if_wb.c revision 1.24
1/*	$OpenBSD: if_wb.c,v 1.24 2004/09/23 17:45:16 brad Exp $	*/
2
3/*
4 * Copyright (c) 1997, 1998
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: src/sys/pci/if_wb.c,v 1.26 1999/09/25 17:29:02 wpaul Exp $
35 */
36
37/*
38 * Winbond fast ethernet PCI NIC driver
39 *
40 * Supports various cheap network adapters based on the Winbond W89C840F
41 * fast ethernet controller chip. This includes adapters manufactured by
42 * Winbond itself and some made by Linksys.
43 *
44 * Written by Bill Paul <wpaul@ctr.columbia.edu>
45 * Electrical Engineering Department
46 * Columbia University, New York City
47 */
48
49/*
50 * The Winbond W89C840F chip is a bus master; in some ways it resembles
51 * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has
52 * one major difference which is that while the registers do many of
53 * the same things as a tulip adapter, the offsets are different: where
54 * tulip registers are typically spaced 8 bytes apart, the Winbond
55 * registers are spaced 4 bytes apart. The receiver filter is also
56 * programmed differently.
57 *
58 * Like the tulip, the Winbond chip uses small descriptors containing
59 * a status word, a control word and 32-bit areas that can either be used
60 * to point to two external data blocks, or to point to a single block
61 * and another descriptor in a linked list. Descriptors can be grouped
62 * together in blocks to form fixed length rings or can be chained
63 * together in linked lists. A single packet may be spread out over
64 * several descriptors if necessary.
65 *
66 * For the receive ring, this driver uses a linked list of descriptors,
67 * each pointing to a single mbuf cluster buffer, which us large enough
68 * to hold an entire packet. The link list is looped back to created a
69 * closed ring.
70 *
71 * For transmission, the driver creates a linked list of 'super descriptors'
72 * which each contain several individual descriptors linked toghether.
73 * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we
74 * abuse as fragment pointers. This allows us to use a buffer management
75 * scheme very similar to that used in the ThunderLAN and Etherlink XL
76 * drivers.
77 *
78 * Autonegotiation is performed using the external PHY via the MII bus.
79 * The sample boards I have all use a Davicom PHY.
80 *
81 * Note: the author of the Linux driver for the Winbond chip alludes
82 * to some sort of flaw in the chip's design that seems to mandate some
83 * drastic workaround which signigicantly impairs transmit performance.
84 * I have no idea what he's on about: transmit performance with all
85 * three of my test boards seems fine.
86 */
87
88#include "bpfilter.h"
89
90#include <sys/param.h>
91#include <sys/systm.h>
92#include <sys/sockio.h>
93#include <sys/mbuf.h>
94#include <sys/malloc.h>
95#include <sys/kernel.h>
96#include <sys/socket.h>
97#include <sys/device.h>
98#include <sys/queue.h>
99#include <sys/timeout.h>
100
101#include <net/if.h>
102#include <net/if_dl.h>
103#include <net/if_types.h>
104
105#ifdef INET
106#include <netinet/in.h>
107#include <netinet/in_systm.h>
108#include <netinet/in_var.h>
109#include <netinet/ip.h>
110#include <netinet/if_ether.h>
111#endif
112
113#include <net/if_media.h>
114
115#if NBPFILTER > 0
116#include <net/bpf.h>
117#endif
118
119#include <uvm/uvm_extern.h>		/* for vtophys */
120
121#include <dev/mii/mii.h>
122#include <dev/mii/miivar.h>
123#include <dev/pci/pcireg.h>
124#include <dev/pci/pcivar.h>
125#include <dev/pci/pcidevs.h>
126
127#define WB_USEIOSPACE
128
129/* #define WB_BACKGROUND_AUTONEG */
130
131#include <dev/pci/if_wbreg.h>
132
133int wb_probe(struct device *, void *, void *);
134void wb_attach(struct device *, struct device *, void *);
135
136void wb_bfree(caddr_t, u_int, void *);
137int wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *,
138    struct mbuf *);
139int wb_encap(struct wb_softc *, struct wb_chain *,
140    struct mbuf *);
141
142void wb_rxeof(struct wb_softc *);
143void wb_rxeoc(struct wb_softc *);
144void wb_txeof(struct wb_softc *);
145void wb_txeoc(struct wb_softc *);
146int wb_intr(void *);
147void wb_tick(void *);
148void wb_start(struct ifnet *);
149int wb_ioctl(struct ifnet *, u_long, caddr_t);
150void wb_init(void *);
151void wb_stop(struct wb_softc *);
152void wb_watchdog(struct ifnet *);
153void wb_shutdown(void *);
154int wb_ifmedia_upd(struct ifnet *);
155void wb_ifmedia_sts(struct ifnet *, struct ifmediareq *);
156
157void wb_eeprom_putbyte(struct wb_softc *, int);
158void wb_eeprom_getword(struct wb_softc *, int, u_int16_t *);
159void wb_read_eeprom(struct wb_softc *, caddr_t, int, int, int);
160void wb_mii_sync(struct wb_softc *);
161void wb_mii_send(struct wb_softc *, u_int32_t, int);
162int wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *);
163int wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *);
164
165void wb_setcfg(struct wb_softc *, u_int32_t);
166u_int8_t wb_calchash(caddr_t);
167void wb_setmulti(struct wb_softc *);
168void wb_reset(struct wb_softc *);
169void wb_fixmedia(struct wb_softc *);
170int wb_list_rx_init(struct wb_softc *);
171int wb_list_tx_init(struct wb_softc *);
172
173int wb_miibus_readreg(struct device *, int, int);
174void wb_miibus_writereg(struct device *, int, int, int);
175void wb_miibus_statchg(struct device *);
176
177#define WB_SETBIT(sc, reg, x)				\
178	CSR_WRITE_4(sc, reg,				\
179		CSR_READ_4(sc, reg) | x)
180
181#define WB_CLRBIT(sc, reg, x)				\
182	CSR_WRITE_4(sc, reg,				\
183		CSR_READ_4(sc, reg) & ~x)
184
185#define SIO_SET(x)					\
186	CSR_WRITE_4(sc, WB_SIO,				\
187		CSR_READ_4(sc, WB_SIO) | x)
188
189#define SIO_CLR(x)					\
190	CSR_WRITE_4(sc, WB_SIO,				\
191		CSR_READ_4(sc, WB_SIO) & ~x)
192
193/*
194 * Send a read command and address to the EEPROM, check for ACK.
195 */
196void wb_eeprom_putbyte(sc, addr)
197	struct wb_softc		*sc;
198	int			addr;
199{
200	register int		d, i;
201
202	d = addr | WB_EECMD_READ;
203
204	/*
205	 * Feed in each bit and strobe the clock.
