if_sk.c revision 1.14
1/*	$OpenBSD: if_sk.c,v 1.14 2001/08/12 20:03:49 mickey Exp $	*/
2
3/*
4 * Copyright (c) 1997, 1998, 1999, 2000
5 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 *    must display the following acknowledgement:
17 *	This product includes software developed by Bill Paul.
18 * 4. Neither the name of the author nor the names of any co-contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
32 * THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
35 */
36
37/*
38 * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
39 * the SK-984x series adapters, both single port and dual port.
40 * References:
41 * 	The XaQti XMAC II datasheet,
42 * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
43 *	The SysKonnect GEnesis manual, http://www.syskonnect.com
44 *
45 * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the
46 * XMAC II datasheet online. I have put my copy at people.freebsd.org as a
47 * convience to others until Vitesse corrects this problem:
48 *
49 * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
50 *
51 * Written by Bill Paul <wpaul@ee.columbia.edu>
52 * Department of Electrical Engineering
53 * Columbia University, New York City
54 */
55
56/*
57 * The SysKonnect gigabit ethernet adapters consist of two main
58 * components: the SysKonnect GEnesis controller chip and the XaQti Corp.
59 * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
60 * components and a PHY while the GEnesis controller provides a PCI
61 * interface with DMA support. Each card may have between 512K and
62 * 2MB of SRAM on board depending on the configuration.
63 *
64 * The SysKonnect GEnesis controller can have either one or two XMAC
65 * chips connected to it, allowing single or dual port NIC configurations.
66 * SysKonnect has the distinction of being the only vendor on the market
67 * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
68 * dual DMA queues, packet/MAC/transmit arbiters and direct access to the
69 * XMAC registers. This driver takes advantage of these features to allow
70 * both XMACs to operate as independent interfaces.
71 */
72
73#include "bpfilter.h"
74
75#include <sys/param.h>
76#include <sys/systm.h>
77#include <sys/sockio.h>
78#include <sys/mbuf.h>
79#include <sys/malloc.h>
80#include <sys/kernel.h>
81#include <sys/socket.h>
82#include <sys/device.h>
83#include <sys/queue.h>
84
85#include <net/if.h>
86#include <net/if_dl.h>
87#include <net/if_types.h>
88
89#ifdef INET
90#include <netinet/in.h>
91#include <netinet/in_systm.h>
92#include <netinet/in_var.h>
93#include <netinet/ip.h>
94#include <netinet/if_ether.h>
95#endif
96
97#include <net/if_media.h>
98
99#if NBPFILTER > 0
100#include <net/bpf.h>
101#endif
102
103#include <vm/vm.h>              /* for vtophys */
104#include <vm/vm_kern.h>
105#include <machine/bus.h>
106
107#include <dev/mii/mii.h>
108#include <dev/mii/miivar.h>
109#include <dev/mii/brgphyreg.h>
110
111#include <dev/pci/pcireg.h>
112#include <dev/pci/pcivar.h>
113#include <dev/pci/pcidevs.h>
114
115#define SK_USEIOSPACE
116#define	SK_VERBOSE
117
118#include <dev/pci/if_skreg.h>
119#include <dev/pci/xmaciireg.h>
120
121int skc_probe		__P((struct device *, void *, void *));
122void skc_attach		__P((struct device *, struct device *self, void *aux));
123int sk_probe		__P((struct device *, void *, void *));
124void sk_attach		__P((struct device *, struct device *self, void *aux));
125int skcprint		__P((void *, const char *));
126int sk_attach_xmac	__P((struct sk_softc *, int));
127int sk_intr		__P((void *));
128void sk_intr_bcom	__P((struct sk_if_softc *));
129void sk_intr_xmac	__P((struct sk_if_softc *));
130void sk_rxeof		__P((struct sk_if_softc *));
131void sk_txeof		__P((struct sk_if_softc *));
132int sk_encap		__P((struct sk_if_softc *, struct mbuf *, u_int32_t *));
133void sk_start		__P((struct ifnet *));
134int sk_ioctl		__P((struct ifnet *, u_long, caddr_t));
135void sk_init		__P((void *));
136void sk_init_xmac	__P((struct sk_if_softc *));
137void sk_stop		__P((struct sk_if_softc *));
138void sk_watchdog	__P((struct ifnet *));
139void sk_shutdown	__P((void *));
140int sk_ifmedia_upd	__P((struct ifnet *));
141void sk_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));
142void sk_reset		__P((struct sk_softc *));
143int sk_newbuf		__P((struct sk_if_softc *, struct sk_chain *,
144    struct mbuf *));
145int sk_init_rx_ring	__P((struct sk_if_softc *));
146void sk_init_tx_ring	__P((struct sk_if_softc *));
147u_int32_t sk_win_read_4	__P((struct sk_softc *, int));
148u_int16_t sk_win_read_2	__P((struct sk_softc *, int));
149u_int8_t sk_win_read_1	__P((struct sk_softc *, int));
150void sk_win_write_4	__P((struct sk_softc *, int, u_int32_t));
151void sk_win_write_2	__P((struct sk_softc *, int, u_int32_t));
152void sk_win_write_1	__P((struct sk_softc *, int, u_int32_t));
153u_int8_t sk_vpd_readbyte	__P((struct sk_softc *, int));
154void sk_vpd_read_res	__P((struct sk_softc *,
155					struct vpd_res *, int));
156void sk_vpd_read	__P((struct sk_softc *));
157
158int sk_miibus_readreg	__P((struct device *, int, int));
159void sk_miibus_writereg	__P((struct device *, int, int, int));
160void sk_miibus_statchg	__P((struct device *));
161
162u_int32_t sk_calchash	__P((caddr_t));
163void sk_setfilt		__P((struct sk_if_softc *, caddr_t, int));
164void sk_setmulti	__P((struct sk_if_softc *));
165void sk_tick		__P((void *));
166
167#define SK_SETBIT(sc, reg, x)		\
168	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
169
170#define SK_CLRBIT(sc, reg, x)		\
171	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
172
173#define SK_WIN_SETBIT_4(sc, reg, x)	\
174	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
175
176#define SK_WIN_CLRBIT_4(sc, reg, x)	\
177	sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
178
179#define SK_WIN_SETBIT_2(sc, reg, x)	\
180	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
181
182#define SK_WIN_CLRBIT_2(sc, reg, x)	\
183	sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
184
185u_int32_t sk_win_read_4(sc, reg)
186	struct sk_softc		*sc;
187	int			reg;
188{
189	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
190	return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
191}
192
193u_int16_t sk_win_read_2(sc, reg)
194	struct sk_softc		*sc;
195	int			reg;
196{
197	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
198	return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
199}
200
201u_int8_t sk_win_read_1(sc, reg)
202	struct sk_softc		*sc;
203	int			reg;
204{
205	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
206	return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
207}
208
209void sk_win_write_4(sc, reg, val)
210	struct sk_softc		*sc;
211	int			reg;
212	u_int32_t		val;
213{
214	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
215	CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
216	return;
217}
218
219void sk_win_write_2(sc, reg, val)
220	struct sk_softc		*sc;
221	int			reg;
222	u_int32_t		val;
223{
224	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
225	CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val);
226	return;
227}
228
229void sk_win_write_1(sc, reg, val)
230	struct sk_softc		*sc;
231	int			reg;
232	u_int32_t		val;
233{
234	CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
235	CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
236	return;
237}
238
239/*
240 * The VPD EEPROM contains Vital Product Data, as suggested in
241 * the PCI 2.1 specification. The VPD data is separared into areas
242 * denoted by resource IDs. The SysKonnect VPD contains an ID string
243 * resource (the name of the adapter), a read-only area resource
244 * containing various key/data fields and a read/write area which
245 * can be used to store asset management information or log messages.
