if_nfe.c revision 1.60
1/*	$OpenBSD: if_nfe.c,v 1.60 2006/05/28 00:04:24 jason Exp $	*/
2
3/*-
4 * Copyright (c) 2006 Damien Bergamini <damien.bergamini@free.fr>
5 * Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
21
22#include "bpfilter.h"
23#include "vlan.h"
24
25#include <sys/param.h>
26#include <sys/endian.h>
27#include <sys/systm.h>
28#include <sys/types.h>
29#include <sys/sockio.h>
30#include <sys/mbuf.h>
31#include <sys/queue.h>
32#include <sys/malloc.h>
33#include <sys/kernel.h>
34#include <sys/device.h>
35#include <sys/socket.h>
36
37#include <machine/bus.h>
38
39#include <net/if.h>
40#include <net/if_dl.h>
41#include <net/if_media.h>
42
43#ifdef INET
44#include <netinet/in.h>
45#include <netinet/in_systm.h>
46#include <netinet/in_var.h>
47#include <netinet/ip.h>
48#include <netinet/if_ether.h>
49#endif
50
51#if NVLAN > 0
52#include <net/if_types.h>
53#include <net/if_vlan_var.h>
54#endif
55
56#if NBPFILTER > 0
57#include <net/bpf.h>
58#endif
59
60#include <dev/mii/mii.h>
61#include <dev/mii/miivar.h>
62
63#include <dev/pci/pcireg.h>
64#include <dev/pci/pcivar.h>
65#include <dev/pci/pcidevs.h>
66
67#include <dev/pci/if_nfereg.h>
68#include <dev/pci/if_nfevar.h>
69
70int	nfe_match(struct device *, void *, void *);
71void	nfe_attach(struct device *, struct device *, void *);
72void	nfe_power(int, void *);
73void	nfe_miibus_statchg(struct device *);
74int	nfe_miibus_readreg(struct device *, int, int);
75void	nfe_miibus_writereg(struct device *, int, int, int);
76int	nfe_intr(void *);
77int	nfe_ioctl(struct ifnet *, u_long, caddr_t);
78void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
79void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
80void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
81void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
82void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
83void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
84void	nfe_rxeof(struct nfe_softc *);
85void	nfe_txeof(struct nfe_softc *);
86int	nfe_encap(struct nfe_softc *, struct mbuf *);
87void	nfe_start(struct ifnet *);
88void	nfe_watchdog(struct ifnet *);
89int	nfe_init(struct ifnet *);
90void	nfe_stop(struct ifnet *, int);
91struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *);
92void	nfe_jfree(caddr_t, u_int, void *);
93int	nfe_jpool_alloc(struct nfe_softc *);
94void	nfe_jpool_free(struct nfe_softc *);
95int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
96void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
97void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
98int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
99void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
100void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
101int	nfe_ifmedia_upd(struct ifnet *);
102void	nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
103void	nfe_setmulti(struct nfe_softc *);
104void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
105void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
106void	nfe_tick(void *);
107
108struct cfattach nfe_ca = {
109	sizeof (struct nfe_softc), nfe_match, nfe_attach
110};
111
112struct cfdriver nfe_cd = {
113	NULL, "nfe", DV_IFNET
114};
115
116/*#define NFE_NO_JUMBO*/
117
118#ifdef NFE_DEBUG
119int nfedebug = 0;
120#define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
121#define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
122#else
123#define DPRINTF(x)
124#define DPRINTFN(n,x)
125#endif
126
127const struct pci_matchid nfe_devices[] = {
128	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
129	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
130	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
131	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
132	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
133	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
134	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
135	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
136	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
137	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
138	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
139	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
140	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
141	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
142	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }
143};
144
145int
146nfe_match(struct device *dev, void *match, void *aux)
147{
148	return pci_matchbyid((struct pci_attach_args *)aux, nfe_devices,
149	    sizeof (nfe_devices) / sizeof (nfe_devices[0]));
150}
151
152void
153nfe_attach(struct device *parent, struct device *self, void *aux)
154{
155	struct nfe_softc *sc = (struct nfe_softc *)self;
156	struct pci_attach_args *pa = aux;
157	pci_chipset_tag_t pc = pa->pa_pc;
158	pci_intr_handle_t ih;
159	const char *intrstr;
160	struct ifnet *ifp;
161	bus_size_t memsize;
162	pcireg_t memtype;
163
164	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
165	switch (memtype) {
166	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
167	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
168		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
169		    &sc->sc_memh, NULL, &memsize, 0) == 0)
170			break;
171		/* FALLTHROUGH */
172	default:
173		printf(": could not map mem space\n");
174		return;
175	}
176
177	if (pci_intr_map(pa, &ih) != 0) {
178		printf(": could not map interrupt\n");
179		return;
180	}
181
182	intrstr = pci_intr_string(pc, ih);
183	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc,
184	    sc->sc_dev.dv_xname);
185	if (sc->sc_ih == NULL) {
186		printf(": could not establish interrupt");
187		if (intrstr != NULL)
188			printf(" at %s", intrstr);
189		printf("\n");
190		return;
191	}
192	printf(": %s", intrstr);
193
194	sc->sc_dmat = pa->pa_dmat;
195
196	nfe_get_macaddr(sc, sc->sc_arpcom.ac_enaddr);
197	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
198
199	sc->sc_flags = 0;
200
201	switch (PCI_PRODUCT(pa->pa_id)) {
202	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
203	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
204	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
205	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
206		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
207		break;
208	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
209	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
210		sc->sc_flags |= NFE_40BIT_ADDR;
211		break;
212	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
213	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
214	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
215	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
216		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
217		break;
218	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
219	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
220		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
221		    NFE_HW_VLAN;
222		break;
223	}
224
225#ifndef NFE_NO_JUMBO
226	/* enable jumbo frames for adapters that support it */
227	if (sc->sc_flags & NFE_JUMBO_SUP)
228		sc->sc_flags |= NFE_USE_JUMBO;
229#endif
230
231	/*
232	 * Allocate Tx and Rx rings.
