1/*	$OpenBSD: if_age.c,v 1.40 2024/05/24 06:02:53 jsg Exp $	*/
2
3/*-
4 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice unmodified, this list of conditions, and the following
12 *    disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32#include "bpfilter.h"
33#include "vlan.h"
34
35#include <sys/param.h>
36#include <sys/endian.h>
37#include <sys/systm.h>
38#include <sys/sockio.h>
39#include <sys/mbuf.h>
40#include <sys/queue.h>
41#include <sys/device.h>
42#include <sys/timeout.h>
43
44#include <machine/bus.h>
45
46#include <net/if.h>
47#include <net/if_dl.h>
48#include <net/if_media.h>
49
50#include <netinet/in.h>
51#include <netinet/if_ether.h>
52
53#if NBPFILTER > 0
54#include <net/bpf.h>
55#endif
56
57#include <dev/mii/mii.h>
58#include <dev/mii/miivar.h>
59
60#include <dev/pci/pcireg.h>
61#include <dev/pci/pcivar.h>
62#include <dev/pci/pcidevs.h>
63
64#include <dev/pci/if_agereg.h>
65
66int	age_match(struct device *, void *, void *);
67void	age_attach(struct device *, struct device *, void *);
68int	age_detach(struct device *, int);
69
70int	age_miibus_readreg(struct device *, int, int);
71void	age_miibus_writereg(struct device *, int, int, int);
72void	age_miibus_statchg(struct device *);
73
74int	age_init(struct ifnet *);
75int	age_ioctl(struct ifnet *, u_long, caddr_t);
76void	age_start(struct ifnet *);
77void	age_watchdog(struct ifnet *);
78void	age_mediastatus(struct ifnet *, struct ifmediareq *);
79int	age_mediachange(struct ifnet *);
80
81int	age_intr(void *);
82int	age_dma_alloc(struct age_softc *);
83void	age_dma_free(struct age_softc *);
84void	age_get_macaddr(struct age_softc *);
85void	age_phy_reset(struct age_softc *);
86
87int	age_encap(struct age_softc *, struct mbuf *);
88void	age_init_tx_ring(struct age_softc *);
89int	age_init_rx_ring(struct age_softc *);
90void	age_init_rr_ring(struct age_softc *);
91void	age_init_cmb_block(struct age_softc *);
92void	age_init_smb_block(struct age_softc *);
93int	age_newbuf(struct age_softc *, struct age_rxdesc *);
94void	age_mac_config(struct age_softc *);
95void	age_txintr(struct age_softc *, int);
96void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97void	age_rxintr(struct age_softc *, int);
98void	age_tick(void *);
99void	age_reset(struct age_softc *);
100void	age_stop(struct age_softc *);
101void	age_stats_update(struct age_softc *);
102void	age_stop_txmac(struct age_softc *);
103void	age_stop_rxmac(struct age_softc *);
104void	age_rxvlan(struct age_softc *sc);
105void	age_iff(struct age_softc *);
106
107const struct pci_matchid age_devices[] = {
108	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
109};
110
111const struct cfattach age_ca = {
112	sizeof (struct age_softc), age_match, age_attach
113};
114
115struct cfdriver age_cd = {
116	 NULL, "age", DV_IFNET
117};
118
119int agedebug = 0;
120#define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
121
122#define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
123
124int
125age_match(struct device *dev, void *match, void *aux)
126{
127	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
128	     sizeof (age_devices) / sizeof (age_devices[0]));
129}
130
131void
132age_attach(struct device *parent, struct device *self, void *aux)
133{
134	struct age_softc *sc = (struct age_softc *)self;
135	struct pci_attach_args *pa = aux;
136	pci_chipset_tag_t pc = pa->pa_pc;
137	pci_intr_handle_t ih;
138	const char *intrstr;
139	struct ifnet *ifp;
140	pcireg_t memtype;
141	int error = 0;
142
143	/*
144	 * Allocate IO memory
145	 */
146	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
147	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
148	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
149		printf(": can't map mem space\n");
150		return;
151	}
152
153	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
154		printf(": can't map interrupt\n");
155		goto fail;
156	}
157
158	/*
159	 * Allocate IRQ
160	 */
161	intrstr = pci_intr_string(pc, ih);
162	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
163	    sc->sc_dev.dv_xname);
164	if (sc->sc_irq_handle == NULL) {
165		printf(": could not establish interrupt");
166		if (intrstr != NULL)
167			printf(" at %s", intrstr);
168		printf("\n");
169		goto fail;
170	}
171	printf(": %s", intrstr);
172
173	sc->sc_dmat = pa->pa_dmat;
174	sc->sc_pct = pa->pa_pc;
175	sc->sc_pcitag = pa->pa_tag;
176
177	/* Set PHY address. */
178	sc->age_phyaddr = AGE_PHY_ADDR;
179
180	/* Reset PHY. */
181	age_phy_reset(sc);
182
183	/* Reset the ethernet controller. */
184	age_reset(sc);
185
186	/* Get PCI and chip id/revision. */
187	sc->age_rev = PCI_REVISION(pa->pa_class);
188	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
189	    MASTER_CHIP_REV_SHIFT;
190	if (agedebug) {
191		printf("%s: PCI device revision : 0x%04x\n",
192		    sc->sc_dev.dv_xname, sc->age_rev);
193		printf("%s: Chip id/revision : 0x%04x\n",
194		    sc->sc_dev.dv_xname, sc->age_chip_rev);
195	}
196
197	if (agedebug) {
198		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
199		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
200		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
201	}
202
203	/* Set max allowable DMA size. */
204	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
205	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
206
207	/* Allocate DMA stuffs */
208	error = age_dma_alloc(sc);
209	if (error)
210		goto fail;
211
212	/* Load station address. */
213	age_get_macaddr(sc);
214
215	ifp = &sc->sc_arpcom.ac_if;
216	ifp->if_softc = sc;
217	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
218	ifp->if_ioctl = age_ioctl;
219	ifp->if_start = age_start;
220	ifp->if_watchdog = age_watchdog;
221	ifq_init_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
222	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
223	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
224
225	ifp->if_capabilities = IFCAP_VLAN_MTU;
226
227#ifdef AGE_CHECKSUM
228	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
229				IFCAP_CSUM_UDPv4;
230#endif
231
232#if NVLAN > 0
233	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
234#endif
235
236	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
237
238	/* Set up MII bus. */
239	sc->sc_miibus.mii_ifp = ifp;
240	sc->sc_miibus.mii_readreg = age_miibus_readreg;
241	sc->sc_miibus.mii_writereg = age_miibus_writereg;
242	sc->sc_miibus.mii_statchg = age_miibus_statchg;
243
244	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
245	    age_mediastatus);
246	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
247	   MII_OFFSET_ANY, MIIF_DOPAUSE);
248
249	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
250		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
251		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
252		    0, NULL);
253		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
254	} else
255		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
256
257	if_attach(ifp);
258	ether_ifattach(ifp);
259
260	timeout_set(&sc->age_tick_ch, age_tick, sc);
261
262	return;
263fail:
264	age_dma_free(sc);
265	if (sc->sc_irq_handle != NULL)
266		pci_intr_disestablish(pc, sc->sc_irq_handle);
267	if (sc->sc_mem_size)
268		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
269}
270
271int
272age_detach(struct device *self, int flags)
273{
274	struct age_softc *sc = (struct age_softc *)self;
275	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
276	int s;
277
278	s = splnet();
279	age_stop(sc);
280	splx(s);
281
282	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
283
284	/* Delete all remaining media. */
285	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
286
287	ether_ifdetach(ifp);
288	if_detach(ifp);
289	age_dma_free(sc);
290
291	if (sc->sc_irq_handle != NULL) {
292		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
293		sc->sc_irq_handle = NULL;
294	}
295
296	return (0);
297}
298
299/*
300 *	Read a PHY register on the MII of the L1.
