1/*	$OpenBSD: uvm_fault.c,v 1.135 2023/09/05 05:08:26 guenther Exp $	*/
2/*	$NetBSD: uvm_fault.c,v 1.51 2000/08/06 00:22:53 thorpej Exp $	*/
3
4/*
5 * Copyright (c) 1997 Charles D. Cranor and Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_fault.c,v 1.1.2.23 1998/02/06 05:29:05 chs Exp
29 */
30
31/*
32 * uvm_fault.c: fault handler
33 */
34
35#include <sys/param.h>
36#include <sys/systm.h>
37#include <sys/kernel.h>
38#include <sys/percpu.h>
39#include <sys/proc.h>
40#include <sys/malloc.h>
41#include <sys/mman.h>
42#include <sys/tracepoint.h>
43
44#include <uvm/uvm.h>
45
46/*
47 *
48 * a word on page faults:
49 *
50 * types of page faults we handle:
51 *
52 * CASE 1: upper layer faults                   CASE 2: lower layer faults
53 *
54 *    CASE 1A         CASE 1B                  CASE 2A        CASE 2B
55 *    read/write1     write>1                  read/write   +-cow_write/zero
56 *         |             |                         |        |
57 *      +--|--+       +--|--+     +-----+       +  |  +     | +-----+
58 * amap |  V  |       |  ---------> new |          |        | |  ^  |
59 *      +-----+       +-----+     +-----+       +  |  +     | +--|--+
60 *                                                 |        |    |
61 *      +-----+       +-----+                   +--|--+     | +--|--+
62 * uobj | d/c |       | d/c |                   |  V  |     +----+  |
63 *      +-----+       +-----+                   +-----+       +-----+
64 *
65 * d/c = don't care
66 *
67 *   case [0]: layerless fault
68 *	no amap or uobj is present.   this is an error.
69 *
70 *   case [1]: upper layer fault [anon active]
71 *     1A: [read] or [write with anon->an_ref == 1]
72 *		I/O takes place in upper level anon and uobj is not touched.
73 *     1B: [write with anon->an_ref > 1]
74 *		new anon is alloc'd and data is copied off ["COW"]
75 *
76 *   case [2]: lower layer fault [uobj]
77 *     2A: [read on non-NULL uobj] or [write to non-copy_on_write area]
78 *		I/O takes place directly in object.
79 *     2B: [write to copy_on_write] or [read on NULL uobj]
80 *		data is "promoted" from uobj to a new anon.
81 *		if uobj is null, then we zero fill.
82 *
83 * we follow the standard UVM locking protocol ordering:
84 *
85 * MAPS => AMAP => UOBJ => ANON => PAGE QUEUES (PQ)
86 * we hold a PG_BUSY page if we unlock for I/O
87 *
88 *
89 * the code is structured as follows:
90 *
91 *     - init the "IN" params in the ufi structure
92 *   ReFault: (ERESTART returned to the loop in uvm_fault)
93 *     - do lookups [locks maps], check protection, handle needs_copy
94 *     - check for case 0 fault (error)
95 *     - establish "range" of fault
96 *     - if we have an amap lock it and extract the anons
97 *     - if sequential advice deactivate pages behind us
98 *     - at the same time check pmap for unmapped areas and anon for pages
99 *	 that we could map in (and do map it if found)
100 *     - check object for resident pages that we could map in
101 *     - if (case 2) goto Case2
102 *     - >>> handle case 1
103 *           - ensure source anon is resident in RAM
104 *           - if case 1B alloc new anon and copy from source
105 *           - map the correct page in
106 *   Case2:
107 *     - >>> handle case 2
108 *           - ensure source page is resident (if uobj)
109 *           - if case 2B alloc new anon and copy from source (could be zero
110 *		fill if uobj == NULL)
111 *           - map the correct page in
112 *     - done!
113 *
114 * note on paging:
115 *   if we have to do I/O we place a PG_BUSY page in the correct object,
116 * unlock everything, and do the I/O.   when I/O is done we must reverify
117 * the state of the world before assuming that our data structures are
118 * valid.   [because mappings could change while the map is unlocked]
119 *
120 *  alternative 1: unbusy the page in question and restart the page fault
121 *    from the top (ReFault).   this is easy but does not take advantage
122 *    of the information that we already have from our previous lookup,
123 *    although it is possible that the "hints" in the vm_map will help here.
124 *
125 * alternative 2: the system already keeps track of a "version" number of
126 *    a map.   [i.e. every time you write-lock a map (e.g. to change a
127 *    mapping) you bump the version number up by one...]   so, we can save
128 *    the version number of the map before we release the lock and start I/O.
129 *    then when I/O is done we can relock and check the version numbers
130 *    to see if anything changed.    this might save us some over 1 because
131 *    we don't have to unbusy the page and may be less compares(?).
132 *
133 * alternative 3: put in backpointers or a way to "hold" part of a map
134 *    in place while I/O is in progress.   this could be complex to
135 *    implement (especially with structures like amap that can be referenced
136 *    by multiple map entries, and figuring out what should wait could be
137 *    complex as well...).
138 *
139 * we use alternative 2.  given that we are multi-threaded now we may want
140 * to reconsider the choice.
141 */
142
143/*
144 * local data structures
145 */
146struct uvm_advice {
147	int nback;
148	int nforw;
149};
150
151/*
152 * page range array: set up in uvmfault_init().
153 */
154static struct uvm_advice uvmadvice[MADV_MASK + 1];
155
156#define UVM_MAXRANGE 16	/* must be max() of nback+nforw+1 */
157
158/*
159 * private prototypes
160 */
161static void uvmfault_amapcopy(struct uvm_faultinfo *);
162static inline void uvmfault_anonflush(struct vm_anon **, int);
163void	uvmfault_unlockmaps(struct uvm_faultinfo *, boolean_t);
164void	uvmfault_update_stats(struct uvm_faultinfo *);
165
166/*
167 * inline functions
168 */
169/*
170 * uvmfault_anonflush: try and deactivate pages in specified anons
171 *
172 * => does not have to deactivate page if it is busy
173 */
174static inline void
175uvmfault_anonflush(struct vm_anon **anons, int n)
176{
177	int lcv;
178	struct vm_page *pg;
179
180	for (lcv = 0; lcv < n; lcv++) {
181		if (anons[lcv] == NULL)
182			continue;
183		KASSERT(rw_lock_held(anons[lcv]->an_lock));
184		pg = anons[lcv]->an_page;
185		if (pg && (pg->pg_flags & PG_BUSY) == 0) {
186			uvm_lock_pageq();
187			if (pg->wire_count == 0) {
188				pmap_page_protect(pg, PROT_NONE);
189				uvm_pagedeactivate(pg);
190			}
191			uvm_unlock_pageq();
192		}
193	}
194}
195
196/*
197 * normal functions
198 */
199/*
200 * uvmfault_init: compute proper values for the uvmadvice[] array.
201 */
202void
203uvmfault_init(void)
204{
205	int npages;
206
207	npages = atop(16384);
208	if (npages > 0) {
209		KASSERT(npages <= UVM_MAXRANGE / 2);
210		uvmadvice[MADV_NORMAL].nforw = npages;
211		uvmadvice[MADV_NORMAL].nback = npages - 1;
212	}
213
214	npages = atop(32768);
215	if (npages > 0) {
216		KASSERT(npages <= UVM_MAXRANGE / 2);
217		uvmadvice[MADV_SEQUENTIAL].nforw = npages - 1;
218		uvmadvice[MADV_SEQUENTIAL].nback = npages;
219	}
220}
221
222/*
223 * uvmfault_amapcopy: clear "needs_copy" in a map.
224 *
225 * => called with VM data structures unlocked (usually, see below)
226 * => we get a write lock on the maps and clear needs_copy for a VA
227 * => if we are out of RAM we sleep (waiting for more)
228 */
229static void
230uvmfault_amapcopy(struct uvm_faultinfo *ufi)
231{
232	for (;;) {
233		/*
234		 * no mapping?  give up.
235		 */
236		if (uvmfault_lookup(ufi, TRUE) == FALSE)
237			return;
238
239		/*
240		 * copy if needed.
