGNOSTIC
560	if (uvmexp.pagesize == 0)
561		panic("uvm_page_physload: page size not set!");
562
563	if (start >= end)
564		panic("uvm_page_physload: start >= end");
565#endif
566
567	/*
568	 * do we have room?
569	 */
570	if (vm_nphysseg == VM_PHYSSEG_MAX) {
571		printf("uvm_page_physload: unable to load physical memory "
572		    "segment\n");
573		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
574		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
575		printf("\tincrease VM_PHYSSEG_MAX\n");
576		return;
577	}
578
579	/*
580	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
581	 * called yet, so malloc is not available).
582	 */
583	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) {
584		if (seg->pgs)
585			break;
586	}
587	preload = (lcv == vm_nphysseg);
588
589	/*
590	 * if VM is already running, attempt to malloc() vm_page structures
591	 */
592	if (!preload) {
593		/*
594		 * XXXCDC: need some sort of lockout for this case
595		 * right now it is only used by devices so it should be alright.
596		 */
597 		paddr_t paddr;
598
599 		npages = end - start;  /* # of pages */
600
601		pgs = (struct vm_page *)uvm_km_zalloc(kernel_map,
602		    npages * sizeof(*pgs));
603		if (pgs == NULL) {
604			printf("uvm_page_physload: can not malloc vm_page "
605			    "structs for segment\n");
606			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
607			return;
608		}
609		/* init phys_addr and free pages, XXX uvmexp.npages */
610		for (lcv = 0, paddr = ptoa(start); lcv < npages;
611		    lcv++, paddr += PAGE_SIZE) {
612			pgs[lcv].phys_addr = paddr;
613#ifdef __HAVE_VM_PAGE_MD
614			VM_MDPAGE_INIT(&pgs[lcv]);
615#endif
616			if (atop(paddr) >= avail_start &&
617			    atop(paddr) <= avail_end) {
618				if (flags & PHYSLOAD_DEVICE) {
619					atomic_setbits_int(&pgs[lcv].pg_flags,
620					    PG_DEV);
621					pgs[lcv].wire_count = 1;
622				} else {
623#if defined(VM_PHYSSEG_NOADD)
624		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
625#endif
626				}
627			}
628		}
629
630		/*
631		 * Add pages to free pool.
632		 */
633		if ((flags & PHYSLOAD_DEVICE) == 0) {
634			uvm_pmr_freepages(&pgs[avail_start - start],
635			    avail_end - avail_start);
636		}
637
638		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
639	} else {
640
641		/* gcc complains if these don't get init'd */
642		pgs = NULL;
643		npages = 0;
644
645	}
646
647	/*
648	 * now insert us in the proper place in vm_physmem[]
649	 */
650
651#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
652
653	/* random: put it at the end (easy!) */
654	ps = &vm_physmem[vm_nphysseg];
655
656#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
657
658	{
659		int x;
660		/* sort by address for binary search */
661		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
662			if (start < seg->start)
663				break;
664		ps = seg;
665		/* move back other entries, if necessary ... */
666		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
667		    x--, seg--)
668			/* structure copy */
669			seg[1] = seg[0];
670	}
671
672#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
673
674	{
675		int x;
676		/* sort by largest segment first */
677		for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++)
678			if ((end - start) >
679			    (seg->end - seg->start))
680				break;
681		ps = &vm_physmem[lcv];
682		/* move back other entries, if necessary ... */
683		for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv;
684		    x--, seg--)
685			/* structure copy */
686			seg[1] = seg[0];
687	}
688
689#else
690
691	panic("uvm_page_physload: unknown physseg strategy selected!");
692
693#endif
694
695	ps->start = start;
696	ps->end = end;
697	ps->avail_start = avail_start;
698	ps->avail_end = avail_end;
699	if (preload) {
700		ps->pgs = NULL;
701	} else {
702		ps->pgs = pgs;
703		ps->lastpg = pgs + npages - 1;
704	}
705	vm_nphysseg++;
706
707	/*
708	 * done!