206	 */
207	for (i = 0x400; i; i >>= 1) {
208		if (d & i) {
209			SIO_SET(WB_SIO_EE_DATAIN);
210		} else {
211			SIO_CLR(WB_SIO_EE_DATAIN);
212		}
213		DELAY(100);
214		SIO_SET(WB_SIO_EE_CLK);
215		DELAY(150);
216		SIO_CLR(WB_SIO_EE_CLK);
217		DELAY(100);
218	}
219
220	return;
221}
222
223/*
224 * Read a word of data stored in the EEPROM at address 'addr.'
225 */
226void wb_eeprom_getword(sc, addr, dest)
227	struct wb_softc		*sc;
228	int			addr;
229	u_int16_t		*dest;
230{
231	register int		i;
232	u_int16_t		word = 0;
233
234	/* Enter EEPROM access mode. */
235	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
236
237	/*
238	 * Send address of word we want to read.
239	 */
240	wb_eeprom_putbyte(sc, addr);
241
242	CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS);
243
244	/*
245	 * Start reading bits from EEPROM.
246	 */
247	for (i = 0x8000; i; i >>= 1) {
248		SIO_SET(WB_SIO_EE_CLK);
249		DELAY(100);
250		if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT)
251			word |= i;
252		SIO_CLR(WB_SIO_EE_CLK);
253		DELAY(100);
254	}
255
256	/* Turn off EEPROM access mode. */
257	CSR_WRITE_4(sc, WB_SIO, 0);
258
259	*dest = word;
260
261	return;
262}
263
264/*
265 * Read a sequence of words from the EEPROM.
266 */
267void wb_read_eeprom(sc, dest, off, cnt, swap)
268	struct wb_softc		*sc;
269	caddr_t			dest;
270	int			off;
271	int			cnt;
272	int			swap;
273{
274	int			i;
275	u_int16_t		word = 0, *ptr;
276
277	for (i = 0; i < cnt; i++) {
278		wb_eeprom_getword(sc, off + i, &word);
279		ptr = (u_int16_t *)(dest + (i * 2));
280		if (swap)
281			*ptr = ntohs(word);
282		else
283			*ptr = word;
284	}
285
286	return;
287}
288
289/*
290 * Sync the PHYs by setting data bit and strobing the clock 32 times.
291 */
292void wb_mii_sync(sc)
293	struct wb_softc		*sc;
294{
295	register int		i;
296
297	SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN);
298
299	for (i = 0; i < 32; i++) {
300		SIO_SET(WB_SIO_MII_CLK);
301		DELAY(1);
302		SIO_CLR(WB_SIO_MII_CLK);
303		DELAY(1);
304	}
305
306	return;
307}
308
309/*
310 * Clock a series of bits through the MII.
311 */
312void wb_mii_send(sc, bits, cnt)
313	struct wb_softc		*sc;
314	u_int32_t		bits;
315	int			cnt;
316{
317	int			i;
318
319	SIO_CLR(WB_SIO_MII_CLK);
320
321	for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
322                if (bits & i) {
323			SIO_SET(WB_SIO_MII_DATAIN);
324                } else {
325			SIO_CLR(WB_SIO_MII_DATAIN);
326                }
327		DELAY(1);
328		SIO_CLR(WB_SIO_MII_CLK);
329		DELAY(1);
330		SIO_SET(WB_SIO_MII_CLK);
331	}
332}
333
334/*
335 * Read an PHY register through the MII.
336 */
337int wb_mii_readreg(sc, frame)
338	struct wb_softc		*sc;
339	struct wb_mii_frame	*frame;
340
341{
342	int			i, ack, s;
343
344	s = splimp();
345
346	/*
347	 * Set up frame for RX.
348	 */
349	frame->mii_stdelim = WB_MII_STARTDELIM;
350	frame->mii_opcode = WB_MII_READOP;
351	frame->mii_turnaround = 0;
352	frame->mii_data = 0;
353
354	CSR_WRITE_4(sc, WB_SIO, 0);
355
356	/*
357 	 * Turn on data xmit.
358	 */
359	SIO_SET(WB_SIO_MII_DIR);
360
361	wb_mii_sync(sc);
362
363	/*
364	 * Send command/address info.
365	 */
366	wb_mii_send(sc, frame->mii_stdelim, 2);
367	wb_mii_send(sc, frame->mii_opcode, 2);
368	wb_mii_send(sc, frame->mii_phyaddr, 5);
369	wb_mii_send(sc, frame->mii_regaddr, 5);
370
371	/* Idle bit */
372	SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN));
373	DELAY(1);
374	SIO_SET(WB_SIO_MII_CLK);
375	DELAY(1);
376
377	/* Turn off xmit. */
378	SIO_CLR(WB_SIO_MII_DIR);
379	/* Check for ack */
380	SIO_CLR(WB_SIO_MII_CLK);
381	DELAY(1);
382	SIO_SET(WB_SIO_MII_CLK);
383	DELAY(1);
384	ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT;
385	SIO_CLR(WB_SIO_MII_CLK);
386	DELAY(1);
387	SIO_SET(WB_SIO_MII_CLK);
388	DELAY(1);
389
390	/*
391	 * Now try reading data bits. If the ack failed, we still
392	 * need to clock through 16 cycles to keep the PHY(s) in sync.
393	 */
394	if (ack) {
395		for(i = 0; i < 16; i++) {
396			SIO_CLR(WB_SIO_MII_CLK);
397			DELAY(1);
398			SIO_SET(WB_SIO_MII_CLK);
399			DELAY(1);
400		}
401		goto fail;
402	}
403
404	for (i = 0x8000; i; i >>= 1) {
405		SIO_CLR(WB_SIO_MII_CLK);
406		DELAY(1);
407		if (!ack) {
408			if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT)
409				frame->mii_data |= i;
410			DELAY(1);
411		}
412		SIO_SET(WB_SIO_MII_CLK);
413		DELAY(1);
414	}
415
416fail:
417
418	SIO_CLR(WB_SIO_MII_CLK);
419	DELAY(1);
420	SIO_SET(WB_SIO_MII_CLK);
421	DELAY(1);
422
423	splx(s);
424
425	if (ack)
426		return(1);
427	return(0);
428}
429
430/*
431 * Write to a PHY register through the MII.
432 */
433int wb_mii_writereg(sc, frame)
434	struct wb_softc		*sc;
435	struct wb_mii_frame	*frame;
436
437{
438	int			s;
439
440	s = splimp();
441	/*
442	 * Set up frame for TX.
443	 */
444
445	frame->mii_stdelim = WB_MII_STARTDELIM;
446	frame->mii_opcode = WB_MII_WRITEOP;
447	frame->mii_turnaround = WB_MII_TURNAROUND;
448
449	/*
450 	 * Turn on data output.