301 */
302int
303age_miibus_readreg(struct device *dev, int phy, int reg)
304{
305	struct age_softc *sc = (struct age_softc *)dev;
306	uint32_t v;
307	int i;
308
309	if (phy != sc->age_phyaddr)
310		return (0);
311
312	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
313	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
314	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
315		DELAY(1);
316		v = CSR_READ_4(sc, AGE_MDIO);
317		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
318			break;
319	}
320
321	if (i == 0) {
322		printf("%s: phy read timeout: phy %d, reg %d\n",
323			sc->sc_dev.dv_xname, phy, reg);
324		return (0);
325	}
326
327	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
328}
329
330/*
331 * 	Write a PHY register on the MII of the L1.
332 */
333void
334age_miibus_writereg(struct device *dev, int phy, int reg, int val)
335{
336	struct age_softc *sc = (struct age_softc *)dev;
337	uint32_t v;
338	int i;
339
340	if (phy != sc->age_phyaddr)
341		return;
342
343	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
344	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
345	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
346
347	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
348		DELAY(1);
349		v = CSR_READ_4(sc, AGE_MDIO);
350		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
351			break;
352	}
353
354	if (i == 0) {
355		printf("%s: phy write timeout: phy %d, reg %d\n",
356		    sc->sc_dev.dv_xname, phy, reg);
357	}
358}
359
360/*
361 *	Callback from MII layer when media changes.
362 */
363void
364age_miibus_statchg(struct device *dev)
365{
366	struct age_softc *sc = (struct age_softc *)dev;
367	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
368	struct mii_data *mii = &sc->sc_miibus;
369
370	if ((ifp->if_flags & IFF_RUNNING) == 0)
371		return;
372
373	sc->age_flags &= ~AGE_FLAG_LINK;
374	if ((mii->mii_media_status & IFM_AVALID) != 0) {
375		switch (IFM_SUBTYPE(mii->mii_media_active)) {
376		case IFM_10_T:
377		case IFM_100_TX:
378		case IFM_1000_T:
379			sc->age_flags |= AGE_FLAG_LINK;
380			break;
381		default:
382			break;
383		}
384	}
385
386	/* Stop Rx/Tx MACs. */
387	age_stop_rxmac(sc);
388	age_stop_txmac(sc);
389
390	/* Program MACs with resolved speed/duplex/flow-control. */
391	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
392		uint32_t reg;
393
394		age_mac_config(sc);
395		reg = CSR_READ_4(sc, AGE_MAC_CFG);
396		/* Restart DMA engine and Tx/Rx MAC. */
397		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
398		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
399		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
400		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
401	}
402}
403
404/*
405 *	Get the current interface media status.
406 */
407void
408age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
409{
410	struct age_softc *sc = ifp->if_softc;
411	struct mii_data *mii = &sc->sc_miibus;
412
413	mii_pollstat(mii);
414	ifmr->ifm_status = mii->mii_media_status;
415	ifmr->ifm_active = mii->mii_media_active;
416}
417
418/*
419 *	Set hardware to newly-selected media.
420 */
421int
422age_mediachange(struct ifnet *ifp)
423{
424	struct age_softc *sc = ifp->if_softc;
425	struct mii_data *mii = &sc->sc_miibus;
426	int error;
427
428	if (mii->mii_instance != 0) {
429		struct mii_softc *miisc;
430
431		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
432			mii_phy_reset(miisc);
433	}
434	error = mii_mediachg(mii);
435
436	return (error);
437}
438
439int
440age_intr(void *arg)
441{
442        struct age_softc *sc = arg;
443        struct ifnet *ifp = &sc->sc_arpcom.ac_if;
444	struct cmb *cmb;
445        uint32_t status;
446
447	status = CSR_READ_4(sc, AGE_INTR_STATUS);
448	if (status == 0 || (status & AGE_INTRS) == 0)
449		return (0);
450
451	/* Disable interrupts. */
452	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
453
454	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
455	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
456	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
457	cmb = sc->age_rdata.age_cmb_block;
458	status = letoh32(cmb->intr_status);
459	if ((status & AGE_INTRS) == 0)
460		goto back;
461
462	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
463	    TPD_CONS_SHIFT;
464	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
465	    RRD_PROD_SHIFT;
466	/* Let hardware know CMB was served. */
467	cmb->intr_status = 0;
468	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
469	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
470	    BUS_DMASYNC_PREWRITE);
471
472	if (ifp->if_flags & IFF_RUNNING) {
473		if (status & INTR_CMB_RX)
474			age_rxintr(sc, sc->age_rr_prod);
475
476		if (status & INTR_CMB_TX)
477			age_txintr(sc, sc->age_tpd_cons);
478
479		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
480			if (status & INTR_DMA_RD_TO_RST)
481				printf("%s: DMA read error! -- resetting\n",
482				    sc->sc_dev.dv_xname);
483			if (status & INTR_DMA_WR_TO_RST)
484				printf("%s: DMA write error! -- resetting\n",
485				    sc->sc_dev.dv_xname);
486			age_init(ifp);
487		}
488
489		age_start(ifp);
490
491		if (status & INTR_SMB)
492			age_stats_update(sc);
493	}
494
495	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
496	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
497	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
498	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
499
500back:
501	/* Re-enable interrupts. */
502	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
503
504	return (1);
505}
506
507void
508age_get_macaddr(struct age_softc *sc)
509{
510	uint32_t ea[2], reg;
511	int i, vpdc;
512
513	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
514	if ((reg & SPI_VPD_ENB) != 0) {
515		/* Get VPD stored in TWSI EEPROM. */
516		reg &= ~SPI_VPD_ENB;
517		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
518	}
519
520	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
521	    PCI_CAP_VPD, &vpdc, NULL)) {
522		/*
523		 * PCI VPD capability found, let TWSI reload EEPROM.
524		 * This will set Ethernet address of controller.
