eso.c revision 1.28
1/*	$OpenBSD: eso.c,v 1.28 2009/03/29 21:53:52 sthen Exp $	*/
2/*	$NetBSD: eso.c,v 1.48 2006/12/18 23:13:39 kleink Exp $	*/
3
4/*
5 * Copyright (c) 1999, 2000, 2004 Klaus J. Klein
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote products
17 *    derived from this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
26 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*
33 * ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
34 */
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/device.h>
41#include <sys/proc.h>
42
43#include <dev/pci/pcidevs.h>
44#include <dev/pci/pcivar.h>
45
46#include <sys/audioio.h>
47#include <dev/audio_if.h>
48#include <dev/midi_if.h>
49
50#include <dev/mulaw.h>
51#include <dev/auconv.h>
52
53#include <dev/ic/mpuvar.h>
54#include <dev/ic/i8237reg.h>
55#include <dev/pci/esoreg.h>
56#include <dev/pci/esovar.h>
57
58#include <machine/bus.h>
59#include <machine/intr.h>
60
61/*
62 * XXX Work around the 24-bit implementation limit of the Audio 1 DMA
63 * XXX engine by allocating through the ISA DMA tag.
64 */
65#if defined(amd64) || defined(i386)
66#include "isa.h"
67#if NISA > 0
68#include <dev/isa/isavar.h>
69#endif
70#endif
71
72#if defined(AUDIO_DEBUG) || defined(DEBUG)
73#define	DPRINTF(x)	if (esodebug) printf x
74int	esodebug = 0;
75#else
76#define	DPRINTF(x)
77#endif
78
79struct eso_dma {
80	bus_dma_tag_t		ed_dmat;
81	bus_dmamap_t		ed_map;
82	caddr_t			ed_addr;
83	bus_dma_segment_t	ed_segs[1];
84	int			ed_nsegs;
85	size_t			ed_size;
86	struct eso_dma *	ed_next;
87};
88
89#define KVADDR(dma)	((void *)(dma)->ed_addr)
90#define DMAADDR(dma)	((dma)->ed_map->dm_segs[0].ds_addr)
91
92int eso_match(struct device *, void *, void *);
93void eso_attach(struct device *, struct device *, void *);
94void eso_defer(struct device *);
95
96struct cfattach eso_ca = {
97	sizeof (struct eso_softc), eso_match, eso_attach
98};
99
100struct cfdriver eso_cd = {
101	NULL, "eso", DV_DULL
102};
103
104/* PCI interface */
105int eso_intr(void *);
106
107/* MI audio layer interface */
108int	eso_open(void *, int);
109void	eso_close(void *);
110int	eso_query_encoding(void *, struct audio_encoding *);
111int	eso_set_params(void *, int, int, struct audio_params *,
112		    struct audio_params *);
113void	eso_get_default_params(void *, int, struct audio_params *);
114int	eso_round_blocksize(void *, int);
115int	eso_halt_output(void *);
116int	eso_halt_input(void *);
117int	eso_getdev(void *, struct audio_device *);
118int	eso_set_port(void *, mixer_ctrl_t *);
119int	eso_get_port(void *, mixer_ctrl_t *);
120int	eso_query_devinfo(void *, mixer_devinfo_t *);
121void *	eso_allocm(void *, int, size_t, int, int);
122void	eso_freem(void *, void *, int);
123size_t	eso_round_buffersize(void *, int, size_t);
124paddr_t	eso_mappage(void *, void *, off_t, int);
125int	eso_get_props(void *);
126int	eso_trigger_output(void *, void *, void *, int,
127		    void (*)(void *), void *, struct audio_params *);
128int	eso_trigger_input(void *, void *, void *, int,
129		    void (*)(void *), void *, struct audio_params *);
130void	eso_setup(struct eso_softc *, int);
131
132void	eso_powerhook(int, void *);
133
134
135struct audio_hw_if eso_hw_if = {
136	eso_open,
137	eso_close,
138	NULL,			/* drain */
139	eso_query_encoding,
140	eso_set_params,
141	eso_round_blocksize,
142	NULL,			/* commit_settings */
143	NULL,			/* init_output */
144	NULL,			/* init_input */
145	NULL,			/* start_output */
146	NULL,			/* start_input */
147	eso_halt_output,
148	eso_halt_input,
149	NULL,			/* speaker_ctl */
150	eso_getdev,
151	NULL,			/* setfd */
152	eso_set_port,
153	eso_get_port,
154	eso_query_devinfo,
155	eso_allocm,
156	eso_freem,
157	eso_round_buffersize,
158	eso_mappage,
159	eso_get_props,
160	eso_trigger_output,
161	eso_trigger_input,
162	eso_get_default_params
163};
164
165const char * const eso_rev2model[] = {
166	"ES1938",
167	"ES1946",
168	"ES1946 rev E"
169};
170
171
172/*
173 * Utility routines
174 */