709	 */
710
711	return;
712}
713
714#ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
715
716void uvm_page_physdump(void); /* SHUT UP GCC */
717
718/* call from DDB */
719void
720uvm_page_physdump(void)
721{
722	int lcv;
723	struct vm_physseg *seg;
724
725	printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n",
726	    vm_nphysseg, VM_PHYSSEG_MAX);
727	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++)
728		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
729		    (long long)seg->start,
730		    (long long)seg->end,
731		    (long long)seg->avail_start,
732		    (long long)seg->avail_end);
733	printf("STRATEGY = ");
734	switch (VM_PHYSSEG_STRAT) {
735	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
736	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
737	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
738	default: printf("<<UNKNOWN>>!!!!\n");
739	}
740}
741#endif
742
743void
744uvm_shutdown(void)
745{
746#ifdef UVM_SWAP_ENCRYPT
747	uvm_swap_finicrypt_all();
748#endif
749}
750
751/*
752 * Perform insert of a given page in the specified anon of obj.
753 * This is basically, uvm_pagealloc, but with the page already given.
754 */
755void
756uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off,
757    struct vm_anon *anon)
758{
759	int	flags;
760
761	flags = PG_BUSY | PG_FAKE;
762	pg->offset = off;
763	pg->uobject = obj;
764	pg->uanon = anon;
765
766	if (anon) {
767		anon->an_page = pg;
768		flags |= PQ_ANON;
769	} else if (obj)
770		uvm_pageinsert(pg);
771	atomic_setbits_int(&pg->pg_flags, flags);
772#if defined(UVM_PAGE_TRKOWN)
773	pg->owner_tag = NULL;
774#endif
775	UVM_PAGE_OWN(pg, "new alloc");
776}
777
778/*
779 * uvm_pglistalloc: allocate a list of pages
780 *
781 * => allocated pages are placed at the tail of rlist.  rlist is
782 *    assumed to be properly initialized by caller.
783 * => returns 0 on success or errno on failure
784 * => doesn't take into account clean non-busy pages on inactive list
785 *	that could be used(?)
786 * => params:
787 *	size		the size of the allocation, rounded to page size.
788 *	low		the low address of the allowed allocation range.
789 *	high		the high address of the allowed allocation range.
790 *	alignment	memory must be aligned to this power-of-two boundary.
791 *	boundary	no segment in the allocation may cross this
792 *			power-of-two boundary (relative to zero).
793 * => flags:
794 *	UVM_PLA_NOWAIT	fail if allocation fails
795 *	UVM_PLA_WAITOK	wait for memory to become avail
796 *	UVM_PLA_ZERO	return zeroed memory
797 */
798int
799uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment,
800    paddr_t boundary, struct pglist *rlist, int nsegs, int flags)
801{
802	KASSERT((alignment & (alignment - 1)) == 0);
803	KASSERT((boundary & (boundary - 1)) == 0);
804	KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT));
805
806	if (size == 0)
807		return (EINVAL);
808	/*
809	 * check to see if we need to generate some free pages waking
810	 * the pagedaemon.
811	 */
812	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
813	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
814	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
815		wakeup(&uvm.pagedaemon);
816
817	/*
818	 * XXX uvm_pglistalloc is currently only used for kernel
819	 * objects. Unlike the checks in uvm_pagealloc, below, here
820	 * we are always allowed to use the kernel reseve. However, we
821	 * have to enforce the pagedaemon reserve here or allocations
822	 * via this path could consume everything and we can't
823	 * recover in the page daemon.
824	 */
825 again:
826	if ((uvmexp.free <= uvmexp.reserve_pagedaemon &&
827	    !((curproc == uvm.pagedaemon_proc) ||
828		(curproc == syncerproc)))) {
829		if (UVM_PLA_WAITOK) {
830			uvm_wait("uvm_pglistalloc");
831			goto again;
832		}
833		return (ENOMEM);
834	}
835
836	if ((high & PAGE_MASK) != PAGE_MASK) {
837		printf("uvm_pglistalloc: Upper boundary 0x%lx "
838		    "not on pagemask.\n", (unsigned long)high);
839	}
840
841	/*
842	 * Our allocations are always page granularity, so our alignment
843	 * must be, too.