233	 */
234	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
235		printf("%s: could not allocate Tx ring\n",
236		    sc->sc_dev.dv_xname);
237		return;
238	}
239
240	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
241		printf("%s: could not allocate Rx ring\n",
242		    sc->sc_dev.dv_xname);
243		nfe_free_tx_ring(sc, &sc->txq);
244		return;
245	}
246
247	ifp = &sc->sc_arpcom.ac_if;
248	ifp->if_softc = sc;
249	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
250	ifp->if_ioctl = nfe_ioctl;
251	ifp->if_start = nfe_start;
252	ifp->if_watchdog = nfe_watchdog;
253	ifp->if_init = nfe_init;
254	ifp->if_baudrate = IF_Gbps(1);
255	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
256	IFQ_SET_READY(&ifp->if_snd);
257	strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
258
259	ifp->if_capabilities = IFCAP_VLAN_MTU;
260
261	if (sc->sc_flags & NFE_USE_JUMBO)
262		ifp->if_hardmtu = ETHERMTU_JUMBO;
263
264#if NVLAN > 0
265	if (sc->sc_flags & NFE_HW_VLAN)
266		ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
267#endif
268#ifdef NFE_CSUM
269	if (sc->sc_flags & NFE_HW_CSUM) {
270		ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
271		    IFCAP_CSUM_UDPv4;
272	}
273#endif
274
275	sc->sc_mii.mii_ifp = ifp;
276	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
277	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
278	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
279
280	ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
281	    nfe_ifmedia_sts);
282	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
283	    MII_OFFSET_ANY, 0);
284	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
285		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
286		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
287		    0, NULL);
288		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
289	} else
290		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
291
292	if_attach(ifp);
293	ether_ifattach(ifp);
294
295	timeout_set(&sc->sc_tick_ch, nfe_tick, sc);
296
297	sc->sc_powerhook = powerhook_establish(nfe_power, sc);
298}
299
300void
301nfe_power(int why, void *arg)
302{
303	struct nfe_softc *sc = arg;
304	struct ifnet *ifp;
305
306	if (why == PWR_RESUME) {
307		ifp = &sc->sc_arpcom.ac_if;
308		if (ifp->if_flags & IFF_UP) {
309			nfe_init(ifp);
310			if (ifp->if_flags & IFF_RUNNING)
311				nfe_start(ifp);
312		}
313	}
314}
315
316void
317nfe_miibus_statchg(struct device *dev)
318{
319	struct nfe_softc *sc = (struct nfe_softc *)dev;
320	struct mii_data *mii = &sc->sc_mii;
321	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
322
323	phy = NFE_READ(sc, NFE_PHY_IFACE);
324	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
325
326	seed = NFE_READ(sc, NFE_RNDSEED);
327	seed &= ~NFE_SEED_MASK;
328
329	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
330		phy  |= NFE_PHY_HDX;	/* half-duplex */
331		misc |= NFE_MISC1_HDX;
332	}
333
334	switch (IFM_SUBTYPE(mii->mii_media_active)) {
335	case IFM_1000_T:	/* full-duplex only */
336		link |= NFE_MEDIA_1000T;
337		seed |= NFE_SEED_1000T;
338		phy  |= NFE_PHY_1000T;
339		break;
340	case IFM_100_TX:
341		link |= NFE_MEDIA_100TX;
342		seed |= NFE_SEED_100TX;
343		phy  |= NFE_PHY_100TX;
344		break;
345	case IFM_10_T:
346		link |= NFE_MEDIA_10T;
347		seed |= NFE_SEED_10T;
348		break;
349	}
350
351	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
352
353	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
354	NFE_WRITE(sc, NFE_MISC1, misc);
355	NFE_WRITE(sc, NFE_LINKSPEED, link);
356}
357
358int
359nfe_miibus_readreg(struct device *dev, int phy, int reg)
360{
361	struct nfe_softc *sc = (struct nfe_softc *)dev;
362	uint32_t val;
363	int ntries;
364
365	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
366
367	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
368		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
369		DELAY(100);
370	}
371
372	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
373
374	for (ntries = 0; ntries < 1000; ntries++) {
375		DELAY(100);
376		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
377			break;
378	}
379	if (ntries == 1000) {
380		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
381		    sc->sc_dev.dv_xname));
382		return 0;
383	}
384
385	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
386		DPRINTFN(2, ("%s: could not read PHY\n",
387		    sc->sc_dev.dv_xname));
388		return 0;
389	}
390
391	val = NFE_READ(sc, NFE_PHY_DATA);
392	if (val != 0xffffffff && val != 0)
393		sc->mii_phyaddr = phy;
394
395	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
396	    sc->sc_dev.dv_xname, phy, reg, val));
397
398	return val;
399}
400
401void
402nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
403{
404	struct nfe_softc *sc = (struct nfe_softc *)dev;
405	uint32_t ctl;
406	int ntries;
407
408	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
409
410	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
411		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
412		DELAY(100);
413	}
414
415	NFE_WRITE(sc, NFE_PHY_DATA, val);
416	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
417	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
418
419	for (ntries = 0; ntries < 1000; ntries++) {
420		DELAY(100);
421		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
422			break;
423	}
424#ifdef NFE_DEBUG
425	if (nfedebug >= 2 && ntries == 1000)
426		printf("could not write to PHY\n");
427#endif
428}
429
430int
431nfe_intr(void *arg)
432{
433	struct nfe_softc *sc = arg;
434	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
435	uint32_t r;
436
437	if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
438		return 0;	/* not for us */
439	NFE_WRITE(sc, NFE_IRQ_STATUS, r);
440
441	DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
442
443	if (r & NFE_IRQ_LINK) {
444		NFE_READ(sc, NFE_PHY_STATUS);
445		NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
446		DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
447	}
448
449	if (ifp->if_flags & IFF_RUNNING) {
450		/* check Rx ring */
451		nfe_rxeof(sc);
452
453		/* check Tx ring */
454		nfe_txeof(sc);
455	}
456
457	return 1;
458}
459
460int
461nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
462{
463	struct nfe_softc *sc = ifp->if_softc;
464	struct ifreq *ifr = (struct ifreq *)data;
465	struct ifaddr *ifa = (struct ifaddr *)data;
466	int s, error = 0;
467
468	s = splnet();
469
470	if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) {
471		splx(s);
472		return error;
473	}
474
475	switch (cmd) {
476	case SIOCSIFADDR:
477		ifp->if_flags |= IFF_UP;
478		if (!(ifp->if_flags & IFF_RUNNING))
479			nfe_init(ifp);
480#ifdef INET
481		if (ifa->ifa_addr->sa_family == AF_INET)
482			arp_ifinit(&sc->sc_arpcom, ifa);
483#endif
484		break;
485	case SIOCSIFMTU:
486		if (ifr->ifr_mtu < ETHERMIN ||
487		    ((sc->sc_flags & NFE_USE_JUMBO) &&
488		    ifr->ifr_mtu > ETHERMTU_JUMBO) ||
489		    (!(sc->sc_flags & NFE_USE_JUMBO) &&
490		    ifr->ifr_mtu > ETHERMTU))
491			error = EINVAL;
492		else if (ifp->if_mtu != ifr->ifr_mtu)
493			ifp->if_mtu = ifr->ifr_mtu;
494		break;
495	case SIOCSIFFLAGS:
496		if (ifp->if_flags & IFF_UP) {
497			/*
498			 * If only the PROMISC or ALLMULTI flag changes, then
499			 * don't do a full re-init of the chip, just update
500			 * the Rx filter.
