1/*	$OpenBSD: sdhc.c,v 1.76 2023/10/01 08:56:24 kettenis Exp $	*/
2
3/*
4 * Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19/*
20 * SD Host Controller driver based on the SD Host Controller Standard
21 * Simplified Specification Version 1.00 (www.sdcard.org).
22 */
23
24#include <sys/param.h>
25#include <sys/device.h>
26#include <sys/kernel.h>
27#include <sys/malloc.h>
28#include <sys/proc.h>
29#include <sys/systm.h>
30#include <sys/time.h>
31
32#include <dev/sdmmc/sdhcreg.h>
33#include <dev/sdmmc/sdhcvar.h>
34#include <dev/sdmmc/sdmmcchip.h>
35#include <dev/sdmmc/sdmmcreg.h>
36#include <dev/sdmmc/sdmmcvar.h>
37#include <dev/sdmmc/sdmmc_ioreg.h>
38
39/* Timeouts in seconds */
40#define SDHC_COMMAND_TIMEOUT	1
41#define SDHC_BUFFER_TIMEOUT	1
42#define SDHC_TRANSFER_TIMEOUT	1
43#define SDHC_DMA_TIMEOUT	3
44
45struct sdhc_host {
46	struct sdhc_softc *sc;		/* host controller device */
47	struct device *sdmmc;		/* generic SD/MMC device */
48	bus_space_tag_t iot;		/* host register set tag */
49	bus_space_handle_t ioh;		/* host register set handle */
50	u_int16_t version;		/* specification version */
51	u_int clkbase;			/* base clock frequency in KHz */
52	int maxblklen;			/* maximum block length */
53	int flags;			/* flags for this host */
54	u_int32_t ocr;			/* OCR value from capabilities */
55	u_int8_t regs[14];		/* host controller state */
56	u_int16_t intr_status;		/* soft interrupt status */
57	u_int16_t intr_error_status;	/* soft error status */
58
59	bus_dmamap_t adma_map;
60	bus_dma_segment_t adma_segs[1];
61	caddr_t adma2;
62
63	uint16_t block_size;
64	uint16_t block_count;
65	uint16_t transfer_mode;
66};
67
68/* flag values */
69#define SHF_USE_DMA		0x0001
70#define SHF_USE_DMA64		0x0002
71#define SHF_USE_32BIT_ACCESS	0x0004
72
73#define HREAD1(hp, reg)							\
74	(sdhc_read_1((hp), (reg)))
75#define HREAD2(hp, reg)							\
76	(sdhc_read_2((hp), (reg)))
77#define HREAD4(hp, reg)							\
78	(bus_space_read_4((hp)->iot, (hp)->ioh, (reg)))
79#define HWRITE1(hp, reg, val)						\
80	sdhc_write_1((hp), (reg), (val))
81#define HWRITE2(hp, reg, val)						\
82	sdhc_write_2((hp), (reg), (val))
83#define HWRITE4(hp, reg, val)						\
84	bus_space_write_4((hp)->iot, (hp)->ioh, (reg), (val))
85#define HCLR1(hp, reg, bits)						\
86	HWRITE1((hp), (reg), HREAD1((hp), (reg)) & ~(bits))
87#define HCLR2(hp, reg, bits)						\
88	HWRITE2((hp), (reg), HREAD2((hp), (reg)) & ~(bits))
89#define HSET1(hp, reg, bits)						\
90	HWRITE1((hp), (reg), HREAD1((hp), (reg)) | (bits))
91#define HSET2(hp, reg, bits)						\
92	HWRITE2((hp), (reg), HREAD2((hp), (reg)) | (bits))
93
94int	sdhc_host_reset(sdmmc_chipset_handle_t);
95u_int32_t sdhc_host_ocr(sdmmc_chipset_handle_t);
96int	sdhc_host_maxblklen(sdmmc_chipset_handle_t);
97int	sdhc_card_detect(sdmmc_chipset_handle_t);
98int	sdhc_bus_power(sdmmc_chipset_handle_t, u_int32_t);
99int	sdhc_bus_clock(sdmmc_chipset_handle_t, int, int);
100int	sdhc_bus_width(sdmmc_chipset_handle_t, int);
101void	sdhc_card_intr_mask(sdmmc_chipset_handle_t, int);
102void	sdhc_card_intr_ack(sdmmc_chipset_handle_t);
103int	sdhc_signal_voltage(sdmmc_chipset_handle_t, int);
104void	sdhc_exec_command(sdmmc_chipset_handle_t, struct sdmmc_command *);
105int	sdhc_start_command(struct sdhc_host *, struct sdmmc_command *);
106int	sdhc_wait_state(struct sdhc_host *, u_int32_t, u_int32_t);
107int	sdhc_soft_reset(struct sdhc_host *, int);
108int	sdhc_wait_intr_cold(struct sdhc_host *, int, int);
109int	sdhc_wait_intr(struct sdhc_host *, int, int);
110void	sdhc_transfer_data(struct sdhc_host *, struct sdmmc_command *);
111void	sdhc_read_data(struct sdhc_host *, u_char *, int);
112void	sdhc_write_data(struct sdhc_host *, u_char *, int);
113int	sdhc_hibernate_init(sdmmc_chipset_handle_t, void *);
114
115#ifdef SDHC_DEBUG
116int sdhcdebug = 0;
117#define DPRINTF(n,s)	do { if ((n) <= sdhcdebug) printf s; } while (0)
118void	sdhc_dump_regs(struct sdhc_host *);
119#else
120#define DPRINTF(n,s)	do {} while(0)
121#endif
122
123struct sdmmc_chip_functions sdhc_functions = {
124	.host_reset = sdhc_host_reset,
125	.host_ocr = sdhc_host_ocr,
126	.host_maxblklen = sdhc_host_maxblklen,
127	.card_detect = sdhc_card_detect,
128	.bus_power = sdhc_bus_power,
129	.bus_clock = sdhc_bus_clock,
130	.bus_width = sdhc_bus_width,
131	.exec_command = sdhc_exec_command,
132	.card_intr_mask = sdhc_card_intr_mask,
133	.card_intr_ack = sdhc_card_intr_ack,
134	.signal_voltage = sdhc_signal_voltage,
135	.hibernate_init = sdhc_hibernate_init,
136};
137
138struct cfdriver sdhc_cd = {
139	NULL, "sdhc", DV_DULL
140};
141
142/*
143 * Some controllers live on a bus that only allows 32-bit
144 * transactions.  In that case we use a RMW cycle for 8-bit and 16-bit
145 * register writes.  However that doesn't work for the Transfer Mode
146 * register as this register lives in the same 32-bit word as the
147 * Command register and writing the Command register triggers SD
148 * command generation.  We avoid this issue by using a shadow variable
149 * for the Transfer Mode register that we write out when we write the
150 * Command register.
151 *
152 * The Arasan controller integrated on the Broadcom SoCs
153 * used in the Raspberry Pi has an interesting bug where writing the
154 * same 32-bit register twice doesn't work.  This means that we lose
155 * writes to the Block Sine and/or Block Count register.  We work
156 * around that issue by using shadow variables as well.