525		 */
526		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
527		    TWSI_CTRL_SW_LD_START);
528		for (i = 100; i > 0; i--) {
529			DELAY(1000);
530			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
531			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
532				break;
533		}
534		if (i == 0)
535			printf("%s: reloading EEPROM timeout!\n",
536			    sc->sc_dev.dv_xname);
537	} else {
538		if (agedebug)
539			printf("%s: PCI VPD capability not found!\n",
540			    sc->sc_dev.dv_xname);
541	}
542
543	ea[0] = CSR_READ_4(sc, AGE_PAR0);
544	ea[1] = CSR_READ_4(sc, AGE_PAR1);
545	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
546	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
547	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
548	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
549	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
550	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
551}
552
553void
554age_phy_reset(struct age_softc *sc)
555{
556	uint16_t reg, pn;
557	int i, linkup;
558
559	/* Reset PHY. */
560	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
561	DELAY(2000);
562	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
563	DELAY(2000);
564
565#define	ATPHY_DBG_ADDR		0x1D
566#define	ATPHY_DBG_DATA		0x1E
567#define	ATPHY_CDTC		0x16
568#define	PHY_CDTC_ENB		0x0001
569#define	PHY_CDTC_POFF		8
570#define	ATPHY_CDTS		0x1C
571#define	PHY_CDTS_STAT_OK	0x0000
572#define	PHY_CDTS_STAT_SHORT	0x0100
573#define	PHY_CDTS_STAT_OPEN	0x0200
574#define	PHY_CDTS_STAT_INVAL	0x0300
575#define	PHY_CDTS_STAT_MASK	0x0300
576
577	/* Check power saving mode. Magic from Linux. */
578	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
579	for (linkup = 0, pn = 0; pn < 4; pn++) {
580		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
581		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
582		for (i = 200; i > 0; i--) {
583			DELAY(1000);
584			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
585			    ATPHY_CDTC);
586			if ((reg & PHY_CDTC_ENB) == 0)
587				break;
588		}
589		DELAY(1000);
590		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
591		    ATPHY_CDTS);
592		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
593			linkup++;
594			break;
595		}
596	}
597	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
598	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
599	if (linkup == 0) {
600		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
601		    ATPHY_DBG_ADDR, 0);
602		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
603		    ATPHY_DBG_DATA, 0x124E);
604		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
605		    ATPHY_DBG_ADDR, 1);
606		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
607		    ATPHY_DBG_DATA);
608		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
609		    ATPHY_DBG_DATA, reg | 0x03);
610		/* XXX */
611		DELAY(1500 * 1000);
612		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
613		    ATPHY_DBG_ADDR, 0);
614		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
615		    ATPHY_DBG_DATA, 0x024E);
616	}
617
618#undef	ATPHY_DBG_ADDR
619#undef	ATPHY_DBG_DATA
620#undef	ATPHY_CDTC
621#undef	PHY_CDTC_ENB
622#undef	PHY_CDTC_POFF
623#undef	ATPHY_CDTS
624#undef	PHY_CDTS_STAT_OK
625#undef	PHY_CDTS_STAT_SHORT
626#undef	PHY_CDTS_STAT_OPEN
627#undef	PHY_CDTS_STAT_INVAL
628#undef	PHY_CDTS_STAT_MASK
629}
630
631int
632age_dma_alloc(struct age_softc *sc)
633{
634	struct age_txdesc *txd;
635	struct age_rxdesc *rxd;
636	int nsegs, error, i;
637
638	/*
639	 * Create DMA stuffs for TX ring
640	 */
641	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
642	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
643	if (error)
644		return (ENOBUFS);
645
646	/* Allocate DMA'able memory for TX ring */
647	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
648	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
649	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
650	if (error) {
651		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
652		    sc->sc_dev.dv_xname);
653		return error;
654	}
655
656	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
657	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
658	    BUS_DMA_NOWAIT);
659	if (error)
660		return (ENOBUFS);
661
662	/*  Load the DMA map for Tx ring. */
663	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
664	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
665	if (error) {
666		printf("%s: could not load DMA'able memory for Tx ring.\n",
667		    sc->sc_dev.dv_xname);
668		bus_dmamem_free(sc->sc_dmat,
669		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
670		return error;
671	}
672
673	sc->age_rdata.age_tx_ring_paddr =
674	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
675
676	/*
677	 * Create DMA stuffs for RX ring
678	 */
679	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
680	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
681	if (error)
682		return (ENOBUFS);
683
684	/* Allocate DMA'able memory for RX ring */
685	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
686	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
687	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
688	if (error) {
689		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
690		    sc->sc_dev.dv_xname);
691		return error;
692	}
693
694	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
695	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
696	    BUS_DMA_NOWAIT);
697	if (error)
698		return (ENOBUFS);
699
700	/* Load the DMA map for Rx ring. */
701	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
702	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
703	if (error) {
704		printf("%s: could not load DMA'able memory for Rx ring.\n",
705		    sc->sc_dev.dv_xname);
706		bus_dmamem_free(sc->sc_dmat,
707		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
708		return error;
709	}
710
711	sc->age_rdata.age_rx_ring_paddr =
712	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
713
714	/*
715	 * Create DMA stuffs for RX return ring
716	 */
717	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
718	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
719	if (error)
720		return (ENOBUFS);
721
722	/* Allocate DMA'able memory for RX return ring */
723	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
724	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
725	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
726	if (error) {
727		printf("%s: could not allocate DMA'able memory for Rx "
728		    "return ring.\n", sc->sc_dev.dv_xname);
729		return error;
730	}
731
732	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
733	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
734	    BUS_DMA_NOWAIT);
735	if (error)
736		return (ENOBUFS);
737
738	/*  Load the DMA map for Rx return ring. */
739	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
740	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
741	if (error) {
742		printf("%s: could not load DMA'able memory for Rx return ring."
743		    "\n", sc->sc_dev.dv_xname);
744		bus_dmamem_free(sc->sc_dmat,
745		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
746		return error;
747	}
748
749	sc->age_rdata.age_rr_ring_paddr =
750	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
751
752	/*
753	 * Create DMA stuffs for CMB block
754	 */
755	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
756	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
757	    &sc->age_cdata.age_cmb_block_map);
758	if (error)
759		return (ENOBUFS);
760
761	/* Allocate DMA'able memory for CMB block */
762	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
763	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
764	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
765	if (error) {
766		printf("%s: could not allocate DMA'able memory for "
767		    "CMB block\n", sc->sc_dev.dv_xname);
768		return error;
769	}
770
771	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
772	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
773	    BUS_DMA_NOWAIT);
774	if (error)
775		return (ENOBUFS);
776
777	/*  Load the DMA map for CMB block. */
778	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
779	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
780	    BUS_DMA_WAITOK);
781	if (error) {
782		printf("%s: could not load DMA'able memory for CMB block\n",
783		    sc->sc_dev.dv_xname);
784		bus_dmamem_free(sc->sc_dmat,
785		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
786		return error;
787	}
788
789	sc->age_rdata.age_cmb_block_paddr =
790	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
791
792	/*
793	 * Create DMA stuffs for SMB block