501			 */
502			if ((ifp->if_flags & IFF_RUNNING) &&
503			    ((ifp->if_flags ^ sc->sc_if_flags) &
504			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
505				nfe_setmulti(sc);
506			} else {
507				if (!(ifp->if_flags & IFF_RUNNING))
508					nfe_init(ifp);
509			}
510		} else {
511			if (ifp->if_flags & IFF_RUNNING)
512				nfe_stop(ifp, 1);
513		}
514		sc->sc_if_flags = ifp->if_flags;
515		break;
516	case SIOCADDMULTI:
517	case SIOCDELMULTI:
518		error = (cmd == SIOCADDMULTI) ?
519		    ether_addmulti(ifr, &sc->sc_arpcom) :
520		    ether_delmulti(ifr, &sc->sc_arpcom);
521
522		if (error == ENETRESET) {
523			if (ifp->if_flags & IFF_RUNNING)
524				nfe_setmulti(sc);
525			error = 0;
526		}
527		break;
528	case SIOCSIFMEDIA:
529	case SIOCGIFMEDIA:
530		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
531		break;
532	default:
533		error = ENOTTY;
534	}
535
536	splx(s);
537
538	return error;
539}
540
541void
542nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
543{
544	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
545	    (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
546	    sizeof (struct nfe_desc32), ops);
547}
548
549void
550nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
551{
552	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
553	    (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
554	    sizeof (struct nfe_desc64), ops);
555}
556
557void
558nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
559{
560	if (end > start) {
561		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
562		    (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
563		    (caddr_t)&sc->txq.desc32[end] -
564		    (caddr_t)&sc->txq.desc32[start], ops);
565		return;
566	}
567	/* sync from 'start' to end of ring */
568	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
569	    (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
570	    (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
571	    (caddr_t)&sc->txq.desc32[start], ops);
572
573	/* sync from start of ring to 'end' */
574	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
575	    (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
576}
577
578void
579nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
580{
581	if (end > start) {
582		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
583		    (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
584		    (caddr_t)&sc->txq.desc64[end] -
585		    (caddr_t)&sc->txq.desc64[start], ops);
586		return;
587	}
588	/* sync from 'start' to end of ring */
589	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
590	    (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
591	    (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
592	    (caddr_t)&sc->txq.desc64[start], ops);
593
594	/* sync from start of ring to 'end' */
595	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
596	    (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
597}
598
599void
600nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
601{
602	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
603	    (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
604	    sizeof (struct nfe_desc32), ops);
605}
606
607void
608nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
609{
610	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
611	    (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
612	    sizeof (struct nfe_desc64), ops);
613}
614
615void
616nfe_rxeof(struct nfe_softc *sc)
617{
618	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
619	struct nfe_desc32 *desc32;
620	struct nfe_desc64 *desc64;
621	struct nfe_rx_data *data;
622	struct nfe_jbuf *jbuf;
623	struct mbuf *m, *mnew;
624	bus_addr_t physaddr;
625	uint16_t flags;
626	int error, len;
627
628	for (;;) {
629		data = &sc->rxq.data[sc->rxq.cur];
630
631		if (sc->sc_flags & NFE_40BIT_ADDR) {
632			desc64 = &sc->rxq.desc64[sc->rxq.cur];
633			nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
634
635			flags = letoh16(desc64->flags);
636			len = letoh16(desc64->length) & 0x3fff;
637		} else {
638			desc32 = &sc->rxq.desc32[sc->rxq.cur];
639			nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
640
641			flags = letoh16(desc32->flags);
642			len = letoh16(desc32->length) & 0x3fff;
643		}
644
645		if (flags & NFE_RX_READY)
646			break;
647
648		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
649			if (!(flags & NFE_RX_VALID_V1))
650				goto skip;
651
652			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
653				flags &= ~NFE_RX_ERROR;
654				len--;	/* fix buffer length */
655			}
656		} else {
657			if (!(flags & NFE_RX_VALID_V2))
658				goto skip;
659
660			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
661				flags &= ~NFE_RX_ERROR;
662				len--;	/* fix buffer length */
663			}
664		}
665
666		if (flags & NFE_RX_ERROR) {
667			ifp->if_ierrors++;
668			goto skip;
669		}
670
671		/*
672		 * Try to allocate a new mbuf for this ring element and load
673		 * it before processing the current mbuf. If the ring element
674		 * cannot be loaded, drop the received packet and reuse the
675		 * old mbuf. In the unlikely case that the old mbuf can't be
676		 * reloaded either, explicitly panic.