175
176/* Register access etc. */
177uint8_t	eso_read_ctlreg(struct eso_softc *, uint8_t);
178uint8_t	eso_read_mixreg(struct eso_softc *, uint8_t);
179uint8_t	eso_read_rdr(struct eso_softc *);
180void	eso_reload_master_vol(struct eso_softc *);
181int	eso_reset(struct eso_softc *);
182void	eso_set_gain(struct eso_softc *, uint);
183int	eso_set_recsrc(struct eso_softc *, uint);
184int	eso_set_monooutsrc(struct eso_softc *, uint);
185int	eso_set_monoinbypass(struct eso_softc *, uint);
186int	eso_set_preamp(struct eso_softc *, uint);
187void	eso_write_cmd(struct eso_softc *, uint8_t);
188void	eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
189void	eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
190
191/* DMA memory allocation */
192int	eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
193		    int, int, struct eso_dma *);
194void	eso_freemem(struct eso_dma *);
195
196
197int
198eso_match(struct device *parent, void *match, void *aux)
199{
200	struct pci_attach_args *pa = aux;
201
202	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
203	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
204		return (1);
205
206	return (0);
207}
208
209void
210eso_attach(struct device *parent, struct device *self, void *aux)
211{
212	struct eso_softc *sc = (struct eso_softc *)self;
213	struct pci_attach_args *pa = aux;
214	struct audio_attach_args aa;
215	pci_intr_handle_t ih;
216	bus_addr_t vcbase;
217	const char *intrstring;
218	uint8_t mvctl;
219
220	sc->sc_revision = PCI_REVISION(pa->pa_class);
221
222	if (sc->sc_revision <
223	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
224		printf(": %s", eso_rev2model[sc->sc_revision]);
225	else
226		printf(": (unknown rev. 0x%02x)", sc->sc_revision);
227
228	/* Map I/O registers. */
229	if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
230	    &sc->sc_iot, &sc->sc_ioh, NULL, NULL, 0)) {
231		printf(": can't map i/o space\n");
232		return;
233	}
234	if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
235	    &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL, 0)) {
236		printf(": can't map SB I/O space\n");
237		return;
238	}
239	if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
240	    &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize, 0)) {
241		vcbase = 0;
242		sc->sc_vcsize = 0x10; /* From the data sheet. */
243	}
244	if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
245	    &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL, 0)) {
246		printf(": can't map MPU I/O space\n");
247		return;
248	}
249
250	sc->sc_dmat = pa->pa_dmat;
251	sc->sc_dmas = NULL;
252	sc->sc_dmac_configured = 0;
253
254	sc->sc_pa = *pa;
255
256	eso_setup(sc, 1);
257
258	/* map and establish the interrupt. */
259	if (pci_intr_map(pa, &ih)) {
260		printf(", couldn't map interrupt\n");
261		return;
262	}
263	intrstring = pci_intr_string(pa->pa_pc, ih);
264	sc->sc_ih  = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, eso_intr, sc,
265					sc->sc_dev.dv_xname);
266	if (sc->sc_ih == NULL) {
267		printf(", couldn't establish interrupt");
268		if (intrstring != NULL)
269			printf(" at %s", intrstring);
270		printf("\n");
271		return;
272	}
273	printf(", %s\n", intrstring);
274
275	/*
276	 * Set up the DDMA Control register; a suitable I/O region has been
277	 * supposedly mapped in the VC base address register.
278	 *
279	 * The Solo-1 has an ... interesting silicon bug that causes it to
280	 * not respond to I/O space accesses to the Audio 1 DMA controller
281	 * if the latter's mapping base address is aligned on a 1K boundary.
282	 * As a consequence, it is quite possible for the mapping provided
283	 * in the VC BAR to be useless.  To work around this, we defer this
284	 * part until all autoconfiguration on our parent bus is completed
285	 * and then try to map it ourselves in fulfillment of the constraint.
286	 *
287	 * According to the register map we may write to the low 16 bits
288	 * only, but experimenting has shown we're safe.