241		 */
242		if (UVM_ET_ISNEEDSCOPY(ufi->entry))
243			amap_copy(ufi->map, ufi->entry, M_NOWAIT,
244				UVM_ET_ISSTACK(ufi->entry) ? FALSE : TRUE,
245				ufi->orig_rvaddr, ufi->orig_rvaddr + 1);
246
247		/*
248		 * didn't work?  must be out of RAM.   unlock and sleep.
249		 */
250		if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
251			uvmfault_unlockmaps(ufi, TRUE);
252			uvm_wait("fltamapcopy");
253			continue;
254		}
255
256		/*
257		 * got it!   unlock and return.
258		 */
259		uvmfault_unlockmaps(ufi, TRUE);
260		return;
261	}
262	/*NOTREACHED*/
263}
264
265/*
266 * uvmfault_anonget: get data in an anon into a non-busy, non-released
267 * page in that anon.
268 *
269 * => Map, amap and thus anon should be locked by caller.
270 * => If we fail, we unlock everything and error is returned.
271 * => If we are successful, return with everything still locked.
272 * => We do not move the page on the queues [gets moved later].  If we
273 *    allocate a new page [we_own], it gets put on the queues.  Either way,
274 *    the result is that the page is on the queues at return time
275 */
276int
277uvmfault_anonget(struct uvm_faultinfo *ufi, struct vm_amap *amap,
278    struct vm_anon *anon)
279{
280	struct vm_page *pg;
281	int error;
282
283	KASSERT(rw_lock_held(anon->an_lock));
284	KASSERT(anon->an_lock == amap->am_lock);
285
286	/* Increment the counters.*/
287	counters_inc(uvmexp_counters, flt_anget);
288	if (anon->an_page) {
289		curproc->p_ru.ru_minflt++;
290	} else {
291		curproc->p_ru.ru_majflt++;
292	}
293	error = 0;
294
295	/*
296	 * Loop until we get the anon data, or fail.
297	 */
298	for (;;) {
299		boolean_t we_own, locked;
300		/*
301		 * Note: 'we_own' will become true if we set PG_BUSY on a page.
302		 */
303		we_own = FALSE;
304		pg = anon->an_page;
305
306		/*
307		 * Is page resident?  Make sure it is not busy/released.
308		 */
309		if (pg) {
310			KASSERT(pg->pg_flags & PQ_ANON);
311			KASSERT(pg->uanon == anon);
312
313			/*
314			 * if the page is busy, we drop all the locks and
315			 * try again.
316			 */
317			if ((pg->pg_flags & (PG_BUSY|PG_RELEASED)) == 0)
318				return (VM_PAGER_OK);
319			atomic_setbits_int(&pg->pg_flags, PG_WANTED);
320			counters_inc(uvmexp_counters, flt_pgwait);
321
322			/*
323			 * The last unlock must be an atomic unlock and wait
324			 * on the owner of page.
325			 */
326			if (pg->uobject) {
327				/* Owner of page is UVM object. */
328				uvmfault_unlockall(ufi, amap, NULL);
329				rwsleep_nsec(pg, pg->uobject->vmobjlock,
330				    PVM | PNORELOCK, "anonget1", INFSLP);
331			} else {
332				/* Owner of page is anon. */
333				uvmfault_unlockall(ufi, NULL, NULL);
334				rwsleep_nsec(pg, anon->an_lock, PVM | PNORELOCK,
335				    "anonget2", INFSLP);
336			}
337		} else {
338			/*
339			 * No page, therefore allocate one.
340			 */
341			pg = uvm_pagealloc(NULL, 0, anon, 0);
342			if (pg == NULL) {
343				/* Out of memory.  Wait a little. */
344				uvmfault_unlockall(ufi, amap, NULL);
345				counters_inc(uvmexp_counters, flt_noram);
346				uvm_wait("flt_noram1");
347			} else {
348				/* PG_BUSY bit is set. */
349				we_own = TRUE;
350				uvmfault_unlockall(ufi, amap, NULL);
351
352				/*
353				 * Pass a PG_BUSY+PG_FAKE+PG_CLEAN page into
354				 * the uvm_swap_get() function with all data
355				 * structures unlocked.  Note that it is OK
356				 * to read an_swslot here, because we hold
357				 * PG_BUSY on the page.
358				 */
359				counters_inc(uvmexp_counters, pageins);
360				error = uvm_swap_get(pg, anon->an_swslot,
361				    PGO_SYNCIO);
362
363				/*
364				 * We clean up after the I/O below in the
365				 * 'we_own' case.
366				 */
367			}
368		}
369
370		/*
371		 * Re-lock the map and anon.
372		 */
373		locked = uvmfault_relock(ufi);
374		if (locked || we_own) {
375			rw_enter(anon->an_lock, RW_WRITE);
376		}
377
378		/*
379		 * If we own the page (i.e. we set PG_BUSY), then we need
380		 * to clean up after the I/O.  There are three cases to
381		 * consider:
382		 *
383		 * 1) Page was released during I/O: free anon and ReFault.
384		 * 2) I/O not OK.  Free the page and cause the fault to fail.
385		 * 3) I/O OK!  Activate the page and sync with the non-we_own
386		 *    case (i.e. drop anon lock if not locked).
387		 */
388		if (we_own) {
389			if (pg->pg_flags & PG_WANTED) {
390				wakeup(pg);
391			}
392
393			/*
394			 * if we were RELEASED during I/O, then our anon is
395			 * no longer part of an amap.   we need to free the
396			 * anon and try again.
397			 */
398			if (pg->pg_flags & PG_RELEASED) {
399				KASSERT(anon->an_ref == 0);
400				/*
401				 * Released while we had unlocked amap.
402				 */
403				if (locked)
404					uvmfault_unlockall(ufi, NULL, NULL);
405				uvm_anon_release(anon);	/* frees page for us */
406				counters_inc(uvmexp_counters, flt_pgrele);
407				return (VM_PAGER_REFAULT);	/* refault! */
408			}
409
410			if (error != VM_PAGER_OK) {
411				KASSERT(error != VM_PAGER_PEND);
412
413				/* remove page from anon */
414				anon->an_page = NULL;
415
416				/*
417				 * Remove the swap slot from the anon and
418				 * mark the anon as having no real slot.
419				 * Do not free the swap slot, thus preventing
420				 * it from being used again.
421				 */
422				uvm_swap_markbad(anon->an_swslot, 1);
423				anon->an_swslot = SWSLOT_BAD;
424
425				/*
426				 * Note: page was never !PG_BUSY, so it
427				 * cannot be mapped and thus no need to
428				 * pmap_page_protect() it.
429				 */
430				uvm_lock_pageq();
431				uvm_pagefree(pg);
432				uvm_unlock_pageq();
433
434				if (locked) {
435					uvmfault_unlockall(ufi, NULL, NULL);
436				}
437				rw_exit(anon->an_lock);
438				return (VM_PAGER_ERROR);
439			}
440
441			/*
442			 * We have successfully read the page, activate it.
443			 */
444			pmap_clear_modify(pg);
445			uvm_lock_pageq();
446			uvm_pageactivate(pg);
447			uvm_unlock_pageq();
448			atomic_clearbits_int(&pg->pg_flags,
449			    PG_WANTED|PG_BUSY|PG_FAKE);
450			UVM_PAGE_OWN(pg, NULL);
451		}
452
453		/*
454		 * We were not able to re-lock the map - restart the fault.
455		 */
456		if (!locked) {
457			if (we_own) {
458				rw_exit(anon->an_lock);
459			}
460			return (VM_PAGER_REFAULT);
461		}
462
463		/*
464		 * Verify that no one has touched the amap and moved
465		 * the anon on us.
466		 */
467		if (ufi != NULL && amap_lookup(&ufi->entry->aref,
468				ufi->orig_rvaddr - ufi->entry->start) != anon) {
469
470			uvmfault_unlockall(ufi, amap, NULL);
471			return (VM_PAGER_REFAULT);
472		}
473
474		/*
475		 * Retry..
476		 */
477		counters_inc(uvmexp_counters, flt_anretry);
478		continue;
479
480	}
481	/*NOTREACHED*/
482}
483
484/*
485 * Update statistics after fault resolution.