677		 */
678		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
679		if (mnew == NULL) {
680			ifp->if_ierrors++;
681			goto skip;
682		}
683
684		if (sc->sc_flags & NFE_USE_JUMBO) {
685			if ((jbuf = nfe_jalloc(sc)) == NULL) {
686				m_freem(mnew);
687				ifp->if_ierrors++;
688				goto skip;
689			}
690			MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
691
692			bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
693			    mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
694			    BUS_DMASYNC_POSTREAD);
695
696			physaddr = jbuf->physaddr;
697		} else {
698			MCLGET(mnew, M_DONTWAIT);
699			if (!(mnew->m_flags & M_EXT)) {
700				m_freem(mnew);
701				ifp->if_ierrors++;
702				goto skip;
703			}
704
705			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
706			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
707			bus_dmamap_unload(sc->sc_dmat, data->map);
708
709			error = bus_dmamap_load(sc->sc_dmat, data->map,
710			    mtod(mnew, void *), MCLBYTES, NULL,
711			    BUS_DMA_READ | BUS_DMA_NOWAIT);
712			if (error != 0) {
713				m_freem(mnew);
714
715				/* try to reload the old mbuf */
716				error = bus_dmamap_load(sc->sc_dmat, data->map,
717				    mtod(data->m, void *), MCLBYTES, NULL,
718				    BUS_DMA_READ | BUS_DMA_NOWAIT);
719				if (error != 0) {
720					/* very unlikely that it will fail.. */
721					panic("%s: could not load old rx mbuf",
722					    sc->sc_dev.dv_xname);
723				}
724				ifp->if_ierrors++;
725				goto skip;
726			}
727			physaddr = data->map->dm_segs[0].ds_addr;
728		}
729
730		/*
731		 * New mbuf successfully loaded, update Rx ring and continue
732		 * processing.
733		 */
734		m = data->m;
735		data->m = mnew;
736
737		/* finalize mbuf */
738		m->m_pkthdr.len = m->m_len = len;
739		m->m_pkthdr.rcvif = ifp;
740
741#ifdef notyet
742		if (sc->sc_flags & NFE_HW_CSUM) {
743			if (flags & NFE_RX_IP_CSUMOK)
744				m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
745			if (flags & NFE_RX_UDP_CSUMOK)
746				m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
747			if (flags & NFE_RX_TCP_CSUMOK)
748				m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
749		}
750#elif defined(NFE_CSUM)
751		if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
752			m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
753#endif
754
755#if NBPFILTER > 0
756		if (ifp->if_bpf)
757			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN);
758#endif
759		ifp->if_ipackets++;
760		ether_input_mbuf(ifp, m);
761
762		/* update mapping address in h/w descriptor */
763		if (sc->sc_flags & NFE_40BIT_ADDR) {
764#if defined(__LP64__)
765			desc64->physaddr[0] = htole32(physaddr >> 32);
766#endif
767			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
768		} else {
769			desc32->physaddr = htole32(physaddr);
770		}
771
772skip:		if (sc->sc_flags & NFE_40BIT_ADDR) {
773			desc64->length = htole16(sc->rxq.bufsz);
774			desc64->flags = htole16(NFE_RX_READY);
775
776			nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
777		} else {
778			desc32->length = htole16(sc->rxq.bufsz);
779			desc32->flags = htole16(NFE_RX_READY);
780
781			nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
782		}
783
784		sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
785	}
786}
787
788void
789nfe_txeof(struct nfe_softc *sc)
790{
791	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
792	struct nfe_desc32 *desc32;
793	struct nfe_desc64 *desc64;
794	struct nfe_tx_data *data = NULL;
795	uint16_t flags;
796
797	while (sc->txq.next != sc->txq.cur) {
798		if (sc->sc_flags & NFE_40BIT_ADDR) {
799			desc64 = &sc->txq.desc64[sc->txq.next];
800			nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
801
802			flags = letoh16(desc64->flags);
803		} else {
804			desc32 = &sc->txq.desc32[sc->txq.next];
805			nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
806
807			flags = letoh16(desc32->flags);
808		}
809
810		if (flags & NFE_TX_VALID)
811			break;
812
813		data = &sc->txq.data[sc->txq.next];
814
815		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
816			if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
817				goto skip;
818
819			if ((flags & NFE_TX_ERROR_V1) != 0) {
820				printf("%s: tx v1 error 0x%04b\n",
821				    sc->sc_dev.dv_xname, flags, NFE_V1_TXERR);
822				ifp->if_oerrors++;
823			} else
824				ifp->if_opackets++;
825		} else {
826			if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
827				goto skip;
828
829			if ((flags & NFE_TX_ERROR_V2) != 0) {
830				printf("%s: tx v2 error 0x%04b\n",
831				    sc->sc_dev.dv_xname, flags, NFE_V2_TXERR);
832				ifp->if_oerrors++;
833			} else
834				ifp->if_opackets++;
835		}
836
837		if (data->m == NULL) {	/* should not get there */
838			printf("%s: last fragment bit w/o associated mbuf!\n",
839			    sc->sc_dev.dv_xname);
840			goto skip;
841		}
842
843		/* last fragment of the mbuf chain transmitted */
844		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
845		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
846		bus_dmamap_unload(sc->sc_dmat, data->active);