289	 * -kjk
290	 */
291
292	if (ESO_VALID_DDMAC_BASE(vcbase)) {
293		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
294			       vcbase | ESO_PCI_DDMAC_DE);
295		sc->sc_dmac_configured = 1;
296
297		printf("%s: mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
298		       sc->sc_dev.dv_xname, (unsigned long)vcbase);
299	} else {
300		DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
301			 sc->sc_dev.dv_xname, (unsigned long)vcbase));
302		config_defer((struct device *)sc, eso_defer);
303	}
304
305	audio_attach_mi(&eso_hw_if, sc, &sc->sc_dev);
306
307	aa.type = AUDIODEV_TYPE_OPL;
308	aa.hwif = NULL;
309	aa.hdl = NULL;
310	(void)config_found(&sc->sc_dev, &aa, audioprint);
311
312	sc->sc_powerhook = powerhook_establish(&eso_powerhook, sc);
313
314	aa.type = AUDIODEV_TYPE_MPU;
315	aa.hwif = NULL;
316	aa.hdl = NULL;
317	sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint);
318	if (sc->sc_mpudev != NULL) {
319		/* Unmask the MPU irq. */
320		mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
321		mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
322		eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
323	}
324}
325
326void
327eso_setup(struct eso_softc *sc, int verbose)
328{
329	struct pci_attach_args *pa = &sc->sc_pa;
330	uint8_t a2mode, mvctl;
331	int idx;
332
333	/* Reset the device; bail out upon failure. */
334	if (eso_reset(sc) != 0) {
335		if (verbose) printf(", can't reset\n");
336		return;
337	}
338
339	/* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
340	pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
341		       pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
342		       ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));
343
344	/* Enable the relevant DMA interrupts. */
345	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
346	    ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
347	    ESO_IO_IRQCTL_MPUIRQ);
348
349	/* Set up A1's sample rate generator for new-style parameters. */
350	a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
351	a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
352	eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);
353
354	/* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ. */
355	mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
356	mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
357	mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
358	eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
359
360	/* Set mixer regs to something reasonable, needs work. */
361	sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
362	eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
363	eso_set_monoinbypass(sc, 0);
364	eso_set_preamp(sc, 1);
365	for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
366		int v;
367
368		switch (idx) {
369 		case ESO_MIC_PLAY_VOL:
370		case ESO_LINE_PLAY_VOL:
371		case ESO_CD_PLAY_VOL:
372		case ESO_MONO_PLAY_VOL:
373		case ESO_AUXB_PLAY_VOL:
374		case ESO_DAC_REC_VOL:
375		case ESO_LINE_REC_VOL:
376		case ESO_SYNTH_REC_VOL:
377		case ESO_CD_REC_VOL:
378		case ESO_MONO_REC_VOL:
379		case ESO_AUXB_REC_VOL:
380		case ESO_SPATIALIZER:
381			v = 0;
382			break;
383		case ESO_MASTER_VOL:
384			v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
385			break;
386		default:
387			v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
388			break;
389		}
390		sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
391		eso_set_gain(sc, idx);
392	}
393	eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);
394}
395
396void
397eso_defer(struct device *self)
398{
399	struct eso_softc *sc = (struct eso_softc *)self;
400	struct pci_attach_args *pa = &sc->sc_pa;
401	bus_addr_t addr, start;
402
403	printf("%s: ", sc->sc_dev.dv_xname);
404
405	/*
406	 * This is outright ugly, but since we must not make assumptions
407	 * on the underlying allocator's behaviour it's the most straight-
408	 * forward way to implement it.  Note that we skip over the first
409	 * 1K region, which is typically occupied by an attached ISA bus.
410	 */
411	for (start = 0x0400; start < 0xffff; start += 0x0400) {
412		if (bus_space_alloc(sc->sc_iot,
413		    start + sc->sc_vcsize, start + 0x0400 - 1,
414		    sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
415		    &sc->sc_dmac_ioh) != 0)
416			continue;
417
418		pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
419		    addr | ESO_PCI_DDMAC_DE);
420		sc->sc_dmac_iot = sc->sc_iot;
421		sc->sc_dmac_configured = 1;
422		printf("mapping Audio 1 DMA using I/O space at 0x%lx\n",
423		    (unsigned long)addr);
424
425		return;
426	}
427
428	printf("can't map Audio 1 DMA into I/O space\n");
429}
430
431void
432eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
433{
434	int i;
435
436	/* Poll for busy indicator to become clear. */
437	for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
438		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
439		    & ESO_SB_RSR_BUSY) == 0) {