451	 */
452	SIO_SET(WB_SIO_MII_DIR);
453
454	wb_mii_sync(sc);
455
456	wb_mii_send(sc, frame->mii_stdelim, 2);
457	wb_mii_send(sc, frame->mii_opcode, 2);
458	wb_mii_send(sc, frame->mii_phyaddr, 5);
459	wb_mii_send(sc, frame->mii_regaddr, 5);
460	wb_mii_send(sc, frame->mii_turnaround, 2);
461	wb_mii_send(sc, frame->mii_data, 16);
462
463	/* Idle bit. */
464	SIO_SET(WB_SIO_MII_CLK);
465	DELAY(1);
466	SIO_CLR(WB_SIO_MII_CLK);
467	DELAY(1);
468
469	/*
470	 * Turn off xmit.
471	 */
472	SIO_CLR(WB_SIO_MII_DIR);
473
474	splx(s);
475
476	return(0);
477}
478
479int
480wb_miibus_readreg(dev, phy, reg)
481	struct device *dev;
482	int phy, reg;
483{
484	struct wb_softc *sc = (struct wb_softc *)dev;
485	struct wb_mii_frame frame;
486
487	bzero((char *)&frame, sizeof(frame));
488
489	frame.mii_phyaddr = phy;
490	frame.mii_regaddr = reg;
491	wb_mii_readreg(sc, &frame);
492
493	return(frame.mii_data);
494}
495
496void
497wb_miibus_writereg(dev, phy, reg, data)
498	struct device *dev;
499	int phy, reg, data;
500{
501	struct wb_softc *sc = (struct wb_softc *)dev;
502	struct wb_mii_frame frame;
503
504	bzero((char *)&frame, sizeof(frame));
505
506	frame.mii_phyaddr = phy;
507	frame.mii_regaddr = reg;
508	frame.mii_data = data;
509
510	wb_mii_writereg(sc, &frame);
511
512	return;
513}
514
515void
516wb_miibus_statchg(dev)
517	struct device *dev;
518{
519	struct wb_softc *sc = (struct wb_softc *)dev;
520
521	wb_setcfg(sc, sc->sc_mii.mii_media_active);
522}
523
524/*
525 * Program the 64-bit multicast hash filter.
526 */
527void wb_setmulti(sc)
528	struct wb_softc		*sc;
529{
530	struct ifnet		*ifp;
531	int			h = 0;
532	u_int32_t		hashes[2] = { 0, 0 };
533	struct arpcom		*ac = &sc->arpcom;
534	struct ether_multi	*enm;
535	struct ether_multistep	step;
536	u_int32_t		rxfilt;
537	int			mcnt = 0;
538
539	ifp = &sc->arpcom.ac_if;
540
541	rxfilt = CSR_READ_4(sc, WB_NETCFG);
542
543allmulti:
544	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
545		rxfilt |= WB_NETCFG_RX_MULTI;
546		CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
547		CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF);
548		CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF);
549		return;
550	}
551
552	/* first, zot all the existing hash bits */
553	CSR_WRITE_4(sc, WB_MAR0, 0);
554	CSR_WRITE_4(sc, WB_MAR1, 0);
555
556	/* now program new ones */
557	ETHER_FIRST_MULTI(step, ac, enm);
558	while (enm != NULL) {
559		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
560			ifp->if_flags |= IFF_ALLMULTI;
561			goto allmulti;
562		}
563		h = ~(ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26);
564		if (h < 32)
565			hashes[0] |= (1 << h);
566		else
567			hashes[1] |= (1 << (h - 32));
568		mcnt++;
569		ETHER_NEXT_MULTI(step, enm);
570	}
571
572	if (mcnt)
573		rxfilt |= WB_NETCFG_RX_MULTI;
574	else
575		rxfilt &= ~WB_NETCFG_RX_MULTI;
576
577	CSR_WRITE_4(sc, WB_MAR0, hashes[0]);
578	CSR_WRITE_4(sc, WB_MAR1, hashes[1]);
579	CSR_WRITE_4(sc, WB_NETCFG, rxfilt);
580
581	return;
582}
583
584/*
585 * The Winbond manual states that in order to fiddle with the
586 * 'full-duplex' and '100Mbps' bits in the netconfig register, we
587 * first have to put the transmit and/or receive logic in the idle state.
588 */
589void
590wb_setcfg(sc, media)
591	struct wb_softc *sc;
592	u_int32_t media;
593{
594	int			i, restart = 0;
595
596	if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) {
597		restart = 1;
598		WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON));
599
600		for (i = 0; i < WB_TIMEOUT; i++) {
601			DELAY(10);
602			if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) &&
603				(CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE))
604				break;
605		}
606
607		if (i == WB_TIMEOUT)
608			printf("%s: failed to force tx and "
609				"rx to idle state\n", sc->sc_dev.dv_xname);
610	}
611
612	if (IFM_SUBTYPE(media) == IFM_10_T)
613		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
614	else
615		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS);
616
617	if ((media & IFM_GMASK) == IFM_FDX)
618		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
619	else
620		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX);
621
622	if (restart)
623		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON);
624
625	return;
626}
627
628void
629wb_reset(sc)
630	struct wb_softc *sc;
631{
632	register int i;
633	struct mii_data *mii = &sc->sc_mii;
634
635	CSR_WRITE_4(sc, WB_NETCFG, 0);
636	CSR_WRITE_4(sc, WB_BUSCTL, 0);
637	CSR_WRITE_4(sc, WB_TXADDR, 0);
638	CSR_WRITE_4(sc, WB_RXADDR, 0);
639
640	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
641	WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET);
642
643	for (i = 0; i < WB_TIMEOUT; i++) {
644		DELAY(10);
645		if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET))
646			break;
647	}
648	if (i == WB_TIMEOUT)
649		printf("%s: reset never completed!\n", sc->sc_dev.dv_xname);
650
651	/* Wait a little while for the chip to get its brains in order. */
652	DELAY(1000);
653
654	if (mii->mii_instance) {
655		struct mii_softc *miisc;
656		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
657		    miisc = LIST_NEXT(miisc, mii_list))
658			mii_phy_reset(miisc);
659	}
660}
661
662void
663wb_fixmedia(sc)
664	struct wb_softc *sc;
665{
666	struct mii_data *mii = &sc->sc_mii;
667	u_int32_t media;
668
669	if (LIST_FIRST(&mii->mii_phys) == NULL)
670		return;
671
672	mii_pollstat(mii);
673	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) {
674		media = mii->mii_media_active & ~IFM_10_T;
675		media |= IFM_100_TX;
676	} if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
677		media = mii->mii_media_active & ~IFM_100_TX;
678		media |= IFM_10_T;
679	} else
680		return;
681
682	ifmedia_set(&mii->mii_media, media);
683}
684
685const struct pci_matchid wb_devices[] = {
686	{ PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F },
687	{ PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX },
688};
689
690/*
691 * Probe for a Winbond chip. Check the PCI vendor and device
692 * IDs against our list and return a device name if we find a match.