847		m_freem(data->m);
848		data->m = NULL;
849
850		ifp->if_timer = 0;
851
852skip:		sc->txq.queued--;
853		sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
854	}
855
856	if (data != NULL) {	/* at least one slot freed */
857		ifp->if_flags &= ~IFF_OACTIVE;
858		nfe_start(ifp);
859	}
860}
861
862int
863nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
864{
865	struct nfe_desc32 *desc32;
866	struct nfe_desc64 *desc64;
867	struct nfe_tx_data *data;
868	bus_dmamap_t map;
869	uint16_t flags = NFE_TX_VALID;
870#if NVLAN > 0
871	uint32_t vtag = 0;
872#endif
873	int error, i;
874
875	map = sc->txq.data[sc->txq.cur].map;
876
877	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
878	if (error != 0) {
879		printf("%s: could not map mbuf (error %d)\n",
880		    sc->sc_dev.dv_xname, error);
881		return error;
882	}
883
884	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
885		bus_dmamap_unload(sc->sc_dmat, map);
886		return ENOBUFS;
887	}
888
889#if NVLAN > 0
890	/* setup h/w VLAN tagging */
891	if ((m0->m_flags & (M_PROTO1 | M_PKTHDR)) == (M_PROTO1 | M_PKTHDR) &&
892	    m0->m_pkthdr.rcvif != NULL) {
893		struct ifvlan *ifv = m0->m_pkthdr.rcvif->if_softc;
894		vtag = NFE_TX_VTAG | htons(ifv->ifv_tag);
895	}
896#endif
897#ifdef NFE_CSUM
898	if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
899		flags |= NFE_TX_IP_CSUM;
900	if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
901		flags |= NFE_TX_TCP_CSUM;
902#endif
903
904	for (i = 0; i < map->dm_nsegs; i++) {
905		data = &sc->txq.data[sc->txq.cur];
906
907		if (sc->sc_flags & NFE_40BIT_ADDR) {
908			desc64 = &sc->txq.desc64[sc->txq.cur];
909#if defined(__LP64__)
910			desc64->physaddr[0] =
911			    htole32(map->dm_segs[i].ds_addr >> 32);
912#endif
913			desc64->physaddr[1] =
914			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
915			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
916			desc64->flags = htole16(flags);
917#if NVLAN > 0
918			desc64->vtag = htole32(vtag);
919#endif
920		} else {
921			desc32 = &sc->txq.desc32[sc->txq.cur];
922
923			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
924			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
925			desc32->flags = htole16(flags);
926		}
927
928		/* csum flags and vtag belong to the first fragment only */
929		if (map->dm_nsegs > 1) {
930			flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
931#if NVLAN > 0
932			vtag = 0;
933#endif
934		}
935
936		sc->txq.queued++;
937		sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
938	}
939
940	/* the whole mbuf chain has been DMA mapped, fix last descriptor */
941	if (sc->sc_flags & NFE_40BIT_ADDR) {
942		flags |= NFE_TX_LASTFRAG_V2;
943		desc64->flags = htole16(flags);
944	} else {
945		if (sc->sc_flags & NFE_JUMBO_SUP)
946			flags |= NFE_TX_LASTFRAG_V2;
947		else
948			flags |= NFE_TX_LASTFRAG_V1;
949		desc32->flags = htole16(flags);
950	}
951
952	data->m = m0;
953	data->active = map;
954
955	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
956	    BUS_DMASYNC_PREWRITE);
957
958	return 0;
959}
960
961void
962nfe_start(struct ifnet *ifp)
963{
964	struct nfe_softc *sc = ifp->if_softc;
965	int old = sc->txq.cur;
966	struct mbuf *m0;
967
968	for (;;) {
969		IFQ_POLL(&ifp->if_snd, m0);
970		if (m0 == NULL)
971			break;
972
973		if (nfe_encap(sc, m0) != 0) {
974			ifp->if_flags |= IFF_OACTIVE;
975			break;
976		}
977
978		/* packet put in h/w queue, remove from s/w queue */
979		IFQ_DEQUEUE(&ifp->if_snd, m0);
980
981#if NBPFILTER > 0
982		if (ifp->if_bpf != NULL)
983			bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
984#endif
985	}
986	if (sc->txq.cur == old)	/* nothing sent */
987		return;
988
989	if (sc->sc_flags & NFE_40BIT_ADDR)
990		nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
991	else
992		nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
993
994	/* kick Tx */
995	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
996
997	/*
998	 * Set a timeout in case the chip goes out to lunch.
999	 */
1000	ifp->if_timer = 5;
1001}
1002
1003void
1004nfe_watchdog(struct ifnet *ifp)
1005{
1006	struct nfe_softc *sc = ifp->if_softc;
1007
1008	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1009
1010	nfe_init(ifp);
1011
1012	ifp->if_oerrors++;
1013}
1014
1015int
1016nfe_init(struct ifnet *ifp)
1017{
1018	struct nfe_softc *sc = ifp->if_softc;
1019	uint32_t tmp;
1020
1021	nfe_stop(ifp, 0);
1022
1023	NFE_WRITE(sc, NFE_TX_UNK, 0);
1024	NFE_WRITE(sc, NFE_STATUS, 0);
1025
1026	sc->rxtxctl = NFE_RXTX_BIT2;
1027	if (sc->sc_flags & NFE_40BIT_ADDR)
1028		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1029	else if (sc->sc_flags & NFE_JUMBO_SUP)
1030		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1031#ifdef NFE_CSUM
1032	if (sc->sc_flags & NFE_HW_CSUM)
1033		sc->rxtxctl |= NFE_RXTX_RXCSUM;
1034#endif
1035#if NVLAN > 0
1036	/*
1037	 * Although the adapter is capable of stripping VLAN tags from received
1038	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1039	 * purpose.  This will be done in software by our network stack.