246 * We read the ID string and read-only into buffers attached to
247 * the controller softc structure for later use. At the moment,
248 * we only use the ID string during sk_attach().
249 */
250u_int8_t sk_vpd_readbyte(sc, addr)
251	struct sk_softc		*sc;
252	int			addr;
253{
254	int			i;
255
256	sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
257	for (i = 0; i < SK_TIMEOUT; i++) {
258		DELAY(1);
259		if (sk_win_read_2(sc,
260		    SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
261			break;
262	}
263
264	if (i == SK_TIMEOUT)
265		return(0);
266
267	return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
268}
269
270void sk_vpd_read_res(sc, res, addr)
271	struct sk_softc		*sc;
272	struct vpd_res		*res;
273	int			addr;
274{
275	int			i;
276	u_int8_t		*ptr;
277
278	ptr = (u_int8_t *)res;
279	for (i = 0; i < sizeof(struct vpd_res); i++)
280		ptr[i] = sk_vpd_readbyte(sc, i + addr);
281
282	return;
283}
284
285void sk_vpd_read(sc)
286	struct sk_softc		*sc;
287{
288	int			pos = 0, i;
289	struct vpd_res		res;
290
291	if (sc->sk_vpd_prodname != NULL)
292		free(sc->sk_vpd_prodname, M_DEVBUF);
293	if (sc->sk_vpd_readonly != NULL)
294		free(sc->sk_vpd_readonly, M_DEVBUF);
295	sc->sk_vpd_prodname = NULL;
296	sc->sk_vpd_readonly = NULL;
297
298	sk_vpd_read_res(sc, &res, pos);
299
300	if (res.vr_id != VPD_RES_ID) {
301		printf("%s: bad VPD resource id: expected %x got %x\n",
302		    sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
303		return;
304	}
305
306	pos += sizeof(res);
307	sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
308	for (i = 0; i < res.vr_len; i++)
309		sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
310	sc->sk_vpd_prodname[i] = '\0';
311	pos += i;
312
313	sk_vpd_read_res(sc, &res, pos);
314
315	if (res.vr_id != VPD_RES_READ) {
316		printf("%s: bad VPD resource id: expected %x got %x\n",
317		    sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
318		return;
319	}
320
321	pos += sizeof(res);
322	sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
323	for (i = 0; i < res.vr_len + 1; i++)
324		sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
325
326	return;
327}
328
329int
330sk_miibus_readreg(dev, phy, reg)
331	struct device *dev;
332	int phy, reg;
333{
334	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
335	int i;
336
337	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
338		return(0);
339
340	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
341	SK_XM_READ_2(sc_if, XM_PHY_DATA);
342	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
343		for (i = 0; i < SK_TIMEOUT; i++) {
344			DELAY(1);
345			if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
346			    XM_MMUCMD_PHYDATARDY)
347				break;
348		}
349
350		if (i == SK_TIMEOUT) {
351			printf("%s: phy failed to come ready\n",
352			    sc_if->sk_dev.dv_xname);
353			return(0);
354		}
355	}
356	DELAY(1);
357	return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
358}
359
360void
361sk_miibus_writereg(dev, phy, reg, val)
362	struct device *dev;
363	int phy, reg, val;
364{
365	struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
366	int i;
367
368	SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
369	for (i = 0; i < SK_TIMEOUT; i++) {
370		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
371			break;
372	}
373
374	if (i == SK_TIMEOUT) {
375		printf("%s: phy failed to come ready\n",
376		    sc_if->sk_dev.dv_xname);
377		return;
378	}
379
380	SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
381	for (i = 0; i < SK_TIMEOUT; i++) {
382		DELAY(1);
383		if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
384			break;
385	}
386
387	if (i == SK_TIMEOUT)
388		printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
389
390	return;
391}
392
393void
394sk_miibus_statchg(dev)
395	struct device *dev;
396{
397	struct sk_if_softc *sc_if;
398	struct mii_data *mii;
399
400	sc_if = (struct sk_if_softc *)dev;
401	mii = &sc_if->sk_mii;
402
403	/*
404	 * If this is a GMII PHY, manually set the XMAC's
405	 * duplex mode accordingly.
406	 */
407	if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
408		if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
409			SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
410		} else {
411			SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
412		}
413	}
414
415	return;
416}
417
418#define SK_POLY		0xEDB88320
419#define SK_BITS		6
420
421u_int32_t sk_calchash(addr)
422	caddr_t			addr;
423{
424	u_int32_t		idx, bit, data, crc;
425
426	/* Compute CRC for the address value. */
427	crc = 0xFFFFFFFF; /* initial value */
428
429	for (idx = 0; idx < 6; idx++) {
430		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
431			crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0);
432	}
433
434	return (~crc & ((1 << SK_BITS) - 1));
435}
436
437void sk_setfilt(sc_if, addr, slot)
438	struct sk_if_softc	*sc_if;
439	caddr_t			addr;
440	int			slot;
441{
442	int			base;
443
444	base = XM_RXFILT_ENTRY(slot);
445
446	SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
447	SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
448	SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
449
450	return;
451}
452
453void
454sk_setmulti(sc_if)
455	struct sk_if_softc	*sc_if;
456{
457	struct ifnet *ifp;
458	u_int32_t hashes[2] = { 0, 0 };
459	int h, i;
460	struct arpcom *ac = &sc_if->arpcom;
461	struct ether_multi *enm;
462	struct ether_multistep step;
463	u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
464
465	ifp = &sc_if->arpcom.ac_if;
466
467	/* First, zot all the existing filters. */
468	for (i = 1; i < XM_RXFILT_MAX; i++)
469		sk_setfilt(sc_if, (caddr_t)&dummy, i);
470	SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
471	SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
472
473	/* Now program new ones. */
474allmulti:
475	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
476		hashes[0] = 0xFFFFFFFF;
477		hashes[1] = 0xFFFFFFFF;
478	} else {
479		i = 1;
480		/* First find the tail of the list. */
481		ETHER_FIRST_MULTI(step, ac, enm);
482		while (enm != NULL) {
483			if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
484				ifp->if_flags |= IFF_ALLMULTI;
485				goto allmulti;
486			}
487			/*
488			 * Program the first XM_RXFILT_MAX multicast groups
489			 * into the perfect filter. For all others,
490			 * use the hash table.