693 */
694int
695wb_probe(parent, match, aux)
696	struct device *parent;
697	void *match, *aux;
698{
699	return (pci_matchbyid((struct pci_attach_args *)aux, wb_devices,
700	    sizeof(wb_devices)/sizeof(wb_devices[0])));
701}
702
703/*
704 * Attach the interface. Allocate softc structures, do ifmedia
705 * setup and ethernet/BPF attach.
706 */
707void
708wb_attach(parent, self, aux)
709	struct device *parent, *self;
710	void *aux;
711{
712	struct wb_softc *sc = (struct wb_softc *)self;
713	struct pci_attach_args *pa = aux;
714	pci_chipset_tag_t pc = pa->pa_pc;
715	pci_intr_handle_t ih;
716	const char *intrstr = NULL;
717	struct ifnet *ifp = &sc->arpcom.ac_if;
718	bus_addr_t iobase;
719	bus_size_t iosize;
720	int s, rseg;
721	u_int32_t command;
722	bus_dma_segment_t seg;
723	bus_dmamap_t dmamap;
724	caddr_t kva;
725
726	s = splimp();
727
728	/*
729	 * Handle power management nonsense.
730	 */
731
732	command = pci_conf_read(pc, pa->pa_tag, WB_PCI_CAPID) & 0x000000FF;
733	if (command == 0x01) {
734
735		command = pci_conf_read(pc, pa->pa_tag, WB_PCI_PWRMGMTCTRL);
736		if (command & WB_PSTATE_MASK) {
737			u_int32_t		io, mem, irq;
738
739			/* Save important PCI config data. */
740			io = pci_conf_read(pc, pa->pa_tag, WB_PCI_LOIO);
741			mem = pci_conf_read(pc, pa->pa_tag, WB_PCI_LOMEM);
742			irq = pci_conf_read(pc, pa->pa_tag, WB_PCI_INTLINE);
743
744			/* Reset the power state. */
745			printf("%s: chip is in D%d power mode "
746			    "-- setting to D0\n", sc->sc_dev.dv_xname,
747			    command & WB_PSTATE_MASK);
748			command &= 0xFFFFFFFC;
749			pci_conf_write(pc, pa->pa_tag, WB_PCI_PWRMGMTCTRL,
750			    command);
751
752			/* Restore PCI config data. */
753			pci_conf_write(pc, pa->pa_tag, WB_PCI_LOIO, io);
754			pci_conf_write(pc, pa->pa_tag, WB_PCI_LOMEM, mem);
755			pci_conf_write(pc, pa->pa_tag, WB_PCI_INTLINE, irq);
756		}
757	}
758
759	/*
760	 * Map control/status registers.
761	 */
762	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
763	command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE |
764	    PCI_COMMAND_MASTER_ENABLE;
765	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
766	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
767
768#ifdef WB_USEIOSPACE
769	if (!(command & PCI_COMMAND_IO_ENABLE)) {
770		printf(": failed to enable I/O ports!\n");
771		goto fail;
772	}
773	if (pci_io_find(pc, pa->pa_tag, WB_PCI_LOIO, &iobase, &iosize)) {
774		printf(": can't find i/o space\n");
775		goto fail;
776	}
777	if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->wb_bhandle)) {
778		printf(": can't map i/o space\n");
779		goto fail;
780	}
781	sc->wb_btag = pa->pa_iot;
782#else
783	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
784		printf(": failed to enable memory mapping!\n");
785		goto fail;
786	}
787	if (pci_mem_find(pc, pa->pa_tag, WB_PCI_LOMEM, &iobase, &iosize, NULL)){
788		printf(": can't find mem space\n");
789		goto fail;
790	}
791	if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->wb_bhandle)) {
792		printf(": can't map mem space\n");
793		goto fail;
794	}
795	sc->wb_btag = pa->pa_memt;
796#endif
797
798	/* Allocate interrupt */
799	if (pci_intr_map(pa, &ih)) {
800		printf(": couldn't map interrupt\n");
801		goto fail;
802	}
803	intrstr = pci_intr_string(pc, ih);
804	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wb_intr, sc,
805	    self->dv_xname);
806	if (sc->sc_ih == NULL) {
807		printf(": couldn't establish interrupt");
808		if (intrstr != NULL)
809			printf(" at %s", intrstr);
810		printf("\n");
811		goto fail;
812	}
813	printf(": %s", intrstr);
814
815	sc->wb_cachesize = pci_conf_read(pc, pa->pa_tag, WB_PCI_CACHELEN)&0xff;
816
817	/* Reset the adapter. */
818	wb_reset(sc);
819
820	/*
821	 * Get station address from the EEPROM.
822	 */
823	wb_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0, 3, 0);
824	printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
825
826	if (bus_dmamem_alloc(pa->pa_dmat, sizeof(struct wb_list_data),
827	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
828		printf("%s: can't alloc list data\n", sc->sc_dev.dv_xname);
829		goto fail;
830	}
831	if (bus_dmamem_map(pa->pa_dmat, &seg, rseg,
832	    sizeof(struct wb_list_data), &kva, BUS_DMA_NOWAIT)) {
833		printf("%s: can't map list data, size %d\n",
834		    sc->sc_dev.dv_xname, sizeof(struct wb_list_data));
835		bus_dmamem_free(pa->pa_dmat, &seg, rseg);
836		goto fail;
837	}
838	if (bus_dmamap_create(pa->pa_dmat, sizeof(struct wb_list_data), 1,
839	    sizeof(struct wb_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) {
840		printf("%s: can't create dma map\n", sc->sc_dev.dv_xname);
841		bus_dmamem_unmap(pa->pa_dmat, kva,
842		    sizeof(struct wb_list_data));
843		bus_dmamem_free(pa->pa_dmat, &seg, rseg);
844		goto fail;
845	}
846	if (bus_dmamap_load(pa->pa_dmat, dmamap, kva,
847	    sizeof(struct wb_list_data), NULL, BUS_DMA_NOWAIT)) {
848		printf("%s: can't load dma map\n", sc->sc_dev.dv_xname);
849		bus_dmamap_destroy(pa->pa_dmat, dmamap);
850		bus_dmamem_unmap(pa->pa_dmat, kva,
851		    sizeof(struct wb_list_data));
852		bus_dmamem_free(pa->pa_dmat, &seg, rseg);
853		goto fail;
854	}
855	sc->wb_ldata = (struct wb_list_data *)kva;
856	bzero(sc->wb_ldata, sizeof(struct wb_list_data));
857
858	ifp->if_softc = sc;
859	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
860	ifp->if_ioctl = wb_ioctl;
861	ifp->if_start = wb_start;
862	ifp->if_watchdog = wb_watchdog;
863	ifp->if_baudrate = 10000000;
864	IFQ_SET_MAXLEN(&ifp->if_snd, WB_TX_LIST_CNT - 1);
865	IFQ_SET_READY(&ifp->if_snd);
866
867	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
868
869	/*
870	 * Do ifmedia setup.