794	 */
795	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
796	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
797	    &sc->age_cdata.age_smb_block_map);
798	if (error)
799		return (ENOBUFS);
800
801	/* Allocate DMA'able memory for SMB block */
802	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
803	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
804	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
805	if (error) {
806		printf("%s: could not allocate DMA'able memory for "
807		    "SMB block\n", sc->sc_dev.dv_xname);
808		return error;
809	}
810
811	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
812	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
813	    BUS_DMA_NOWAIT);
814	if (error)
815		return (ENOBUFS);
816
817	/*  Load the DMA map for SMB block */
818	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
819	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
820	    BUS_DMA_WAITOK);
821	if (error) {
822		printf("%s: could not load DMA'able memory for SMB block\n",
823		    sc->sc_dev.dv_xname);
824		bus_dmamem_free(sc->sc_dmat,
825		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
826		return error;
827	}
828
829	sc->age_rdata.age_smb_block_paddr =
830	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
831
832	/* Create DMA maps for Tx buffers. */
833	for (i = 0; i < AGE_TX_RING_CNT; i++) {
834		txd = &sc->age_cdata.age_txdesc[i];
835		txd->tx_m = NULL;
836		txd->tx_dmamap = NULL;
837		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
838		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
839		    &txd->tx_dmamap);
840		if (error) {
841			printf("%s: could not create Tx dmamap.\n",
842			    sc->sc_dev.dv_xname);
843			return error;
844		}
845	}
846
847	/* Create DMA maps for Rx buffers. */
848	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
849	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
850	if (error) {
851		printf("%s: could not create spare Rx dmamap.\n",
852		    sc->sc_dev.dv_xname);
853		return error;
854	}
855	for (i = 0; i < AGE_RX_RING_CNT; i++) {
856		rxd = &sc->age_cdata.age_rxdesc[i];
857		rxd->rx_m = NULL;
858		rxd->rx_dmamap = NULL;
859		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
860		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
861		if (error) {
862			printf("%s: could not create Rx dmamap.\n",
863			    sc->sc_dev.dv_xname);
864			return error;
865		}
866	}
867
868	return (0);
869}
870
871void
872age_dma_free(struct age_softc *sc)
873{
874	struct age_txdesc *txd;
875	struct age_rxdesc *rxd;
876	int i;
877
878	/* Tx buffers */
879	for (i = 0; i < AGE_TX_RING_CNT; i++) {
880		txd = &sc->age_cdata.age_txdesc[i];
881		if (txd->tx_dmamap != NULL) {
882			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
883			txd->tx_dmamap = NULL;
884		}
885	}
886	/* Rx buffers */
887	for (i = 0; i < AGE_RX_RING_CNT; i++) {
888		rxd = &sc->age_cdata.age_rxdesc[i];
889		if (rxd->rx_dmamap != NULL) {
890			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
891			rxd->rx_dmamap = NULL;
892		}
893	}
894	if (sc->age_cdata.age_rx_sparemap != NULL) {
895		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
896		sc->age_cdata.age_rx_sparemap = NULL;
897	}
898
899	/* Tx ring. */
900	if (sc->age_cdata.age_tx_ring_map != NULL)
901		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
902	if (sc->age_cdata.age_tx_ring_map != NULL &&
903	    sc->age_rdata.age_tx_ring != NULL)
904		bus_dmamem_free(sc->sc_dmat,
905		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
906	sc->age_rdata.age_tx_ring = NULL;
907	sc->age_cdata.age_tx_ring_map = NULL;
908
909	/* Rx ring. */
910	if (sc->age_cdata.age_rx_ring_map != NULL)
911		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
912	if (sc->age_cdata.age_rx_ring_map != NULL &&
913	    sc->age_rdata.age_rx_ring != NULL)
914		bus_dmamem_free(sc->sc_dmat,
915		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
916	sc->age_rdata.age_rx_ring = NULL;
917	sc->age_cdata.age_rx_ring_map = NULL;
918
919	/* Rx return ring. */
920	if (sc->age_cdata.age_rr_ring_map != NULL)
921		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
922	if (sc->age_cdata.age_rr_ring_map != NULL &&
923	    sc->age_rdata.age_rr_ring != NULL)
924		bus_dmamem_free(sc->sc_dmat,
925		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
926	sc->age_rdata.age_rr_ring = NULL;
927	sc->age_cdata.age_rr_ring_map = NULL;
928
929	/* CMB block */
930	if (sc->age_cdata.age_cmb_block_map != NULL)
931		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
932	if (sc->age_cdata.age_cmb_block_map != NULL &&
933	    sc->age_rdata.age_cmb_block != NULL)
934		bus_dmamem_free(sc->sc_dmat,
935		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
936	sc->age_rdata.age_cmb_block = NULL;
937	sc->age_cdata.age_cmb_block_map = NULL;
938
939	/* SMB block */
940	if (sc->age_cdata.age_smb_block_map != NULL)
941		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
942	if (sc->age_cdata.age_smb_block_map != NULL &&
943	    sc->age_rdata.age_smb_block != NULL)
944		bus_dmamem_free(sc->sc_dmat,
945		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
946	sc->age_rdata.age_smb_block = NULL;
947	sc->age_cdata.age_smb_block_map = NULL;
948}
949
950void
951age_start(struct ifnet *ifp)
952{
953        struct age_softc *sc = ifp->if_softc;
954        struct mbuf *m;
955	int enq;
956
957	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
958		return;
959	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
960		return;
961	if (ifq_empty(&ifp->if_snd))
962		return;
963
964	enq = 0;
965	for (;;) {
966		if (sc->age_cdata.age_tx_cnt + AGE_MAXTXSEGS >=
967		    AGE_TX_RING_CNT - 2) {
968			ifq_set_oactive(&ifp->if_snd);
969			break;
970		}
971
972		m = ifq_dequeue(&ifp->if_snd);
973		if (m == NULL)
974			break;
975
976		/*
977		 * Pack the data into the transmit ring. If we
978		 * don't have room, set the OACTIVE flag and wait
979		 * for the NIC to drain the ring.
980		 */
981		if (age_encap(sc, m) != 0) {
982			ifp->if_oerrors++;
983			continue;
984		}
985		enq = 1;
986
987#if NBPFILTER > 0
988		/*
989		 * If there's a BPF listener, bounce a copy of this frame
990		 * to him.
991		 */
992		if (ifp->if_bpf != NULL)
993			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
994#endif
995	}
996
997	if (enq) {
998		/* Update mbox. */
999		AGE_COMMIT_MBOX(sc);
1000		/* Set a timeout in case the chip goes out to lunch. */
1001		ifp->if_timer = AGE_TX_TIMEOUT;
1002	}
1003}
1004
1005void
1006age_watchdog(struct ifnet *ifp)
1007{
1008	struct age_softc *sc = ifp->if_softc;
1009
1010	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1011		printf("%s: watchdog timeout (missed link)\n",
1012		    sc->sc_dev.dv_xname);
1013		ifp->if_oerrors++;
1014		age_init(ifp);
1015		return;
1016	}
1017
1018	if (sc->age_cdata.age_tx_cnt == 0) {
1019		printf("%s: watchdog timeout (missed Tx interrupts) "
1020		    "-- recovering\n", sc->sc_dev.dv_xname);
1021		age_start(ifp);
1022		return;
1023	}
1024
1025	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1026	ifp->if_oerrors++;
1027	age_init(ifp);
1028	age_start(ifp);
1029}
1030
1031int
1032age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1033{
1034	struct age_softc *sc = ifp->if_softc;
1035	struct mii_data *mii = &sc->sc_miibus;
1036	struct ifreq *ifr = (struct ifreq *)data;
1037	int s, error = 0;
1038
1039	s = splnet();
1040
1041	switch (cmd) {
1042	case SIOCSIFADDR:
1043		ifp->if_flags |= IFF_UP;
1044		if (!(ifp->if_flags & IFF_RUNNING))
1045			 age_init(ifp);
1046		break;
1047
1048	case SIOCSIFFLAGS:
1049		if (ifp->if_flags & IFF_UP) {
1050			if (ifp->if_flags & IFF_RUNNING)
1051				error = ENETRESET;
1052			else
1053				age_init(ifp);
1054		} else {
1055			if (ifp->if_flags & IFF_RUNNING)
1056				age_stop(sc);
1057		}
1058		break;
1059
1060	case SIOCSIFMEDIA:
1061	case SIOCGIFMEDIA:
1062		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1063		break;
1064
1065	default:
1066		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1067		break;
1068	}
1069
1070	if (error == ENETRESET) {
1071		if (ifp->if_flags & IFF_RUNNING)
1072			age_iff(sc);
1073		error = 0;
1074	}
1075
1076	splx(s);
1077	return (error);
1078}
1079
1080void
1081age_mac_config(struct age_softc *sc)
1082{
1083	struct mii_data *mii = &sc->sc_miibus;
1084	uint32_t reg;
1085
1086	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1087	reg &= ~MAC_CFG_FULL_DUPLEX;
1088	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1089	reg &= ~MAC_CFG_SPEED_MASK;
1090
1091	/* Reprogram MAC with resolved speed/duplex. */
1092	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1093	case IFM_10_T:
1094	case IFM_100_TX:
1095		reg |= MAC_CFG_SPEED_10_100;
1096		break;
1097	case IFM_1000_T:
1098		reg |= MAC_CFG_SPEED_1000;
1099		break;
1100	}
1101	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1102		reg |= MAC_CFG_FULL_DUPLEX;
1103		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1104			reg |= MAC_CFG_TX_FC;
1105		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1106			reg |= MAC_CFG_RX_FC;
1107	}
1108
1109	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1110}
1111
1112int
1113age_encap(struct age_softc *sc, struct mbuf *m)
1114{
1115	struct age_txdesc *txd, *txd_last;
1116	struct tx_desc *desc;
1117	bus_dmamap_t map;
1118	uint32_t cflags, poff, vtag;
1119	int error, i, prod;
1120
1121	cflags = vtag = 0;
1122	poff = 0;
1123
1124	prod = sc->age_cdata.age_tx_prod;
1125	txd = &sc->age_cdata.age_txdesc[prod];
1126	txd_last = txd;
1127	map = txd->tx_dmamap;
1128
1129	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1130	if (error != 0 && error != EFBIG)
1131		goto drop;
1132	if (error != 0) {
1133		if (m_defrag(m, M_DONTWAIT)) {
1134			error = ENOBUFS;
1135			goto drop;
1136		}
1137		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1138		    BUS_DMA_NOWAIT);
1139		if (error != 0)
1140			goto drop;
1141	}
1142
1143	/* Configure Tx IP/TCP/UDP checksum offload. */
1144	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1145		cflags |= AGE_TD_CSUM;
1146		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1147			cflags |= AGE_TD_TCPCSUM;
1148		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1149			cflags |= AGE_TD_UDPCSUM;
1150		/* Set checksum start offset. */
1151		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1152	}
1153
1154#if NVLAN > 0
1155	/* Configure VLAN hardware tag insertion. */
1156	if (m->m_flags & M_VLANTAG) {
1157		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1158		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1159		cflags |= AGE_TD_INSERT_VLAN_TAG;
1160	}
1161#endif
1162
1163	desc = NULL;
1164	for (i = 0; i < map->dm_nsegs; i++) {
1165		desc = &sc->age_rdata.age_tx_ring[prod];
1166		desc->addr = htole64(map->dm_segs[i].ds_addr);
1167		desc->len =
1168		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1169		desc->flags = htole32(cflags);
1170		sc->age_cdata.age_tx_cnt++;
1171		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1172	}
1173
1174	/* Update producer index. */
1175	sc->age_cdata.age_tx_prod = prod;
1176
1177	/* Set EOP on the last descriptor. */
1178	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1179	desc = &sc->age_rdata.age_tx_ring[prod];
1180	desc->flags |= htole32(AGE_TD_EOP);
1181
1182	/* Swap dmamap of the first and the last. */
1183	txd = &sc->age_cdata.age_txdesc[prod];
1184	map = txd_last->tx_dmamap;
1185	txd_last->tx_dmamap = txd->tx_dmamap;
1186	txd->tx_dmamap = map;
1187	txd->tx_m = m;
1188
1189	/* Sync descriptors. */
1190	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1191	    BUS_DMASYNC_PREWRITE);
1192	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1193	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1194	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1195
1196	return (0);
1197
1198 drop:
1199	m_freem(m);
1200	return (error);
1201}
1202
1203void
1204age_txintr(struct age_softc *sc, int tpd_cons)
1205{
1206	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1207	struct age_txdesc *txd;
1208	int cons, prog;
1209
1210	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1211	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1212	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1213
1214	/*
1215	 * Go through our Tx list and free mbufs for those
1216	 * frames which have been transmitted.
1217	 */
1218	cons = sc->age_cdata.age_tx_cons;
1219	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1220		if (sc->age_cdata.age_tx_cnt <= 0)
1221			break;
1222		prog++;
1223		ifq_clr_oactive(&ifp->if_snd);
1224		sc->age_cdata.age_tx_cnt--;
1225		txd = &sc->age_cdata.age_txdesc[cons];
1226		/*
1227		 * Clear Tx descriptors, it's not required but would
1228		 * help debugging in case of Tx issues.
1229		 */
1230		txd->tx_desc->addr = 0;
1231		txd->tx_desc->len = 0;
1232		txd->tx_desc->flags = 0;
1233
1234		if (txd->tx_m == NULL)
1235			continue;
1236		/* Reclaim transmitted mbufs. */
1237		bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1238		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1239		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1240		m_freem(txd->tx_m);
1241		txd->tx_m = NULL;
1242	}
1243
1244	if (prog > 0) {
1245		sc->age_cdata.age_tx_cons = cons;
1246
1247		/*
1248		 * Unarm watchdog timer only when there are no pending
1249		 * Tx descriptors in queue.
1250		 */
1251		if (sc->age_cdata.age_tx_cnt == 0)
1252			ifp->if_timer = 0;
1253
1254		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1255		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1256		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1257	}
1258}
1259
1260/* Receive a frame. */
1261void
1262age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1263{
1264	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1265	struct age_rxdesc *rxd;
1266	struct rx_desc *desc;
1267	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1268	struct mbuf *mp, *m;
1269	uint32_t status, index;
1270	int count, nsegs, pktlen;
1271	int rx_cons;
1272
1273	status = letoh32(rxrd->flags);
1274	index = letoh32(rxrd->index);
1275	rx_cons = AGE_RX_CONS(index);
1276	nsegs = AGE_RX_NSEGS(index);
1277
1278	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1279	if ((status & AGE_RRD_ERROR) != 0 &&
1280	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1281	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1282		/*
1283		 * We want to pass the following frames to upper
1284		 * layer regardless of error status of Rx return
1285		 * ring.
1286		 *
1287		 *  o IP/TCP/UDP checksum is bad.
1288		 *  o frame length and protocol specific length
1289		 *     does not match.
1290		 */
1291		sc->age_cdata.age_rx_cons += nsegs;
1292		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1293		return;
1294	}
1295
1296	pktlen = 0;
1297	for (count = 0; count < nsegs; count++,
1298	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1299		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1300		mp = rxd->rx_m;
1301		desc = rxd->rx_desc;
1302		/* Add a new receive buffer to the ring. */
1303		if (age_newbuf(sc, rxd) != 0) {
1304			ifp->if_iqdrops++;
1305			/* Reuse Rx buffers. */
1306			if (sc->age_cdata.age_rxhead != NULL) {
1307				m_freem(sc->age_cdata.age_rxhead);
1308				AGE_RXCHAIN_RESET(sc);
1309			}
1310			break;
1311		}
1312
1313		/* The length of the first mbuf is computed last. */
1314		if (count != 0) {
1315			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1316			pktlen += mp->m_len;
1317		}
1318
1319		/* Chain received mbufs. */
1320		if (sc->age_cdata.age_rxhead == NULL) {
1321			sc->age_cdata.age_rxhead = mp;
1322			sc->age_cdata.age_rxtail = mp;
1323		} else {
1324			mp->m_flags &= ~M_PKTHDR;
1325			sc->age_cdata.age_rxprev_tail =
1326			    sc->age_cdata.age_rxtail;
1327			sc->age_cdata.age_rxtail->m_next = mp;
1328			sc->age_cdata.age_rxtail = mp;
1329		}
1330
1331		if (count == nsegs - 1) {
1332			/*
1333			 * It seems that L1 controller has no way
1334			 * to tell hardware to strip CRC bytes.
1335			 */
1336			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1337			if (nsegs > 1) {
1338				/* Remove the CRC bytes in chained mbufs. */
1339				pktlen -= ETHER_CRC_LEN;
1340				if (mp->m_len <= ETHER_CRC_LEN) {
1341					sc->age_cdata.age_rxtail =
1342					    sc->age_cdata.age_rxprev_tail;
1343					sc->age_cdata.age_rxtail->m_len -=
1344					    (ETHER_CRC_LEN - mp->m_len);
1345					sc->age_cdata.age_rxtail->m_next = NULL;
1346					m_freem(mp);
1347				} else {
1348					mp->m_len -= ETHER_CRC_LEN;
1349				}
1350			}
1351
1352			m = sc->age_cdata.age_rxhead;
1353			m->m_flags |= M_PKTHDR;
1354			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1355			/* Set the first mbuf length. */
1356			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1357
1358			/*
1359			 * Set checksum information.
1360			 * It seems that L1 controller can compute partial
1361			 * checksum. The partial checksum value can be used
1362			 * to accelerate checksum computation for fragmented
1363			 * TCP/UDP packets. Upper network stack already
1364			 * takes advantage of the partial checksum value in
1365			 * IP reassembly stage. But I'm not sure the
1366			 * correctness of the partial hardware checksum
1367			 * assistance due to lack of data sheet. If it is
1368			 * proven to work on L1 I'll enable it.