491			 */
492			if (i < XM_RXFILT_MAX) {
493				sk_setfilt(sc_if, enm->enm_addrlo, i);
494				i++;
495			}
496			else {
497				h = sk_calchash(enm->enm_addrlo);
498				if (h < 32)
499					hashes[0] |= (1 << h);
500				else
501					hashes[1] |= (1 << (h - 32));
502			}
503
504			ETHER_NEXT_MULTI(step, enm);
505		}
506	}
507
508	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
509	    XM_MODE_RX_USE_PERFECT);
510	SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
511	SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
512
513	return;
514}
515
516int sk_init_rx_ring(sc_if)
517	struct sk_if_softc	*sc_if;
518{
519	struct sk_chain_data	*cd;
520	struct sk_ring_data	*rd;
521	int			i;
522
523	cd = &sc_if->sk_cdata;
524	rd = sc_if->sk_rdata;
525
526	bzero((char *)rd->sk_rx_ring,
527	    sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
528
529	for (i = 0; i < SK_RX_RING_CNT; i++) {
530		cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
531		if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) {
532			printf("%s: failed alloc of %dth mbuf\n",
533			    sc_if->sk_dev.dv_xname, i);
534			return(ENOBUFS);
535		}
536		if (i == (SK_RX_RING_CNT - 1)) {
537			cd->sk_rx_chain[i].sk_next =
538			    &cd->sk_rx_chain[0];
539			rd->sk_rx_ring[i].sk_next =
540			    vtophys(&rd->sk_rx_ring[0]);
541		} else {
542			cd->sk_rx_chain[i].sk_next =
543			    &cd->sk_rx_chain[i + 1];
544			rd->sk_rx_ring[i].sk_next =
545			    vtophys(&rd->sk_rx_ring[i + 1]);
546		}
547	}
548
549	sc_if->sk_cdata.sk_rx_prod = 0;
550	sc_if->sk_cdata.sk_rx_cons = 0;
551
552	return(0);
553}
554
555void sk_init_tx_ring(sc_if)
556	struct sk_if_softc	*sc_if;
557{
558	struct sk_chain_data	*cd;
559	struct sk_ring_data	*rd;
560	int			i;
561
562	cd = &sc_if->sk_cdata;
563	rd = sc_if->sk_rdata;
564
565	bzero((char *)sc_if->sk_rdata->sk_tx_ring,
566	    sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
567
568	for (i = 0; i < SK_TX_RING_CNT; i++) {
569		cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
570		if (i == (SK_TX_RING_CNT - 1)) {
571			cd->sk_tx_chain[i].sk_next =
572			    &cd->sk_tx_chain[0];
573			rd->sk_tx_ring[i].sk_next =
574			    vtophys(&rd->sk_tx_ring[0]);
575		} else {
576			cd->sk_tx_chain[i].sk_next =
577			    &cd->sk_tx_chain[i + 1];
578			rd->sk_tx_ring[i].sk_next =
579			    vtophys(&rd->sk_tx_ring[i + 1]);
580		}
581	}
582
583	sc_if->sk_cdata.sk_tx_prod = 0;
584	sc_if->sk_cdata.sk_tx_cons = 0;
585	sc_if->sk_cdata.sk_tx_cnt = 0;
586
587	return;
588}
589
590int sk_newbuf(sc_if, c, m)
591	struct sk_if_softc	*sc_if;
592	struct sk_chain		*c;
593	struct mbuf		*m;
594{
595	struct mbuf		*m_new = NULL;
596	struct sk_rx_desc	*r;
597
598	if (m == NULL) {
599		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
600		if (m_new == NULL) {
601			printf("%s: no memory for rx list -- "
602			    "packet dropped!\n", sc_if->sk_dev.dv_xname);
603			return(ENOBUFS);
604		}
605
606		/* Allocate the jumbo buffer */
607		MCLGET(m_new, M_DONTWAIT);
608		if (!(m_new->m_flags & M_EXT)) {
609			m_freem(m_new);
610			return (ENOBUFS);
611		}
612	} else {
613		/*
614	 	 * We're re-using a previously allocated mbuf;
615		 * be sure to re-init pointers and lengths to
616		 * default values.
617		 */
618		m_new = m;
619		m_new->m_data = m_new->m_ext.ext_buf;
620	}
621	m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
622
623	/*
624	 * Adjust alignment so packet payload begins on a
625	 * longword boundary. Mandatory for Alpha, useful on
626	 * x86 too.
627	 */
628	m_adj(m_new, ETHER_ALIGN);
629
630	r = c->sk_desc;
631	c->sk_mbuf = m_new;
632	r->sk_data_lo = vtophys(mtod(m_new, caddr_t));
633	r->sk_ctl = m_new->m_len | SK_RXSTAT;
634
635	return(0);
636}
637
638/*
639 * Set media options.
640 */
641int
642sk_ifmedia_upd(ifp)
643	struct ifnet *ifp;
644{
645	struct sk_if_softc *sc_if = ifp->if_softc;
646
647	sk_init(sc_if);
648	mii_mediachg(&sc_if->sk_mii);
649	return(0);
650}
651
652/*
653 * Report current media status.
654 */
655void
656sk_ifmedia_sts(ifp, ifmr)
657	struct ifnet *ifp;
658	struct ifmediareq *ifmr;
659{
660	struct sk_if_softc *sc_if = ifp->if_softc;
661
662	mii_pollstat(&sc_if->sk_mii);
663	ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
664	ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
665}
666
667int
668sk_ioctl(ifp, command, data)
669	struct ifnet *ifp;
670	u_long command;
671	caddr_t data;
672{
673	struct sk_if_softc *sc_if = ifp->if_softc;
674	struct ifreq *ifr = (struct ifreq *) data;
675	struct ifaddr *ifa = (struct ifaddr *) data;
676	struct mii_data *mii;
677	int s, error = 0;
678
679	s = splimp();
680
681	if ((error = ether_ioctl(ifp, &sc_if->arpcom, command, data)) > 0) {
682		splx(s);
683		return error;
684	}
685
686	switch(command) {
687	case SIOCSIFADDR:
688		ifp->if_flags |= IFF_UP;
689		switch (ifa->ifa_addr->sa_family) {
690#ifdef INET
691		case AF_INET:
692			sk_init(sc_if);
693			arp_ifinit(&sc_if->arpcom, ifa);
694			break;
695#endif /* INET */
696		default:
697			sk_init(sc_if);
698			break;
699		}
700		break;
701	case SIOCSIFFLAGS:
702		if (ifp->if_flags & IFF_UP) {
703			if (ifp->if_flags & IFF_RUNNING &&
704			    ifp->if_flags & IFF_PROMISC &&
705			    !(sc_if->sk_if_flags & IFF_PROMISC)) {
706				SK_XM_SETBIT_4(sc_if, XM_MODE,
707				    XM_MODE_RX_PROMISC);
708				sk_setmulti(sc_if);
709			} else if (ifp->if_flags & IFF_RUNNING &&
710			    !(ifp->if_flags & IFF_PROMISC) &&
711			    sc_if->sk_if_flags & IFF_PROMISC) {
712				SK_XM_CLRBIT_4(sc_if, XM_MODE,
713				    XM_MODE_RX_PROMISC);
714				sk_setmulti(sc_if);
715			} else
716				sk_init(sc_if);
717		} else {
718			if (ifp->if_flags & IFF_RUNNING)
719				sk_stop(sc_if);
720		}
721		sc_if->sk_if_flags = ifp->if_flags;
722		error = 0;
723		break;
724	case SIOCADDMULTI:
725	case SIOCDELMULTI:
726		error = (command == SIOCADDMULTI) ?
727		    ether_addmulti(ifr, &sc_if->arpcom) :
728		    ether_delmulti(ifr, &sc_if->arpcom);
729
730		if (error == ENETRESET) {
731			/*
732			 * Multicast list has changed; set the hardware
733			 * filter accordingly.
734			 */
735			sk_setmulti(sc_if);
736			error = 0;
737		}
738		break;
739	case SIOCGIFMEDIA:
740	case SIOCSIFMEDIA:
741		mii = &sc_if->sk_mii;
742		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
743		break;
744	default:
745		error = EINVAL;
746		break;
747	}
748
749	(void)splx(s);
750
751	return(error);
752}
753
754/*
755 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
756 * IDs against our list and return a device name if we find a match.
757 */
758int
759skc_probe(parent, match, aux)
760	struct device *parent;
761	void *match, *aux;
762{
763	struct pci_attach_args *pa = aux;
764
765	if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_SCHNEIDERKOCH)
766		return (0);
767
768	if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SCHNEIDERKOCH_GE)
769		return (0);
770
771	return (1);
772}
773
774/*
775 * Force the GEnesis into reset, then bring it out of reset.