157 */
158
159uint8_t
160sdhc_read_1(struct sdhc_host *hp, bus_size_t offset)
161{
162	uint32_t reg;
163
164	if (hp->flags & SHF_USE_32BIT_ACCESS) {
165		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3);
166		return (reg >> ((offset & 3) * 8)) & 0xff;
167	}
168
169	return bus_space_read_1(hp->iot, hp->ioh, offset);
170}
171
172uint16_t
173sdhc_read_2(struct sdhc_host *hp, bus_size_t offset)
174{
175	uint32_t reg;
176
177	if (hp->flags & SHF_USE_32BIT_ACCESS) {
178		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2);
179		return (reg >> ((offset & 2) * 8)) & 0xffff;
180	}
181
182	return bus_space_read_2(hp->iot, hp->ioh, offset);
183}
184
185void
186sdhc_write_1(struct sdhc_host *hp, bus_size_t offset, uint8_t value)
187{
188	uint32_t reg;
189
190	if (hp->flags & SHF_USE_32BIT_ACCESS) {
191		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~3);
192		reg &= ~(0xff << ((offset & 3) * 8));
193		reg |= (value << ((offset & 3) * 8));
194		bus_space_write_4(hp->iot, hp->ioh, offset & ~3, reg);
195		return;
196	}
197
198	bus_space_write_1(hp->iot, hp->ioh, offset, value);
199}
200
201void
202sdhc_write_2(struct sdhc_host *hp, bus_size_t offset, uint16_t value)
203{
204	uint32_t reg;
205
206	if (hp->flags & SHF_USE_32BIT_ACCESS) {
207		switch (offset) {
208		case SDHC_BLOCK_SIZE:
209			hp->block_size = value;
210			return;
211		case SDHC_BLOCK_COUNT:
212			hp->block_count = value;
213			return;
214		case SDHC_TRANSFER_MODE:
215			hp->transfer_mode = value;
216			return;
217		case SDHC_COMMAND:
218			bus_space_write_4(hp->iot, hp->ioh, SDHC_BLOCK_SIZE,
219			    (hp->block_count << 16) | hp->block_size);
220			bus_space_write_4(hp->iot, hp->ioh, SDHC_TRANSFER_MODE,
221			    (value << 16) | hp->transfer_mode);
222			return;
223		}
224
225		reg = bus_space_read_4(hp->iot, hp->ioh, offset & ~2);
226		reg &= ~(0xffff << ((offset & 2) * 8));
227		reg |= (value << ((offset & 2) * 8));
228		bus_space_write_4(hp->iot, hp->ioh, offset & ~2, reg);
229		return;
230	}
231
232	bus_space_write_2(hp->iot, hp->ioh, offset, value);
233}
234
235/*
236 * Called by attachment driver.  For each SD card slot there is one SD
237 * host controller standard register set. (1.3)
238 */
239int
240sdhc_host_found(struct sdhc_softc *sc, bus_space_tag_t iot,
241    bus_space_handle_t ioh, bus_size_t iosize, int usedma, uint64_t capmask,
242    uint64_t capset)
243{
244	struct sdmmcbus_attach_args saa;
245	struct sdhc_host *hp;
246	uint32_t caps;
247	int major, minor;
248	int error = 1;
249	int max_clock;
250
251	/* Allocate one more host structure. */
252	sc->sc_nhosts++;
253	hp = malloc(sizeof(*hp), M_DEVBUF, M_WAITOK | M_ZERO);
254	sc->sc_host[sc->sc_nhosts - 1] = hp;
255
256	if (ISSET(sc->sc_flags, SDHC_F_32BIT_ACCESS))
257		SET(hp->flags, SHF_USE_32BIT_ACCESS);
258
259	/* Fill in the new host structure. */
260	hp->sc = sc;
261	hp->iot = iot;
262	hp->ioh = ioh;
263
264	/* Store specification version. */
265	hp->version = HREAD2(hp, SDHC_HOST_CTL_VERSION);
266
267	/*
268	 * Reset the host controller and enable interrupts.
269	 */
270	(void)sdhc_host_reset(hp);
271
272	/* Determine host capabilities. */
273	caps = HREAD4(hp, SDHC_CAPABILITIES);
274	caps &= ~capmask;
275	caps |= capset;
276
277	/* Use DMA if the host system and the controller support it. */
278	if (usedma && ISSET(caps, SDHC_ADMA2_SUPP)) {
279		SET(hp->flags, SHF_USE_DMA);
280		if (ISSET(caps, SDHC_64BIT_DMA_SUPP))
281			SET(hp->flags, SHF_USE_DMA64);
282	}
283
284	/*
285	 * Determine the base clock frequency. (2.2.24)
286	 */
287	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
288		/* SDHC 3.0 supports 10-255 MHz. */
289		max_clock = 255000;
290		if (SDHC_BASE_FREQ_KHZ_V3(caps) != 0)
291			hp->clkbase = SDHC_BASE_FREQ_KHZ_V3(caps);
292	} else {
293		/* SDHC 1.0/2.0 supports only 10-63 MHz. */
294		max_clock = 63000;
295		if (SDHC_BASE_FREQ_KHZ(caps) != 0)
296			hp->clkbase = SDHC_BASE_FREQ_KHZ(caps);
297	}
298	if (hp->clkbase == 0) {
299		/* Make sure we can clock down to 400 kHz. */
300		max_clock = 400 * SDHC_SDCLK_DIV_MAX_V3;
301		hp->clkbase = sc->sc_clkbase;
302	}
303	if (hp->clkbase == 0) {
304		/* The attachment driver must tell us. */
305		printf("%s: base clock frequency unknown\n",
306		    sc->sc_dev.dv_xname);
307		goto err;
308	} else if (hp->clkbase < 10000 || hp->clkbase > max_clock) {
309		printf("%s: base clock frequency out of range: %u MHz\n",
310		    sc->sc_dev.dv_xname, hp->clkbase / 1000);
311		goto err;
312	}
313
314	switch (SDHC_SPEC_VERSION(hp->version)) {
315	case SDHC_SPEC_VERS_4_10:
316		major = 4, minor = 10;
317		break;
318	case SDHC_SPEC_VERS_4_20:
319		major = 4, minor = 20;
320		break;
321	default:
322		major = SDHC_SPEC_VERSION(hp->version) + 1, minor = 0;
323		break;
324	}
325
326	printf("%s: SDHC %d.%02d, %d MHz base clock\n", DEVNAME(sc),
327	    major, minor, hp->clkbase / 1000);
328
329	/*
330	 * XXX Set the data timeout counter value according to
331	 * capabilities. (2.2.15)
332	 */
333
334	/*
335	 * Determine SD bus voltage levels supported by the controller.