1369			 */
1370			if (status & AGE_RRD_IPV4) {
1371				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1372					m->m_pkthdr.csum_flags |=
1373					    M_IPV4_CSUM_IN_OK;
1374				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1375				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1376					m->m_pkthdr.csum_flags |=
1377					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1378				}
1379				/*
1380				 * Don't mark bad checksum for TCP/UDP frames
1381				 * as fragmented frames may always have set
1382				 * bad checksummed bit of descriptor status.
1383				 */
1384			}
1385#if NVLAN > 0
1386			/* Check for VLAN tagged frames. */
1387			if (status & AGE_RRD_VLAN) {
1388				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1389				m->m_pkthdr.ether_vtag =
1390				    AGE_RX_VLAN_TAG(vtag);
1391				m->m_flags |= M_VLANTAG;
1392			}
1393#endif
1394
1395			ml_enqueue(&ml, m);
1396
1397			/* Reset mbuf chains. */
1398			AGE_RXCHAIN_RESET(sc);
1399		}
1400	}
1401
1402	if_input(ifp, &ml);
1403
1404	if (count != nsegs) {
1405		sc->age_cdata.age_rx_cons += nsegs;
1406		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1407	} else
1408		sc->age_cdata.age_rx_cons = rx_cons;
1409}
1410
1411void
1412age_rxintr(struct age_softc *sc, int rr_prod)
1413{
1414	struct rx_rdesc *rxrd;
1415	int rr_cons, nsegs, pktlen, prog;
1416
1417	rr_cons = sc->age_cdata.age_rr_cons;
1418	if (rr_cons == rr_prod)
1419		return;
1420
1421	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1422	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1423	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1424	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1425	    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1426	    BUS_DMASYNC_POSTWRITE);
1427
1428	for (prog = 0; rr_cons != rr_prod; prog++) {
1429		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1430		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1431		if (nsegs == 0)
1432			break;
1433		/*
1434		 * Check number of segments against received bytes
1435		 * Non-matching value would indicate that hardware
1436		 * is still trying to update Rx return descriptors.
1437		 * I'm not sure whether this check is really needed.
1438		 */
1439		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1440		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1441		    (MCLBYTES - ETHER_ALIGN)))
1442			break;
1443
1444		/* Received a frame. */
1445		age_rxeof(sc, rxrd);
1446
1447		/* Clear return ring. */
1448		rxrd->index = 0;
1449		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1450	}
1451
1452	if (prog > 0) {
1453		/* Update the consumer index. */
1454		sc->age_cdata.age_rr_cons = rr_cons;
1455
1456		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1457		    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1458		    BUS_DMASYNC_PREWRITE);
1459		/* Sync descriptors. */
1460		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1461		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1462		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463
1464		/* Notify hardware availability of new Rx buffers. */
1465		AGE_COMMIT_MBOX(sc);
1466	}
1467}
1468
1469void
1470age_tick(void *xsc)
1471{
1472	struct age_softc *sc = xsc;
1473	struct mii_data *mii = &sc->sc_miibus;
1474	int s;
1475
1476	s = splnet();
1477	mii_tick(mii);
1478	timeout_add_sec(&sc->age_tick_ch, 1);
1479	splx(s);
1480}
1481
1482void
1483age_reset(struct age_softc *sc)
1484{
1485	uint32_t reg;
1486	int i;
1487
1488	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1489	CSR_READ_4(sc, AGE_MASTER_CFG);
1490	DELAY(1000);
1491	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1492		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1493			break;
1494		DELAY(10);
1495	}
1496
1497	if (i == 0)
1498		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1499		    reg);
1500
1501	/* Initialize PCIe module. From Linux. */
1502	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1503	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1504}
1505
1506int
1507age_init(struct ifnet *ifp)
1508{
1509	struct age_softc *sc = ifp->if_softc;
1510	struct mii_data *mii = &sc->sc_miibus;
1511	uint8_t eaddr[ETHER_ADDR_LEN];
1512	bus_addr_t paddr;
1513	uint32_t reg, fsize;
1514	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1515	int error;
1516
1517	/*
1518	 * Cancel any pending I/O.
1519	 */
1520	age_stop(sc);
1521
1522	/*
1523	 * Reset the chip to a known state.
1524	 */
1525	age_reset(sc);
1526
1527	/* Initialize descriptors. */
1528	error = age_init_rx_ring(sc);
1529        if (error != 0) {
1530		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1531                age_stop(sc);
1532		return (error);
1533        }
1534	age_init_rr_ring(sc);
1535	age_init_tx_ring(sc);
1536	age_init_cmb_block(sc);
1537	age_init_smb_block(sc);
1538
1539	/* Reprogram the station address. */
1540	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1541	CSR_WRITE_4(sc, AGE_PAR0,
1542	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1543	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1544
1545	/* Set descriptor base addresses. */
1546	paddr = sc->age_rdata.age_tx_ring_paddr;
1547	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1548	paddr = sc->age_rdata.age_rx_ring_paddr;
1549	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1550	paddr = sc->age_rdata.age_rr_ring_paddr;
1551	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1552	paddr = sc->age_rdata.age_tx_ring_paddr;
1553	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1554	paddr = sc->age_rdata.age_cmb_block_paddr;
1555	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1556	paddr = sc->age_rdata.age_smb_block_paddr;
1557	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1558
1559	/* Set Rx/Rx return descriptor counter. */
1560	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1561	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1562	    DESC_RRD_CNT_MASK) |
1563	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1564
1565	/* Set Tx descriptor counter. */
1566	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1567	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1568
1569	/* Tell hardware that we're ready to load descriptors. */
1570	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1571
1572        /*
1573	 * Initialize mailbox register.
1574	 * Updated producer/consumer index information is exchanged
1575	 * through this mailbox register. However Tx producer and
1576	 * Rx return consumer/Rx producer are all shared such that
1577	 * it's hard to separate code path between Tx and Rx without
1578	 * locking. If L1 hardware have a separate mail box register
1579	 * for Tx and Rx consumer/producer management we could have
1580	 * independent Tx/Rx handler which in turn Rx handler could have
1581	 * been run without any locking.
1582	*/
1583	AGE_COMMIT_MBOX(sc);
1584
1585	/* Configure IPG/IFG parameters. */
1586	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1587	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1588	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1589	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1590	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1591
1592	/* Set parameters for half-duplex media. */
1593	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1594	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1595	    HDPX_CFG_LCOL_MASK) |
1596	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1597	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1598	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1599	    HDPX_CFG_ABEBT_MASK) |
1600	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1601	     HDPX_CFG_JAMIPG_MASK));
1602
1603	/* Configure interrupt moderation timer. */
1604	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1605	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1606	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1607	reg &= ~MASTER_MTIMER_ENB;
1608	if (AGE_USECS(sc->age_int_mod) == 0)
1609		reg &= ~MASTER_ITIMER_ENB;
1610	else
1611		reg |= MASTER_ITIMER_ENB;
1612	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1613	if (agedebug)
1614		printf("%s: interrupt moderation is %d us.\n",
1615		    sc->sc_dev.dv_xname, sc->age_int_mod);
1616	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1617
1618	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1619	if (ifp->if_mtu < ETHERMTU)
1620		sc->age_max_frame_size = ETHERMTU;
1621	else
1622		sc->age_max_frame_size = ifp->if_mtu;
1623	sc->age_max_frame_size += ETHER_HDR_LEN +
1624	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1625	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1626
1627	/* Configure jumbo frame. */
1628	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1629	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1630	    (((fsize / sizeof(uint64_t)) <<
1631	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1632	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1633	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1634	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1635	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1636
1637	/* Configure flow-control parameters. From Linux. */
1638	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1639		/*
1640		 * Magic workaround for old-L1.