486 * - maxrss
487 */
488void
489uvmfault_update_stats(struct uvm_faultinfo *ufi)
490{
491	struct vm_map		*map;
492	struct proc		*p;
493	vsize_t			 res;
494
495	map = ufi->orig_map;
496
497	/*
498	 * If this is a nested pmap (eg, a virtual machine pmap managed
499	 * by vmm(4) on amd64/i386), don't do any updating, just return.
500	 *
501	 * pmap_nested() on other archs is #defined to 0, so this is a
502	 * no-op.
503	 */
504	if (pmap_nested(map->pmap))
505		return;
506
507	/* Update the maxrss for the process. */
508	if (map->flags & VM_MAP_ISVMSPACE) {
509		p = curproc;
510		KASSERT(p != NULL && &p->p_vmspace->vm_map == map);
511
512		res = pmap_resident_count(map->pmap);
513		/* Convert res from pages to kilobytes. */
514		res <<= (PAGE_SHIFT - 10);
515
516		if (p->p_ru.ru_maxrss < res)
517			p->p_ru.ru_maxrss = res;
518	}
519}
520
521/*
522 *   F A U L T   -   m a i n   e n t r y   p o i n t
523 */
524
525/*
526 * uvm_fault: page fault handler
527 *
528 * => called from MD code to resolve a page fault
529 * => VM data structures usually should be unlocked.   however, it is
530 *	possible to call here with the main map locked if the caller
531 *	gets a write lock, sets it recursive, and then calls us (c.f.
532 *	uvm_map_pageable).   this should be avoided because it keeps
533 *	the map locked off during I/O.
534 * => MUST NEVER BE CALLED IN INTERRUPT CONTEXT
535 */
536#define MASK(entry)     (UVM_ET_ISCOPYONWRITE(entry) ? \
537			 ~PROT_WRITE : PROT_MASK)
538struct uvm_faultctx {
539	/*
540	 * the following members are set up by uvm_fault_check() and
541	 * read-only after that.
542	 */
543	vm_prot_t enter_prot;
544	vm_prot_t access_type;
545	vaddr_t startva;
546	int npages;
547	int centeridx;
548	boolean_t narrow;
549	boolean_t wired;
550	paddr_t pa_flags;
551};
552
553int		uvm_fault_check(
554		    struct uvm_faultinfo *, struct uvm_faultctx *,
555		    struct vm_anon ***);
556
557int		uvm_fault_upper(
558		    struct uvm_faultinfo *, struct uvm_faultctx *,
559		    struct vm_anon **, vm_fault_t);
560boolean_t	uvm_fault_upper_lookup(
561		    struct uvm_faultinfo *, const struct uvm_faultctx *,
562		    struct vm_anon **, struct vm_page **);
563
564int		uvm_fault_lower(
565		    struct uvm_faultinfo *, struct uvm_faultctx *,
566		    struct vm_page **, vm_fault_t);
567
568int
569uvm_fault(vm_map_t orig_map, vaddr_t vaddr, vm_fault_t fault_type,
570    vm_prot_t access_type)
571{
572	struct uvm_faultinfo ufi;
573	struct uvm_faultctx flt;
574	boolean_t shadowed;
575	struct vm_anon *anons_store[UVM_MAXRANGE], **anons;
576	struct vm_page *pages[UVM_MAXRANGE];
577	int error;
578
579	counters_inc(uvmexp_counters, faults);
580	TRACEPOINT(uvm, fault, vaddr, fault_type, access_type, NULL);
581
582	/*
583	 * init the IN parameters in the ufi
584	 */
585	ufi.orig_map = orig_map;
586	ufi.orig_rvaddr = trunc_page(vaddr);
587	ufi.orig_size = PAGE_SIZE;	/* can't get any smaller than this */
588	if (fault_type == VM_FAULT_WIRE)
589		flt.narrow = TRUE;	/* don't look for neighborhood
590					 * pages on wire */
591	else
592		flt.narrow = FALSE;	/* normal fault */
593	flt.access_type = access_type;
594
595
596	error = ERESTART;
597	while (error == ERESTART) { /* ReFault: */
598		anons = anons_store;
599
600		error = uvm_fault_check(&ufi, &flt, &anons);
601		if (error != 0)
602			continue;
603
604		/* True if there is an anon at the faulting address */
605		shadowed = uvm_fault_upper_lookup(&ufi, &flt, anons, pages);
606		if (shadowed == TRUE) {
607			/* case 1: fault on an anon in our amap */
608			error = uvm_fault_upper(&ufi, &flt, anons, fault_type);
609		} else {
610			struct uvm_object *uobj = ufi.entry->object.uvm_obj;
611
612			/*
613			 * if the desired page is not shadowed by the amap and
614			 * we have a backing object, then we check to see if
615			 * the backing object would prefer to handle the fault
616			 * itself (rather than letting us do it with the usual
617			 * pgo_get hook).  the backing object signals this by
618			 * providing a pgo_fault routine.
619			 */
620			if (uobj != NULL && uobj->pgops->pgo_fault != NULL) {
621				KERNEL_LOCK();
622				rw_enter(uobj->vmobjlock, RW_WRITE);
623				error = uobj->pgops->pgo_fault(&ufi,
624				    flt.startva, pages, flt.npages,
625				    flt.centeridx, fault_type, flt.access_type,
626				    PGO_LOCKED);
627				KERNEL_UNLOCK();
628
629				if (error == VM_PAGER_OK)
630					error = 0;
631				else if (error == VM_PAGER_REFAULT)
632					error = ERESTART;
633				else
634					error = EACCES;
635			} else {
636				/* case 2: fault on backing obj or zero fill */
637				error = uvm_fault_lower(&ufi, &flt, pages,
638				    fault_type);
639			}
640		}
641	}
642
643	return error;
644}
645
646/*
647 * uvm_fault_check: check prot, handle needs-copy, etc.
648 *
649 *	1. lookup entry.
650 *	2. check protection.
651 *	3. adjust fault condition (mainly for simulated fault).
652 *	4. handle needs-copy (lazy amap copy).
653 *	5. establish range of interest for neighbor fault (aka pre-fault).
654 *	6. look up anons (if amap exists).
655 *	7. flush pages (if MADV_SEQUENTIAL)
656 *
657 * => called with nothing locked.
658 * => if we fail (result != 0) we unlock everything.
659 * => initialize/adjust many members of flt.
660 */
661int
662uvm_fault_check(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
663    struct vm_anon ***ranons)
664{
665	struct vm_amap *amap;
666	struct uvm_object *uobj;
667	int nback, nforw;
668
669	/*
670	 * lookup and lock the maps
671	 */
672	if (uvmfault_lookup(ufi, FALSE) == FALSE) {
673		return EFAULT;
674	}
675	/* locked: maps(read) */
676
677#ifdef DIAGNOSTIC
678	if ((ufi->map->flags & VM_MAP_PAGEABLE) == 0)
679		panic("uvm_fault: fault on non-pageable map (%p, 0x%lx)",
680		    ufi->map, ufi->orig_rvaddr);
681#endif
682
683	/*
684	 * check protection
685	 */
686	if ((ufi->entry->protection & flt->access_type) != flt->access_type) {
687		uvmfault_unlockmaps(ufi, FALSE);
688		return EACCES;
689	}
690
691	/*
692	 * "enter_prot" is the protection we want to enter the page in at.
693	 * for certain pages (e.g. copy-on-write pages) this protection can
694	 * be more strict than ufi->entry->protection.  "wired" means either
695	 * the entry is wired or we are fault-wiring the pg.
696	 */
697
698	flt->enter_prot = ufi->entry->protection;
699	flt->pa_flags = UVM_ET_ISWC(ufi->entry) ? PMAP_WC : 0;
700	flt->wired = VM_MAPENT_ISWIRED(ufi->entry) || (flt->narrow == TRUE);
701	if (flt->wired)
702		flt->access_type = flt->enter_prot; /* full access for wired */
703
704	/* handle "needs_copy" case. */
705	if (UVM_ET_ISNEEDSCOPY(ufi->entry)) {
706		if ((flt->access_type & PROT_WRITE) ||
707		    (ufi->entry->object.uvm_obj == NULL)) {
708			/* need to clear */
709			uvmfault_unlockmaps(ufi, FALSE);
710			uvmfault_amapcopy(ufi);
711			counters_inc(uvmexp_counters, flt_amcopy);
712			return ERESTART;
713		} else {
714			/*
715			 * ensure that we pmap_enter page R/O since
716			 * needs_copy is still true
717			 */
718			flt->enter_prot &= ~PROT_WRITE;
719		}
720	}
721
722	/*
723	 * identify the players
724	 */
725	amap = ufi->entry->aref.ar_amap;	/* upper layer */
726	uobj = ufi->entry->object.uvm_obj;	/* lower layer */
727
728	/*
729	 * check for a case 0 fault.  if nothing backing the entry then
730	 * error now.