776 */
777void sk_reset(sc)
778	struct sk_softc		*sc;
779{
780	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET);
781	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET);
782	DELAY(1000);
783	CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET);
784	CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
785
786	/* Configure packet arbiter */
787	sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
788	sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
789	sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
790	sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
791	sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
792
793	/* Enable RAM interface */
794	sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
795
796	/*
797         * Configure interrupt moderation. The moderation timer
798	 * defers interrupts specified in the interrupt moderation
799	 * timer mask based on the timeout specified in the interrupt
800	 * moderation timer init register. Each bit in the timer
801	 * register represents 18.825ns, so to specify a timeout in
802	 * microseconds, we have to multiply by 54.
803	 */
804        sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
805        sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
806	    SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
807        sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
808
809	return;
810}
811
812int
813sk_probe(parent, match, aux)
814	struct device *parent;
815	void *match, *aux;
816{
817	struct skc_attach_args *sa = aux;
818
819	if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
820		return(0);
821
822	return (1);
823}
824
825/*
826 * Each XMAC chip is attached as a separate logical IP interface.
827 * Single port cards will have only one logical interface of course.
828 */
829void
830sk_attach(parent, self, aux)
831	struct device *parent, *self;
832	void *aux;
833{
834	struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
835	struct sk_softc *sc = (struct sk_softc *)parent;
836	struct skc_attach_args *sa = aux;
837	struct ifnet *ifp;
838	caddr_t kva;
839	bus_dma_segment_t seg;
840	bus_dmamap_t dmamap;
841	int i, rseg;
842
843	sc_if->sk_port = sa->skc_port;
844	sc_if->sk_softc = sc;
845	sc->sk_if[sa->skc_port] = sc_if;
846
847	if (sa->skc_port == SK_PORT_A)
848		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
849	if (sa->skc_port == SK_PORT_B)
850		sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
851
852	/*
853	 * Get station address for this interface. Note that
854	 * dual port cards actually come with three station
855	 * addresses: one for each port, plus an extra. The
856	 * extra one is used by the SysKonnect driver software
857	 * as a 'virtual' station address for when both ports
858	 * are operating in failover mode. Currently we don't
859	 * use this extra address.
860	 */
861	for (i = 0; i < ETHER_ADDR_LEN; i++)
862		sc_if->arpcom.ac_enaddr[i] =
863		    sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
864
865
866	printf(": address %s\n",
867	    ether_sprintf(sc_if->arpcom.ac_enaddr));
868
869	/*
870	 * Set up RAM buffer addresses. The NIC will have a certain
871	 * amount of SRAM on it, somewhere between 512K and 2MB. We
872	 * need to divide this up a) between the transmitter and
873 	 * receiver and b) between the two XMACs, if this is a
874	 * dual port NIC. Our algotithm is to divide up the memory
875	 * evenly so that everyone gets a fair share.
876	 */
877	if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
878		u_int32_t		chunk, val;
879
880		chunk = sc->sk_ramsize / 2;
881		val = sc->sk_rboff / sizeof(u_int64_t);
882		sc_if->sk_rx_ramstart = val;
883		val += (chunk / sizeof(u_int64_t));
884		sc_if->sk_rx_ramend = val - 1;
885		sc_if->sk_tx_ramstart = val;
886		val += (chunk / sizeof(u_int64_t));
887		sc_if->sk_tx_ramend = val - 1;
888	} else {
889		u_int32_t		chunk, val;
890
891		chunk = sc->sk_ramsize / 4;
892		val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
893		    sizeof(u_int64_t);
894		sc_if->sk_rx_ramstart = val;
895		val += (chunk / sizeof(u_int64_t));
896		sc_if->sk_rx_ramend = val - 1;
897		sc_if->sk_tx_ramstart = val;
898		val += (chunk / sizeof(u_int64_t));
899		sc_if->sk_tx_ramend = val - 1;
900	}
901
902	/* Read and save PHY type and set PHY address */
903	sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
904	switch (sc_if->sk_phytype) {
905	case SK_PHYTYPE_XMAC:
906		sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
907		break;
908	case SK_PHYTYPE_BCOM:
909		sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
910		break;
911	default:
912		printf("%s: unsupported PHY type: %d\n",
913		    sc->sk_dev.dv_xname, sc_if->sk_phytype);
914		return;
915	}
916
917	/* Allocate the descriptor queues. */
918	if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
919	    PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
920		printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname);
921		goto fail;
922	}
923	if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
924	    sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
925		printf("%s: can't map dma buffers (%d bytes)\n",
926		       sc_if->sk_dev.dv_xname, sizeof(struct sk_ring_data));
927		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
928		goto fail;
929	}
930	if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
931	    sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT, &dmamap)) {
932		printf("%s: can't create dma map\n", sc_if->sk_dev.dv_xname);
933		bus_dmamem_unmap(sc->sc_dmatag, kva,
934		    sizeof(struct sk_ring_data));
935		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
936		goto fail;
937	}
938	if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva,
939	    sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
940		printf("%s: can't load dma map\n", sc_if->sk_dev.dv_xname);
941		bus_dmamap_destroy(sc->sc_dmatag, dmamap);
942		bus_dmamem_unmap(sc->sc_dmatag, kva,
943		    sizeof(struct sk_ring_data));
944		bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
945		goto fail;
946	}
947        sc_if->sk_rdata = (struct sk_ring_data *)kva;
948	bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
949
950	ifp = &sc_if->arpcom.ac_if;
951	ifp->if_softc = sc_if;
952	ifp->if_mtu = ETHERMTU;
953	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
954	ifp->if_ioctl = sk_ioctl;
955	ifp->if_output = ether_output;
956	ifp->if_start = sk_start;
957	ifp->if_watchdog = sk_watchdog;
958	ifp->if_baudrate = 1000000000;
959	ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1;
960	bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
961
962	/*
963	 * Do miibus setup.
964	 */
965	sk_init_xmac(sc_if);
966	sc_if->sk_mii.mii_ifp = ifp;
967	sc_if->sk_mii.mii_readreg = sk_miibus_readreg;
968	sc_if->sk_mii.mii_writereg = sk_miibus_writereg;
969	sc_if->sk_mii.mii_statchg = sk_miibus_statchg;
970	ifmedia_init(&sc_if->sk_mii.mii_media, 0,
971	    sk_ifmedia_upd, sk_ifmedia_sts);
972	mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
973	    MII_OFFSET_ANY, 0);
974	if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
975		printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
976		ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
977		    0, NULL);
978		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
979	}
980	else
981		ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
982
983	timeout_set(&sc_if->sk_tick_ch, sk_tick, sc_if);
984	timeout_add(&sc_if->sk_tick_ch, hz);
985
986	/*
987	 * Call MI attach routines.
988	 */
989	if_attach(ifp);
990	ether_ifattach(ifp);
991
992	return;
993
994fail:
995	sc->sk_if[sa->skc_port] = NULL;
996}
997
998int
999skcprint(aux, pnp)
1000	void *aux;
1001	const char *pnp;
1002{
1003	struct skc_attach_args *sa = aux;
1004
1005	if (pnp)
1006		printf("sk port %c at %s",
1007		    (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1008	else
1009		printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1010	return (UNCONF);
1011}
1012
1013/*
1014 * Attach the interface. Allocate softc structures, do ifmedia
1015 * setup and ethernet/BPF attach.