336	 */
337	if (ISSET(caps, SDHC_VOLTAGE_SUPP_1_8V))
338		SET(hp->ocr, MMC_OCR_1_65V_1_95V);
339	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_0V))
340		SET(hp->ocr, MMC_OCR_2_9V_3_0V | MMC_OCR_3_0V_3_1V);
341	if (ISSET(caps, SDHC_VOLTAGE_SUPP_3_3V))
342		SET(hp->ocr, MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V);
343
344	/*
345	 * Determine the maximum block length supported by the host
346	 * controller. (2.2.24)
347	 */
348	switch((caps >> SDHC_MAX_BLK_LEN_SHIFT) & SDHC_MAX_BLK_LEN_MASK) {
349	case SDHC_MAX_BLK_LEN_512:
350		hp->maxblklen = 512;
351		break;
352	case SDHC_MAX_BLK_LEN_1024:
353		hp->maxblklen = 1024;
354		break;
355	case SDHC_MAX_BLK_LEN_2048:
356		hp->maxblklen = 2048;
357		break;
358	default:
359		hp->maxblklen = 1;
360		break;
361	}
362
363	if (ISSET(hp->flags, SHF_USE_DMA)) {
364		int rseg;
365
366		/* Allocate ADMA2 descriptor memory */
367		error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
368		    PAGE_SIZE, hp->adma_segs, 1, &rseg,
369		    BUS_DMA_WAITOK | BUS_DMA_ZERO);
370		if (error)
371			goto adma_done;
372		error = bus_dmamem_map(sc->sc_dmat, hp->adma_segs, rseg,
373		    PAGE_SIZE, &hp->adma2, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
374		if (error) {
375			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
376			goto adma_done;
377		}
378		error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
379		    0, BUS_DMA_WAITOK, &hp->adma_map);
380		if (error) {
381			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
382			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
383			goto adma_done;
384		}
385		error = bus_dmamap_load(sc->sc_dmat, hp->adma_map,
386		    hp->adma2, PAGE_SIZE, NULL,
387		    BUS_DMA_WAITOK | BUS_DMA_WRITE);
388		if (error) {
389			bus_dmamap_destroy(sc->sc_dmat, hp->adma_map);
390			bus_dmamem_unmap(sc->sc_dmat, hp->adma2, PAGE_SIZE);
391			bus_dmamem_free(sc->sc_dmat, hp->adma_segs, rseg);
392			goto adma_done;
393		}
394
395	adma_done:
396		if (error) {
397			printf("%s: can't allocate DMA descriptor table\n",
398			    DEVNAME(hp->sc));
399			CLR(hp->flags, SHF_USE_DMA);
400		}
401	}
402
403	/*
404	 * Attach the generic SD/MMC bus driver.  (The bus driver must
405	 * not invoke any chipset functions before it is attached.)
406	 */
407	bzero(&saa, sizeof(saa));
408	saa.saa_busname = "sdmmc";
409	saa.sct = &sdhc_functions;
410	saa.sch = hp;
411	saa.caps = SMC_CAPS_4BIT_MODE;
412	saa.dmat = sc->sc_dmat;
413	saa.dma_boundary = sc->sc_dma_boundary;
414	if (ISSET(hp->flags, SHF_USE_DMA))
415		saa.caps |= SMC_CAPS_DMA;
416
417	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
418		saa.caps |= SMC_CAPS_SD_HIGHSPEED;
419	if (ISSET(caps, SDHC_HIGH_SPEED_SUPP))
420		saa.caps |= SMC_CAPS_MMC_HIGHSPEED;
421
422	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
423		uint32_t caps2 = HREAD4(hp, SDHC_CAPABILITIES2);
424		caps2 &= ~(capmask >> 32);
425		caps2 |= capset >> 32;
426
427		if (ISSET(caps, SDHC_8BIT_MODE_SUPP))
428			saa.caps |= SMC_CAPS_8BIT_MODE;
429
430		if (ISSET(caps2, SDHC_DDR50_SUPP))
431			saa.caps |= SMC_CAPS_MMC_DDR52;
432	}
433
434	if (ISSET(sc->sc_flags, SDHC_F_NONREMOVABLE))
435		saa.caps |= SMC_CAPS_NONREMOVABLE;
436
437	hp->sdmmc = config_found(&sc->sc_dev, &saa, NULL);
438	if (hp->sdmmc == NULL) {
439		error = 0;
440		goto err;
441	}
442
443	return 0;
444
445err:
446	free(hp, M_DEVBUF, sizeof *hp);
447	sc->sc_host[sc->sc_nhosts - 1] = NULL;
448	sc->sc_nhosts--;
449	return (error);
450}
451
452int
453sdhc_activate(struct device *self, int act)
454{
455	struct sdhc_softc *sc = (struct sdhc_softc *)self;
456	struct sdhc_host *hp;
457	int n, i, rv = 0;
458
459	switch (act) {
460	case DVACT_SUSPEND:
461		rv = config_activate_children(self, act);
462
463		/* Save the host controller state. */
464		for (n = 0; n < sc->sc_nhosts; n++) {
465			hp = sc->sc_host[n];
466			for (i = 0; i < sizeof hp->regs; i++)
467				hp->regs[i] = HREAD1(hp, i);
468		}
469		break;
470	case DVACT_RESUME:
471		/* Restore the host controller state. */
472		for (n = 0; n < sc->sc_nhosts; n++) {
473			hp = sc->sc_host[n];
474			(void)sdhc_host_reset(hp);
475			for (i = 0; i < sizeof hp->regs; i++)
476				HWRITE1(hp, i, hp->regs[i]);
477		}
478		rv = config_activate_children(self, act);
479		break;
480	case DVACT_POWERDOWN:
481		rv = config_activate_children(self, act);
482		sdhc_shutdown(self);
483		break;
484	default:
485		rv = config_activate_children(self, act);
486		break;
487	}
488	return (rv);
489}
490
491/*
492 * Shutdown hook established by or called from attachment driver.
493 */
494void
495sdhc_shutdown(void *arg)
496{
497	struct sdhc_softc *sc = arg;
498	struct sdhc_host *hp;
499	int i;
500
501	/* XXX chip locks up if we don't disable it before reboot. */
502	for (i = 0; i < sc->sc_nhosts; i++) {
503		hp = sc->sc_host[i];
504		(void)sdhc_host_reset(hp);
505	}
506}
507
508/*
509 * Reset the host controller.  Called during initialization, when
510 * cards are removed, upon resume, and during error recovery.
511 */
512int
513sdhc_host_reset(sdmmc_chipset_handle_t sch)
514{
515	struct sdhc_host *hp = sch;
516	u_int16_t imask;
517	int error;
518	int s;
519
520	s = splsdmmc();
521
522	/* Disable all interrupts. */
523	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, 0);
524
525	/*
526	 * Reset the entire host controller and wait up to 100ms for
527	 * the controller to clear the reset bit.