440			bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
441			    ESO_SB_WDR, cmd);
442			return;
443		} else {
444			delay(10);
445		}
446	}
447
448	printf("%s: WDR timeout\n", sc->sc_dev.dv_xname);
449}
450
451/* Write to a controller register */
452void
453eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
454{
455
456	/* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */
457
458	eso_write_cmd(sc, reg);
459	eso_write_cmd(sc, val);
460}
461
462/* Read out the Read Data Register */
463uint8_t
464eso_read_rdr(struct eso_softc *sc)
465{
466	int i;
467
468	for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
469		if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
470		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
471			return (bus_space_read_1(sc->sc_sb_iot,
472			    sc->sc_sb_ioh, ESO_SB_RDR));
473		} else {
474			delay(10);
475		}
476	}
477
478	printf("%s: RDR timeout\n", sc->sc_dev.dv_xname);
479	return (-1);
480}
481
482
483uint8_t
484eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
485{
486	eso_write_cmd(sc, ESO_CMD_RCR);
487	eso_write_cmd(sc, reg);
488	return (eso_read_rdr(sc));
489}
490
491void
492eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
493{
494	int s;
495
496	/* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */
497
498	s = splaudio();
499	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
500	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
501	splx(s);
502}
503
504uint8_t
505eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
506{
507	int s;
508	uint8_t val;
509
510	s = splaudio();
511	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
512	val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);
513	splx(s);
514
515	return (val);
516}
517
518int
519eso_intr(void *hdl)
520{
521	struct eso_softc *sc = hdl;
522	uint8_t irqctl;
523
524	irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);
525
526	/* If it wasn't ours, that's all she wrote. */
527	if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
528	    ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0)
529		return (0);
530
531	if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
532		/* Clear interrupt. */
533		(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
534		    ESO_SB_RBSR);
535
536		if (sc->sc_rintr)
537			sc->sc_rintr(sc->sc_rarg);
538		else
539			wakeup(&sc->sc_rintr);
540	}
541
542	if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
543		/*
544		 * Clear the A2 IRQ latch: the cached value reflects the
545		 * current DAC settings with the IRQ latch bit not set.
546		 */
547		eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
548
549		if (sc->sc_pintr)
550			sc->sc_pintr(sc->sc_parg);
551		else
552			wakeup(&sc->sc_pintr);
553	}
554
555	if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
556		/* Clear interrupt. */
557		eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);
558
559		/*
560		 * Raise a flag to cause a lazy update of the in-softc gain
561		 * values the next time the software mixer is read to keep
562		 * interrupt service cost low.  ~0 cannot occur otherwise
563		 * as the master volume has a precision of 6 bits only.
564		 */
565		sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
566	}
567
568#if NMPU > 0
569	if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc->sc_mpudev != NULL)
570		mpu_intr(sc->sc_mpudev);
571#endif
572
573	return (1);
574}
575
576/* Perform a software reset, including DMA FIFOs. */
577int
578eso_reset(struct eso_softc *sc)
579{
580	int i;
581
582	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
583	    ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
584	/* `Delay' suggested in the data sheet. */
585	(void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
586	bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);
587
588	/* Wait for reset to take effect. */
589	for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
590		/* Poll for data to become available. */
591		if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
592		    ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
593		    bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
594			ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {
595
596			/* Activate Solo-1 extension commands. */
597			eso_write_cmd(sc, ESO_CMD_EXTENB);
598			/* Reset mixer registers. */
599			eso_write_mixreg(sc, ESO_MIXREG_RESET,
600			    ESO_MIXREG_RESET_RESET);
601
602			return (0);
603		} else {
604			delay(1000);
605		}
606	}
607
608	printf("%s: reset timeout\n", sc->sc_dev.dv_xname);
609	return (-1);
610}
611
612
613/* ARGSUSED */
614int
615eso_open(void *hdl, int flags)
616{
617	return (0);
618}
619
620void
621eso_close(void *hdl)
622{
623}
624
625int
626eso_query_encoding(void *hdl, struct audio_encoding *fp)
627{
628	switch (fp->index) {
629	case 0:
630		strlcpy(fp->name, AudioEulinear, sizeof fp->name);
631		fp->encoding = AUDIO_ENCODING_ULINEAR;
632		fp->precision = 8;
633		fp->flags = 0;
634		break;
635	case 1:
636		strlcpy(fp->name, AudioEmulaw, sizeof fp->name);
637		fp->encoding = AUDIO_ENCODING_ULAW;
638		fp->precision = 8;
639		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
640		break;
641	case 2:
642		strlcpy(fp->name, AudioEalaw, sizeof fp->name);
643		fp->encoding = AUDIO_ENCODING_ALAW;
644		fp->precision = 8;
645		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
646		break;
647	case 3:
648		strlcpy(fp->name, AudioEslinear, sizeof fp->name);
649		fp->encoding = AUDIO_ENCODING_SLINEAR;
650		fp->precision = 8;
651		fp->flags = 0;
652		break;
653	case 4:
654		strlcpy(fp->name, AudioEslinear_le, sizeof fp->name);
655		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
656		fp->precision = 16;
657		fp->flags = 0;
658		break;
659	case 5:
660		strlcpy(fp->name, AudioEulinear_le, sizeof fp->name);
661		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
662		fp->precision = 16;
663		fp->flags = 0;
664		break;
665	case 6:
666		strlcpy(fp->name, AudioEslinear_be, sizeof fp->name);
667		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
668		fp->precision = 16;
669		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
670		break;
671	case 7:
672		strlcpy(fp->name, AudioEulinear_be, sizeof fp->name);
673		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
674		fp->precision = 16;
675		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
676		break;
677	default:
678		return (EINVAL);
679	}
680
681	return (0);
682}
683
684void
685eso_get_default_params(void *addr, int mode, struct audio_params *params)
686{
687	params->sample_rate = 48000;
688	params->encoding = AUDIO_ENCODING_ULINEAR_LE;
689	params->precision = 16;
690	params->channels = 2;
691	params->sw_code = NULL;
692	params->factor = 1;
693}
694
695int
696eso_set_params(void *hdl, int setmode, int usemode,
697    struct audio_params *play, struct audio_params *rec)
698{
699	struct eso_softc *sc = hdl;
700	struct audio_params *p;
701	int mode, r[2], rd[2], ar[2], clk;
702	uint srg, fltdiv;
703
704	for (mode = AUMODE_RECORD; mode != -1;
705	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
706		if ((setmode & mode) == 0)
707			continue;
708
709		p = (mode == AUMODE_PLAY) ? play : rec;
710
711		if (p->sample_rate < ESO_MINRATE)
712			p->sample_rate = ESO_MINRATE;
713		if (p->sample_rate > ESO_MAXRATE)
714			p->sample_rate = ESO_MAXRATE;
715		if (p->precision > 16)
716			p->precision = 16;
717		if (p->channels > 2)
718			p->channels = 2;
719
720		p->factor = 1;
721		p->sw_code = NULL;
722		switch (p->encoding) {
723		case AUDIO_ENCODING_SLINEAR_BE:
724		case AUDIO_ENCODING_ULINEAR_BE:
725			if (p->precision == 16)
726				p->sw_code = swap_bytes;
727			break;
728		case AUDIO_ENCODING_SLINEAR_LE:
729		case AUDIO_ENCODING_ULINEAR_LE:
730			break;
731		case AUDIO_ENCODING_ULAW:
732			if (mode == AUMODE_PLAY) {
733				p->factor = 2;
734				p->sw_code = mulaw_to_ulinear16_le;
735			} else {
736				p->sw_code = ulinear8_to_mulaw;
737			}
738			break;
739		case AUDIO_ENCODING_ALAW:
740			if (mode == AUMODE_PLAY) {
741				p->factor = 2;
742				p->sw_code = alaw_to_ulinear16_le;
743			} else {
744				p->sw_code = ulinear8_to_alaw;
745			}
746			break;
747		default:
748			return (EINVAL);
749		}
750
751		/*
752		 * We'll compute both possible sample rate dividers and pick
753		 * the one with the least error.
754		 */
755#define ABS(x) ((x) < 0 ? -(x) : (x))
756		r[0] = ESO_CLK0 /
757		    (128 - (rd[0] = 128 - ESO_CLK0 / p->sample_rate));
758		r[1] = ESO_CLK1 /
759		    (128 - (rd[1] = 128 - ESO_CLK1 / p->sample_rate));
760
761		ar[0] = p->sample_rate - r[0];
762		ar[1] = p->sample_rate - r[1];
763		clk = ABS(ar[0]) > ABS(ar[1]) ? 1 : 0;
764		srg = rd[clk] | (clk == 1 ? ESO_CLK1_SELECT : 0x00);
765
766		/* Roll-off frequency of 87%, as in the ES1888 driver. */
767		fltdiv = 256 - 200279L / r[clk];
768
769		/* Update to reflect the possibly inexact rate. */
770		p->sample_rate = r[clk];
771
772		if (mode == AUMODE_RECORD) {
773			/* Audio 1 */
774			DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
775			eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
776			eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
777		} else {
778			/* Audio 2 */
779			DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
780			eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
781			eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
782		}
783#undef ABS
784
785	}
786
787	return (0);
788}
789
790int
791eso_round_blocksize(void *hdl, int blk)
792{
793	return ((blk + 31) & -32); /* keep good alignment; at least 16 req'd */
794}
795
796int
797eso_halt_output(void *hdl)
798{
799	struct eso_softc *sc = hdl;
800	int error, s;
801
802	DPRINTF(("%s: halt_output\n", sc->sc_dev.dv_xname));
803
804	/*
805	 * Disable auto-initialize DMA, allowing the FIFO to drain and then
806	 * stop.  The interrupt callback pointer is cleared at this
807	 * point so that an outstanding FIFO interrupt for the remaining data
808	 * will be acknowledged without further processing.