871	 */
872	wb_stop(sc);
873
874	ifmedia_init(&sc->sc_mii.mii_media, 0, wb_ifmedia_upd, wb_ifmedia_sts);
875	sc->sc_mii.mii_ifp = ifp;
876	sc->sc_mii.mii_readreg = wb_miibus_readreg;
877	sc->sc_mii.mii_writereg = wb_miibus_writereg;
878	sc->sc_mii.mii_statchg = wb_miibus_statchg;
879	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY,
880	    0);
881	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
882		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,0,NULL);
883		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
884	} else
885		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
886
887	/*
888	 * Call MI attach routines.
889	 */
890	if_attach(ifp);
891	ether_ifattach(ifp);
892
893	shutdownhook_establish(wb_shutdown, sc);
894
895fail:
896	splx(s);
897	return;
898}
899
900/*
901 * Initialize the transmit descriptors.
902 */
903int wb_list_tx_init(sc)
904	struct wb_softc		*sc;
905{
906	struct wb_chain_data	*cd;
907	struct wb_list_data	*ld;
908	int			i;
909
910	cd = &sc->wb_cdata;
911	ld = sc->wb_ldata;
912
913	for (i = 0; i < WB_TX_LIST_CNT; i++) {
914		cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i];
915		if (i == (WB_TX_LIST_CNT - 1)) {
916			cd->wb_tx_chain[i].wb_nextdesc =
917				&cd->wb_tx_chain[0];
918		} else {
919			cd->wb_tx_chain[i].wb_nextdesc =
920				&cd->wb_tx_chain[i + 1];
921		}
922	}
923
924	cd->wb_tx_free = &cd->wb_tx_chain[0];
925	cd->wb_tx_tail = cd->wb_tx_head = NULL;
926
927	return(0);
928}
929
930
931/*
932 * Initialize the RX descriptors and allocate mbufs for them. Note that
933 * we arrange the descriptors in a closed ring, so that the last descriptor
934 * points back to the first.
935 */
936int wb_list_rx_init(sc)
937	struct wb_softc		*sc;
938{
939	struct wb_chain_data	*cd;
940	struct wb_list_data	*ld;
941	int			i;
942
943	cd = &sc->wb_cdata;
944	ld = sc->wb_ldata;
945
946	for (i = 0; i < WB_RX_LIST_CNT; i++) {
947		cd->wb_rx_chain[i].wb_ptr =
948			(struct wb_desc *)&ld->wb_rx_list[i];
949		cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i];
950		if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS)
951			return(ENOBUFS);
952		if (i == (WB_RX_LIST_CNT - 1)) {
953			cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0];
954			ld->wb_rx_list[i].wb_next =
955					vtophys(&ld->wb_rx_list[0]);
956		} else {
957			cd->wb_rx_chain[i].wb_nextdesc =
958					&cd->wb_rx_chain[i + 1];
959			ld->wb_rx_list[i].wb_next =
960					vtophys(&ld->wb_rx_list[i + 1]);
961		}
962	}
963
964	cd->wb_rx_head = &cd->wb_rx_chain[0];
965
966	return(0);
967}
968
969void
970wb_bfree(buf, size, arg)
971	caddr_t			buf;
972	u_int			size;
973	void *arg;
974{
975}
976
977/*
978 * Initialize an RX descriptor and attach an MBUF cluster.
979 */
980int
981wb_newbuf(sc, c, m)
982	struct wb_softc *sc;
983	struct wb_chain_onefrag *c;
984	struct mbuf *m;
985{
986	struct mbuf		*m_new = NULL;
987
988	if (m == NULL) {
989		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
990		if (m_new == NULL)
991			return(ENOBUFS);
992		m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf;
993		m_new->m_flags |= M_EXT;
994		m_new->m_ext.ext_size = m_new->m_pkthdr.len =
995		    m_new->m_len = WB_BUFBYTES;
996		m_new->m_ext.ext_free = wb_bfree;
997		m_new->m_ext.ext_arg = NULL;
998		MCLINITREFERENCE(m_new);
999	} else {
1000		m_new = m;
1001		m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES;
1002		m_new->m_data = m_new->m_ext.ext_buf;
1003	}
1004
1005	m_adj(m_new, sizeof(u_int64_t));
1006
1007	c->wb_mbuf = m_new;
1008	c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t));
1009	c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | 1536;
1010	c->wb_ptr->wb_status = WB_RXSTAT;
1011
1012	return(0);
1013}
1014
1015/*
1016 * A frame has been uploaded: pass the resulting mbuf chain up to
1017 * the higher level protocols.
1018 */
1019void wb_rxeof(sc)
1020	struct wb_softc		*sc;
1021{
1022        struct mbuf		*m = NULL;
1023        struct ifnet		*ifp;
1024	struct wb_chain_onefrag	*cur_rx;
1025	int			total_len = 0;
1026	u_int32_t		rxstat;
1027
1028	ifp = &sc->arpcom.ac_if;
1029
1030	while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) &
1031							WB_RXSTAT_OWN)) {
1032		struct mbuf *m0 = NULL;
1033
1034		cur_rx = sc->wb_cdata.wb_rx_head;
1035		sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc;
1036
1037		m = cur_rx->wb_mbuf;
1038
1039		if ((rxstat & WB_RXSTAT_MIIERR) ||
1040		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) ||
1041		    (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > 1536) ||
1042		    !(rxstat & WB_RXSTAT_LASTFRAG) ||
1043		    !(rxstat & WB_RXSTAT_RXCMP)) {
1044			ifp->if_ierrors++;
1045			wb_newbuf(sc, cur_rx, m);
1046			printf("%s: receiver babbling: possible chip "
1047				"bug, forcing reset\n", sc->sc_dev.dv_xname);
1048			wb_fixmedia(sc);
1049			wb_reset(sc);
1050			wb_init(sc);
1051			return;
1052		}
1053
1054		if (rxstat & WB_RXSTAT_RXERR) {
1055			ifp->if_ierrors++;
1056			wb_newbuf(sc, cur_rx, m);
1057			break;
1058		}
1059
1060		/* No errors; receive the packet. */
1061		total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status);
1062
1063		/*
1064		 * XXX The Winbond chip includes the CRC with every
1065		 * received frame, and there's no way to turn this
1066		 * behavior off (at least, I can't find anything in
1067	 	 * the manual that explains how to do it) so we have
1068		 * to trim off the CRC manually.
1069		 */
1070		total_len -= ETHER_CRC_LEN;
1071
1072		m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1073		    total_len + ETHER_ALIGN, 0, ifp, NULL);
1074		wb_newbuf(sc, cur_rx, m);
1075		if (m0 == NULL) {
1076			ifp->if_ierrors++;
1077			break;
1078		}
1079		m_adj(m0, ETHER_ALIGN);
1080		m = m0;
1081
1082		ifp->if_ipackets++;
1083
1084#if NBPFILTER > 0
1085		/*
1086		 * Handle BPF listeners. Let the BPF user see the packet.