528	 */
529	if ((error = sdhc_soft_reset(hp, SDHC_RESET_ALL)) != 0) {
530		splx(s);
531		return (error);
532	}
533
534	/* Set data timeout counter value to max for now. */
535	HWRITE1(hp, SDHC_TIMEOUT_CTL, SDHC_TIMEOUT_MAX);
536
537	/* Enable interrupts. */
538	imask = SDHC_CARD_REMOVAL | SDHC_CARD_INSERTION |
539	    SDHC_BUFFER_READ_READY | SDHC_BUFFER_WRITE_READY |
540	    SDHC_DMA_INTERRUPT | SDHC_BLOCK_GAP_EVENT |
541	    SDHC_TRANSFER_COMPLETE | SDHC_COMMAND_COMPLETE;
542
543	HWRITE2(hp, SDHC_NINTR_STATUS_EN, imask);
544	HWRITE2(hp, SDHC_EINTR_STATUS_EN, SDHC_EINTR_STATUS_MASK);
545	HWRITE2(hp, SDHC_NINTR_SIGNAL_EN, imask);
546	HWRITE2(hp, SDHC_EINTR_SIGNAL_EN, SDHC_EINTR_SIGNAL_MASK);
547
548	splx(s);
549	return 0;
550}
551
552u_int32_t
553sdhc_host_ocr(sdmmc_chipset_handle_t sch)
554{
555	struct sdhc_host *hp = sch;
556	return hp->ocr;
557}
558
559int
560sdhc_host_maxblklen(sdmmc_chipset_handle_t sch)
561{
562	struct sdhc_host *hp = sch;
563	return hp->maxblklen;
564}
565
566/*
567 * Return non-zero if the card is currently inserted.
568 */
569int
570sdhc_card_detect(sdmmc_chipset_handle_t sch)
571{
572	struct sdhc_host *hp = sch;
573
574	if (hp->sc->sc_card_detect)
575		return hp->sc->sc_card_detect(hp->sc);
576
577	return ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CARD_INSERTED) ?
578	    1 : 0;
579}
580
581/*
582 * Set or change SD bus voltage and enable or disable SD bus power.
583 * Return zero on success.
584 */
585int
586sdhc_bus_power(sdmmc_chipset_handle_t sch, u_int32_t ocr)
587{
588	struct sdhc_host *hp = sch;
589	u_int8_t vdd;
590	int s;
591
592	s = splsdmmc();
593
594	/*
595	 * Disable bus power before voltage change.
596	 */
597	if (!(hp->sc->sc_flags & SDHC_F_NOPWR0))
598		HWRITE1(hp, SDHC_POWER_CTL, 0);
599
600	/* If power is disabled, reset the host and return now. */
601	if (ocr == 0) {
602		splx(s);
603		(void)sdhc_host_reset(hp);
604		return 0;
605	}
606
607	/*
608	 * Select the maximum voltage according to capabilities.
609	 */
610	ocr &= hp->ocr;
611	if (ISSET(ocr, MMC_OCR_3_2V_3_3V|MMC_OCR_3_3V_3_4V))
612		vdd = SDHC_VOLTAGE_3_3V;
613	else if (ISSET(ocr, MMC_OCR_2_9V_3_0V|MMC_OCR_3_0V_3_1V))
614		vdd = SDHC_VOLTAGE_3_0V;
615	else if (ISSET(ocr, MMC_OCR_1_65V_1_95V))
616		vdd = SDHC_VOLTAGE_1_8V;
617	else {
618		/* Unsupported voltage level requested. */
619		splx(s);
620		return EINVAL;
621	}
622
623	/*
624	 * Enable bus power.  Wait at least 1 ms (or 74 clocks) plus
625	 * voltage ramp until power rises.
626	 */
627	HWRITE1(hp, SDHC_POWER_CTL, (vdd << SDHC_VOLTAGE_SHIFT) |
628	    SDHC_BUS_POWER);
629	sdmmc_delay(10000);
630
631	/*
632	 * The host system may not power the bus due to battery low,
633	 * etc.  In that case, the host controller should clear the
634	 * bus power bit.
635	 */
636	if (!ISSET(HREAD1(hp, SDHC_POWER_CTL), SDHC_BUS_POWER)) {
637		splx(s);
638		return ENXIO;
639	}
640
641	splx(s);
642	return 0;
643}
644
645/*
646 * Return the smallest possible base clock frequency divisor value
647 * for the CLOCK_CTL register to produce `freq' (KHz).
648 */
649static int
650sdhc_clock_divisor(struct sdhc_host *hp, u_int freq)
651{
652	int div;
653
654	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
655		if (hp->clkbase <= freq)
656			return 0;
657
658		for (div = 2; div <= SDHC_SDCLK_DIV_MAX_V3; div += 2)
659			if ((hp->clkbase / div) <= freq)
660				return (div / 2);
661	} else {
662		for (div = 1; div <= SDHC_SDCLK_DIV_MAX; div *= 2)
663			if ((hp->clkbase / div) <= freq)
664				return (div / 2);
665	}
666
667	/* No divisor found. */
668	return -1;
669}
670
671/*
672 * Set or change SDCLK frequency or disable the SD clock.
673 * Return zero on success.
674 */
675int
676sdhc_bus_clock(sdmmc_chipset_handle_t sch, int freq, int timing)
677{
678	struct sdhc_host *hp = sch;
679	struct sdhc_softc *sc = hp->sc;
680	int s;
681	int div;
682	int sdclk;
683	int timo;
684	int error = 0;
685
686	s = splsdmmc();
687
688	if (hp->sc->sc_bus_clock_pre)
689		hp->sc->sc_bus_clock_pre(hp->sc, freq, timing);
690
691#ifdef DIAGNOSTIC
692	/* Must not stop the clock if commands are in progress. */
693	if (ISSET(HREAD4(hp, SDHC_PRESENT_STATE), SDHC_CMD_INHIBIT_MASK) &&
694	    sdhc_card_detect(hp))
695		printf("sdhc_sdclk_frequency_select: command in progress\n");
696#endif
697
698	/*
699	 * Stop SD clock before changing the frequency.
700	 */
701	HWRITE2(hp, SDHC_CLOCK_CTL, 0);
702	if (freq == SDMMC_SDCLK_OFF)
703		goto ret;
704
705	if (!ISSET(sc->sc_flags, SDHC_F_NO_HS_BIT)) {
706		if (timing == SDMMC_TIMING_LEGACY)
707			HCLR1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
708		else
709			HSET1(hp, SDHC_HOST_CTL, SDHC_HIGH_SPEED);
710	}
711
712	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
713		switch (timing) {
714		case SDMMC_TIMING_MMC_DDR52:
715			HCLR2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_MASK);
716			HSET2(hp, SDHC_HOST_CTL2, SDHC_UHS_MODE_SELECT_DDR50);
717			break;
718		}
719	}
720
721	/*
722	 * Set the minimum base clock frequency divisor.
723	 */
724	if ((div = sdhc_clock_divisor(hp, freq)) < 0) {
725		/* Invalid base clock frequency or `freq' value. */
726		error = EINVAL;
727		goto ret;
728	}
729	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3)
730		sdclk = SDHC_SDCLK_DIV_V3(div);
731	else
732		sdclk = SDHC_SDCLK_DIV(div);
733	HWRITE2(hp, SDHC_CLOCK_CTL, sdclk);
734
735	/*
736	 * Start internal clock.  Wait 10ms for stabilization.