844	 */
845	if (alignment < PAGE_SIZE)
846		alignment = PAGE_SIZE;
847
848	low = atop(roundup(low, alignment));
849	/*
850	 * high + 1 may result in overflow, in which case high becomes 0x0,
851	 * which is the 'don't care' value.
852	 * The only requirement in that case is that low is also 0x0, or the
853	 * low<high assert will fail.
854	 */
855	high = atop(high + 1);
856	size = atop(round_page(size));
857	alignment = atop(alignment);
858	if (boundary < PAGE_SIZE && boundary != 0)
859		boundary = PAGE_SIZE;
860	boundary = atop(boundary);
861
862	return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs,
863	    flags, rlist);
864}
865
866/*
867 * uvm_pglistfree: free a list of pages
868 *
869 * => pages should already be unmapped
870 */
871void
872uvm_pglistfree(struct pglist *list)
873{
874	uvm_pmr_freepageq(list);
875}
876
877/*
878 * interface used by the buffer cache to allocate a buffer at a time.
879 * The pages are allocated wired in DMA accessible memory
880 */
881void
882uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
883    int flags)
884{
885	struct pglist    plist;
886	struct vm_page  *pg;
887	int              i;
888
889
890	TAILQ_INIT(&plist);
891	(void) uvm_pglistalloc(size, dma_constraint.ucr_low,
892	    dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)),
893	    UVM_PLA_WAITOK);
894	i = 0;
895	while ((pg = TAILQ_FIRST(&plist)) != NULL) {
896		pg->wire_count = 1;
897		atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
898		KASSERT((pg->pg_flags & PG_DEV) == 0);
899		TAILQ_REMOVE(&plist, pg, pageq);
900		uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL);
901	}
902}
903
904/*
905 * interface used by the buffer cache to reallocate a buffer at a time.
906 * The pages are reallocated wired outside the DMA accessible region.
907 *
908 */
909void
910uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size,
911    int flags, struct uvm_constraint_range *where)
912{
913	struct pglist    plist;
914	struct vm_page  *pg, *tpg;
915	int              i;
916	voff_t		offset;
917
918
919	TAILQ_INIT(&plist);
920	if (size == 0)
921		panic("size 0 uvm_pagerealloc");
922	(void) uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0,
923	    0, &plist, atop(round_page(size)), UVM_PLA_WAITOK);
924	i = 0;
925	while((pg = TAILQ_FIRST(&plist)) != NULL) {
926		offset = off + ptoa(i++);
927		tpg = uvm_pagelookup(obj, offset);
928		pg->wire_count = 1;
929		atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE);
930		KASSERT((pg->pg_flags & PG_DEV) == 0);
931		TAILQ_REMOVE(&plist, pg, pageq);
932		uvm_pagecopy(tpg, pg);
933		uvm_pagefree(tpg);
934		uvm_pagealloc_pg(pg, obj, offset, NULL);
935	}
936}
937
938/*
939 * uvm_pagealloc_strat: allocate vm_page from a particular free list.
940 *
941 * => return null if no pages free
942 * => wake up pagedaemon if number of free pages drops below low water mark
943 * => if obj != NULL, obj must be locked (to put in tree)
944 * => if anon != NULL, anon must be locked (to put in anon)
945 * => only one of obj or anon can be non-null
946 * => caller must activate/deactivate page if it is not wired.
947 */
948
949struct vm_page *
950uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
951    int flags)
952{
953	struct vm_page *pg;
954	struct pglist pgl;
955	int pmr_flags;
956	boolean_t use_reserve;
957
958	KASSERT(obj == NULL || anon == NULL);
959	KASSERT(off == trunc_page(off));
960
961	/*
962	 * check to see if we need to generate some free pages waking
963	 * the pagedaemon.