731	 */
732	if (amap == NULL && uobj == NULL) {
733		uvmfault_unlockmaps(ufi, FALSE);
734		return EFAULT;
735	}
736
737	/*
738	 * for a case 2B fault waste no time on adjacent pages because
739	 * they are likely already entered.
740	 */
741	if (uobj != NULL && amap != NULL &&
742	    (flt->access_type & PROT_WRITE) != 0) {
743		/* wide fault (!narrow) */
744		flt->narrow = TRUE;
745	}
746
747	/*
748	 * establish range of interest based on advice from mapper
749	 * and then clip to fit map entry.   note that we only want
750	 * to do this the first time through the fault.   if we
751	 * ReFault we will disable this by setting "narrow" to true.
752	 */
753	if (flt->narrow == FALSE) {
754
755		/* wide fault (!narrow) */
756		nback = min(uvmadvice[ufi->entry->advice].nback,
757		    (ufi->orig_rvaddr - ufi->entry->start) >> PAGE_SHIFT);
758		flt->startva = ufi->orig_rvaddr - ((vsize_t)nback << PAGE_SHIFT);
759		nforw = min(uvmadvice[ufi->entry->advice].nforw,
760		    ((ufi->entry->end - ufi->orig_rvaddr) >> PAGE_SHIFT) - 1);
761		/*
762		 * note: "-1" because we don't want to count the
763		 * faulting page as forw
764		 */
765		flt->npages = nback + nforw + 1;
766		flt->centeridx = nback;
767
768		flt->narrow = TRUE;	/* ensure only once per-fault */
769	} else {
770		/* narrow fault! */
771		nback = nforw = 0;
772		flt->startva = ufi->orig_rvaddr;
773		flt->npages = 1;
774		flt->centeridx = 0;
775	}
776
777	/*
778	 * if we've got an amap then lock it and extract current anons.
779	 */
780	if (amap) {
781		amap_lock(amap);
782		amap_lookups(&ufi->entry->aref,
783		    flt->startva - ufi->entry->start, *ranons, flt->npages);
784	} else {
785		*ranons = NULL;	/* to be safe */
786	}
787
788	/*
789	 * for MADV_SEQUENTIAL mappings we want to deactivate the back pages
790	 * now and then forget about them (for the rest of the fault).
791	 */
792	if (ufi->entry->advice == MADV_SEQUENTIAL && nback != 0) {
793		/* flush back-page anons? */
794		if (amap)
795			uvmfault_anonflush(*ranons, nback);
796
797		/*
798		 * flush object?
799		 */
800		if (uobj) {
801			voff_t uoff;
802
803			uoff = (flt->startva - ufi->entry->start) + ufi->entry->offset;
804			rw_enter(uobj->vmobjlock, RW_WRITE);
805			(void) uobj->pgops->pgo_flush(uobj, uoff, uoff +
806			    ((vsize_t)nback << PAGE_SHIFT), PGO_DEACTIVATE);
807			rw_exit(uobj->vmobjlock);
808		}
809
810		/* now forget about the backpages */
811		if (amap)
812			*ranons += nback;
813		flt->startva += ((vsize_t)nback << PAGE_SHIFT);
814		flt->npages -= nback;
815		flt->centeridx = 0;
816	}
817
818	return 0;
819}
820
821/*
822 * uvm_fault_upper_lookup: look up existing h/w mapping and amap.
823 *
824 * iterate range of interest:
825 *	1. check if h/w mapping exists.  if yes, we don't care
826 *	2. check if anon exists.  if not, page is lower.
827 *	3. if anon exists, enter h/w mapping for neighbors.
828 *
829 * => called with amap locked (if exists).
830 */
831boolean_t
832uvm_fault_upper_lookup(struct uvm_faultinfo *ufi,
833    const struct uvm_faultctx *flt, struct vm_anon **anons,
834    struct vm_page **pages)
835{
836	struct vm_amap *amap = ufi->entry->aref.ar_amap;
837	struct vm_anon *anon;
838	boolean_t shadowed;
839	vaddr_t currva;
840	paddr_t pa;
841	int lcv;
842
843	/* locked: maps(read), amap(if there) */
844	KASSERT(amap == NULL ||
845	    rw_write_held(amap->am_lock));
846
847	/*
848	 * map in the backpages and frontpages we found in the amap in hopes
849	 * of preventing future faults.    we also init the pages[] array as
850	 * we go.
851	 */
852	currva = flt->startva;
853	shadowed = FALSE;
854	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
855		/*
856		 * dont play with VAs that are already mapped
857		 * except for center)
858		 */
859		if (lcv != flt->centeridx &&
860		    pmap_extract(ufi->orig_map->pmap, currva, &pa)) {
861			pages[lcv] = PGO_DONTCARE;
862			continue;
863		}
864
865		/*
866		 * unmapped or center page.   check if any anon at this level.
867		 */
868		if (amap == NULL || anons[lcv] == NULL) {
869			pages[lcv] = NULL;
870			continue;
871		}
872
873		/*
874		 * check for present page and map if possible.
875		 */
876		pages[lcv] = PGO_DONTCARE;
877		if (lcv == flt->centeridx) {	/* save center for later! */
878			shadowed = TRUE;
879			continue;
880		}
881		anon = anons[lcv];
882		KASSERT(anon->an_lock == amap->am_lock);
883		if (anon->an_page &&
884		    (anon->an_page->pg_flags & (PG_RELEASED|PG_BUSY)) == 0) {
885			uvm_lock_pageq();
886			uvm_pageactivate(anon->an_page);	/* reactivate */
887			uvm_unlock_pageq();
888			counters_inc(uvmexp_counters, flt_namap);
889
890			/*
891			 * Since this isn't the page that's actually faulting,
892			 * ignore pmap_enter() failures; it's not critical
893			 * that we enter these right now.
894			 */
895			(void) pmap_enter(ufi->orig_map->pmap, currva,
896			    VM_PAGE_TO_PHYS(anon->an_page) | flt->pa_flags,
897			    (anon->an_ref > 1) ?
898			    (flt->enter_prot & ~PROT_WRITE) : flt->enter_prot,
899			    PMAP_CANFAIL |
900			     (VM_MAPENT_ISWIRED(ufi->entry) ? PMAP_WIRED : 0));
901		}
902	}
903	if (flt->npages > 1)
904		pmap_update(ufi->orig_map->pmap);
905
906	return shadowed;
907}
908
909/*
910 * uvm_fault_upper: handle upper fault.
911 *
912 *	1. acquire anon lock.
913 *	2. get anon.  let uvmfault_anonget do the dirty work.
914 *	3. if COW, promote data to new anon
915 *	4. enter h/w mapping
916 */
917int
918uvm_fault_upper(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
919   struct vm_anon **anons, vm_fault_t fault_type)
920{
921	struct vm_amap *amap = ufi->entry->aref.ar_amap;
922	struct vm_anon *oanon, *anon = anons[flt->centeridx];
923	struct vm_page *pg = NULL;
924	int error, ret;
925
926	/* locked: maps(read), amap, anon */
927	KASSERT(rw_write_held(amap->am_lock));
928	KASSERT(anon->an_lock == amap->am_lock);
929
930	/*
931	 * no matter if we have case 1A or case 1B we are going to need to
932	 * have the anon's memory resident.   ensure that now.
933	 */
934	/*
935	 * let uvmfault_anonget do the dirty work.
936	 * if it fails (!OK) it will unlock everything for us.
937	 * if it succeeds, locks are still valid and locked.
938	 * also, if it is OK, then the anon's page is on the queues.
939	 * if the page is on loan from a uvm_object, then anonget will
940	 * lock that object for us if it does not fail.