1087		 */
1088		if (ifp->if_bpf)
1089			bpf_mtap(ifp->if_bpf, m);
1090#endif
1091		/* pass it on. */
1092		ether_input_mbuf(ifp, m);
1093	}
1094
1095	return;
1096}
1097
1098void wb_rxeoc(sc)
1099	struct wb_softc		*sc;
1100{
1101	wb_rxeof(sc);
1102
1103	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1104	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1105	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1106	if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND)
1107		CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1108
1109	return;
1110}
1111
1112/*
1113 * A frame was downloaded to the chip. It's safe for us to clean up
1114 * the list buffers.
1115 */
1116void wb_txeof(sc)
1117	struct wb_softc		*sc;
1118{
1119	struct wb_chain		*cur_tx;
1120	struct ifnet		*ifp;
1121
1122	ifp = &sc->arpcom.ac_if;
1123
1124	/* Clear the timeout timer. */
1125	ifp->if_timer = 0;
1126
1127	if (sc->wb_cdata.wb_tx_head == NULL)
1128		return;
1129
1130	/*
1131	 * Go through our tx list and free mbufs for those
1132	 * frames that have been transmitted.
1133	 */
1134	while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) {
1135		u_int32_t		txstat;
1136
1137		cur_tx = sc->wb_cdata.wb_tx_head;
1138		txstat = WB_TXSTATUS(cur_tx);
1139
1140		if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT)
1141			break;
1142
1143		if (txstat & WB_TXSTAT_TXERR) {
1144			ifp->if_oerrors++;
1145			if (txstat & WB_TXSTAT_ABORT)
1146				ifp->if_collisions++;
1147			if (txstat & WB_TXSTAT_LATECOLL)
1148				ifp->if_collisions++;
1149		}
1150
1151		ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3;
1152
1153		ifp->if_opackets++;
1154		m_freem(cur_tx->wb_mbuf);
1155		cur_tx->wb_mbuf = NULL;
1156
1157		if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) {
1158			sc->wb_cdata.wb_tx_head = NULL;
1159			sc->wb_cdata.wb_tx_tail = NULL;
1160			break;
1161		}
1162
1163		sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc;
1164	}
1165
1166	return;
1167}
1168
1169/*
1170 * TX 'end of channel' interrupt handler.
1171 */
1172void wb_txeoc(sc)
1173	struct wb_softc		*sc;
1174{
1175	struct ifnet		*ifp;
1176
1177	ifp = &sc->arpcom.ac_if;
1178
1179	ifp->if_timer = 0;
1180
1181	if (sc->wb_cdata.wb_tx_head == NULL) {
1182		ifp->if_flags &= ~IFF_OACTIVE;
1183		sc->wb_cdata.wb_tx_tail = NULL;
1184	} else {
1185		if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) {
1186			WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN;
1187			ifp->if_timer = 5;
1188			CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1189		}
1190	}
1191
1192	return;
1193}
1194
1195int wb_intr(arg)
1196	void			*arg;
1197{
1198	struct wb_softc		*sc;
1199	struct ifnet		*ifp;
1200	u_int32_t		status;
1201	int			r = 0;
1202
1203	sc = arg;
1204	ifp = &sc->arpcom.ac_if;
1205
1206	if (!(ifp->if_flags & IFF_UP))
1207		return (r);
1208
1209	/* Disable interrupts. */
1210	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1211
1212	for (;;) {
1213
1214		status = CSR_READ_4(sc, WB_ISR);
1215		if (status)
1216			CSR_WRITE_4(sc, WB_ISR, status);
1217
1218		if ((status & WB_INTRS) == 0)
1219			break;
1220
1221		r = 1;
1222
1223		if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) {
1224			ifp->if_ierrors++;
1225			wb_reset(sc);
1226			if (status & WB_ISR_RX_ERR)
1227				wb_fixmedia(sc);
1228			wb_init(sc);
1229			continue;
1230		}
1231
1232		if (status & WB_ISR_RX_OK)
1233			wb_rxeof(sc);
1234
1235		if (status & WB_ISR_RX_IDLE)
1236			wb_rxeoc(sc);
1237
1238		if (status & WB_ISR_TX_OK)
1239			wb_txeof(sc);
1240
1241		if (status & WB_ISR_TX_NOBUF)
1242			wb_txeoc(sc);
1243
1244		if (status & WB_ISR_TX_IDLE) {
1245			wb_txeof(sc);
1246			if (sc->wb_cdata.wb_tx_head != NULL) {
1247				WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1248				CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1249			}
1250		}
1251
1252		if (status & WB_ISR_TX_UNDERRUN) {
1253			ifp->if_oerrors++;
1254			wb_txeof(sc);
1255			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1256			/* Jack up TX threshold */
1257			sc->wb_txthresh += WB_TXTHRESH_CHUNK;
1258			WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1259			WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1260			WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1261		}
1262
1263		if (status & WB_ISR_BUS_ERR) {
1264			wb_reset(sc);
1265			wb_init(sc);
1266		}
1267
1268	}
1269
1270	/* Re-enable interrupts. */
1271	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1272
1273	if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
1274		wb_start(ifp);
1275	}
1276
1277	return (r);
1278}
1279
1280void
1281wb_tick(xsc)
1282	void *xsc;
1283{
1284	struct wb_softc *sc = xsc;
1285	int s;
1286
1287	s = splimp();
1288	mii_tick(&sc->sc_mii);
1289	splx(s);
1290	timeout_add(&sc->wb_tick_tmo, hz);
1291}
1292
1293/*
1294 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1295 * pointers to the fragment pointers.
1296 */
1297int wb_encap(sc, c, m_head)
1298	struct wb_softc		*sc;
1299	struct wb_chain		*c;
1300	struct mbuf		*m_head;
1301{
1302	int			frag = 0;
1303	struct wb_desc		*f = NULL;
1304	int			total_len;
1305	struct mbuf		*m;
1306
1307	/*
1308 	 * Start packing the mbufs in this chain into
1309	 * the fragment pointers. Stop when we run out
1310 	 * of fragments or hit the end of the mbuf chain.
1311	 */
1312	m = m_head;
1313	total_len = 0;
1314
1315	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
1316		if (m->m_len != 0) {
1317			if (frag == WB_MAXFRAGS)
1318				break;
1319			total_len += m->m_len;
1320			f = &c->wb_ptr->wb_frag[frag];
1321			f->wb_ctl = WB_TXCTL_TLINK | m->m_len;
1322			if (frag == 0) {
1323				f->wb_ctl |= WB_TXCTL_FIRSTFRAG;
1324				f->wb_status = 0;
1325			} else
1326				f->wb_status = WB_TXSTAT_OWN;
1327			f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]);
1328			f->wb_data = vtophys(mtod(m, vaddr_t));
1329			frag++;
1330		}
1331	}
1332
1333	/*
1334	 * Handle special case: we used up all 16 fragments,
1335	 * but we have more mbufs left in the chain. Copy the
1336	 * data into an mbuf cluster. Note that we don't
1337	 * bother clearing the values in the other fragment
1338	 * pointers/counters; it wouldn't gain us anything,
1339	 * and would waste cycles.