964	 */
965	if ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freemin ||
966	    ((uvmexp.free - BUFPAGES_DEFICIT) < uvmexp.freetarg &&
967	    (uvmexp.inactive + BUFPAGES_INACT) < uvmexp.inactarg))
968		wakeup(&uvm.pagedaemon);
969
970	/*
971	 * fail if any of these conditions is true:
972	 * [1]  there really are no free pages, or
973	 * [2]  only kernel "reserved" pages remain and
974	 *        the page isn't being allocated to a kernel object.
975	 * [3]  only pagedaemon "reserved" pages remain and
976	 *        the requestor isn't the pagedaemon.
977	 */
978
979	use_reserve = (flags & UVM_PGA_USERESERVE) ||
980		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
981	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
982	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
983	     !((curproc == uvm.pagedaemon_proc) ||
984	      (curproc == syncerproc))))
985		goto fail;
986
987	pmr_flags = UVM_PLA_NOWAIT;
988	if (flags & UVM_PGA_ZERO)
989		pmr_flags |= UVM_PLA_ZERO;
990	TAILQ_INIT(&pgl);
991	if (uvm_pmr_getpages(1, 0, 0, 1, 0, 1, pmr_flags, &pgl) != 0)
992		goto fail;
993
994	pg = TAILQ_FIRST(&pgl);
995	KASSERT(pg != NULL && TAILQ_NEXT(pg, pageq) == NULL);
996
997	uvm_pagealloc_pg(pg, obj, off, anon);
998	KASSERT((pg->pg_flags & PG_DEV) == 0);
999	if (flags & UVM_PGA_ZERO)
1000		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1001	else
1002		atomic_setbits_int(&pg->pg_flags, PG_CLEAN);
1003
1004	return(pg);
1005
1006 fail:
1007	return (NULL);
1008}
1009
1010/*
1011 * uvm_pagerealloc: reallocate a page from one object to another
1012 *
1013 * => both objects must be locked
1014 */
1015
1016void
1017uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1018{
1019
1020	/*
1021	 * remove it from the old object
1022	 */
1023
1024	if (pg->uobject) {
1025		uvm_pageremove(pg);
1026	}
1027
1028	/*
1029	 * put it in the new object
1030	 */
1031
1032	if (newobj) {
1033		pg->uobject = newobj;
1034		pg->offset = newoff;
1035		pg->pg_version++;
1036		uvm_pageinsert(pg);
1037	}
1038}
1039
1040
1041/*
1042 * uvm_pagefree: free page
1043 *
1044 * => erase page's identity (i.e. remove from object)
1045 * => put page on free list
1046 * => caller must lock owning object (either anon or uvm_object)
1047 * => caller must lock page queues
1048 * => assumes all valid mappings of pg are gone
1049 */
1050
1051void
1052uvm_pagefree(struct vm_page *pg)
1053{
1054	int saved_loan_count = pg->loan_count;
1055
1056#ifdef DEBUG
1057	if (pg->uobject == (void *)0xdeadbeef &&
1058	    pg->uanon == (void *)0xdeadbeef) {
1059		panic("uvm_pagefree: freeing free page %p", pg);
1060	}
1061#endif
1062
1063	KASSERT((pg->pg_flags & PG_DEV) == 0);
1064
1065	/*
1066	 * if the page was an object page (and thus "TABLED"), remove it
1067	 * from the object.
1068	 */
1069
1070	if (pg->pg_flags & PG_TABLED) {
1071
1072		/*
1073		 * if the object page is on loan we are going to drop ownership.
1074		 * it is possible that an anon will take over as owner for this
1075		 * page later on.   the anon will want a !PG_CLEAN page so that
1076		 * it knows it needs to allocate swap if it wants to page the
1077		 * page out.
1078		 */
1079
1080		/* in case an anon takes over */
1081		if (saved_loan_count)
1082			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1083		uvm_pageremove(pg);
1084
1085		/*
1086		 * if our page was on loan, then we just lost control over it
1087		 * (in fact, if it was loaned to an anon, the anon may have
1088		 * already taken over ownership of the page by now and thus
1089		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1090		 * return (when the last loan is dropped, then the page can be
1091		 * freed by whatever was holding the last loan).