941	 */
942	error = uvmfault_anonget(ufi, amap, anon);
943	switch (error) {
944	case VM_PAGER_OK:
945		break;
946
947	case VM_PAGER_REFAULT:
948		return ERESTART;
949
950	case VM_PAGER_ERROR:
951		/*
952		 * An error occurred while trying to bring in the
953		 * page -- this is the only error we return right
954		 * now.
955		 */
956		return EACCES;	/* XXX */
957	default:
958#ifdef DIAGNOSTIC
959		panic("uvm_fault: uvmfault_anonget -> %d", error);
960#else
961		return EACCES;
962#endif
963	}
964
965	KASSERT(rw_write_held(amap->am_lock));
966	KASSERT(anon->an_lock == amap->am_lock);
967
968	/*
969	 * if we are case 1B then we will need to allocate a new blank
970	 * anon to transfer the data into.   note that we have a lock
971	 * on anon, so no one can busy or release the page until we are done.
972	 * also note that the ref count can't drop to zero here because
973	 * it is > 1 and we are only dropping one ref.
974	 *
975	 * in the (hopefully very rare) case that we are out of RAM we
976	 * will unlock, wait for more RAM, and refault.
977	 *
978	 * if we are out of anon VM we wait for RAM to become available.
979	 */
980
981	if ((flt->access_type & PROT_WRITE) != 0 && anon->an_ref > 1) {
982		counters_inc(uvmexp_counters, flt_acow);
983		oanon = anon;		/* oanon = old */
984		anon = uvm_analloc();
985		if (anon) {
986			anon->an_lock = amap->am_lock;
987			pg = uvm_pagealloc(NULL, 0, anon, 0);
988		}
989
990		/* check for out of RAM */
991		if (anon == NULL || pg == NULL) {
992			uvmfault_unlockall(ufi, amap, NULL);
993			if (anon == NULL)
994				counters_inc(uvmexp_counters, flt_noanon);
995			else {
996				anon->an_lock = NULL;
997				anon->an_ref--;
998				uvm_anfree(anon);
999				counters_inc(uvmexp_counters, flt_noram);
1000			}
1001
1002			if (uvm_swapisfull())
1003				return ENOMEM;
1004
1005			/* out of RAM, wait for more */
1006			if (anon == NULL)
1007				uvm_anwait();
1008			else
1009				uvm_wait("flt_noram3");
1010			return ERESTART;
1011		}
1012
1013		/* got all resources, replace anon with nanon */
1014		uvm_pagecopy(oanon->an_page, pg);	/* pg now !PG_CLEAN */
1015		/* un-busy! new page */
1016		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE);
1017		UVM_PAGE_OWN(pg, NULL);
1018		ret = amap_add(&ufi->entry->aref,
1019		    ufi->orig_rvaddr - ufi->entry->start, anon, 1);
1020		KASSERT(ret == 0);
1021
1022		/* deref: can not drop to zero here by defn! */
1023		oanon->an_ref--;
1024
1025#if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1026		/*
1027		 * If there are multiple threads, either uvm or the
1028		 * pmap has to make sure no threads see the old RO
1029		 * mapping once any have seen the new RW mapping.
1030		 * uvm does it by inserting the new mapping RO and
1031		 * letting it fault again.
1032		 * This is only a problem on MP systems.
1033		 */
1034		if (P_HASSIBLING(curproc)) {
1035			flt->enter_prot &= ~PROT_WRITE;
1036			flt->access_type &= ~PROT_WRITE;
1037		}
1038#endif
1039
1040		/*
1041		 * note: anon is _not_ locked, but we have the sole references
1042		 * to in from amap.
1043		 * thus, no one can get at it until we are done with it.
1044		 */
1045	} else {
1046		counters_inc(uvmexp_counters, flt_anon);
1047		oanon = anon;
1048		pg = anon->an_page;
1049		if (anon->an_ref > 1)     /* disallow writes to ref > 1 anons */
1050			flt->enter_prot = flt->enter_prot & ~PROT_WRITE;
1051	}
1052
1053	/*
1054	 * now map the page in .
1055	 */
1056	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1057	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1058	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1059		/*
1060		 * No need to undo what we did; we can simply think of
1061		 * this as the pmap throwing away the mapping information.
1062		 *
1063		 * We do, however, have to go through the ReFault path,
1064		 * as the map may change while we're asleep.
1065		 */
1066		uvmfault_unlockall(ufi, amap, NULL);
1067		if (uvm_swapisfull()) {
1068			/* XXX instrumentation */
1069			return ENOMEM;
1070		}
1071		/* XXX instrumentation */
1072		uvm_wait("flt_pmfail1");
1073		return ERESTART;
1074	}
1075
1076	/*
1077	 * ... update the page queues.
1078	 */
1079	uvm_lock_pageq();
1080
1081	if (fault_type == VM_FAULT_WIRE) {
1082		uvm_pagewire(pg);
1083		/*
1084		 * since the now-wired page cannot be paged out,
1085		 * release its swap resources for others to use.
1086		 * since an anon with no swap cannot be PG_CLEAN,
1087		 * clear its clean flag now.
1088		 */
1089		atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1090		uvm_anon_dropswap(anon);
1091	} else {
1092		/* activate it */
1093		uvm_pageactivate(pg);
1094	}
1095
1096	uvm_unlock_pageq();
1097
1098	/*
1099	 * done case 1!  finish up by unlocking everything and returning success
1100	 */
1101	uvmfault_unlockall(ufi, amap, NULL);
1102	pmap_update(ufi->orig_map->pmap);
1103	return 0;
1104}
1105
1106/*
1107 * uvm_fault_lower_lookup: look up on-memory uobj pages.
1108 *
1109 *	1. get on-memory pages.
1110 *	2. if failed, give up (get only center page later).
1111 *	3. if succeeded, enter h/w mapping of neighbor pages.
1112 */
1113
1114struct vm_page *
1115uvm_fault_lower_lookup(
1116	struct uvm_faultinfo *ufi, const struct uvm_faultctx *flt,
1117	struct vm_page **pages)
1118{
1119	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1120	struct vm_page *uobjpage = NULL;
1121	int lcv, gotpages;
1122	vaddr_t currva;
1123
1124	rw_enter(uobj->vmobjlock, RW_WRITE);
1125
1126	counters_inc(uvmexp_counters, flt_lget);
1127	gotpages = flt->npages;
1128	(void) uobj->pgops->pgo_get(uobj,
1129	    ufi->entry->offset + (flt->startva - ufi->entry->start),
1130	    pages, &gotpages, flt->centeridx,
1131	    flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1132	    PGO_LOCKED);
1133
1134	/*
1135	 * check for pages to map, if we got any
1136	 */
1137	if (gotpages == 0) {
1138		return NULL;
1139	}
1140
1141	currva = flt->startva;
1142	for (lcv = 0; lcv < flt->npages; lcv++, currva += PAGE_SIZE) {
1143		if (pages[lcv] == NULL ||
1144		    pages[lcv] == PGO_DONTCARE)
1145			continue;
1146
1147		KASSERT((pages[lcv]->pg_flags & PG_RELEASED) == 0);
1148
1149		/*
1150		 * if center page is resident and not
1151		 * PG_BUSY, then pgo_get made it PG_BUSY
1152		 * for us and gave us a handle to it.
1153		 * remember this page as "uobjpage."
1154		 * (for later use).
1155		 */
1156		if (lcv == flt->centeridx) {
1157			uobjpage = pages[lcv];
1158			continue;
1159		}
1160
1161		/*
1162		 * note: calling pgo_get with locked data
1163		 * structures returns us pages which are
1164		 * neither busy nor released, so we don't
1165		 * need to check for this.   we can just
1166		 * directly enter the page (after moving it
1167		 * to the head of the active queue [useful?]).
1168		 */
1169
1170		uvm_lock_pageq();
1171		uvm_pageactivate(pages[lcv]);	/* reactivate */
1172		uvm_unlock_pageq();
1173		counters_inc(uvmexp_counters, flt_nomap);
1174
1175		/*
1176		 * Since this page isn't the page that's
1177		 * actually faulting, ignore pmap_enter()
1178		 * failures; it's not critical that we
1179		 * enter these right now.