809	 *
810	 * This does not immediately `abort' an operation in progress (c.f.
811	 * audio(9)) but is the method to leave the FIFO behind in a clean
812	 * state with the least hair.  (Besides, that item needs to be
813	 * rephrased for trigger_*()-based DMA environments.)
814	 */
815	s = splaudio();
816	eso_write_mixreg(sc, ESO_MIXREG_A2C1,
817	    ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
818	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
819	    ESO_IO_A2DMAM_DMAENB);
820
821	sc->sc_pintr = NULL;
822	error = tsleep(&sc->sc_pintr, PCATCH | PWAIT, "esoho", sc->sc_pdrain);
823	splx(s);
824
825	/* Shut down DMA completely. */
826	eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
827	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
828
829	return (error == EWOULDBLOCK ? 0 : error);
830}
831
832int
833eso_halt_input(void *hdl)
834{
835	struct eso_softc *sc = hdl;
836	int error, s;
837
838	DPRINTF(("%s: halt_input\n", sc->sc_dev.dv_xname));
839
840	/* Just like eso_halt_output(), but for Audio 1. */
841	s = splaudio();
842	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
843	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
844	    ESO_CTLREG_A1C2_DMAENB);
845	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
846	    DMA37MD_WRITE | DMA37MD_DEMAND);
847
848	sc->sc_rintr = NULL;
849	error = tsleep(&sc->sc_rintr, PCATCH | PWAIT, "esohi", sc->sc_rdrain);
850	splx(s);
851
852	/* Shut down DMA completely. */
853	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
854	    ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
855	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
856	    ESO_DMAC_MASK_MASK);
857
858	return (error == EWOULDBLOCK ? 0 : error);
859}
860
861int
862eso_getdev(void *hdl, struct audio_device *retp)
863{
864	struct eso_softc *sc = hdl;
865
866	strlcpy(retp->name, "ESS Solo-1", sizeof retp->name);
867	snprintf(retp->version, sizeof retp->version, "0x%02x",
868	    sc->sc_revision);
869	if (sc->sc_revision <
870	    sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
871		strlcpy(retp->config, eso_rev2model[sc->sc_revision],
872		    sizeof retp->config);
873	else
874		strlcpy(retp->config, "unknown", sizeof retp->config);
875
876	return (0);
877}
878
879int
880eso_set_port(void *hdl, mixer_ctrl_t *cp)
881{
882	struct eso_softc *sc = hdl;
883	uint lgain, rgain;
884	uint8_t tmp;
885
886	switch (cp->dev) {
887	case ESO_DAC_PLAY_VOL:
888	case ESO_MIC_PLAY_VOL:
889	case ESO_LINE_PLAY_VOL:
890	case ESO_SYNTH_PLAY_VOL:
891	case ESO_CD_PLAY_VOL:
892	case ESO_AUXB_PLAY_VOL:
893	case ESO_RECORD_VOL:
894	case ESO_DAC_REC_VOL:
895	case ESO_MIC_REC_VOL:
896	case ESO_LINE_REC_VOL:
897	case ESO_SYNTH_REC_VOL:
898	case ESO_CD_REC_VOL:
899	case ESO_AUXB_REC_VOL:
900		if (cp->type != AUDIO_MIXER_VALUE)
901			return (EINVAL);
902
903		/*
904		 * Stereo-capable mixer ports: if we get a single-channel
905		 * gain value passed in, then we duplicate it to both left
906		 * and right channels.