1092		 */
1093
1094		if (saved_loan_count)
1095			return;
1096	} else if (saved_loan_count && pg->uanon) {
1097		/*
1098		 * if our page is owned by an anon and is loaned out to the
1099		 * kernel then we just want to drop ownership and return.
1100		 * the kernel must free the page when all its loans clear ...
1101		 * note that the kernel can't change the loan status of our
1102		 * page as long as we are holding PQ lock.
1103		 */
1104		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1105		pg->uanon->an_page = NULL;
1106		pg->uanon = NULL;
1107		return;
1108	}
1109	KASSERT(saved_loan_count == 0);
1110
1111	/*
1112	 * now remove the page from the queues
1113	 */
1114
1115	if (pg->pg_flags & PQ_ACTIVE) {
1116		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1117		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1118		uvmexp.active--;
1119	}
1120	if (pg->pg_flags & PQ_INACTIVE) {
1121		if (pg->pg_flags & PQ_SWAPBACKED)
1122			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1123		else
1124			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1125		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1126		uvmexp.inactive--;
1127	}
1128
1129	/*
1130	 * if the page was wired, unwire it now.
1131	 */
1132
1133	if (pg->wire_count) {
1134		pg->wire_count = 0;
1135		uvmexp.wired--;
1136	}
1137	if (pg->uanon) {
1138		pg->uanon->an_page = NULL;
1139		pg->uanon = NULL;
1140		atomic_clearbits_int(&pg->pg_flags, PQ_ANON);
1141	}
1142
1143	/*
1144	 * Clean page state bits.
1145	 */
1146	atomic_clearbits_int(&pg->pg_flags, PQ_AOBJ); /* XXX: find culprit */
1147	atomic_clearbits_int(&pg->pg_flags, PQ_ENCRYPT|
1148	    PG_ZERO|PG_FAKE|PG_BUSY|PG_RELEASED|PG_CLEAN|PG_CLEANCHK);
1149
1150	/*
1151	 * and put on free queue
1152	 */
1153
1154#ifdef DEBUG
1155	pg->uobject = (void *)0xdeadbeef;
1156	pg->offset = 0xdeadbeef;
1157	pg->uanon = (void *)0xdeadbeef;
1158#endif
1159
1160	uvm_pmr_freepages(pg, 1);
1161
1162	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1163		uvm.page_idle_zero = vm_page_zero_enable;
1164}
1165
1166/*
1167 * uvm_page_unbusy: unbusy an array of pages.
1168 *
1169 * => pages must either all belong to the same object, or all belong to anons.
1170 * => if pages are object-owned, object must be locked.
1171 * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1172 */
1173
1174void
1175uvm_page_unbusy(struct vm_page **pgs, int npgs)
1176{
1177	struct vm_page *pg;
1178	struct uvm_object *uobj;
1179	int i;
1180
1181	for (i = 0; i < npgs; i++) {
1182		pg = pgs[i];
1183
1184		if (pg == NULL || pg == PGO_DONTCARE) {
1185			continue;
1186		}
1187		if (pg->pg_flags & PG_WANTED) {
1188			wakeup(pg);
1189		}
1190		if (pg->pg_flags & PG_RELEASED) {
1191			uobj = pg->uobject;
1192			if (uobj != NULL) {
1193				uvm_lock_pageq();
1194				pmap_page_protect(pg, VM_PROT_NONE);
1195				/* XXX won't happen right now */
1196				if (pg->pg_flags & PQ_AOBJ)
1197					uao_dropswap(uobj,
1198					    pg->offset >> PAGE_SHIFT);
1199				uvm_pagefree(pg);
1200				uvm_unlock_pageq();
1201			} else {
1202				atomic_clearbits_int(&pg->pg_flags, PG_BUSY);
1203				UVM_PAGE_OWN(pg, NULL);
1204				uvm_anfree(pg->uanon);
1205			}
1206		} else {
1207			atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY);
1208			UVM_PAGE_OWN(pg, NULL);
1209		}
1210	}
1211}
1212
1213#if defined(UVM_PAGE_TRKOWN)
1214/*
1215 * uvm_page_own: set or release page ownership
1216 *
1217 * => this is a debugging function that keeps track of who sets PG_BUSY
1218 *	and where they do it.   it can be used to track down problems
1219 *	such a process setting "PG_BUSY" and never releasing it.