1180		 */
1181		(void) pmap_enter(ufi->orig_map->pmap, currva,
1182		    VM_PAGE_TO_PHYS(pages[lcv]) | flt->pa_flags,
1183		    flt->enter_prot & MASK(ufi->entry),
1184		    PMAP_CANFAIL |
1185		     (flt->wired ? PMAP_WIRED : 0));
1186
1187		/*
1188		 * NOTE: page can't be PG_WANTED because
1189		 * we've held the lock the whole time
1190		 * we've had the handle.
1191		 */
1192		atomic_clearbits_int(&pages[lcv]->pg_flags, PG_BUSY);
1193		UVM_PAGE_OWN(pages[lcv], NULL);
1194	}
1195	pmap_update(ufi->orig_map->pmap);
1196
1197	return uobjpage;
1198}
1199
1200/*
1201 * uvm_fault_lower: handle lower fault.
1202 *
1203 */
1204int
1205uvm_fault_lower(struct uvm_faultinfo *ufi, struct uvm_faultctx *flt,
1206   struct vm_page **pages, vm_fault_t fault_type)
1207{
1208	struct vm_amap *amap = ufi->entry->aref.ar_amap;
1209	struct uvm_object *uobj = ufi->entry->object.uvm_obj;
1210	boolean_t promote, locked;
1211	int result;
1212	struct vm_page *uobjpage, *pg = NULL;
1213	struct vm_anon *anon = NULL;
1214	voff_t uoff;
1215
1216	/*
1217	 * now, if the desired page is not shadowed by the amap and we have
1218	 * a backing object that does not have a special fault routine, then
1219	 * we ask (with pgo_get) the object for resident pages that we care
1220	 * about and attempt to map them in.  we do not let pgo_get block
1221	 * (PGO_LOCKED).
1222	 */
1223	if (uobj == NULL) {
1224		/* zero fill; don't care neighbor pages */
1225		uobjpage = NULL;
1226	} else {
1227		uobjpage = uvm_fault_lower_lookup(ufi, flt, pages);
1228	}
1229
1230	/*
1231	 * note that at this point we are done with any front or back pages.
1232	 * we are now going to focus on the center page (i.e. the one we've
1233	 * faulted on).  if we have faulted on the bottom (uobj)
1234	 * layer [i.e. case 2] and the page was both present and available,
1235	 * then we've got a pointer to it as "uobjpage" and we've already
1236	 * made it BUSY.
1237	 */
1238
1239	/*
1240	 * locked:
1241	 */
1242	KASSERT(amap == NULL ||
1243	    rw_write_held(amap->am_lock));
1244	KASSERT(uobj == NULL ||
1245	    rw_write_held(uobj->vmobjlock));
1246
1247	/*
1248	 * note that uobjpage can not be PGO_DONTCARE at this point.  we now
1249	 * set uobjpage to PGO_DONTCARE if we are doing a zero fill.  if we
1250	 * have a backing object, check and see if we are going to promote
1251	 * the data up to an anon during the fault.
1252	 */
1253	if (uobj == NULL) {
1254		uobjpage = PGO_DONTCARE;
1255		promote = TRUE;		/* always need anon here */
1256	} else {
1257		KASSERT(uobjpage != PGO_DONTCARE);
1258		promote = (flt->access_type & PROT_WRITE) &&
1259		     UVM_ET_ISCOPYONWRITE(ufi->entry);
1260	}
1261
1262	/*
1263	 * if uobjpage is not null then we do not need to do I/O to get the
1264	 * uobjpage.
1265	 *
1266	 * if uobjpage is null, then we need to ask the pager to
1267	 * get the data for us.   once we have the data, we need to reverify
1268	 * the state the world.   we are currently not holding any resources.
1269	 */
1270	if (uobjpage) {
1271		/* update rusage counters */
1272		curproc->p_ru.ru_minflt++;
1273	} else {
1274		int gotpages;
1275
1276		/* update rusage counters */
1277		curproc->p_ru.ru_majflt++;
1278
1279		uvmfault_unlockall(ufi, amap, NULL);
1280
1281		counters_inc(uvmexp_counters, flt_get);
1282		gotpages = 1;
1283		uoff = (ufi->orig_rvaddr - ufi->entry->start) + ufi->entry->offset;
1284		result = uobj->pgops->pgo_get(uobj, uoff, &uobjpage, &gotpages,
1285		    0, flt->access_type & MASK(ufi->entry), ufi->entry->advice,
1286		    PGO_SYNCIO);
1287
1288		/*
1289		 * recover from I/O
1290		 */
1291		if (result != VM_PAGER_OK) {
1292			KASSERT(result != VM_PAGER_PEND);
1293
1294			if (result == VM_PAGER_AGAIN) {
1295				tsleep_nsec(&nowake, PVM, "fltagain2",
1296				    MSEC_TO_NSEC(5));
1297				return ERESTART;
1298			}
1299
1300			if (!UVM_ET_ISNOFAULT(ufi->entry))
1301				return (EIO);
1302
1303			uobjpage = PGO_DONTCARE;
1304			uobj = NULL;
1305			promote = TRUE;
1306		}
1307
1308		/* re-verify the state of the world.  */
1309		locked = uvmfault_relock(ufi);
1310		if (locked && amap != NULL)
1311			amap_lock(amap);
1312
1313		/* might be changed */
1314		if (uobjpage != PGO_DONTCARE) {
1315			uobj = uobjpage->uobject;
1316			rw_enter(uobj->vmobjlock, RW_WRITE);
1317		}
1318
1319		/*
1320		 * Re-verify that amap slot is still free. if there is
1321		 * a problem, we clean up.
1322		 */
1323		if (locked && amap && amap_lookup(&ufi->entry->aref,
1324		      ufi->orig_rvaddr - ufi->entry->start)) {
1325			if (locked)
1326				uvmfault_unlockall(ufi, amap, NULL);
1327			locked = FALSE;
1328		}
1329
1330		/* didn't get the lock?   release the page and retry. */
1331		if (locked == FALSE && uobjpage != PGO_DONTCARE) {
1332			uvm_lock_pageq();
1333			/* make sure it is in queues */
1334			uvm_pageactivate(uobjpage);
1335			uvm_unlock_pageq();
1336
1337			if (uobjpage->pg_flags & PG_WANTED)
1338				/* still holding object lock */
1339				wakeup(uobjpage);
1340			atomic_clearbits_int(&uobjpage->pg_flags,
1341			    PG_BUSY|PG_WANTED);
1342			UVM_PAGE_OWN(uobjpage, NULL);
1343		}
1344
1345		if (locked == FALSE) {
1346			if (uobjpage != PGO_DONTCARE)
1347				rw_exit(uobj->vmobjlock);
1348			return ERESTART;
1349		}
1350
1351		/*
1352		 * we have the data in uobjpage which is PG_BUSY
1353		 */
1354	}
1355
1356	/*
1357	 * notes:
1358	 *  - at this point uobjpage can not be NULL
1359	 *  - at this point uobjpage could be PG_WANTED (handle later)
1360	 */
1361	if (promote == FALSE) {
1362		/*
1363		 * we are not promoting.   if the mapping is COW ensure that we
1364		 * don't give more access than we should (e.g. when doing a read
1365		 * fault on a COPYONWRITE mapping we want to map the COW page in
1366		 * R/O even though the entry protection could be R/W).
1367		 *
1368		 * set "pg" to the page we want to map in (uobjpage, usually)
1369		 */
1370		counters_inc(uvmexp_counters, flt_obj);
1371		if (UVM_ET_ISCOPYONWRITE(ufi->entry))
1372			flt->enter_prot &= ~PROT_WRITE;
1373		pg = uobjpage;		/* map in the actual object */
1374
1375		/* assert(uobjpage != PGO_DONTCARE) */
1376
1377		/*
1378		 * we are faulting directly on the page.
1379		 */
1380	} else {
1381		/*
1382		 * if we are going to promote the data to an anon we
1383		 * allocate a blank anon here and plug it into our amap.