737	 */
738	HSET2(hp, SDHC_CLOCK_CTL, SDHC_INTCLK_ENABLE);
739	for (timo = 1000; timo > 0; timo--) {
740		if (ISSET(HREAD2(hp, SDHC_CLOCK_CTL), SDHC_INTCLK_STABLE))
741			break;
742		sdmmc_delay(10);
743	}
744	if (timo == 0) {
745		error = ETIMEDOUT;
746		goto ret;
747	}
748
749	/*
750	 * Enable SD clock.
751	 */
752	HSET2(hp, SDHC_CLOCK_CTL, SDHC_SDCLK_ENABLE);
753
754	if (hp->sc->sc_bus_clock_post)
755		hp->sc->sc_bus_clock_post(hp->sc, freq, timing);
756
757ret:
758	splx(s);
759	return error;
760}
761
762int
763sdhc_bus_width(sdmmc_chipset_handle_t sch, int width)
764{
765	struct sdhc_host *hp = (struct sdhc_host *)sch;
766	int reg;
767	int s;
768
769	if (width != 1 && width != 4 && width != 8)
770		return EINVAL;
771
772	s = splsdmmc();
773
774	reg = HREAD1(hp, SDHC_HOST_CTL);
775	reg &= ~SDHC_4BIT_MODE;
776	if (SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3) {
777		reg &= ~SDHC_8BIT_MODE;
778	}
779	if (width == 4) {
780		reg |= SDHC_4BIT_MODE;
781	} else if (width == 8) {
782		KASSERT(SDHC_SPEC_VERSION(hp->version) >= SDHC_SPEC_V3);
783		reg |= SDHC_8BIT_MODE;
784	}
785	HWRITE1(hp, SDHC_HOST_CTL, reg);
786
787	splx(s);
788
789	return 0;
790}
791
792void
793sdhc_card_intr_mask(sdmmc_chipset_handle_t sch, int enable)
794{
795	struct sdhc_host *hp = sch;
796
797	if (enable) {
798		HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
799		HSET2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
800	} else {
801		HCLR2(hp, SDHC_NINTR_SIGNAL_EN, SDHC_CARD_INTERRUPT);
802		HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
803	}
804}
805
806void
807sdhc_card_intr_ack(sdmmc_chipset_handle_t sch)
808{
809	struct sdhc_host *hp = sch;
810
811	HSET2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
812}
813
814int
815sdhc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
816{
817	struct sdhc_host *hp = sch;
818
819	if (hp->sc->sc_signal_voltage)
820		return hp->sc->sc_signal_voltage(hp->sc, signal_voltage);
821
822	if (SDHC_SPEC_VERSION(hp->version) < SDHC_SPEC_V3)
823		return EINVAL;
824
825	switch (signal_voltage) {
826	case SDMMC_SIGNAL_VOLTAGE_180:
827		HSET2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
828		break;
829	case SDMMC_SIGNAL_VOLTAGE_330:
830		HCLR2(hp, SDHC_HOST_CTL2, SDHC_1_8V_SIGNAL_EN);
831		break;
832	default:
833		return EINVAL;
834	}
835
836	/* Regulator output shall be stable within 5 ms. */
837	sdmmc_delay(5000);
838
839	/* Host controller clears this bit if 1.8V signalling fails. */
840	if (signal_voltage == SDMMC_SIGNAL_VOLTAGE_180 &&
841	    !ISSET(HREAD2(hp, SDHC_HOST_CTL2), SDHC_1_8V_SIGNAL_EN))
842		return EIO;
843
844	return 0;
845}
846
847int
848sdhc_wait_state(struct sdhc_host *hp, u_int32_t mask, u_int32_t value)
849{
850	u_int32_t state;
851	int timeout;
852
853	for (timeout = 10; timeout > 0; timeout--) {
854		if (((state = HREAD4(hp, SDHC_PRESENT_STATE)) & mask)
855		    == value)
856			return 0;
857		sdmmc_delay(10000);
858	}
859	DPRINTF(0,("%s: timeout waiting for %x (state=%b)\n", DEVNAME(hp->sc),
860	    value, state, SDHC_PRESENT_STATE_BITS));
861	return ETIMEDOUT;
862}
863
864void
865sdhc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
866{
867	struct sdhc_host *hp = sch;
868	int error;
869
870	/*
871	 * Start the MMC command, or mark `cmd' as failed and return.
872	 */
873	error = sdhc_start_command(hp, cmd);
874	if (error != 0) {
875		cmd->c_error = error;
876		SET(cmd->c_flags, SCF_ITSDONE);
877		return;
878	}
879
880	/*
881	 * Wait until the command phase is done, or until the command
882	 * is marked done for any other reason.
883	 */
884	if (!sdhc_wait_intr(hp, SDHC_COMMAND_COMPLETE,
885	    SDHC_COMMAND_TIMEOUT)) {
886		cmd->c_error = ETIMEDOUT;
887		SET(cmd->c_flags, SCF_ITSDONE);
888		return;
889	}
890
891	/*
892	 * The host controller removes bits [0:7] from the response
893	 * data (CRC) and we pass the data up unchanged to the bus
894	 * driver (without padding).
895	 */
896	if (cmd->c_error == 0 && ISSET(cmd->c_flags, SCF_RSP_PRESENT)) {
897		if (ISSET(cmd->c_flags, SCF_RSP_136)) {
898			u_char *p = (u_char *)cmd->c_resp;
899			int i;
900
901			for (i = 0; i < 15; i++)
902				*p++ = HREAD1(hp, SDHC_RESPONSE + i);
903		} else
904			cmd->c_resp[0] = HREAD4(hp, SDHC_RESPONSE);
905	}
906
907	/*
908	 * If the command has data to transfer in any direction,
909	 * execute the transfer now.