1220 * => page's object [if any] must be locked
1221 * => if "tag" is NULL then we are releasing page ownership
1222 */
1223void
1224uvm_page_own(struct vm_page *pg, char *tag)
1225{
1226	/* gain ownership? */
1227	if (tag) {
1228		if (pg->owner_tag) {
1229			printf("uvm_page_own: page %p already owned "
1230			    "by proc %d [%s]\n", pg,
1231			     pg->owner, pg->owner_tag);
1232			panic("uvm_page_own");
1233		}
1234		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1235		pg->owner_tag = tag;
1236		return;
1237	}
1238
1239	/* drop ownership */
1240	if (pg->owner_tag == NULL) {
1241		printf("uvm_page_own: dropping ownership of an non-owned "
1242		    "page (%p)\n", pg);
1243		panic("uvm_page_own");
1244	}
1245	pg->owner_tag = NULL;
1246	return;
1247}
1248#endif
1249
1250/*
1251 * uvm_pageidlezero: zero free pages while the system is idle.
1252 *
1253 * => we do at least one iteration per call, if we are below the target.
1254 * => we loop until we either reach the target or whichqs indicates that
1255 *	there is a process ready to run.
1256 */
1257void
1258uvm_pageidlezero(void)
1259{
1260#if 0 /* disabled: need new code */
1261	struct vm_page *pg;
1262	struct pgfreelist *pgfl;
1263	int free_list;
1264
1265	do {
1266		uvm_lock_fpageq();
1267
1268		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1269			uvm.page_idle_zero = FALSE;
1270			uvm_unlock_fpageq();
1271			return;
1272		}
1273
1274		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1275			pgfl = &uvm.page_free[free_list];
1276			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1277			    PGFL_UNKNOWN])) != NULL)
1278				break;
1279		}
1280
1281		if (pg == NULL) {
1282			/*
1283			 * No non-zero'd pages; don't bother trying again
1284			 * until we know we have non-zero'd pages free.
1285			 */
1286			uvm.page_idle_zero = FALSE;
1287			uvm_unlock_fpageq();
1288			return;
1289		}
1290
1291		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1292		uvmexp.free--;
1293		uvm_unlock_fpageq();
1294
1295#ifdef PMAP_PAGEIDLEZERO
1296		if (PMAP_PAGEIDLEZERO(pg) == FALSE) {
1297			/*
1298			 * The machine-dependent code detected some
1299			 * reason for us to abort zeroing pages,
1300			 * probably because there is a process now
1301			 * ready to run.
1302			 */
1303			uvm_lock_fpageq();
1304			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1305			    pg, pageq);
1306			uvmexp.free++;
1307			uvmexp.zeroaborts++;
1308			uvm_unlock_fpageq();
1309			return;
1310		}
1311#else
1312		/*
1313		 * XXX This will toast the cache unless the pmap_zero_page()
1314		 * XXX implementation does uncached access.