1384		 */
1385#ifdef DIAGNOSTIC
1386		if (amap == NULL)
1387			panic("uvm_fault: want to promote data, but no anon");
1388#endif
1389
1390		anon = uvm_analloc();
1391		if (anon) {
1392			/*
1393			 * In `Fill in data...' below, if
1394			 * uobjpage == PGO_DONTCARE, we want
1395			 * a zero'd, dirty page, so have
1396			 * uvm_pagealloc() do that for us.
1397			 */
1398			anon->an_lock = amap->am_lock;
1399			pg = uvm_pagealloc(NULL, 0, anon,
1400			    (uobjpage == PGO_DONTCARE) ? UVM_PGA_ZERO : 0);
1401		}
1402
1403		/*
1404		 * out of memory resources?
1405		 */
1406		if (anon == NULL || pg == NULL) {
1407			/*
1408			 * arg!  must unbusy our page and fail or sleep.
1409			 */
1410			if (uobjpage != PGO_DONTCARE) {
1411				uvm_lock_pageq();
1412				uvm_pageactivate(uobjpage);
1413				uvm_unlock_pageq();
1414
1415				if (uobjpage->pg_flags & PG_WANTED)
1416					wakeup(uobjpage);
1417				atomic_clearbits_int(&uobjpage->pg_flags,
1418				    PG_BUSY|PG_WANTED);
1419				UVM_PAGE_OWN(uobjpage, NULL);
1420			}
1421
1422			/* unlock and fail ... */
1423			uvmfault_unlockall(ufi, amap, uobj);
1424			if (anon == NULL)
1425				counters_inc(uvmexp_counters, flt_noanon);
1426			else {
1427				anon->an_lock = NULL;
1428				anon->an_ref--;
1429				uvm_anfree(anon);
1430				counters_inc(uvmexp_counters, flt_noram);
1431			}
1432
1433			if (uvm_swapisfull())
1434				return (ENOMEM);
1435
1436			/* out of RAM, wait for more */
1437			if (anon == NULL)
1438				uvm_anwait();
1439			else
1440				uvm_wait("flt_noram5");
1441			return ERESTART;
1442		}
1443
1444		/*
1445		 * fill in the data
1446		 */
1447		if (uobjpage != PGO_DONTCARE) {
1448			counters_inc(uvmexp_counters, flt_prcopy);
1449			/* copy page [pg now dirty] */
1450			uvm_pagecopy(uobjpage, pg);
1451
1452			/*
1453			 * promote to shared amap?  make sure all sharing
1454			 * procs see it
1455			 */
1456			if ((amap_flags(amap) & AMAP_SHARED) != 0) {
1457				pmap_page_protect(uobjpage, PROT_NONE);
1458			}
1459#if defined(MULTIPROCESSOR) && !defined(__HAVE_PMAP_MPSAFE_ENTER_COW)
1460			/*
1461			 * Otherwise:
1462			 * If there are multiple threads, either uvm or the
1463			 * pmap has to make sure no threads see the old RO
1464			 * mapping once any have seen the new RW mapping.
1465			 * uvm does it here by forcing it to PROT_NONE before
1466			 * inserting the new mapping.
1467			 */
1468			else if (P_HASSIBLING(curproc)) {
1469				pmap_page_protect(uobjpage, PROT_NONE);
1470			}
1471#endif
1472
1473			/* dispose of uobjpage. drop handle to uobj as well. */
1474			if (uobjpage->pg_flags & PG_WANTED)
1475				wakeup(uobjpage);
1476			atomic_clearbits_int(&uobjpage->pg_flags,
1477			    PG_BUSY|PG_WANTED);
1478			UVM_PAGE_OWN(uobjpage, NULL);
1479			uvm_lock_pageq();
1480			uvm_pageactivate(uobjpage);
1481			uvm_unlock_pageq();
1482			rw_exit(uobj->vmobjlock);
1483			uobj = NULL;
1484		} else {
1485			counters_inc(uvmexp_counters, flt_przero);
1486			/*
1487			 * Page is zero'd and marked dirty by uvm_pagealloc()
1488			 * above.
1489			 */
1490		}
1491
1492		if (amap_add(&ufi->entry->aref,
1493		    ufi->orig_rvaddr - ufi->entry->start, anon, 0)) {
1494			uvmfault_unlockall(ufi, amap, uobj);
1495			uvm_anfree(anon);
1496			counters_inc(uvmexp_counters, flt_noamap);
1497
1498			if (uvm_swapisfull())
1499				return (ENOMEM);
1500
1501			amap_populate(&ufi->entry->aref,
1502			    ufi->orig_rvaddr - ufi->entry->start);
1503			return ERESTART;
1504		}
1505	}
1506
1507	/* note: pg is either the uobjpage or the new page in the new anon */
1508	/*
1509	 * all resources are present.   we can now map it in and free our
1510	 * resources.
1511	 */
1512	if (amap == NULL)
1513		KASSERT(anon == NULL);
1514	else {
1515		KASSERT(rw_write_held(amap->am_lock));
1516		KASSERT(anon == NULL || anon->an_lock == amap->am_lock);
1517	}
1518	if (pmap_enter(ufi->orig_map->pmap, ufi->orig_rvaddr,
1519	    VM_PAGE_TO_PHYS(pg) | flt->pa_flags, flt->enter_prot,
1520	    flt->access_type | PMAP_CANFAIL | (flt->wired ? PMAP_WIRED : 0)) != 0) {
1521		/*
1522		 * No need to undo what we did; we can simply think of
1523		 * this as the pmap throwing away the mapping information.
1524		 *
1525		 * We do, however, have to go through the ReFault path,
1526		 * as the map may change while we're asleep.
1527		 */
1528		if (pg->pg_flags & PG_WANTED)
1529			wakeup(pg);
1530
1531		atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1532		UVM_PAGE_OWN(pg, NULL);
1533		uvmfault_unlockall(ufi, amap, uobj);
1534		if (uvm_swapisfull()) {
1535			/* XXX instrumentation */
1536			return (ENOMEM);
1537		}
1538		/* XXX instrumentation */
1539		uvm_wait("flt_pmfail2");
1540		return ERESTART;
1541	}
1542
1543	if (fault_type == VM_FAULT_WIRE) {
1544		uvm_lock_pageq();
1545		uvm_pagewire(pg);
1546		uvm_unlock_pageq();
1547		if (pg->pg_flags & PQ_AOBJ) {
1548			/*
1549			 * since the now-wired page cannot be paged out,
1550			 * release its swap resources for others to use.
1551			 * since an aobj page with no swap cannot be clean,
1552			 * mark it dirty now.
1553			 *
1554			 * use pg->uobject here.  if the page is from a
1555			 * tmpfs vnode, the pages are backed by its UAO and
1556			 * not the vnode.
1557			 */
1558			KASSERT(uobj != NULL);
1559			KASSERT(uobj->vmobjlock == pg->uobject->vmobjlock);
1560			atomic_clearbits_int(&pg->pg_flags, PG_CLEAN);
1561			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
1562		}
1563	} else {
1564		/* activate it */
1565		uvm_lock_pageq();
1566		uvm_pageactivate(pg);
1567		uvm_unlock_pageq();
1568	}
1569
1570	if (pg->pg_flags & PG_WANTED)
1571		wakeup(pg);
1572
1573	atomic_clearbits_int(&pg->pg_flags, PG_BUSY|PG_FAKE|PG_WANTED);
1574	UVM_PAGE_OWN(pg, NULL);
1575	uvmfault_unlockall(ufi, amap, uobj);
1576	pmap_update(ufi->orig_map->pmap);
1577
1578	return (0);
1579}
1580
1581
1582/*
1583 * uvm_fault_wire: wire down a range of virtual addresses in a map.
1584 *
1585 * => map may be read-locked by caller, but MUST NOT be write-locked.
1586 * => if map is read-locked, any operations which may cause map to
1587 *	be write-locked in uvm_fault() must be taken care of by
1588 *	the caller.  See uvm_map_pageable().
1589 */
1590int
1591uvm_fault_wire(vm_map_t map, vaddr_t start, vaddr_t end, vm_prot_t access_type)
1592{
1593	vaddr_t va;
1594	int rv;
1595
1596	/*
1597	 * now fault it in a page at a time.   if the fault fails then we have
1598	 * to undo what we have done.   note that in uvm_fault PROT_NONE
1599	 * is replaced with the max protection if fault_type is VM_FAULT_WIRE.