1040	 */
1041	if (sc->sc_flags & NFE_HW_VLAN)
1042		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1043#endif
1044	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1045	DELAY(10);
1046	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1047
1048#if NVLAN
1049	if (sc->sc_flags & NFE_HW_VLAN)
1050		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1051#endif
1052
1053	NFE_WRITE(sc, NFE_SETUP_R6, 0);
1054
1055	/* set MAC address */
1056	nfe_set_macaddr(sc, sc->sc_arpcom.ac_enaddr);
1057
1058	/* tell MAC where rings are in memory */
1059#ifdef __LP64__
1060	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1061#endif
1062	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1063#ifdef __LP64__
1064	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1065#endif
1066	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1067
1068	NFE_WRITE(sc, NFE_RING_SIZE,
1069	    (NFE_RX_RING_COUNT - 1) << 16 |
1070	    (NFE_TX_RING_COUNT - 1));
1071
1072	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1073
1074	/* force MAC to wakeup */
1075	tmp = NFE_READ(sc, NFE_PWR_STATE);
1076	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1077	DELAY(10);
1078	tmp = NFE_READ(sc, NFE_PWR_STATE);
1079	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1080
1081#if 1
1082	/* configure interrupts coalescing/mitigation */
1083	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1084#else
1085	/* no interrupt mitigation: one interrupt per packet */
1086	NFE_WRITE(sc, NFE_IMTIMER, 970);
1087#endif
1088
1089	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1090	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1091	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1092
1093	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1094	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1095
1096	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1097	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1098
1099	sc->rxtxctl &= ~NFE_RXTX_BIT2;
1100	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1101	DELAY(10);
1102	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1103
1104	/* set Rx filter */
1105	nfe_setmulti(sc);
1106
1107	nfe_ifmedia_upd(ifp);
1108
1109	/* enable Rx */
1110	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1111
1112	/* enable Tx */
1113	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1114
1115	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1116
1117	/* enable interrupts */
1118	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1119
1120	timeout_add(&sc->sc_tick_ch, hz);
1121
1122	ifp->if_flags |= IFF_RUNNING;
1123	ifp->if_flags &= ~IFF_OACTIVE;
1124
1125	return 0;
1126}
1127
1128void
1129nfe_stop(struct ifnet *ifp, int disable)
1130{
1131	struct nfe_softc *sc = ifp->if_softc;
1132
1133	timeout_del(&sc->sc_tick_ch);
1134
1135	ifp->if_timer = 0;
1136	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1137
1138	mii_down(&sc->sc_mii);
1139
1140	/* abort Tx */
1141	NFE_WRITE(sc, NFE_TX_CTL, 0);
1142
1143	/* disable Rx */
1144	NFE_WRITE(sc, NFE_RX_CTL, 0);
1145
1146	/* disable interrupts */
1147	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1148
1149	/* reset Tx and Rx rings */
1150	nfe_reset_tx_ring(sc, &sc->txq);
1151	nfe_reset_rx_ring(sc, &sc->rxq);
1152}
1153
1154int
1155nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1156{
1157	struct nfe_desc32 *desc32;
1158	struct nfe_desc64 *desc64;
1159	struct nfe_rx_data *data;
1160	struct nfe_jbuf *jbuf;
1161	void **desc;
1162	bus_addr_t physaddr;
1163	int i, nsegs, error, descsize;
1164
1165	if (sc->sc_flags & NFE_40BIT_ADDR) {
1166		desc = (void **)&ring->desc64;
1167		descsize = sizeof (struct nfe_desc64);
1168	} else {
1169		desc = (void **)&ring->desc32;
1170		descsize = sizeof (struct nfe_desc32);
1171	}
1172
1173	ring->cur = ring->next = 0;
1174	ring->bufsz = MCLBYTES;
1175
1176	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1177	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1178	if (error != 0) {
1179		printf("%s: could not create desc DMA map\n",
1180		    sc->sc_dev.dv_xname);
1181		goto fail;
1182	}
1183
1184	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1185	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1186	if (error != 0) {
1187		printf("%s: could not allocate DMA memory\n",
1188		    sc->sc_dev.dv_xname);
1189		goto fail;
1190	}
1191
1192	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1193	    NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1194	if (error != 0) {
1195		printf("%s: could not map desc DMA memory\n",
1196		    sc->sc_dev.dv_xname);
1197		goto fail;
1198	}
1199
1200	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1201	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1202	if (error != 0) {
1203		printf("%s: could not load desc DMA map\n",
1204		    sc->sc_dev.dv_xname);
1205		goto fail;
1206	}
1207
1208	bzero(*desc, NFE_RX_RING_COUNT * descsize);
1209	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1210
1211	if (sc->sc_flags & NFE_USE_JUMBO) {
1212		ring->bufsz = NFE_JBYTES;
1213		if ((error = nfe_jpool_alloc(sc)) != 0) {
1214			printf("%s: could not allocate jumbo frames\n",
1215			    sc->sc_dev.dv_xname);
1216			goto fail;
1217		}
1218	}
1219
1220	/*
1221	 * Pre-allocate Rx buffers and populate Rx ring.
1222	 */
1223	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1224		data = &sc->rxq.data[i];
1225
1226		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1227		if (data->m == NULL) {
1228			printf("%s: could not allocate rx mbuf\n",
1229			    sc->sc_dev.dv_xname);
1230			error = ENOMEM;
1231			goto fail;
1232		}
1233
1234		if (sc->sc_flags & NFE_USE_JUMBO) {
1235			if ((jbuf = nfe_jalloc(sc)) == NULL) {
1236				printf("%s: could not allocate jumbo buffer\n",
1237				    sc->sc_dev.dv_xname);
1238				goto fail;
1239			}
1240			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1241			    sc);
1242
1243			physaddr = jbuf->physaddr;
1244		} else {
1245			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1246			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1247			if (error != 0) {
1248				printf("%s: could not create DMA map\n",
1249				    sc->sc_dev.dv_xname);
1250				goto fail;
1251			}
1252			MCLGET(data->m, M_DONTWAIT);
1253			if (!(data->m->m_flags & M_EXT)) {
1254				printf("%s: could not allocate mbuf cluster\n",
1255				    sc->sc_dev.dv_xname);
1256				error = ENOMEM;
1257				goto fail;
1258			}
1259
1260			error = bus_dmamap_load(sc->sc_dmat, data->map,
1261			    mtod(data->m, void *), MCLBYTES, NULL,
1262			    BUS_DMA_READ | BUS_DMA_NOWAIT);
1263			if (error != 0) {
1264				printf("%s: could not load rx buf DMA map",
1265				    sc->sc_dev.dv_xname);
1266				goto fail;
1267			}
1268			physaddr = data->map->dm_segs[0].ds_addr;
1269		}
1270
1271		if (sc->sc_flags & NFE_40BIT_ADDR) {
1272			desc64 = &sc->rxq.desc64[i];
1273#if defined(__LP64__)
1274			desc64->physaddr[0] = htole32(physaddr >> 32);
1275#endif
1276			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1277			desc64->length = htole16(sc->rxq.bufsz);
1278			desc64->flags = htole16(NFE_RX_READY);
1279		} else {
1280			desc32 = &sc->rxq.desc32[i];
1281			desc32->physaddr = htole32(physaddr);
1282			desc32->length = htole16(sc->rxq.bufsz);
1283			desc32->flags = htole16(NFE_RX_READY);
1284		}
1285	}
1286
1287	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1288	    BUS_DMASYNC_PREWRITE);
1289
1290	return 0;
1291
1292fail:	nfe_free_rx_ring(sc, ring);
1293	return error;
1294}
1295
1296void
1297nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1298{
1299	int i;
1300
1301	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1302		if (sc->sc_flags & NFE_40BIT_ADDR) {
1303			ring->desc64[i].length = htole16(ring->bufsz);
1304			ring->desc64[i].flags = htole16(NFE_RX_READY);
1305		} else {
1306			ring->desc32[i].length = htole16(ring->bufsz);
1307			ring->desc32[i].flags = htole16(NFE_RX_READY);
1308		}
1309	}
1310
1311	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1312	    BUS_DMASYNC_PREWRITE);
1313
1314	ring->cur = ring->next = 0;
1315}
1316
1317void
1318nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1319{
1320	struct nfe_rx_data *data;
1321	void *desc;
1322	int i, descsize;
1323
1324	if (sc->sc_flags & NFE_40BIT_ADDR) {
1325		desc = ring->desc64;
1326		descsize = sizeof (struct nfe_desc64);
1327	} else {
1328		desc = ring->desc32;
1329		descsize = sizeof (struct nfe_desc32);
1330	}
1331
1332	if (desc != NULL) {
1333		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1334		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1335		bus_dmamap_unload(sc->sc_dmat, ring->map);
1336		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1337		    NFE_RX_RING_COUNT * descsize);
1338		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1339	}
1340
1341	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1342		data = &ring->data[i];
1343
1344		if (data->map != NULL) {
1345			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1346			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1347			bus_dmamap_unload(sc->sc_dmat, data->map);
1348			bus_dmamap_destroy(sc->sc_dmat, data->map);
1349		}
1350		if (data->m != NULL)
1351			m_freem(data->m);
1352	}
1353}
1354
1355struct nfe_jbuf *
1356nfe_jalloc(struct nfe_softc *sc)
1357{
1358	struct nfe_jbuf *jbuf;
1359
1360	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1361	if (jbuf == NULL)
1362		return NULL;
1363	SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1364	return jbuf;
1365}
1366
1367/*
1368 * This is called automatically by the network stack when the mbuf is freed.