1641		 * Don't know which hw revision requires this magic.
1642		 */
1643		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1644		/*
1645		 * Another magic workaround for flow-control mode
1646		 * change. From Linux.
1647		 */
1648		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1649	}
1650	/*
1651	 * TODO
1652	 *  Should understand pause parameter relationships between FIFO
1653	 *  size and number of Rx descriptors and Rx return descriptors.
1654	 *
1655	 *  Magic parameters came from Linux.
1656	 */
1657	switch (sc->age_chip_rev) {
1658	case 0x8001:
1659	case 0x9001:
1660	case 0x9002:
1661	case 0x9003:
1662		rxf_hi = AGE_RX_RING_CNT / 16;
1663		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1664		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1665		rrd_lo = AGE_RR_RING_CNT / 16;
1666		break;
1667	default:
1668		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1669		rxf_lo = reg / 16;
1670		if (rxf_lo < 192)
1671			rxf_lo = 192;
1672		rxf_hi = (reg * 7) / 8;
1673		if (rxf_hi < rxf_lo)
1674			rxf_hi = rxf_lo + 16;
1675		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1676		rrd_lo = reg / 8;
1677		rrd_hi = (reg * 7) / 8;
1678		if (rrd_lo < 2)
1679			rrd_lo = 2;
1680		if (rrd_hi < rrd_lo)
1681			rrd_hi = rrd_lo + 3;
1682		break;
1683	}
1684	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1685	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1686	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1687	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1688	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1689	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1690	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1691	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1692	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1693	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1694
1695	/* Configure RxQ. */
1696	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1697	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1698	    RXQ_CFG_RD_BURST_MASK) |
1699	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1700	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1701	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1702	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1703	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1704
1705	/* Configure TxQ. */
1706	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1707	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1708	    TXQ_CFG_TPD_BURST_MASK) |
1709	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1710	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1711	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1712	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1713	    TXQ_CFG_ENB);
1714
1715	/* Configure DMA parameters. */
1716	CSR_WRITE_4(sc, AGE_DMA_CFG,
1717	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1718	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1719	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1720
1721	/* Configure CMB DMA write threshold. */
1722	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1723	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1724	    CMB_WR_THRESH_RRD_MASK) |
1725	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1726	    CMB_WR_THRESH_TPD_MASK));
1727
1728	/* Set CMB/SMB timer and enable them. */
1729	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1730	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1731	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1732
1733	/* Request SMB updates for every seconds. */
1734	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1735	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1736
1737	/*
1738	 * Disable all WOL bits as WOL can interfere normal Rx
1739	 * operation.
1740	 */
1741	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1742
1743        /*
1744	 * Configure Tx/Rx MACs.
1745	 *  - Auto-padding for short frames.
1746	 *  - Enable CRC generation.
1747	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1748	 *  of MAC is followed after link establishment.
1749	 */
1750	CSR_WRITE_4(sc, AGE_MAC_CFG,
1751	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1752	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1753	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1754	    MAC_CFG_PREAMBLE_MASK));
1755
1756	/* Set up the receive filter. */
1757	age_iff(sc);
1758
1759	age_rxvlan(sc);
1760
1761	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1762	reg |= MAC_CFG_RXCSUM_ENB;
1763
1764	/* Ack all pending interrupts and clear it. */
1765	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1766	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1767
1768	/* Finally enable Tx/Rx MAC. */
1769	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1770
1771	sc->age_flags &= ~AGE_FLAG_LINK;
1772
1773	/* Switch to the current media. */
1774	mii_mediachg(mii);
1775
1776	timeout_add_sec(&sc->age_tick_ch, 1);
1777
1778	ifp->if_flags |= IFF_RUNNING;
1779	ifq_clr_oactive(&ifp->if_snd);
1780
1781	return (0);
1782}
1783
1784void
1785age_stop(struct age_softc *sc)
1786{
1787	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1788	struct age_txdesc *txd;
1789	struct age_rxdesc *rxd;
1790	uint32_t reg;
1791	int i;
1792
1793	/*
1794	 * Mark the interface down and cancel the watchdog timer.
1795	 */
1796	ifp->if_flags &= ~IFF_RUNNING;
1797	ifq_clr_oactive(&ifp->if_snd);
1798	ifp->if_timer = 0;
1799
1800	sc->age_flags &= ~AGE_FLAG_LINK;
1801	timeout_del(&sc->age_tick_ch);
1802
1803	/*
1804	 * Disable interrupts.
1805	 */
1806	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1807	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1808
1809	/* Stop CMB/SMB updates. */
1810	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1811
1812	/* Stop Rx/Tx MAC. */
1813	age_stop_rxmac(sc);
1814	age_stop_txmac(sc);
1815
1816	/* Stop DMA. */
1817	CSR_WRITE_4(sc, AGE_DMA_CFG,
1818	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1819
1820	/* Stop TxQ/RxQ. */
1821	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1822	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1823	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1824	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1825	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1826		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1827			break;
1828		DELAY(10);
1829	}
1830	if (i == 0)
1831		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1832		    sc->sc_dev.dv_xname, reg);
1833
1834	/* Reclaim Rx buffers that have been processed. */
1835	if (sc->age_cdata.age_rxhead != NULL)
1836		m_freem(sc->age_cdata.age_rxhead);
1837	AGE_RXCHAIN_RESET(sc);
1838
1839	/*
1840	 * Free RX and TX mbufs still in the queues.