1016 */
1017void
1018skc_attach(parent, self, aux)
1019	struct device *parent, *self;
1020	void *aux;
1021{
1022	struct sk_softc *sc = (struct sk_softc *)self;
1023	struct pci_attach_args *pa = aux;
1024	struct skc_attach_args skca;
1025	pci_chipset_tag_t pc = pa->pa_pc;
1026	pci_intr_handle_t ih;
1027	const char *intrstr = NULL;
1028	bus_addr_t iobase;
1029	bus_size_t iosize;
1030	int s;
1031	u_int32_t command;
1032
1033	s = splimp();
1034
1035	/*
1036	 * Handle power management nonsense.
1037	 */
1038	command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1039	if (command == 0x01) {
1040
1041		command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1042		if (command & SK_PSTATE_MASK) {
1043			u_int32_t		iobase, membase, irq;
1044
1045			/* Save important PCI config data. */
1046			iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1047			membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1048			irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1049
1050			/* Reset the power state. */
1051			printf("%s chip is in D%d power mode "
1052			    "-- setting to D0\n", sc->sk_dev.dv_xname,
1053			    command & SK_PSTATE_MASK);
1054			command &= 0xFFFFFFFC;
1055			pci_conf_write(pc, pa->pa_tag,
1056			    SK_PCI_PWRMGMTCTRL, command);
1057
1058			/* Restore PCI config data. */
1059			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1060			pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1061			pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1062		}
1063	}
1064
1065	/*
1066	 * Map control/status registers.
1067	 */
1068	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1069	command |= PCI_COMMAND_IO_ENABLE |
1070	    PCI_COMMAND_MEM_ENABLE |
1071	    PCI_COMMAND_MASTER_ENABLE;
1072	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1073	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1074
1075#ifdef SK_USEIOSPACE
1076	if (!(command & PCI_COMMAND_IO_ENABLE)) {
1077		printf(": failed to enable I/O ports!\n");
1078		goto fail;
1079	}
1080	/*
1081	 * Map control/status registers.
1082	 */
1083	if (pci_io_find(pc, pa->pa_tag, SK_PCI_LOIO, &iobase, &iosize)) {
1084		printf(": can't find i/o space\n");
1085		goto fail;
1086	}
1087	if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sk_bhandle)) {
1088		printf(": can't map i/o space\n");
1089		goto fail;
1090	}
1091	sc->sk_btag = pa->pa_iot;
1092#else
1093	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
1094		printf(": failed to enable memory mapping!\n");
1095		goto fail;
1096	}
1097	if (pci_mem_find(pc, pa->pa_tag, SK_PCI_LOMEM, &iobase, &iosize, NULL)){
1098		printf(": can't find mem space\n");
1099		goto fail;
1100	}
1101	if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sk_bhandle)) {
1102		printf(": can't map mem space\n");
1103		goto fail;
1104	}
1105	sc->sk_btag = pa->pa_memt;
1106#endif
1107	sc->sc_dmatag = pa->pa_dmat;
1108
1109	/* Allocate interrupt */
1110	if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
1111	    pa->pa_intrline, &ih)) {
1112		printf(": couldn't map interrupt\n");
1113		goto fail;
1114	}
1115
1116	intrstr = pci_intr_string(pc, ih);
1117	sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc,
1118	    self->dv_xname);
1119	if (sc->sk_intrhand == NULL) {
1120		printf(": couldn't establish interrupt");
1121		if (intrstr != NULL)
1122			printf(" at %s", intrstr);
1123		goto fail;
1124	}
1125	printf(": %s\n", intrstr);
1126
1127	/* Reset the adapter. */
1128	sk_reset(sc);
1129
1130	/* Read and save vital product data from EEPROM. */
1131	sk_vpd_read(sc);
1132
1133	/* Read and save RAM size and RAMbuffer offset */
1134	switch(sk_win_read_1(sc, SK_EPROM0)) {
1135	case SK_RAMSIZE_512K_64:
1136		sc->sk_ramsize = 0x80000;
1137		sc->sk_rboff = SK_RBOFF_0;
1138		break;
1139	case SK_RAMSIZE_1024K_64:
1140		sc->sk_ramsize = 0x100000;
1141		sc->sk_rboff = SK_RBOFF_80000;
1142		break;
1143	case SK_RAMSIZE_1024K_128:
1144		sc->sk_ramsize = 0x100000;
1145		sc->sk_rboff = SK_RBOFF_0;
1146		break;
1147	case SK_RAMSIZE_2048K_128:
1148		sc->sk_ramsize = 0x200000;
1149		sc->sk_rboff = SK_RBOFF_0;
1150		break;
1151	default:
1152		printf("%s: unknown ram size: %d\n",
1153		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_EPROM0));
1154		goto fail;
1155		break;
1156	}
1157
1158	/* Read and save physical media type */
1159	switch(sk_win_read_1(sc, SK_PMDTYPE)) {
1160	case SK_PMD_1000BASESX:
1161		sc->sk_pmd = IFM_1000_SX;
1162		break;
1163	case SK_PMD_1000BASELX:
1164		sc->sk_pmd = IFM_1000_LX;
1165		break;
1166	case SK_PMD_1000BASECX:
1167		sc->sk_pmd = IFM_1000_CX;
1168		break;
1169	case SK_PMD_1000BASETX:
1170		sc->sk_pmd = IFM_1000_TX;
1171		break;
1172	default:
1173		printf("%s: unknown media type: 0x%x\n",
1174		    sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
1175		goto fail;
1176	}
1177
1178	/* Announce the product name. */
1179	printf("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
1180
1181	skca.skc_port = SK_PORT_A;
1182	(void)config_found(&sc->sk_dev, &skca, skcprint);
1183
1184	if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
1185		skca.skc_port = SK_PORT_B;
1186		(void)config_found(&sc->sk_dev, &skca, skcprint);
1187	}
1188
1189	/* Turn on the 'driver is loaded' LED. */
1190	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1191
1192fail:
1193	splx(s);
1194}
1195
1196int sk_encap(sc_if, m_head, txidx)
1197        struct sk_if_softc	*sc_if;
1198        struct mbuf		*m_head;
1199        u_int32_t		*txidx;
1200{
1201	struct sk_tx_desc	*f = NULL;
1202	struct mbuf		*m;
1203	u_int32_t		frag, cur, cnt = 0;
1204
1205	m = m_head;
1206	cur = frag = *txidx;
1207
1208	/*
1209	 * Start packing the mbufs in this chain into
1210	 * the fragment pointers. Stop when we run out
1211	 * of fragments or hit the end of the mbuf chain.
1212	 */
1213	for (m = m_head; m != NULL; m = m->m_next) {
1214		if (m->m_len != 0) {
1215			if ((SK_TX_RING_CNT -
1216			    (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2)
1217				return(ENOBUFS);
1218			f = &sc_if->sk_rdata->sk_tx_ring[frag];
1219			f->sk_data_lo = vtophys(mtod(m, vm_offset_t));
1220			f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT;
1221			if (cnt == 0)
1222				f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
1223			else
1224				f->sk_ctl |= SK_TXCTL_OWN;
1225			cur = frag;
1226			SK_INC(frag, SK_TX_RING_CNT);
1227			cnt++;
1228		}
1229	}
1230
1231	if (m != NULL)
1232		return(ENOBUFS);
1233
1234	sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
1235		SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
1236	sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1237	sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
1238	sc_if->sk_cdata.sk_tx_cnt += cnt;
1239
1240	*txidx = frag;
1241
1242	return(0);
1243}
1244
1245void sk_start(ifp)
1246	struct ifnet		*ifp;
1247{
1248        struct sk_softc		*sc;
1249        struct sk_if_softc	*sc_if;
1250        struct mbuf		*m_head = NULL;
1251        u_int32_t		idx;
1252
1253	sc_if = ifp->if_softc;
1254	sc = sc_if->sk_softc;
1255
1256	idx = sc_if->sk_cdata.sk_tx_prod;
1257
1258	while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1259		IF_DEQUEUE(&ifp->if_snd, m_head);
1260		if (m_head == NULL)
1261			break;
1262
1263		/*
1264		 * Pack the data into the transmit ring. If we
1265		 * don't have room, set the OACTIVE flag and wait
1266		 * for the NIC to drain the ring.