1369 * Caution must be taken that the NIC might be reset by the time the mbuf is
1370 * freed.
1371 */
1372void
1373nfe_jfree(caddr_t buf, u_int size, void *arg)
1374{
1375	struct nfe_softc *sc = arg;
1376	struct nfe_jbuf *jbuf;
1377	int i;
1378
1379	/* find the jbuf from the base pointer */
1380	i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1381	if (i < 0 || i >= NFE_JPOOL_COUNT) {
1382		printf("%s: request to free a buffer (%p) not managed by us\n",
1383		    sc->sc_dev.dv_xname, buf);
1384		return;
1385	}
1386	jbuf = &sc->rxq.jbuf[i];
1387
1388	/* ..and put it back in the free list */
1389	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1390}
1391
1392int
1393nfe_jpool_alloc(struct nfe_softc *sc)
1394{
1395	struct nfe_rx_ring *ring = &sc->rxq;
1396	struct nfe_jbuf *jbuf;
1397	bus_addr_t physaddr;
1398	caddr_t buf;
1399	int i, nsegs, error;
1400
1401	/*
1402	 * Allocate a big chunk of DMA'able memory.
1403	 */
1404	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1405	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1406	if (error != 0) {
1407		printf("%s: could not create jumbo DMA map\n",
1408		    sc->sc_dev.dv_xname);
1409		goto fail;
1410	}
1411
1412	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1413	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1414	if (error != 0) {
1415		printf("%s could not allocate jumbo DMA memory\n",
1416		    sc->sc_dev.dv_xname);
1417		goto fail;
1418	}
1419
1420	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1421	    &ring->jpool, BUS_DMA_NOWAIT);
1422	if (error != 0) {
1423		printf("%s: could not map jumbo DMA memory\n",
1424		    sc->sc_dev.dv_xname);
1425		goto fail;
1426	}
1427
1428	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1429	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1430	if (error != 0) {
1431		printf("%s: could not load jumbo DMA map\n",
1432		    sc->sc_dev.dv_xname);
1433		goto fail;
1434	}
1435
1436	/* ..and split it into 9KB chunks */
1437	SLIST_INIT(&ring->jfreelist);
1438
1439	buf = ring->jpool;
1440	physaddr = ring->jmap->dm_segs[0].ds_addr;
1441	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1442		jbuf = &ring->jbuf[i];
1443
1444		jbuf->buf = buf;
1445		jbuf->physaddr = physaddr;
1446
1447		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1448
1449		buf += NFE_JBYTES;
1450		physaddr += NFE_JBYTES;
1451	}
1452
1453	return 0;
1454
1455fail:	nfe_jpool_free(sc);
1456	return error;
1457}
1458
1459void
1460nfe_jpool_free(struct nfe_softc *sc)
1461{
1462	struct nfe_rx_ring *ring = &sc->rxq;
1463
1464	if (ring->jmap != NULL) {
1465		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1466		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1467		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1468		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1469	}
1470	if (ring->jpool != NULL) {
1471		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1472		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1473	}
1474}
1475
1476int
1477nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1478{
1479	int i, nsegs, error;
1480	void **desc;
1481	int descsize;
1482
1483	if (sc->sc_flags & NFE_40BIT_ADDR) {
1484		desc = (void **)&ring->desc64;
1485		descsize = sizeof (struct nfe_desc64);
1486	} else {
1487		desc = (void **)&ring->desc32;
1488		descsize = sizeof (struct nfe_desc32);
1489	}
1490
1491	ring->queued = 0;
1492	ring->cur = ring->next = 0;
1493
1494	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1495	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1496
1497	if (error != 0) {
1498		printf("%s: could not create desc DMA map\n",
1499		    sc->sc_dev.dv_xname);
1500		goto fail;
1501	}
1502
1503	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1504	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1505	if (error != 0) {
1506		printf("%s: could not allocate DMA memory\n",
1507		    sc->sc_dev.dv_xname);
1508		goto fail;
1509	}
1510
1511	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1512	    NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1513	if (error != 0) {
1514		printf("%s: could not map desc DMA memory\n",
1515		    sc->sc_dev.dv_xname);
1516		goto fail;
1517	}
1518
1519	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1520	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1521	if (error != 0) {
1522		printf("%s: could not load desc DMA map\n",
1523		    sc->sc_dev.dv_xname);
1524		goto fail;
1525	}
1526
1527	bzero(*desc, NFE_TX_RING_COUNT * descsize);
1528	ring->physaddr = ring->map->dm_segs[0].ds_addr;
1529
1530	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1531		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1532		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1533		    &ring->data[i].map);
1534		if (error != 0) {
1535			printf("%s: could not create DMA map\n",
1536			    sc->sc_dev.dv_xname);
1537			goto fail;
1538		}
1539	}
1540
1541	return 0;
1542
1543fail:	nfe_free_tx_ring(sc, ring);
1544	return error;
1545}
1546
1547void
1548nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1549{
1550	struct nfe_tx_data *data;