1315		 */
1316		pmap_zero_page(pg);
1317#endif
1318		atomic_setbits_int(&pg->pg_flags, PG_ZERO);
1319
1320		uvm_lock_fpageq();
1321		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1322		uvmexp.free++;
1323		uvmexp.zeropages++;
1324		uvm_unlock_fpageq();
1325	} while (curcpu_is_idle());
1326#endif /* 0 */
1327}
1328
1329/*
1330 * when VM_PHYSSEG_MAX is 1, we can simplify these functions
1331 */
1332
1333#if VM_PHYSSEG_MAX > 1
1334/*
1335 * vm_physseg_find: find vm_physseg structure that belongs to a PA
1336 */
1337int
1338vm_physseg_find(paddr_t pframe, int *offp)
1339{
1340	struct vm_physseg *seg;
1341
1342#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
1343	/* binary search for it */
1344	int	start, len, try;
1345
1346	/*
1347	 * if try is too large (thus target is less than than try) we reduce
1348	 * the length to trunc(len/2) [i.e. everything smaller than "try"]
1349	 *
1350	 * if the try is too small (thus target is greater than try) then
1351	 * we set the new start to be (try + 1).   this means we need to
1352	 * reduce the length to (round(len/2) - 1).
1353	 *
1354	 * note "adjust" below which takes advantage of the fact that
1355	 *  (round(len/2) - 1) == trunc((len - 1) / 2)
1356	 * for any value of len we may have
1357	 */
1358
1359	for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) {
1360		try = start + (len / 2);	/* try in the middle */
1361		seg = vm_physmem + try;
1362
1363		/* start past our try? */
1364		if (pframe >= seg->start) {
1365			/* was try correct? */
1366			if (pframe < seg->end) {
1367				if (offp)
1368					*offp = pframe - seg->start;
1369				return(try);            /* got it */
1370			}
1371			start = try + 1;	/* next time, start here */
1372			len--;			/* "adjust" */
1373		} else {
1374			/*
1375			 * pframe before try, just reduce length of
1376			 * region, done in "for" loop
1377			 */
1378		}
1379	}
1380	return(-1);
1381
1382#else
1383	/* linear search for it */
1384	int	lcv;
1385
1386	for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) {
1387		if (pframe >= seg->start && pframe < seg->end) {
1388			if (offp)
1389				*offp = pframe - seg->start;
1390			return(lcv);		   /* got it */
1391		}
1392	}
1393	return(-1);
1394
1395#endif
1396}
1397
1398/*
1399 * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
1400 * back from an I/O mapping (ugh!).   used in some MD code as well.
1401 */
1402struct vm_page *
1403PHYS_TO_VM_PAGE(paddr_t pa)
1404{
1405	paddr_t pf = atop(pa);
1406	int	off;
1407	int	psi;
1408
1409	psi = vm_physseg_find(pf, &off);
1410
1411	return ((psi == -1) ? NULL : &vm_physmem[psi].pgs[off]);
1412}
1413#endif /* VM_PHYSSEG_MAX > 1 */
1414
1415/*
1416 * uvm_pagelookup: look up a page
1417 *
1418 * => caller should lock object to keep someone from pulling the page
1419 *	out from under it
1420 */
1421struct vm_page *
1422uvm_pagelookup(struct uvm_object *obj, voff_t off)
1423{
1424	/* XXX if stack is too much, handroll */
1425	struct vm_page pg;
1426
1427	pg.offset = off;
1428	return (RB_FIND(uvm_objtree, &obj->memt, &pg));
1429}
1430
1431/*
1432 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1433 *
1434 * => caller must lock page queues
1435 */
1436void
1437uvm_pagewire(struct vm_page *pg)
1438{
1439	if (pg->wire_count == 0) {
1440		if (pg->pg_flags & PQ_ACTIVE) {
1441			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1442			atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1443			uvmexp.active--;
1444		}
1445		if (pg->pg_flags & PQ_INACTIVE) {
1446			if (pg->pg_flags & PQ_SWAPBACKED)
1447				TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1448			else
1449				TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1450			atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1451			uvmexp.inactive--;
1452		}
1453		uvmexp.wired++;
1454	}
1455	pg->wire_count++;
1456}
1457
1458/*
1459 * uvm_pageunwire: unwire the page.
1460 *
1461 * => activate if wire count goes to zero.