1841	 */
1842	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1843		rxd = &sc->age_cdata.age_rxdesc[i];
1844		if (rxd->rx_m != NULL) {
1845			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1846			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1847			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1848			m_freem(rxd->rx_m);
1849			rxd->rx_m = NULL;
1850		}
1851	}
1852	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1853		txd = &sc->age_cdata.age_txdesc[i];
1854		if (txd->tx_m != NULL) {
1855			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1856			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1857			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1858			m_freem(txd->tx_m);
1859			txd->tx_m = NULL;
1860		}
1861	}
1862}
1863
1864void
1865age_stats_update(struct age_softc *sc)
1866{
1867	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1868	struct age_stats *stat;
1869	struct smb *smb;
1870
1871	stat = &sc->age_stat;
1872
1873	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1874	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1875
1876	smb = sc->age_rdata.age_smb_block;
1877	if (smb->updated == 0)
1878		return;
1879
1880	/* Rx stats. */
1881	stat->rx_frames += smb->rx_frames;
1882	stat->rx_bcast_frames += smb->rx_bcast_frames;
1883	stat->rx_mcast_frames += smb->rx_mcast_frames;
1884	stat->rx_pause_frames += smb->rx_pause_frames;
1885	stat->rx_control_frames += smb->rx_control_frames;
1886	stat->rx_crcerrs += smb->rx_crcerrs;
1887	stat->rx_lenerrs += smb->rx_lenerrs;
1888	stat->rx_bytes += smb->rx_bytes;
1889	stat->rx_runts += smb->rx_runts;
1890	stat->rx_fragments += smb->rx_fragments;
1891	stat->rx_pkts_64 += smb->rx_pkts_64;
1892	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1893	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1894	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1895	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1896	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1897	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1898	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1899	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1900	stat->rx_desc_oflows += smb->rx_desc_oflows;
1901	stat->rx_alignerrs += smb->rx_alignerrs;
1902	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1903	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1904	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1905
1906	/* Tx stats. */
1907	stat->tx_frames += smb->tx_frames;
1908	stat->tx_bcast_frames += smb->tx_bcast_frames;
1909	stat->tx_mcast_frames += smb->tx_mcast_frames;
1910	stat->tx_pause_frames += smb->tx_pause_frames;
1911	stat->tx_excess_defer += smb->tx_excess_defer;
1912	stat->tx_control_frames += smb->tx_control_frames;
1913	stat->tx_deferred += smb->tx_deferred;
1914	stat->tx_bytes += smb->tx_bytes;
1915	stat->tx_pkts_64 += smb->tx_pkts_64;
1916	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1917	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1918	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1919	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1920	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1921	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1922	stat->tx_single_colls += smb->tx_single_colls;
1923	stat->tx_multi_colls += smb->tx_multi_colls;
1924	stat->tx_late_colls += smb->tx_late_colls;
1925	stat->tx_excess_colls += smb->tx_excess_colls;
1926	stat->tx_underrun += smb->tx_underrun;
1927	stat->tx_desc_underrun += smb->tx_desc_underrun;
1928	stat->tx_lenerrs += smb->tx_lenerrs;
1929	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1930	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1931	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1932
1933	ifp->if_collisions += smb->tx_single_colls +
1934	    smb->tx_multi_colls + smb->tx_late_colls +
1935	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1936
1937	ifp->if_oerrors += smb->tx_excess_colls +
1938	    smb->tx_late_colls + smb->tx_underrun +
1939	    smb->tx_pkts_truncated;
1940
1941	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1942	    smb->rx_runts + smb->rx_pkts_truncated +
1943	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1944	    smb->rx_alignerrs;
1945
1946	/* Update done, clear. */
1947	smb->updated = 0;
1948
1949	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1950	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1951	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1952}
1953
1954void
1955age_stop_txmac(struct age_softc *sc)
1956{
1957	uint32_t reg;
1958	int i;
1959
1960	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1961	if ((reg & MAC_CFG_TX_ENB) != 0) {
1962		reg &= ~MAC_CFG_TX_ENB;
1963		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1964	}
1965	/* Stop Tx DMA engine. */
1966	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1967	if ((reg & DMA_CFG_RD_ENB) != 0) {
1968		reg &= ~DMA_CFG_RD_ENB;
1969		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1970	}
1971	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1972		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
1973		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
1974			break;
1975		DELAY(10);
1976	}
1977	if (i == 0)
1978		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
1979}
1980
1981void
1982age_stop_rxmac(struct age_softc *sc)
1983{
1984	uint32_t reg;
1985	int i;
1986
1987	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1988	if ((reg & MAC_CFG_RX_ENB) != 0) {
1989		reg &= ~MAC_CFG_RX_ENB;
1990		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1991	}
1992	/* Stop Rx DMA engine. */
1993	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1994	if ((reg & DMA_CFG_WR_ENB) != 0) {
1995		reg &= ~DMA_CFG_WR_ENB;
1996		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1997	}
1998	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1999		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2000		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2001			break;
2002		DELAY(10);
2003	}
2004	if (i == 0)
2005		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2006}
2007
2008void
2009age_init_tx_ring(struct age_softc *sc)
2010{
2011	struct age_ring_data *rd;
2012	struct age_txdesc *txd;
2013	int i;
2014
2015	sc->age_cdata.age_tx_prod = 0;
2016	sc->age_cdata.age_tx_cons = 0;
2017	sc->age_cdata.age_tx_cnt = 0;
2018
2019	rd = &sc->age_rdata;
2020	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2021	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2022		txd = &sc->age_cdata.age_txdesc[i];
2023		txd->tx_desc = &rd->age_tx_ring[i];
2024		txd->tx_m = NULL;
2025	}
2026
2027	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2028	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
2029	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2030}
2031
2032int
2033age_init_rx_ring(struct age_softc *sc)
2034{
2035	struct age_ring_data *rd;
2036	struct age_rxdesc *rxd;
2037	int i;
2038
2039	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2040	rd = &sc->age_rdata;
2041	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2042	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2043		rxd = &sc->age_cdata.age_rxdesc[i];
2044		rxd->rx_m = NULL;
2045		rxd->rx_desc = &rd->age_rx_ring[i];
2046		if (age_newbuf(sc, rxd) != 0)
2047			return (ENOBUFS);
2048	}
2049
2050	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2051	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2052
2053	return (0);
2054}
2055
2056void
2057age_init_rr_ring(struct age_softc *sc)
2058{
2059	struct age_ring_data *rd;
2060
2061	sc->age_cdata.age_rr_cons = 0;
2062	AGE_RXCHAIN_RESET(sc);
2063
2064	rd = &sc->age_rdata;
2065	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2066	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2067	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
2068	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2069}
2070
2071void
2072age_init_cmb_block(struct age_softc *sc)
2073{
2074	struct age_ring_data *rd;
2075
2076	rd = &sc->age_rdata;
2077	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2078	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2079	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2080	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2081}
2082
2083void
2084age_init_smb_block(struct age_softc *sc)
2085{
2086	struct age_ring_data *rd;
2087
2088	rd = &sc->age_rdata;
2089	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2090	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2091	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2092	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2093}
2094
2095int
2096age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2097{
2098	struct rx_desc *desc;
2099	struct mbuf *m;
2100	bus_dmamap_t map;
2101	int error;
2102
2103	MGETHDR(m, M_DONTWAIT, MT_DATA);
2104	if (m == NULL)
2105		return (ENOBUFS);
2106	MCLGET(m, M_DONTWAIT);
2107	if (!(m->m_flags & M_EXT)) {
2108		 m_freem(m);
2109		 return (ENOBUFS);
2110	}
2111
2112	m->m_len = m->m_pkthdr.len = MCLBYTES;
2113	m_adj(m, ETHER_ALIGN);
2114
2115	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2116	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2117
2118	if (error != 0) {
2119		m_freem(m);
2120		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2121		return (error);
2122	}
2123
2124	if (rxd->rx_m != NULL) {
2125		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2126		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2127		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2128	}
2129	map = rxd->rx_dmamap;
2130	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2131	sc->age_cdata.age_rx_sparemap = map;
2132	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2133	    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2134	rxd->rx_m = m;
2135
2136	desc = rxd->rx_desc;
2137	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2138	desc->len =
2139	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2140	    AGE_RD_LEN_SHIFT);
2141
2142	return (0);
2143}
2144
2145void
2146age_rxvlan(struct age_softc *sc)
2147{
2148	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2149	uint32_t reg;
2150
2151	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2152	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2153	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2154		reg |= MAC_CFG_VLAN_TAG_STRIP;
2155	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2156}
2157
2158void
2159age_iff(struct age_softc *sc)
2160{
2161	struct arpcom *ac = &sc->sc_arpcom;
2162	struct ifnet *ifp = &ac->ac_if;
2163	struct ether_multi *enm;
2164	struct ether_multistep step;
2165	uint32_t crc;
2166	uint32_t mchash[2];
2167	uint32_t rxcfg;
2168
2169	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2170	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2171	ifp->if_flags &= ~IFF_ALLMULTI;
2172
2173	/*
2174	 * Always accept broadcast frames.
2175	 */
2176	rxcfg |= MAC_CFG_BCAST;
2177
2178	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2179		ifp->if_flags |= IFF_ALLMULTI;
2180		if (ifp->if_flags & IFF_PROMISC)
2181			rxcfg |= MAC_CFG_PROMISC;
2182		else
2183			rxcfg |= MAC_CFG_ALLMULTI;
2184		mchash[0] = mchash[1] = 0xFFFFFFFF;
2185	} else {
2186		/* Program new filter. */
2187		bzero(mchash, sizeof(mchash));
2188
2189		ETHER_FIRST_MULTI(step, ac, enm);
2190		while (enm != NULL) {
2191			crc = ether_crc32_be(enm->enm_addrlo,
2192			    ETHER_ADDR_LEN);
2193
2194			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2195
2196			ETHER_NEXT_MULTI(step, enm);
2197		}
2198	}
2199
2200	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2201	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2202	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2203}
2204