907		 */
908		switch (cp->un.value.num_channels) {
909		case 1:
910			lgain = rgain = ESO_GAIN_TO_4BIT(
911			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
912			break;
913		case 2:
914			lgain = ESO_GAIN_TO_4BIT(
915			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
916			rgain = ESO_GAIN_TO_4BIT(
917			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
918			break;
919		default:
920			return (EINVAL);
921		}
922
923		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
924		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
925		eso_set_gain(sc, cp->dev);
926		break;
927
928	case ESO_MASTER_VOL:
929		if (cp->type != AUDIO_MIXER_VALUE)
930			return (EINVAL);
931
932		/* Like above, but a precision of 6 bits. */
933		switch (cp->un.value.num_channels) {
934		case 1:
935			lgain = rgain = ESO_GAIN_TO_6BIT(
936			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
937			break;
938		case 2:
939			lgain = ESO_GAIN_TO_6BIT(
940			    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
941			rgain = ESO_GAIN_TO_6BIT(
942			    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
943			break;
944		default:
945			return (EINVAL);
946		}
947
948		sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
949		sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
950		eso_set_gain(sc, cp->dev);
951		break;
952
953	case ESO_SPATIALIZER:
954		if (cp->type != AUDIO_MIXER_VALUE ||
955		    cp->un.value.num_channels != 1)
956			return (EINVAL);
957
958		sc->sc_gain[cp->dev][ESO_LEFT] =
959		    sc->sc_gain[cp->dev][ESO_RIGHT] =
960		    ESO_GAIN_TO_6BIT(
961			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
962		eso_set_gain(sc, cp->dev);
963		break;
964
965	case ESO_MONO_PLAY_VOL:
966	case ESO_MONO_REC_VOL:
967		if (cp->type != AUDIO_MIXER_VALUE ||
968		    cp->un.value.num_channels != 1)
969			return (EINVAL);
970
971		sc->sc_gain[cp->dev][ESO_LEFT] =
972		    sc->sc_gain[cp->dev][ESO_RIGHT] =
973		    ESO_GAIN_TO_4BIT(
974			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
975		eso_set_gain(sc, cp->dev);
976		break;
977
978	case ESO_PCSPEAKER_VOL:
979		if (cp->type != AUDIO_MIXER_VALUE ||
980		    cp->un.value.num_channels != 1)
981			return (EINVAL);
982
983		sc->sc_gain[cp->dev][ESO_LEFT] =
984		    sc->sc_gain[cp->dev][ESO_RIGHT] =
985		    ESO_GAIN_TO_3BIT(
986			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
987		eso_set_gain(sc, cp->dev);
988		break;
989
990	case ESO_SPATIALIZER_ENABLE:
991		if (cp->type != AUDIO_MIXER_ENUM)
992			return (EINVAL);
993
994		sc->sc_spatializer = (cp->un.ord != 0);
995
996		tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
997		if (sc->sc_spatializer)
998			tmp |= ESO_MIXREG_SPAT_ENB;
999		else
1000			tmp &= ~ESO_MIXREG_SPAT_ENB;
1001		eso_write_mixreg(sc, ESO_MIXREG_SPAT,
1002		    tmp | ESO_MIXREG_SPAT_RSTREL);
1003		break;
1004
1005	case ESO_MASTER_MUTE:
1006		if (cp->type != AUDIO_MIXER_ENUM)
1007			return (EINVAL);
1008
1009		sc->sc_mvmute = (cp->un.ord != 0);
1010
1011		if (sc->sc_mvmute) {
1012			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1013			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
1014			    ESO_MIXREG_LMVM_MUTE);
1015			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1016			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
1017			    ESO_MIXREG_RMVM_MUTE);
1018		} else {
1019			eso_write_mixreg(sc, ESO_MIXREG_LMVM,
1020			    eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
1021			    ~ESO_MIXREG_LMVM_MUTE);
1022			eso_write_mixreg(sc, ESO_MIXREG_RMVM,
1023			    eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
1024			    ~ESO_MIXREG_RMVM_MUTE);
1025		}
1026		break;
1027
1028	case ESO_MONOOUT_SOURCE:
1029		if (cp->type != AUDIO_MIXER_ENUM)
1030			return (EINVAL);
1031
1032		return (eso_set_monooutsrc(sc, cp->un.ord));
1033
1034	case ESO_MONOIN_BYPASS:
1035		if (cp->type != AUDIO_MIXER_ENUM)
1036			return (EINVAL);
1037
1038		return (eso_set_monoinbypass(sc, cp->un.ord));
1039
1040	case ESO_RECORD_MONITOR:
1041		if (cp->type != AUDIO_MIXER_ENUM)
1042			return (EINVAL);
1043
1044		sc->sc_recmon = (cp->un.ord != 0);
1045
1046		tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1047		if (sc->sc_recmon)
1048			tmp |= ESO_CTLREG_ACTL_RECMON;
1049		else
1050			tmp &= ~ESO_CTLREG_ACTL_RECMON;
1051		eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
1052		break;
1053
1054	case ESO_RECORD_SOURCE:
1055		if (cp->type != AUDIO_MIXER_ENUM)
1056			return (EINVAL);
1057
1058		return (eso_set_recsrc(sc, cp->un.ord));
1059
1060	case ESO_MIC_PREAMP:
1061		if (cp->type != AUDIO_MIXER_ENUM)
1062			return (EINVAL);
1063
1064		return (eso_set_preamp(sc, cp->un.ord));
1065
1066	default:
1067		return (EINVAL);
1068	}
1069
1070	return (0);
1071}
1072
1073int
1074eso_get_port(void *hdl, mixer_ctrl_t *cp)
1075{
1076	struct eso_softc *sc = hdl;
1077
1078	switch (cp->dev) {
1079	case ESO_MASTER_VOL:
1080		/* Reload from mixer after hardware volume control use. */
1081		if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
1082			eso_reload_master_vol(sc);
1083		/* FALLTHROUGH */
1084	case ESO_DAC_PLAY_VOL:
1085	case ESO_MIC_PLAY_VOL:
1086	case ESO_LINE_PLAY_VOL:
1087	case ESO_SYNTH_PLAY_VOL:
1088	case ESO_CD_PLAY_VOL:
1089	case ESO_AUXB_PLAY_VOL:
1090	case ESO_RECORD_VOL:
1091	case ESO_DAC_REC_VOL:
1092	case ESO_MIC_REC_VOL:
1093	case ESO_LINE_REC_VOL:
1094	case ESO_SYNTH_REC_VOL:
1095	case ESO_CD_REC_VOL:
1096	case ESO_AUXB_REC_VOL:
1097		/*
1098		 * Stereo-capable ports: if a single-channel query is made,
1099		 * just return the left channel's value (since single-channel
1100		 * settings themselves are applied to both channels).