1340	 */
1341	if (m != NULL) {
1342		struct mbuf		*m_new = NULL;
1343
1344		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
1345		if (m_new == NULL)
1346			return(1);
1347		if (m_head->m_pkthdr.len > MHLEN) {
1348			MCLGET(m_new, M_DONTWAIT);
1349			if (!(m_new->m_flags & M_EXT)) {
1350				m_freem(m_new);
1351				return(1);
1352			}
1353		}
1354		m_copydata(m_head, 0, m_head->m_pkthdr.len,
1355					mtod(m_new, caddr_t));
1356		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
1357		m_freem(m_head);
1358		m_head = m_new;
1359		f = &c->wb_ptr->wb_frag[0];
1360		f->wb_status = 0;
1361		f->wb_data = vtophys(mtod(m_new, caddr_t));
1362		f->wb_ctl = total_len = m_new->m_len;
1363		f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG;
1364		frag = 1;
1365	}
1366
1367	if (total_len < WB_MIN_FRAMELEN) {
1368		f = &c->wb_ptr->wb_frag[frag];
1369		f->wb_ctl = WB_MIN_FRAMELEN - total_len;
1370		f->wb_data = vtophys(&sc->wb_cdata.wb_pad);
1371		f->wb_ctl |= WB_TXCTL_TLINK;
1372		f->wb_status = WB_TXSTAT_OWN;
1373		frag++;
1374	}
1375
1376	c->wb_mbuf = m_head;
1377	c->wb_lastdesc = frag - 1;
1378	WB_TXCTL(c) |= WB_TXCTL_LASTFRAG;
1379	WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]);
1380
1381	return(0);
1382}
1383
1384/*
1385 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1386 * to the mbuf data regions directly in the transmit lists. We also save a
1387 * copy of the pointers since the transmit list fragment pointers are
1388 * physical addresses.
1389 */
1390
1391void wb_start(ifp)
1392	struct ifnet		*ifp;
1393{
1394	struct wb_softc		*sc;
1395	struct mbuf		*m_head = NULL;
1396	struct wb_chain		*cur_tx = NULL, *start_tx;
1397
1398	sc = ifp->if_softc;
1399
1400	/*
1401	 * Check for an available queue slot. If there are none,
1402	 * punt.
1403	 */
1404	if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) {
1405		ifp->if_flags |= IFF_OACTIVE;
1406		return;
1407	}
1408
1409	start_tx = sc->wb_cdata.wb_tx_free;
1410
1411	while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) {
1412		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1413		if (m_head == NULL)
1414			break;
1415
1416		/* Pick a descriptor off the free list. */
1417		cur_tx = sc->wb_cdata.wb_tx_free;
1418		sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc;
1419
1420		/* Pack the data into the descriptor. */
1421		wb_encap(sc, cur_tx, m_head);
1422
1423		if (cur_tx != start_tx)
1424			WB_TXOWN(cur_tx) = WB_TXSTAT_OWN;
1425
1426#if NBPFILTER > 0
1427		/*
1428		 * If there's a BPF listener, bounce a copy of this frame
1429		 * to him.
1430		 */
1431		if (ifp->if_bpf)
1432			bpf_mtap(ifp->if_bpf, cur_tx->wb_mbuf);
1433#endif
1434	}
1435
1436	/*
1437	 * If there are no packets queued, bail.
1438	 */
1439	if (cur_tx == NULL)
1440		return;
1441
1442	/*
1443	 * Place the request for the upload interrupt
1444	 * in the last descriptor in the chain. This way, if
1445	 * we're chaining several packets at once, we'll only
1446	 * get an interupt once for the whole chain rather than
1447	 * once for each packet.
1448	 */
1449	WB_TXCTL(cur_tx) |= WB_TXCTL_FINT;
1450	cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT;
1451	sc->wb_cdata.wb_tx_tail = cur_tx;
1452
1453	if (sc->wb_cdata.wb_tx_head == NULL) {
1454		sc->wb_cdata.wb_tx_head = start_tx;
1455		WB_TXOWN(start_tx) = WB_TXSTAT_OWN;
1456		CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF);
1457	} else {
1458		/*
1459		 * We need to distinguish between the case where
1460		 * the own bit is clear because the chip cleared it
1461		 * and where the own bit is clear because we haven't
1462		 * set it yet. The magic value WB_UNSET is just some
1463		 * ramdomly chosen number which doesn't have the own
1464	 	 * bit set. When we actually transmit the frame, the
1465		 * status word will have _only_ the own bit set, so
1466		 * the txeoc handler will be able to tell if it needs
1467		 * to initiate another transmission to flush out pending
1468		 * frames.
1469		 */
1470		WB_TXOWN(start_tx) = WB_UNSENT;
1471	}
1472
1473	/*
1474	 * Set a timeout in case the chip goes out to lunch.
1475	 */
1476	ifp->if_timer = 5;
1477
1478	return;
1479}
1480
1481void wb_init(xsc)
1482	void			*xsc;
1483{
1484	struct wb_softc *sc = xsc;
1485	struct ifnet *ifp = &sc->arpcom.ac_if;
1486	int s, i;
1487
1488	s = splimp();
1489
1490	/*
1491	 * Cancel pending I/O and free all RX/TX buffers.
1492	 */
1493	wb_stop(sc);
1494	wb_reset(sc);
1495
1496	sc->wb_txthresh = WB_TXTHRESH_INIT;
1497
1498	/*
1499	 * Set cache alignment and burst length.
1500	 */
1501#ifdef foo
1502	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG);
1503	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH);
1504	WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh));
1505#endif
1506
1507	CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION);
1508	WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG);
1509	switch(sc->wb_cachesize) {
1510	case 32:
1511		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG);
1512		break;
1513	case 16:
1514		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG);
1515		break;
1516	case 8:
1517		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG);
1518		break;
1519	case 0:
1520	default:
1521		WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE);
1522		break;
1523	}
1524
1525	/* This doesn't tend to work too well at 100Mbps. */
1526	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON);
1527
1528	/* Init our MAC address */
1529	for (i = 0; i < ETHER_ADDR_LEN; i++) {
1530		CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]);
1531	}
1532
1533	/* Init circular RX list. */
1534	if (wb_list_rx_init(sc) == ENOBUFS) {
1535		printf("%s: initialization failed: no "
1536			"memory for rx buffers\n", sc->sc_dev.dv_xname);
1537		wb_stop(sc);
1538		splx(s);
1539		return;
1540	}
1541
1542	/* Init TX descriptors. */
1543	wb_list_tx_init(sc);
1544
1545	/* If we want promiscuous mode, set the allframes bit. */
1546	if (ifp->if_flags & IFF_PROMISC) {
1547		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1548	} else {
1549		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS);
1550	}
1551
1552	/*
1553	 * Set capture broadcast bit to capture broadcast frames.