910	 */
911	if (cmd->c_error == 0 && cmd->c_data != NULL)
912		sdhc_transfer_data(hp, cmd);
913
914	/* Turn off the LED. */
915	HCLR1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
916
917	DPRINTF(1,("%s: cmd %u done (flags=%#x error=%d)\n",
918	    DEVNAME(hp->sc), cmd->c_opcode, cmd->c_flags, cmd->c_error));
919	SET(cmd->c_flags, SCF_ITSDONE);
920}
921
922int
923sdhc_start_command(struct sdhc_host *hp, struct sdmmc_command *cmd)
924{
925	struct sdhc_adma2_descriptor32 *desc32 = (void *)hp->adma2;
926	struct sdhc_adma2_descriptor64 *desc64 = (void *)hp->adma2;
927	struct sdhc_softc *sc = hp->sc;
928	u_int16_t blksize = 0;
929	u_int16_t blkcount = 0;
930	u_int16_t mode;
931	u_int16_t command;
932	int error;
933	int seg;
934	int s;
935
936	DPRINTF(1,("%s: start cmd %u arg=%#x data=%p dlen=%d flags=%#x\n",
937	    DEVNAME(hp->sc), cmd->c_opcode, cmd->c_arg, cmd->c_data,
938	    cmd->c_datalen, cmd->c_flags));
939
940	/*
941	 * The maximum block length for commands should be the minimum
942	 * of the host buffer size and the card buffer size. (1.7.2)
943	 */
944
945	/* Fragment the data into proper blocks. */
946	if (cmd->c_datalen > 0) {
947		blksize = MIN(cmd->c_datalen, cmd->c_blklen);
948		blkcount = cmd->c_datalen / blksize;
949		if (cmd->c_datalen % blksize > 0) {
950			/* XXX: Split this command. (1.7.4) */
951			printf("%s: data not a multiple of %d bytes\n",
952			    DEVNAME(hp->sc), blksize);
953			return EINVAL;
954		}
955	}
956
957	/* Check limit imposed by 9-bit block count. (1.7.2) */
958	if (blkcount > SDHC_BLOCK_COUNT_MAX) {
959		printf("%s: too much data\n", DEVNAME(hp->sc));
960		return EINVAL;
961	}
962
963	/* Prepare transfer mode register value. (2.2.5) */
964	mode = 0;
965	if (ISSET(cmd->c_flags, SCF_CMD_READ))
966		mode |= SDHC_READ_MODE;
967	if (blkcount > 0) {
968		mode |= SDHC_BLOCK_COUNT_ENABLE;
969		if (blkcount > 1) {
970			mode |= SDHC_MULTI_BLOCK_MODE;
971			if (cmd->c_opcode != SD_IO_RW_EXTENDED)
972				mode |= SDHC_AUTO_CMD12_ENABLE;
973		}
974	}
975	if (cmd->c_dmamap && cmd->c_datalen > 0 &&
976	    ISSET(hp->flags, SHF_USE_DMA))
977		mode |= SDHC_DMA_ENABLE;
978
979	/*
980	 * Prepare command register value. (2.2.6)
981	 */
982	command = (cmd->c_opcode & SDHC_COMMAND_INDEX_MASK) <<
983	    SDHC_COMMAND_INDEX_SHIFT;
984
985	if (ISSET(cmd->c_flags, SCF_RSP_CRC))
986		command |= SDHC_CRC_CHECK_ENABLE;
987	if (ISSET(cmd->c_flags, SCF_RSP_IDX))
988		command |= SDHC_INDEX_CHECK_ENABLE;
989	if (cmd->c_data != NULL)
990		command |= SDHC_DATA_PRESENT_SELECT;
991
992	if (!ISSET(cmd->c_flags, SCF_RSP_PRESENT))
993		command |= SDHC_NO_RESPONSE;
994	else if (ISSET(cmd->c_flags, SCF_RSP_136))
995		command |= SDHC_RESP_LEN_136;
996	else if (ISSET(cmd->c_flags, SCF_RSP_BSY))
997		command |= SDHC_RESP_LEN_48_CHK_BUSY;
998	else
999		command |= SDHC_RESP_LEN_48;
1000
1001	/* Wait until command and data inhibit bits are clear. (1.5) */
1002	if ((error = sdhc_wait_state(hp, SDHC_CMD_INHIBIT_MASK, 0)) != 0)
1003		return error;
1004
1005	s = splsdmmc();
1006
1007	/* Alert the user not to remove the card. */
1008	HSET1(hp, SDHC_HOST_CTL, SDHC_LED_ON);
1009
1010	/* Set DMA start address if SHF_USE_DMA is set. */
1011	if (cmd->c_dmamap && ISSET(hp->flags, SHF_USE_DMA)) {
1012		for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) {
1013			bus_addr_t paddr =
1014			    cmd->c_dmamap->dm_segs[seg].ds_addr;
1015			uint16_t len =
1016			    cmd->c_dmamap->dm_segs[seg].ds_len == 65536 ?
1017			    0 : cmd->c_dmamap->dm_segs[seg].ds_len;
1018			uint16_t attr;
1019
1020			attr = SDHC_ADMA2_VALID | SDHC_ADMA2_ACT_TRANS;
1021			if (seg == cmd->c_dmamap->dm_nsegs - 1)
1022				attr |= SDHC_ADMA2_END;
1023
1024			if (ISSET(hp->flags, SHF_USE_DMA64)) {
1025				desc64[seg].attribute = htole16(attr);
1026				desc64[seg].length = htole16(len);
1027				desc64[seg].address_lo =
1028				    htole32((uint64_t)paddr & 0xffffffff);
1029				desc64[seg].address_hi =
1030				    htole32((uint64_t)paddr >> 32);
1031			} else {
1032				desc32[seg].attribute = htole16(attr);
1033				desc32[seg].length = htole16(len);
1034				desc32[seg].address = htole32(paddr);
1035			}
1036		}
1037
1038		if (ISSET(hp->flags, SHF_USE_DMA64))
1039			desc64[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1040		else
1041			desc32[cmd->c_dmamap->dm_nsegs].attribute = htole16(0);
1042
1043		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1044		    BUS_DMASYNC_PREWRITE);
1045
1046		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1047		if (ISSET(hp->flags, SHF_USE_DMA64))
1048			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA64);
1049		else
1050			HSET1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT_ADMA32);
1051
1052		HWRITE4(hp, SDHC_ADMA_SYSTEM_ADDR,
1053		    hp->adma_map->dm_segs[0].ds_addr);
1054	} else
1055		HCLR1(hp, SDHC_HOST_CTL, SDHC_DMA_SELECT);
1056
1057	DPRINTF(1,("%s: cmd=%#x mode=%#x blksize=%d blkcount=%d\n",
1058	    DEVNAME(hp->sc), command, mode, blksize, blkcount));
1059
1060	/*
1061	 * Start a CPU data transfer.  Writing to the high order byte
1062	 * of the SDHC_COMMAND register triggers the SD command. (1.5)
1063	 */
1064	HWRITE2(hp, SDHC_TRANSFER_MODE, mode);
1065	HWRITE2(hp, SDHC_BLOCK_SIZE, blksize);
1066	HWRITE2(hp, SDHC_BLOCK_COUNT, blkcount);
1067	HWRITE4(hp, SDHC_ARGUMENT, cmd->c_arg);
1068	HWRITE2(hp, SDHC_COMMAND, command);
1069
1070	splx(s);
1071	return 0;
1072}
1073
1074void
1075sdhc_transfer_data(struct sdhc_host *hp, struct sdmmc_command *cmd)
1076{
1077	struct sdhc_softc *sc = hp->sc;
1078	u_char *datap = cmd->c_data;
1079	int i, datalen;
1080	int mask;
1081	int error;
1082
1083	if (cmd->c_dmamap) {
1084		int status;
1085
1086		error = 0;
1087		for (;;) {
1088			status = sdhc_wait_intr(hp,
1089			    SDHC_DMA_INTERRUPT|SDHC_TRANSFER_COMPLETE,
1090			    SDHC_DMA_TIMEOUT);
1091			if (status & SDHC_TRANSFER_COMPLETE)
1092				break;
1093			if (!status) {
1094				error = ETIMEDOUT;
1095				break;
1096			}
1097		}
1098
1099		bus_dmamap_sync(sc->sc_dmat, hp->adma_map, 0, PAGE_SIZE,
1100		    BUS_DMASYNC_POSTWRITE);
1101		goto done;
1102	}
1103
1104	mask = ISSET(cmd->c_flags, SCF_CMD_READ) ?