1551	int i;
1552
1553	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1554		if (sc->sc_flags & NFE_40BIT_ADDR)
1555			ring->desc64[i].flags = 0;
1556		else
1557			ring->desc32[i].flags = 0;
1558
1559		data = &ring->data[i];
1560
1561		if (data->m != NULL) {
1562			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1563			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1564			bus_dmamap_unload(sc->sc_dmat, data->active);
1565			m_freem(data->m);
1566			data->m = NULL;
1567		}
1568	}
1569
1570	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1571	    BUS_DMASYNC_PREWRITE);
1572
1573	ring->queued = 0;
1574	ring->cur = ring->next = 0;
1575}
1576
1577void
1578nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1579{
1580	struct nfe_tx_data *data;
1581	void *desc;
1582	int i, descsize;
1583
1584	if (sc->sc_flags & NFE_40BIT_ADDR) {
1585		desc = ring->desc64;
1586		descsize = sizeof (struct nfe_desc64);
1587	} else {
1588		desc = ring->desc32;
1589		descsize = sizeof (struct nfe_desc32);
1590	}
1591
1592	if (desc != NULL) {
1593		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1594		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1595		bus_dmamap_unload(sc->sc_dmat, ring->map);
1596		bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1597		    NFE_TX_RING_COUNT * descsize);
1598		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1599	}
1600
1601	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1602		data = &ring->data[i];
1603
1604		if (data->m != NULL) {
1605			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1606			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1607			bus_dmamap_unload(sc->sc_dmat, data->active);
1608			m_freem(data->m);
1609		}
1610	}
1611
1612	/* ..and now actually destroy the DMA mappings */
1613	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1614		data = &ring->data[i];
1615		if (data->map == NULL)
1616			continue;
1617		bus_dmamap_destroy(sc->sc_dmat, data->map);
1618	}
1619}
1620
1621int
1622nfe_ifmedia_upd(struct ifnet *ifp)
1623{
1624	struct nfe_softc *sc = ifp->if_softc;
1625	struct mii_data *mii = &sc->sc_mii;
1626	struct mii_softc *miisc;
1627
1628	if (mii->mii_instance != 0) {
1629		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1630			mii_phy_reset(miisc);
1631	}
1632	return mii_mediachg(mii);
1633}
1634
1635void
1636nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1637{
1638	struct nfe_softc *sc = ifp->if_softc;
1639	struct mii_data *mii = &sc->sc_mii;
1640
1641	mii_pollstat(mii);
1642	ifmr->ifm_status = mii->mii_media_status;
1643	ifmr->ifm_active = mii->mii_media_active;
1644}
1645
1646void
1647nfe_setmulti(struct nfe_softc *sc)
1648{
1649	struct arpcom *ac = &sc->sc_arpcom;
1650	struct ifnet *ifp = &ac->ac_if;
1651	struct ether_multi *enm;
1652	struct ether_multistep step;
1653	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1654	uint32_t filter = NFE_RXFILTER_MAGIC;
1655	int i;
1656
1657	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1658		bzero(addr, ETHER_ADDR_LEN);
1659		bzero(mask, ETHER_ADDR_LEN);
1660		goto done;
1661	}
1662
1663	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1664	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1665
1666	ETHER_FIRST_MULTI(step, ac, enm);
1667	while (enm != NULL) {
1668		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1669			ifp->if_flags |= IFF_ALLMULTI;
1670			bzero(addr, ETHER_ADDR_LEN);
1671			bzero(mask, ETHER_ADDR_LEN);
1672			goto done;
1673		}
1674		for (i = 0; i < ETHER_ADDR_LEN; i++) {
1675			addr[i] &=  enm->enm_addrlo[i];
1676			mask[i] &= ~enm->enm_addrlo[i];
1677		}
1678		ETHER_NEXT_MULTI(step, enm);
1679	}
1680	for (i = 0; i < ETHER_ADDR_LEN; i++)
1681		mask[i] |= addr[i];
1682
1683done:
1684	addr[0] |= 0x01;	/* make sure multicast bit is set */
1685
1686	NFE_WRITE(sc, NFE_MULTIADDR_HI,
1687	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1688	NFE_WRITE(sc, NFE_MULTIADDR_LO,
1689	    addr[5] <<  8 | addr[4]);
1690	NFE_WRITE(sc, NFE_MULTIMASK_HI,
1691	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1692	NFE_WRITE(sc, NFE_MULTIMASK_LO,
1693	    mask[5] <<  8 | mask[4]);
1694
1695	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1696	NFE_WRITE(sc, NFE_RXFILTER, filter);
1697}
1698
1699void
1700nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1701{
1702	uint32_t tmp;
1703
1704	tmp = NFE_READ(sc, NFE_MACADDR_LO);
1705	addr[0] = (tmp >> 8) & 0xff;
1706	addr[1] = (tmp & 0xff);
1707
1708	tmp = NFE_READ(sc, NFE_MACADDR_HI);
1709	addr[2] = (tmp >> 24) & 0xff;
1710	addr[3] = (tmp >> 16) & 0xff;
1711	addr[4] = (tmp >>  8) & 0xff;
1712	addr[5] = (tmp & 0xff);
1713}
1714
1715void
1716nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1717{
1718	NFE_WRITE(sc, NFE_MACADDR_LO,
1719	    addr[5] <<  8 | addr[4]);
1720	NFE_WRITE(sc, NFE_MACADDR_HI,
1721	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1722}
1723
1724void
1725nfe_tick(void *arg)
1726{
1727	struct nfe_softc *sc = arg;
1728	int s;
1729
1730	s = splnet();
1731	mii_tick(&sc->sc_mii);
1732	splx(s);
1733
1734	timeout_add(&sc->sc_tick_ch, hz);
1735}
1736