1267		 */
1268		if (sk_encap(sc_if, m_head, &idx)) {
1269			IF_PREPEND(&ifp->if_snd, m_head);
1270			ifp->if_flags |= IFF_OACTIVE;
1271			break;
1272		}
1273
1274		/*
1275		 * If there's a BPF listener, bounce a copy of this frame
1276		 * to him.
1277		 */
1278#if NBPFILTER > 0
1279		if (ifp->if_bpf)
1280			bpf_mtap(ifp->if_bpf, m_head);
1281#endif
1282	}
1283
1284	/* Transmit */
1285	sc_if->sk_cdata.sk_tx_prod = idx;
1286	CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
1287
1288	/* Set a timeout in case the chip goes out to lunch. */
1289	ifp->if_timer = 5;
1290
1291	return;
1292}
1293
1294
1295void sk_watchdog(ifp)
1296	struct ifnet		*ifp;
1297{
1298	struct sk_if_softc	*sc_if;
1299
1300	sc_if = ifp->if_softc;
1301
1302	printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
1303	sk_init(sc_if);
1304
1305	return;
1306}
1307
1308void sk_shutdown(v)
1309	void *v;
1310{
1311	struct sk_softc		*sc = v;
1312
1313	/* Turn off the 'driver is loaded' LED. */
1314	CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1315
1316	/*
1317	 * Reset the GEnesis controller. Doing this should also
1318	 * assert the resets on the attached XMAC(s).
1319	 */
1320	sk_reset(sc);
1321
1322	return;
1323}
1324
1325void sk_rxeof(sc_if)
1326	struct sk_if_softc	*sc_if;
1327{
1328	struct mbuf		*m;
1329	struct ifnet		*ifp;
1330	struct sk_chain		*cur_rx;
1331	int			total_len = 0;
1332	int			i;
1333	u_int32_t		rxstat;
1334
1335	ifp = &sc_if->arpcom.ac_if;
1336	i = sc_if->sk_cdata.sk_rx_prod;
1337	cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1338
1339	while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) {
1340
1341		cur_rx = &sc_if->sk_cdata.sk_rx_chain[i];
1342		rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat;
1343		m = cur_rx->sk_mbuf;
1344		cur_rx->sk_mbuf = NULL;
1345		total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl);
1346		SK_INC(i, SK_RX_RING_CNT);
1347
1348		if (rxstat & XM_RXSTAT_ERRFRAME) {
1349			ifp->if_ierrors++;
1350			sk_newbuf(sc_if, cur_rx, m);
1351			continue;
1352		}
1353
1354		/*
1355		 * Try to allocate a new jumbo buffer. If that
1356		 * fails, copy the packet to mbufs and put the
1357		 * jumbo buffer back in the ring so it can be
1358		 * re-used. If allocating mbufs fails, then we
1359		 * have to drop the packet.
1360		 */
1361		if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) {
1362			struct mbuf		*m0;
1363			m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1364			    total_len + ETHER_ALIGN, 0, ifp, NULL);
1365			sk_newbuf(sc_if, cur_rx, m);
1366			if (m0 == NULL) {
1367				printf("%s: no receive buffers "
1368				    "available -- packet dropped!\n",
1369				    sc_if->sk_dev.dv_xname);
1370				ifp->if_ierrors++;
1371				continue;
1372			}
1373			m_adj(m0, ETHER_ALIGN);
1374			m = m0;
1375		} else {
1376			m->m_pkthdr.rcvif = ifp;
1377			m->m_pkthdr.len = m->m_len = total_len;
1378		}
1379
1380		ifp->if_ipackets++;
1381
1382#if NBPFILTER > 0
1383		if (ifp->if_bpf)
1384			bpf_mtap(ifp->if_bpf, m);
1385#endif
1386		/* pass it on. */
1387		ether_input_mbuf(ifp, m);
1388	}
1389
1390	sc_if->sk_cdata.sk_rx_prod = i;
1391
1392	return;
1393}
1394
1395void sk_txeof(sc_if)
1396	struct sk_if_softc	*sc_if;
1397{
1398	struct sk_tx_desc	*cur_tx = NULL;
1399	struct ifnet		*ifp;
1400	u_int32_t		idx;
1401
1402	ifp = &sc_if->arpcom.ac_if;
1403
1404	/*
1405	 * Go through our tx ring and free mbufs for those
1406	 * frames that have been sent.
1407	 */
1408	idx = sc_if->sk_cdata.sk_tx_cons;
1409	while(idx != sc_if->sk_cdata.sk_tx_prod) {
1410		cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1411		if (cur_tx->sk_ctl & SK_TXCTL_OWN)
1412			break;
1413		if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
1414			ifp->if_opackets++;
1415		if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1416			m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
1417			sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
1418		}
1419		sc_if->sk_cdata.sk_tx_cnt--;
1420		SK_INC(idx, SK_TX_RING_CNT);
1421		ifp->if_timer = 0;
1422	}
1423
1424	sc_if->sk_cdata.sk_tx_cons = idx;
1425
1426	if (cur_tx != NULL)
1427		ifp->if_flags &= ~IFF_OACTIVE;
1428
1429	return;
1430}
1431
1432void
1433sk_tick(xsc_if)
1434	void *xsc_if;
1435{
1436	struct sk_if_softc *sc_if;
1437	struct mii_data *mii;
1438	struct ifnet *ifp;
1439	int i;
1440
1441	sc_if = xsc_if;
1442	ifp = &sc_if->arpcom.ac_if;
1443	mii = &sc_if->sk_mii;
1444
1445	if (!(ifp->if_flags & IFF_UP))
1446		return;
1447
1448	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1449		sk_intr_bcom(sc_if);
1450		return;
1451	}
1452
1453	/*
1454	 * According to SysKonnect, the correct way to verify that
1455	 * the link has come back up is to poll bit 0 of the GPIO
1456	 * register three times. This pin has the signal from the
1457	 * link sync pin connected to it; if we read the same link
1458	 * state 3 times in a row, we know the link is up.
1459	 */
1460	for (i = 0; i < 3; i++) {
1461		if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
1462			break;
1463	}
1464
1465	if (i != 3) {
1466		timeout_add(&sc_if->sk_tick_ch, hz);
1467		return;
1468	}
1469
1470	/* Turn the GP0 interrupt back on. */
1471	SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
1472	SK_XM_READ_2(sc_if, XM_ISR);
1473	mii_tick(mii);
1474	mii_pollstat(mii);
1475	timeout_del(&sc_if->sk_tick_ch);
1476}
1477
1478void
1479sk_intr_bcom(sc_if)
1480	struct sk_if_softc *sc_if;
1481{
1482	struct sk_softc *sc;
1483	struct mii_data *mii;
1484	struct ifnet *ifp;
1485	int status;
1486
1487	sc = sc_if->sk_softc;
1488	mii = &sc_if->sk_mii;
1489	ifp = &sc_if->arpcom.ac_if;
1490
1491	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1492
1493	/*
1494	 * Read the PHY interrupt register to make sure
1495	 * we clear any pending interrupts.