1105	    SDHC_BUFFER_READ_ENABLE : SDHC_BUFFER_WRITE_ENABLE;
1106	error = 0;
1107	datalen = cmd->c_datalen;
1108
1109	DPRINTF(1,("%s: resp=%#x datalen=%d\n", DEVNAME(hp->sc),
1110	    MMC_R1(cmd->c_resp), datalen));
1111
1112#ifdef SDHC_DEBUG
1113	/* XXX I forgot why I wanted to know when this happens :-( */
1114	if ((cmd->c_opcode == 52 || cmd->c_opcode == 53) &&
1115	    ISSET(MMC_R1(cmd->c_resp), 0xcb00))
1116		printf("%s: CMD52/53 error response flags %#x\n",
1117		    DEVNAME(hp->sc), MMC_R1(cmd->c_resp) & 0xff00);
1118#endif
1119
1120	while (datalen > 0) {
1121		if (!sdhc_wait_intr(hp, SDHC_BUFFER_READ_READY|
1122		    SDHC_BUFFER_WRITE_READY, SDHC_BUFFER_TIMEOUT)) {
1123			error = ETIMEDOUT;
1124			break;
1125		}
1126
1127		if ((error = sdhc_wait_state(hp, mask, mask)) != 0)
1128			break;
1129
1130		i = MIN(datalen, cmd->c_blklen);
1131		if (ISSET(cmd->c_flags, SCF_CMD_READ))
1132			sdhc_read_data(hp, datap, i);
1133		else
1134			sdhc_write_data(hp, datap, i);
1135
1136		datap += i;
1137		datalen -= i;
1138	}
1139
1140	if (error == 0 && !sdhc_wait_intr(hp, SDHC_TRANSFER_COMPLETE,
1141	    SDHC_TRANSFER_TIMEOUT))
1142		error = ETIMEDOUT;
1143
1144done:
1145	if (error != 0)
1146		cmd->c_error = error;
1147	SET(cmd->c_flags, SCF_ITSDONE);
1148
1149	DPRINTF(1,("%s: data transfer done (error=%d)\n",
1150	    DEVNAME(hp->sc), cmd->c_error));
1151}
1152
1153void
1154sdhc_read_data(struct sdhc_host *hp, u_char *datap, int datalen)
1155{
1156	while (datalen > 3) {
1157		*(u_int32_t *)datap = HREAD4(hp, SDHC_DATA);
1158		datap += 4;
1159		datalen -= 4;
1160	}
1161	if (datalen > 0) {
1162		u_int32_t rv = HREAD4(hp, SDHC_DATA);
1163		do {
1164			*datap++ = rv & 0xff;
1165			rv = rv >> 8;
1166		} while (--datalen > 0);
1167	}
1168}
1169
1170void
1171sdhc_write_data(struct sdhc_host *hp, u_char *datap, int datalen)
1172{
1173	while (datalen > 3) {
1174		DPRINTF(3,("%08x\n", *(u_int32_t *)datap));
1175		HWRITE4(hp, SDHC_DATA, *((u_int32_t *)datap));
1176		datap += 4;
1177		datalen -= 4;
1178	}
1179	if (datalen > 0) {
1180		u_int32_t rv = *datap++;
1181		if (datalen > 1)
1182			rv |= *datap++ << 8;
1183		if (datalen > 2)
1184			rv |= *datap++ << 16;
1185		DPRINTF(3,("rv %08x\n", rv));
1186		HWRITE4(hp, SDHC_DATA, rv);
1187	}
1188}
1189
1190/* Prepare for another command. */
1191int
1192sdhc_soft_reset(struct sdhc_host *hp, int mask)
1193{
1194	int timo;
1195
1196	DPRINTF(1,("%s: software reset reg=%#x\n", DEVNAME(hp->sc), mask));
1197
1198	HWRITE1(hp, SDHC_SOFTWARE_RESET, mask);
1199	for (timo = 10; timo > 0; timo--) {
1200		if (!ISSET(HREAD1(hp, SDHC_SOFTWARE_RESET), mask))
1201			break;
1202		sdmmc_delay(10000);
1203		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1204	}
1205	if (timo == 0) {
1206		DPRINTF(1,("%s: timeout reg=%#x\n", DEVNAME(hp->sc),
1207		    HREAD1(hp, SDHC_SOFTWARE_RESET)));
1208		HWRITE1(hp, SDHC_SOFTWARE_RESET, 0);
1209		return (ETIMEDOUT);
1210	}
1211
1212	return (0);
1213}
1214
1215int
1216sdhc_wait_intr_cold(struct sdhc_host *hp, int mask, int secs)
1217{
1218	int status, usecs;
1219
1220	mask |= SDHC_ERROR_INTERRUPT;
1221	usecs = secs * 1000000;
1222	status = hp->intr_status;
1223	while ((status & mask) == 0) {
1224
1225		status = HREAD2(hp, SDHC_NINTR_STATUS);
1226		if (ISSET(status, SDHC_NINTR_STATUS_MASK)) {
1227			HWRITE2(hp, SDHC_NINTR_STATUS, status);
1228			if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1229				uint16_t error;
1230				error = HREAD2(hp, SDHC_EINTR_STATUS);
1231				HWRITE2(hp, SDHC_EINTR_STATUS, error);
1232				hp->intr_status |= status;
1233
1234				if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1235				    SDHC_DATA_TIMEOUT_ERROR))
1236					break;
1237			}
1238
1239			if (ISSET(status, SDHC_BUFFER_READ_READY |
1240			    SDHC_BUFFER_WRITE_READY | SDHC_COMMAND_COMPLETE |
1241			    SDHC_TRANSFER_COMPLETE)) {
1242				hp->intr_status |= status;
1243				break;
1244			}
1245
1246			if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1247				HSET2(hp, SDHC_NINTR_STATUS_EN,
1248				    SDHC_CARD_INTERRUPT);
1249			}
1250
1251			continue;
1252		}
1253
1254		delay(1);
1255		if (usecs-- == 0) {
1256			status |= SDHC_ERROR_INTERRUPT;
1257			break;
1258		}
1259	}
1260
1261	hp->intr_status &= ~(status & mask);
1262	return (status & mask);
1263}
1264
1265int
1266sdhc_wait_intr(struct sdhc_host *hp, int mask, int secs)
1267{
1268	int status;
1269	int s;
1270
1271	if (cold)
1272		return (sdhc_wait_intr_cold(hp, mask, secs));
1273
1274	mask |= SDHC_ERROR_INTERRUPT;
1275
1276	s = splsdmmc();
1277	status = hp->intr_status & mask;
1278	while (status == 0) {
1279		if (tsleep_nsec(&hp->intr_status, PWAIT, "hcintr",
1280		    SEC_TO_NSEC(secs)) == EWOULDBLOCK) {
1281			status |= SDHC_ERROR_INTERRUPT;
1282			break;
1283		}
1284		status = hp->intr_status & mask;
1285	}
1286	hp->intr_status &= ~status;
1287
1288	DPRINTF(2,("%s: intr status %#x error %#x\n", DEVNAME(hp->sc), status,
1289	    hp->intr_error_status));
1290
1291	/* Command timeout has higher priority than command complete. */
1292	if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1293		hp->intr_error_status = 0;
1294		(void)sdhc_soft_reset(hp, SDHC_RESET_DAT|SDHC_RESET_CMD);
1295		status = 0;
1296	}
1297
1298	splx(s);
1299	return status;
1300}
1301
1302/*
1303 * Established by attachment driver at interrupt priority IPL_SDMMC.