1462 * => caller must lock page queues
1463 */
1464void
1465uvm_pageunwire(struct vm_page *pg)
1466{
1467	pg->wire_count--;
1468	if (pg->wire_count == 0) {
1469		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1470		uvmexp.active++;
1471		atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1472		uvmexp.wired--;
1473	}
1474}
1475
1476/*
1477 * uvm_pagedeactivate: deactivate page -- no pmaps have access to page
1478 *
1479 * => caller must lock page queues
1480 * => caller must check to make sure page is not wired
1481 * => object that page belongs to must be locked (so we can adjust pg->flags)
1482 */
1483void
1484uvm_pagedeactivate(struct vm_page *pg)
1485{
1486	if (pg->pg_flags & PQ_ACTIVE) {
1487		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1488		atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE);
1489		uvmexp.active--;
1490	}
1491	if ((pg->pg_flags & PQ_INACTIVE) == 0) {
1492		KASSERT(pg->wire_count == 0);
1493		if (pg->pg_flags & PQ_SWAPBACKED)
1494			TAILQ_INSERT_TAIL(&uvm.page_inactive_swp, pg, pageq);
1495		else
1496			TAILQ_INSERT_TAIL(&uvm.page_inactive_obj, pg, pageq);
1497		atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE);
1498		uvmexp.inactive++;
1499		pmap_clear_reference(pg);
1500		/*
1501		 * update the "clean" bit.  this isn't 100%
1502		 * accurate, and doesn't have to be.  we'll
1503		 * re-sync it after we zap all mappings when
1504		 * scanning the inactive list.
1505		 */
1506		if ((pg->pg_flags & PG_CLEAN) != 0 &&
1507		    pmap_is_modified(pg))
1508			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1509	}
1510}
1511
1512/*
1513 * uvm_pageactivate: activate page
1514 *
1515 * => caller must lock page queues
1516 */
1517void
1518uvm_pageactivate(struct vm_page *pg)
1519{
1520	if (pg->pg_flags & PQ_INACTIVE) {
1521		if (pg->pg_flags & PQ_SWAPBACKED)
1522			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1523		else
1524			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1525		atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE);
1526		uvmexp.inactive--;
1527	}
1528	if (pg->wire_count == 0) {
1529
1530		/*
1531		 * if page is already active, remove it from list so we
1532		 * can put it at tail.  if it wasn't active, then mark
1533		 * it active and bump active count
1534		 */
1535		if (pg->pg_flags & PQ_ACTIVE)
1536			TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1537		else {
1538			atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE);
1539			uvmexp.active++;
1540		}
1541
1542		TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq);
1543	}
1544}
1545
1546/*
1547 * uvm_pagezero: zero fill a page
1548 *
1549 * => if page is part of an object then the object should be locked
1550 *	to protect pg->flags.
1551 */
1552void
1553uvm_pagezero(struct vm_page *pg)
1554{
1555	atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1556	pmap_zero_page(pg);
1557}
1558
1559/*
1560 * uvm_pagecopy: copy a page
1561 *
1562 * => if page is part of an object then the object should be locked
1563 *	to protect pg->flags.
1564 */
1565void
1566uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1567{
1568	atomic_clearbits_int(&dst->pg_flags, PG_CLEAN);
1569	pmap_copy_page(src, dst);
1570}
1571
1572/*
1573 * uvm_pagecount: count the number of physical pages in the address range.
1574 */
1575psize_t
1576uvm_pagecount(struct uvm_constraint_range* constraint)
1577{
1578	int lcv;
1579	psize_t sz;
1580	paddr_t low, high;
1581	paddr_t ps_low, ps_high;
1582
1583	/* Algorithm uses page numbers. */
1584	low = atop(constraint->ucr_low);
1585	high = atop(constraint->ucr_high);
1586
1587	sz = 0;
1588	for (lcv = 0; lcv < vm_nphysseg; lcv++) {
1589		ps_low = MAX(low, vm_physmem[lcv].avail_start);
1590		ps_high = MIN(high, vm_physmem[lcv].avail_end);
1591		if (ps_low < ps_high)
1592			sz += ps_high - ps_low;
1593	}
1594	return sz;
1595}
1596