1496	 */
1497	status = sk_miibus_readreg((struct device *)sc_if,
1498	    SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
1499
1500	if (!(ifp->if_flags & IFF_RUNNING)) {
1501		sk_init_xmac(sc_if);
1502		return;
1503	}
1504
1505	if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
1506		int lstat;
1507		lstat = sk_miibus_readreg((struct device *)sc_if,
1508		    SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
1509
1510		if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
1511			mii_mediachg(mii);
1512			/* Turn off the link LED. */
1513			SK_IF_WRITE_1(sc_if, 0,
1514			    SK_LINKLED1_CTL, SK_LINKLED_OFF);
1515			sc_if->sk_link = 0;
1516		} else if (status & BRGPHY_ISR_LNK_CHG) {
1517			sk_miibus_writereg((struct device *)sc_if,
1518			    SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
1519			mii_tick(mii);
1520			sc_if->sk_link = 1;
1521			/* Turn on the link LED. */
1522			SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
1523			    SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
1524			    SK_LINKLED_BLINK_OFF);
1525			mii_pollstat(mii);
1526		} else {
1527			mii_tick(mii);
1528			timeout_add(&sc_if->sk_tick_ch, hz);
1529		}
1530	}
1531
1532	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1533
1534	return;
1535}
1536
1537void sk_intr_xmac(sc_if)
1538	struct sk_if_softc	*sc_if;
1539{
1540	struct sk_softc		*sc;
1541	u_int16_t		status;
1542
1543	sc = sc_if->sk_softc;
1544	status = SK_XM_READ_2(sc_if, XM_ISR);
1545
1546	if (status & XM_ISR_LINKEVENT) {
1547		SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_LINKEVENT);
1548		if (sc_if->sk_link == 1)
1549			sc_if->sk_link = 0;
1550	}
1551
1552	if (status & XM_ISR_AUTONEG_DONE)
1553		timeout_add(&sc_if->sk_tick_ch, hz);
1554
1555	if (status & XM_IMR_TX_UNDERRUN)
1556		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
1557
1558	if (status & XM_IMR_RX_OVERRUN)
1559		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
1560
1561	return;
1562}
1563
1564int sk_intr(xsc)
1565	void			*xsc;
1566{
1567	struct sk_softc		*sc = xsc;
1568	struct sk_if_softc	*sc_if0 = NULL, *sc_if1 = NULL;
1569	struct ifnet		*ifp0 = NULL, *ifp1 = NULL;
1570	u_int32_t		status;
1571	int			claimed = 0;
1572
1573	sc_if0 = sc->sk_if[SK_PORT_A];
1574	sc_if1 = sc->sk_if[SK_PORT_B];
1575
1576	if (sc_if0 != NULL)
1577		ifp0 = &sc_if0->arpcom.ac_if;
1578	if (sc_if1 != NULL)
1579		ifp1 = &sc_if1->arpcom.ac_if;
1580
1581	for (;;) {
1582		status = CSR_READ_4(sc, SK_ISSR);
1583		if (!(status & sc->sk_intrmask))
1584			break;
1585
1586		claimed = 1;
1587
1588		/* Handle receive interrupts first. */
1589		if (status & SK_ISR_RX1_EOF) {
1590			sk_rxeof(sc_if0);
1591			CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
1592			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1593		}
1594		if (status & SK_ISR_RX2_EOF) {
1595			sk_rxeof(sc_if1);
1596			CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
1597			    SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
1598		}
1599
1600		/* Then transmit interrupts. */
1601		if (status & SK_ISR_TX1_S_EOF) {
1602			sk_txeof(sc_if0);
1603			CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
1604			    SK_TXBMU_CLR_IRQ_EOF);
1605		}
1606		if (status & SK_ISR_TX2_S_EOF) {
1607			sk_txeof(sc_if1);
1608			CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
1609			    SK_TXBMU_CLR_IRQ_EOF);
1610		}
1611
1612		/* Then MAC interrupts. */
1613		if (status & SK_ISR_MAC1 &&
1614		    ifp0->if_flags & IFF_RUNNING)
1615			sk_intr_xmac(sc_if0);
1616
1617		if (status & SK_ISR_MAC2 &&
1618		    ifp1->if_flags & IFF_RUNNING)
1619			sk_intr_xmac(sc_if1);
1620
1621		if (status & SK_ISR_EXTERNAL_REG) {
1622			if (ifp0 != NULL)
1623				sk_intr_bcom(sc_if0);
1624			if (ifp1 != NULL)
1625				sk_intr_bcom(sc_if1);
1626		}
1627	}
1628
1629	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1630
1631	if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL)
1632		sk_start(ifp0);
1633	if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL)
1634		sk_start(ifp1);
1635
1636	return (claimed);
1637}
1638
1639void sk_init_xmac(sc_if)
1640	struct sk_if_softc	*sc_if;
1641{
1642	struct sk_softc		*sc;
1643	struct ifnet		*ifp;
1644	struct sk_bcom_hack     bhack[] = {
1645	{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
1646	{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
1647	{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1648	{ 0, 0 } };
1649
1650	sc = sc_if->sk_softc;
1651	ifp = &sc_if->arpcom.ac_if;
1652
1653	/* Unreset the XMAC. */
1654	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
1655	DELAY(1000);
1656
1657	/* Reset the XMAC's internal state. */
1658	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1659
1660	/* Save the XMAC II revision */
1661	sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
1662
1663	/*
1664	 * Perform additional initialization for external PHYs,
1665	 * namely for the 1000baseTX cards that use the XMAC's
1666	 * GMII mode.
1667	 */
1668	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1669		int			i = 0;
1670		u_int32_t		val;
1671
1672		/* Take PHY out of reset. */
1673		val = sk_win_read_4(sc, SK_GPIO);
1674		if (sc_if->sk_port == SK_PORT_A)
1675			val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
1676		else
1677			val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
1678		sk_win_write_4(sc, SK_GPIO, val);
1679
1680		/* Enable GMII mode on the XMAC. */
1681		SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
1682
1683		sk_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM,
1684		    BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
1685		DELAY(10000);
1686		sk_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM,
1687		    BRGPHY_MII_IMR, 0xFFF0);
1688
1689		/*
1690		 * Early versions of the BCM5400 apparently have
1691		 * a bug that requires them to have their reserved
1692		 * registers initialized to some magic values. I don't
1693		 * know what the numbers do, I'm just the messenger.
1694		 */
1695		if (sk_miibus_readreg((struct device *)sc_if,
1696		    SK_PHYADDR_BCOM, 0x03) == 0x6041) {
1697			while(bhack[i].reg) {
1698				sk_miibus_writereg((struct device *)sc_if,
1699				    SK_PHYADDR_BCOM, bhack[i].reg,
1700				    bhack[i].val);
1701				i++;
1702			}
1703		}
1704	}
1705
1706	/* Set station address */
1707	SK_XM_WRITE_2(sc_if, XM_PAR0,
1708	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0]));
1709	SK_XM_WRITE_2(sc_if, XM_PAR1,
1710	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2]));
1711	SK_XM_WRITE_2(sc_if, XM_PAR2,
1712	    *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4]));
1713	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
1714
1715	if (ifp->if_flags & IFF_PROMISC) {
1716		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1717	} else {
1718		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
1719	}
1720
1721	if (ifp->if_flags & IFF_BROADCAST) {
1722		SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1723	} else {
1724		SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
1725	}
1726
1727	/* We don't need the FCS appended to the packet. */
1728	SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
1729
1730	/* We want short frames padded to 60 bytes. */
1731	SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
1732
1733	/*
1734	 * Enable the reception of all error frames. This is is
1735	 * a necessary evil due to the design of the XMAC. The
1736	 * XMAC's receive FIFO is only 8K in size, however jumbo
1737	 * frames can be up to 9000 bytes in length. When bad
1738	 * frame filtering is enabled, the XMAC's RX FIFO operates
1739	 * in 'store and forward' mode. For this to work, the
1740	 * entire frame has to fit into the FIFO, but that means
1741	 * that jumbo frames larger than 8192 bytes will be
1742	 * truncated. Disabling all bad frame filtering causes
1743	 * the RX FIFO to operate in streaming mode, in which
1744	 * case the XMAC will start transfering frames out of the
1745	 * RX FIFO as soon as the FIFO threshold is reached.