1600	 */
1601	for (va = start ; va < end ; va += PAGE_SIZE) {
1602		rv = uvm_fault(map, va, VM_FAULT_WIRE, access_type);
1603		if (rv) {
1604			if (va != start) {
1605				uvm_fault_unwire(map, start, va);
1606			}
1607			return (rv);
1608		}
1609	}
1610
1611	return (0);
1612}
1613
1614/*
1615 * uvm_fault_unwire(): unwire range of virtual space.
1616 */
1617void
1618uvm_fault_unwire(vm_map_t map, vaddr_t start, vaddr_t end)
1619{
1620
1621	vm_map_lock_read(map);
1622	uvm_fault_unwire_locked(map, start, end);
1623	vm_map_unlock_read(map);
1624}
1625
1626/*
1627 * uvm_fault_unwire_locked(): the guts of uvm_fault_unwire().
1628 *
1629 * => map must be at least read-locked.
1630 */
1631void
1632uvm_fault_unwire_locked(vm_map_t map, vaddr_t start, vaddr_t end)
1633{
1634	vm_map_entry_t entry, oentry = NULL, next;
1635	pmap_t pmap = vm_map_pmap(map);
1636	vaddr_t va;
1637	paddr_t pa;
1638	struct vm_page *pg;
1639
1640	KASSERT((map->flags & VM_MAP_INTRSAFE) == 0);
1641	vm_map_assert_anylock(map);
1642
1643	/*
1644	 * we assume that the area we are unwiring has actually been wired
1645	 * in the first place.   this means that we should be able to extract
1646	 * the PAs from the pmap.
1647	 */
1648
1649	/*
1650	 * find the beginning map entry for the region.
1651	 */
1652	KASSERT(start >= vm_map_min(map) && end <= vm_map_max(map));
1653	if (uvm_map_lookup_entry(map, start, &entry) == FALSE)
1654		panic("uvm_fault_unwire_locked: address not in map");
1655
1656	for (va = start; va < end ; va += PAGE_SIZE) {
1657		if (pmap_extract(pmap, va, &pa) == FALSE)
1658			continue;
1659
1660		/*
1661		 * find the map entry for the current address.
1662		 */
1663		KASSERT(va >= entry->start);
1664		while (entry && va >= entry->end) {
1665			next = RBT_NEXT(uvm_map_addr, entry);
1666			entry = next;
1667		}
1668
1669		if (entry == NULL)
1670			return;
1671		if (va < entry->start)
1672			continue;
1673
1674		/*
1675		 * lock it.
1676		 */
1677		if (entry != oentry) {
1678			if (oentry != NULL) {
1679				uvm_map_unlock_entry(oentry);
1680			}
1681			uvm_map_lock_entry(entry);
1682			oentry = entry;
1683		}
1684
1685		/*
1686		 * if the entry is no longer wired, tell the pmap.
1687		 */
1688		if (VM_MAPENT_ISWIRED(entry) == 0)
1689			pmap_unwire(pmap, va);
1690
1691		pg = PHYS_TO_VM_PAGE(pa);
1692		if (pg) {
1693			uvm_lock_pageq();
1694			uvm_pageunwire(pg);
1695			uvm_unlock_pageq();
1696		}
1697	}
1698
1699	if (oentry != NULL) {
1700		uvm_map_unlock_entry(oentry);
1701	}
1702}
1703
1704/*
1705 * uvmfault_unlockmaps: unlock the maps
1706 */
1707void
1708uvmfault_unlockmaps(struct uvm_faultinfo *ufi, boolean_t write_locked)
1709{
1710	/*
1711	 * ufi can be NULL when this isn't really a fault,
1712	 * but merely paging in anon data.
1713	 */
1714	if (ufi == NULL) {
1715		return;
1716	}
1717
1718	uvmfault_update_stats(ufi);
1719	if (write_locked) {
1720		vm_map_unlock(ufi->map);
1721	} else {
1722		vm_map_unlock_read(ufi->map);
1723	}
1724}
1725
1726/*
1727 * uvmfault_unlockall: unlock everything passed in.
1728 *
1729 * => maps must be read-locked (not write-locked).
1730 */
1731void
1732uvmfault_unlockall(struct uvm_faultinfo *ufi, struct vm_amap *amap,
1733    struct uvm_object *uobj)
1734{
1735	if (uobj)
1736		rw_exit(uobj->vmobjlock);
1737	if (amap != NULL)
1738		amap_unlock(amap);
1739	uvmfault_unlockmaps(ufi, FALSE);
1740}
1741
1742/*
1743 * uvmfault_lookup: lookup a virtual address in a map
1744 *
1745 * => caller must provide a uvm_faultinfo structure with the IN
1746 *	params properly filled in
1747 * => we will lookup the map entry (handling submaps) as we go
1748 * => if the lookup is a success we will return with the maps locked
1749 * => if "write_lock" is TRUE, we write_lock the map, otherwise we only
1750 *	get a read lock.
1751 * => note that submaps can only appear in the kernel and they are
1752 *	required to use the same virtual addresses as the map they
1753 *	are referenced by (thus address translation between the main
1754 *	map and the submap is unnecessary).
1755 */
1756
1757boolean_t
1758uvmfault_lookup(struct uvm_faultinfo *ufi, boolean_t write_lock)
1759{
1760	vm_map_t tmpmap;
1761
1762	/*
1763	 * init ufi values for lookup.
1764	 */
1765	ufi->map = ufi->orig_map;
1766	ufi->size = ufi->orig_size;
1767
1768	/*
1769	 * keep going down levels until we are done.   note that there can
1770	 * only be two levels so we won't loop very long.
1771	 */
1772	while (1) {
1773		if (ufi->orig_rvaddr < ufi->map->min_offset ||
1774		    ufi->orig_rvaddr >= ufi->map->max_offset)
1775			return FALSE;
1776
1777		/* lock map */
1778		if (write_lock) {
1779			vm_map_lock(ufi->map);
1780		} else {
1781			vm_map_lock_read(ufi->map);
1782		}
1783
1784		/* lookup */
1785		if (!uvm_map_lookup_entry(ufi->map, ufi->orig_rvaddr,
1786		    &ufi->entry)) {
1787			uvmfault_unlockmaps(ufi, write_lock);
1788			return FALSE;
1789		}
1790
1791		/* reduce size if necessary */
1792		if (ufi->entry->end - ufi->orig_rvaddr < ufi->size)
1793			ufi->size = ufi->entry->end - ufi->orig_rvaddr;
1794
1795		/*
1796		 * submap?    replace map with the submap and lookup again.
1797		 * note: VAs in submaps must match VAs in main map.
1798		 */
1799		if (UVM_ET_ISSUBMAP(ufi->entry)) {
1800			tmpmap = ufi->entry->object.sub_map;
1801			uvmfault_unlockmaps(ufi, write_lock);
1802			ufi->map = tmpmap;
1803			continue;
1804		}
1805
1806		/*
1807		 * got it!
1808		 */
1809		ufi->mapv = ufi->map->timestamp;
1810		return TRUE;
1811
1812	}	/* while loop */
1813
1814	/*NOTREACHED*/
1815}
1816
1817/*
1818 * uvmfault_relock: attempt to relock the same version of the map
1819 *
1820 * => fault data structures should be unlocked before calling.
1821 * => if a success (TRUE) maps will be locked after call.
1822 */
1823boolean_t
1824uvmfault_relock(struct uvm_faultinfo *ufi)
1825{
1826	/*
1827	 * ufi can be NULL when this isn't really a fault,
1828	 * but merely paging in anon data.
1829	 */
1830	if (ufi == NULL) {
1831		return TRUE;
1832	}
1833
1834	counters_inc(uvmexp_counters, flt_relck);
1835
1836	/*
1837	 * relock map.   fail if version mismatch (in which case nothing
1838	 * gets locked).
1839	 */
1840	vm_map_lock_read(ufi->map);
1841	if (ufi->mapv != ufi->map->timestamp) {
1842		vm_map_unlock_read(ufi->map);
1843		return FALSE;
1844	}
1845
1846	counters_inc(uvmexp_counters, flt_relckok);
1847	return TRUE;		/* got it! */
1848}
1849