1554	 */
1555	if (ifp->if_flags & IFF_BROADCAST) {
1556		WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1557	} else {
1558		WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD);
1559	}
1560
1561	/*
1562	 * Program the multicast filter, if necessary.
1563	 */
1564	wb_setmulti(sc);
1565
1566	/*
1567	 * Load the address of the RX list.
1568	 */
1569	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1570	CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0]));
1571
1572	/*
1573	 * Enable interrupts.
1574	 */
1575	CSR_WRITE_4(sc, WB_IMR, WB_INTRS);
1576	CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF);
1577
1578	/* Enable receiver and transmitter. */
1579	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON);
1580	CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF);
1581
1582	WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1583	CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0]));
1584	WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON);
1585
1586	ifp->if_flags |= IFF_RUNNING;
1587	ifp->if_flags &= ~IFF_OACTIVE;
1588
1589	splx(s);
1590
1591	timeout_set(&sc->wb_tick_tmo, wb_tick, sc);
1592	timeout_add(&sc->wb_tick_tmo, hz);
1593
1594	return;
1595}
1596
1597/*
1598 * Set media options.
1599 */
1600int
1601wb_ifmedia_upd(ifp)
1602	struct ifnet *ifp;
1603{
1604	struct wb_softc *sc = ifp->if_softc;
1605
1606	if (ifp->if_flags & IFF_UP)
1607		wb_init(sc);
1608
1609	return(0);
1610}
1611
1612/*
1613 * Report current media status.
1614 */
1615void
1616wb_ifmedia_sts(ifp, ifmr)
1617	struct ifnet		*ifp;
1618	struct ifmediareq	*ifmr;
1619{
1620	struct wb_softc *sc = ifp->if_softc;
1621	struct mii_data *mii = &sc->sc_mii;
1622
1623	mii_pollstat(mii);
1624	ifmr->ifm_active = mii->mii_media_active;
1625	ifmr->ifm_status = mii->mii_media_status;
1626}
1627
1628int wb_ioctl(ifp, command, data)
1629	struct ifnet		*ifp;
1630	u_long			command;
1631	caddr_t			data;
1632{
1633	struct wb_softc		*sc = ifp->if_softc;
1634	struct ifreq		*ifr = (struct ifreq *) data;
1635	struct ifaddr		*ifa = (struct ifaddr *)data;
1636	int			s, error = 0;
1637
1638	s = splimp();
1639
1640	if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) {
1641		splx(s);
1642		return (error);
1643	}
1644
1645	switch(command) {
1646	case SIOCSIFADDR:
1647		ifp->if_flags |= IFF_UP;
1648		switch (ifa->ifa_addr->sa_family) {
1649#ifdef INET
1650		case AF_INET:
1651			wb_init(sc);
1652			arp_ifinit(&sc->arpcom, ifa);
1653			break;
1654#endif /* INET */
1655		default:
1656			wb_init(sc);
1657		}
1658		break;
1659	case SIOCSIFFLAGS:
1660		if (ifp->if_flags & IFF_UP) {
1661			wb_init(sc);
1662		} else {
1663			if (ifp->if_flags & IFF_RUNNING)
1664				wb_stop(sc);
1665		}
1666		error = 0;
1667		break;
1668	case SIOCADDMULTI:
1669	case SIOCDELMULTI:
1670		error = (command == SIOCADDMULTI) ?
1671		    ether_addmulti(ifr, &sc->arpcom) :
1672		    ether_delmulti(ifr, &sc->arpcom);
1673
1674		if (error == ENETRESET) {
1675			/*
1676			 * Multicast list has changed; set the hardware
1677			 * filter accordingly.
1678			 */
1679			wb_setmulti(sc);
1680			error = 0;
1681		}
1682		break;
1683	case SIOCGIFMEDIA:
1684	case SIOCSIFMEDIA:
1685		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1686		break;
1687	default:
1688		error = EINVAL;
1689		break;
1690	}
1691
1692	splx(s);
1693
1694	return(error);
1695}
1696
1697void wb_watchdog(ifp)
1698	struct ifnet		*ifp;
1699{
1700	struct wb_softc		*sc;
1701
1702	sc = ifp->if_softc;
1703
1704	ifp->if_oerrors++;
1705	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1706
1707#ifdef foo
1708	if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
1709		printf("%s: no carrier - transceiver cable problem?\n",
1710		    sc->sc_dev.dv_xname);
1711#endif
1712	wb_stop(sc);
1713	wb_reset(sc);
1714	wb_init(sc);
1715
1716	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1717		wb_start(ifp);
1718
1719	return;
1720}
1721
1722/*
1723 * Stop the adapter and free any mbufs allocated to the
1724 * RX and TX lists.
1725 */
1726void wb_stop(sc)
1727	struct wb_softc		*sc;
1728{
1729	register int		i;
1730	struct ifnet		*ifp;
1731
1732	ifp = &sc->arpcom.ac_if;
1733	ifp->if_timer = 0;
1734
1735	timeout_del(&sc->wb_tick_tmo);
1736
1737	WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON));
1738	CSR_WRITE_4(sc, WB_IMR, 0x00000000);
1739	CSR_WRITE_4(sc, WB_TXADDR, 0x00000000);
1740	CSR_WRITE_4(sc, WB_RXADDR, 0x00000000);
1741
1742	/*
1743	 * Free data in the RX lists.
1744	 */
1745	for (i = 0; i < WB_RX_LIST_CNT; i++) {
1746		if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) {
1747			m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf);
1748			sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL;
1749		}
1750	}
1751	bzero((char *)&sc->wb_ldata->wb_rx_list,
1752		sizeof(sc->wb_ldata->wb_rx_list));
1753
1754	/*
1755	 * Free the TX list buffers.
1756	 */
1757	for (i = 0; i < WB_TX_LIST_CNT; i++) {
1758		if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) {
1759			m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf);
1760			sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL;
1761		}
1762	}
1763
1764	bzero((char *)&sc->wb_ldata->wb_tx_list,
1765		sizeof(sc->wb_ldata->wb_tx_list));
1766
1767	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1768
1769	return;
1770}
1771
1772/*
1773 * Stop all chip I/O so that the kernel's probe routines don't
1774 * get confused by errant DMAs when rebooting.
1775 */
1776void wb_shutdown(arg)
1777	void			*arg;
1778{
1779	struct wb_softc		*sc = (struct wb_softc *)arg;
1780
1781	wb_stop(sc);
1782
1783	return;
1784}
1785
1786struct cfattach wb_ca = {
1787	sizeof(struct wb_softc), wb_probe, wb_attach
1788};
1789
1790struct cfdriver wb_cd = {
1791	0, "wb", DV_IFNET
1792};
1793