1746	 */
1747	SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
1748	    XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
1749	    XM_MODE_RX_INRANGELEN);
1750
1751	if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1752		SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1753	else
1754		SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
1755
1756	/*
1757	 * Bump up the transmit threshold. This helps hold off transmit
1758	 * underruns when we're blasting traffic from both ports at once.
1759	 */
1760	SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
1761
1762	/* Set multicast filter */
1763	sk_setmulti(sc_if);
1764
1765	/* Clear and enable interrupts */
1766	SK_XM_READ_2(sc_if, XM_ISR);
1767	if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
1768		SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
1769	else
1770		SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
1771
1772	/* Configure MAC arbiter */
1773	switch(sc_if->sk_xmac_rev) {
1774	case XM_XMAC_REV_B2:
1775		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
1776		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
1777		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
1778		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
1779		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
1780		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
1781		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
1782		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
1783		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
1784		break;
1785	case XM_XMAC_REV_C1:
1786		sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
1787		sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
1788		sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
1789		sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
1790		sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
1791		sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
1792		sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
1793		sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
1794		sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
1795		break;
1796	default:
1797		break;
1798	}
1799	sk_win_write_2(sc, SK_MACARB_CTL,
1800	    SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
1801
1802	sc_if->sk_link = 1;
1803
1804	return;
1805}
1806
1807/*
1808 * Note that to properly initialize any part of the GEnesis chip,
1809 * you first have to take it out of reset mode.
1810 */
1811void sk_init(xsc)
1812	void			*xsc;
1813{
1814	struct sk_if_softc	*sc_if = xsc;
1815	struct sk_softc		*sc;
1816	struct ifnet		*ifp;
1817	struct mii_data		*mii;
1818	int			s;
1819
1820	s = splimp();
1821
1822	ifp = &sc_if->arpcom.ac_if;
1823	sc = sc_if->sk_softc;
1824	mii = &sc_if->sk_mii;
1825
1826	/* Cancel pending I/O and free all RX/TX buffers. */
1827	sk_stop(sc_if);
1828
1829	/* Configure LINK_SYNC LED */
1830	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
1831	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON);
1832
1833	/* Configure RX LED */
1834	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START);
1835
1836	/* Configure TX LED */
1837	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START);
1838
1839	/* Configure I2C registers */
1840
1841	/* Configure XMAC(s) */
1842	sk_init_xmac(sc_if);
1843	mii_mediachg(mii);
1844
1845	/* Configure MAC FIFOs */
1846	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
1847	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
1848	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
1849
1850	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
1851	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
1852	SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
1853
1854	/* Configure transmit arbiter(s) */
1855	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
1856	    SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
1857
1858	/* Configure RAMbuffers */
1859	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
1860	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
1861	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
1862	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
1863	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
1864	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
1865
1866	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
1867	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
1868	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
1869	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
1870	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
1871	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
1872	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
1873
1874	/* Configure BMUs */
1875	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
1876	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
1877	    vtophys(&sc_if->sk_rdata->sk_rx_ring[0]));
1878	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
1879
1880	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
1881	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
1882	    vtophys(&sc_if->sk_rdata->sk_tx_ring[0]));
1883	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
1884
1885	/* Init descriptors */
1886	if (sk_init_rx_ring(sc_if) == ENOBUFS) {
1887		printf("%s: initialization failed: no "
1888		    "memory for rx buffers\n", sc_if->sk_dev.dv_xname);
1889		sk_stop(sc_if);
1890		(void)splx(s);
1891		return;
1892	}
1893	sk_init_tx_ring(sc_if);
1894
1895	/* Configure interrupt handling */
1896	CSR_READ_4(sc, SK_ISSR);
1897	if (sc_if->sk_port == SK_PORT_A)
1898		sc->sk_intrmask |= SK_INTRS1;
1899	else
1900		sc->sk_intrmask |= SK_INTRS2;
1901
1902	sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
1903
1904	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1905
1906	/* Start BMUs. */
1907	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
1908
1909	/* Enable XMACs TX and RX state machines */
1910	SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
1911	SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
1912
1913	ifp->if_flags |= IFF_RUNNING;
1914	ifp->if_flags &= ~IFF_OACTIVE;
1915
1916	splx(s);
1917
1918	return;
1919}
1920
1921void sk_stop(sc_if)
1922	struct sk_if_softc	*sc_if;
1923{
1924	int			i;
1925	struct sk_softc		*sc;
1926	struct ifnet		*ifp;
1927
1928	sc = sc_if->sk_softc;
1929	ifp = &sc_if->arpcom.ac_if;
1930
1931	timeout_del(&sc_if->sk_tick_ch);
1932
1933	if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
1934		u_int32_t		val;
1935
1936		/* Put PHY back into reset. */
1937		val = sk_win_read_4(sc, SK_GPIO);
1938		if (sc_if->sk_port == SK_PORT_A) {
1939			val |= SK_GPIO_DIR0;
1940			val &= ~SK_GPIO_DAT0;
1941		} else {
1942			val |= SK_GPIO_DIR2;
1943			val &= ~SK_GPIO_DAT2;
1944		}
1945		sk_win_write_4(sc, SK_GPIO, val);
1946	}
1947
1948	/* Turn off various components of this interface. */
1949	SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
1950	SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
1951	SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
1952	SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
1953	SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
1954	SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
1955	SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
1956	SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
1957	SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
1958	SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
1959	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
1960	SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
1961
1962	/* Disable interrupts */
1963	if (sc_if->sk_port == SK_PORT_A)
1964		sc->sk_intrmask &= ~SK_INTRS1;
1965	else
1966		sc->sk_intrmask &= ~SK_INTRS2;
1967	CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
1968
1969	SK_XM_READ_2(sc_if, XM_ISR);
1970	SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
1971
1972	/* Free RX and TX mbufs still in the queues. */
1973	for (i = 0; i < SK_RX_RING_CNT; i++) {
1974		if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
1975			m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
1976			sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
1977		}
1978	}
1979
1980	for (i = 0; i < SK_TX_RING_CNT; i++) {
1981		if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
1982			m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
1983			sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1984		}
1985	}
1986
1987	ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
1988
1989	return;
1990}
1991
1992struct cfattach skc_ca = {
1993	sizeof(struct sk_softc), skc_probe, skc_attach,
1994};
1995
1996struct cfdriver skc_cd = {
1997	0, "skc", DV_DULL
1998};
1999
2000struct cfattach sk_ca = {
2001	sizeof(struct sk_if_softc), sk_probe, sk_attach,
2002};
2003
2004struct cfdriver sk_cd = {
2005	0, "sk", DV_IFNET
2006};
2007