1304 */
1305int
1306sdhc_intr(void *arg)
1307{
1308	struct sdhc_softc *sc = arg;
1309	int host;
1310	int done = 0;
1311
1312	/* We got an interrupt, but we don't know from which slot. */
1313	for (host = 0; host < sc->sc_nhosts; host++) {
1314		struct sdhc_host *hp = sc->sc_host[host];
1315		u_int16_t status;
1316
1317		if (hp == NULL)
1318			continue;
1319
1320		/* Find out which interrupts are pending. */
1321		status = HREAD2(hp, SDHC_NINTR_STATUS);
1322		if (!ISSET(status, SDHC_NINTR_STATUS_MASK))
1323			continue; /* no interrupt for us */
1324
1325		/* Acknowledge the interrupts we are about to handle. */
1326		HWRITE2(hp, SDHC_NINTR_STATUS, status);
1327		DPRINTF(2,("%s: interrupt status=%b\n", DEVNAME(hp->sc),
1328		    status, SDHC_NINTR_STATUS_BITS));
1329
1330		/* Claim this interrupt. */
1331		done = 1;
1332
1333		/*
1334		 * Service error interrupts.
1335		 */
1336		if (ISSET(status, SDHC_ERROR_INTERRUPT)) {
1337			u_int16_t error;
1338
1339			/* Acknowledge error interrupts. */
1340			error = HREAD2(hp, SDHC_EINTR_STATUS);
1341			HWRITE2(hp, SDHC_EINTR_STATUS, error);
1342			DPRINTF(2,("%s: error interrupt, status=%b\n",
1343			    DEVNAME(hp->sc), error, SDHC_EINTR_STATUS_BITS));
1344
1345			if (ISSET(error, SDHC_CMD_TIMEOUT_ERROR|
1346			    SDHC_DATA_TIMEOUT_ERROR)) {
1347				hp->intr_error_status |= error;
1348				hp->intr_status |= status;
1349				wakeup(&hp->intr_status);
1350			}
1351		}
1352
1353		/*
1354		 * Wake up the sdmmc event thread to scan for cards.
1355		 */
1356		if (ISSET(status, SDHC_CARD_REMOVAL|SDHC_CARD_INSERTION))
1357			sdmmc_needs_discover(hp->sdmmc);
1358
1359		/*
1360		 * Wake up the blocking process to service command
1361		 * related interrupt(s).
1362		 */
1363		if (ISSET(status, SDHC_BUFFER_READ_READY|
1364		    SDHC_BUFFER_WRITE_READY|SDHC_COMMAND_COMPLETE|
1365		    SDHC_TRANSFER_COMPLETE)) {
1366			hp->intr_status |= status;
1367			wakeup(&hp->intr_status);
1368		}
1369
1370		/*
1371		 * Service SD card interrupts.
1372		 */
1373		if (ISSET(status, SDHC_CARD_INTERRUPT)) {
1374			DPRINTF(0,("%s: card interrupt\n", DEVNAME(hp->sc)));
1375			HCLR2(hp, SDHC_NINTR_STATUS_EN, SDHC_CARD_INTERRUPT);
1376			sdmmc_card_intr(hp->sdmmc);
1377		}
1378	}
1379	return done;
1380}
1381
1382void
1383sdhc_needs_discover(struct sdhc_softc *sc)
1384{
1385	int host;
1386
1387	for (host = 0; host < sc->sc_nhosts; host++)
1388		sdmmc_needs_discover(sc->sc_host[host]->sdmmc);
1389}
1390
1391#ifdef SDHC_DEBUG
1392void
1393sdhc_dump_regs(struct sdhc_host *hp)
1394{
1395	printf("0x%02x PRESENT_STATE:    %b\n", SDHC_PRESENT_STATE,
1396	    HREAD4(hp, SDHC_PRESENT_STATE), SDHC_PRESENT_STATE_BITS);
1397	printf("0x%02x POWER_CTL:        %x\n", SDHC_POWER_CTL,
1398	    HREAD1(hp, SDHC_POWER_CTL));
1399	printf("0x%02x NINTR_STATUS:     %x\n", SDHC_NINTR_STATUS,
1400	    HREAD2(hp, SDHC_NINTR_STATUS));
1401	printf("0x%02x EINTR_STATUS:     %x\n", SDHC_EINTR_STATUS,
1402	    HREAD2(hp, SDHC_EINTR_STATUS));
1403	printf("0x%02x NINTR_STATUS_EN:  %x\n", SDHC_NINTR_STATUS_EN,
1404	    HREAD2(hp, SDHC_NINTR_STATUS_EN));
1405	printf("0x%02x EINTR_STATUS_EN:  %x\n", SDHC_EINTR_STATUS_EN,
1406	    HREAD2(hp, SDHC_EINTR_STATUS_EN));
1407	printf("0x%02x NINTR_SIGNAL_EN:  %x\n", SDHC_NINTR_SIGNAL_EN,
1408	    HREAD2(hp, SDHC_NINTR_SIGNAL_EN));
1409	printf("0x%02x EINTR_SIGNAL_EN:  %x\n", SDHC_EINTR_SIGNAL_EN,
1410	    HREAD2(hp, SDHC_EINTR_SIGNAL_EN));
1411	printf("0x%02x CAPABILITIES:     %x\n", SDHC_CAPABILITIES,
1412	    HREAD4(hp, SDHC_CAPABILITIES));
1413	printf("0x%02x MAX_CAPABILITIES: %x\n", SDHC_MAX_CAPABILITIES,
1414	    HREAD4(hp, SDHC_MAX_CAPABILITIES));
1415}
1416#endif
1417
1418int
1419sdhc_hibernate_init(sdmmc_chipset_handle_t sch, void *fake_softc)
1420{
1421	struct sdhc_host *hp, *fhp;
1422	fhp = fake_softc;
1423	hp = sch;
1424	*fhp = *hp;
1425
1426	return (0);
1427}
1428