1101		 */
1102		switch (cp->un.value.num_channels) {
1103		case 1:
1104			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1105			    sc->sc_gain[cp->dev][ESO_LEFT];
1106			break;
1107		case 2:
1108			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1109			    sc->sc_gain[cp->dev][ESO_LEFT];
1110			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1111			    sc->sc_gain[cp->dev][ESO_RIGHT];
1112			break;
1113		default:
1114			return (EINVAL);
1115		}
1116		break;
1117
1118	case ESO_MONO_PLAY_VOL:
1119	case ESO_PCSPEAKER_VOL:
1120	case ESO_MONO_REC_VOL:
1121	case ESO_SPATIALIZER:
1122		if (cp->un.value.num_channels != 1)
1123			return (EINVAL);
1124		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1125		    sc->sc_gain[cp->dev][ESO_LEFT];
1126		break;
1127
1128	case ESO_RECORD_MONITOR:
1129		cp->un.ord = sc->sc_recmon;
1130		break;
1131
1132	case ESO_RECORD_SOURCE:
1133		cp->un.ord = sc->sc_recsrc;
1134		break;
1135
1136	case ESO_MONOOUT_SOURCE:
1137		cp->un.ord = sc->sc_monooutsrc;
1138		break;
1139
1140	case ESO_MONOIN_BYPASS:
1141		cp->un.ord = sc->sc_monoinbypass;
1142		break;
1143
1144	case ESO_SPATIALIZER_ENABLE:
1145		cp->un.ord = sc->sc_spatializer;
1146		break;
1147
1148	case ESO_MIC_PREAMP:
1149		cp->un.ord = sc->sc_preamp;
1150		break;
1151
1152	case ESO_MASTER_MUTE:
1153		/* Reload from mixer after hardware volume control use. */
1154		if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
1155			eso_reload_master_vol(sc);
1156		cp->un.ord = sc->sc_mvmute;
1157		break;
1158
1159	default:
1160		return (EINVAL);
1161	}
1162
1163	return (0);
1164
1165}
1166
1167int
1168eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
1169{
1170	switch (dip->index) {
1171	case ESO_DAC_PLAY_VOL:
1172		dip->mixer_class = ESO_INPUT_CLASS;
1173		dip->next = dip->prev = AUDIO_MIXER_LAST;
1174		strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name);
1175		dip->type = AUDIO_MIXER_VALUE;
1176		dip->un.v.num_channels = 2;
1177		strlcpy(dip->un.v.units.name, AudioNvolume,
1178		    sizeof dip->un.v.units.name);
1179		break;
1180	case ESO_MIC_PLAY_VOL:
1181		dip->mixer_class = ESO_INPUT_CLASS;
1182		dip->next = dip->prev = AUDIO_MIXER_LAST;
1183		strlcpy(dip->label.name, AudioNmicrophone,
1184		    sizeof dip->label.name);
1185		dip->type = AUDIO_MIXER_VALUE;
1186		dip->un.v.num_channels = 2;
1187		strlcpy(dip->un.v.units.name, AudioNvolume,
1188		    sizeof dip->un.v.units.name);
1189		break;
1190	case ESO_LINE_PLAY_VOL:
1191		dip->mixer_class = ESO_INPUT_CLASS;
1192		dip->next = dip->prev = AUDIO_MIXER_LAST;
1193		strlcpy(dip->label.name, AudioNline, sizeof dip->label.name);
1194		dip->type = AUDIO_MIXER_VALUE;
1195		dip->un.v.num_channels = 2;
1196		strlcpy(dip->un.v.units.name, AudioNvolume,
1197		    sizeof dip->un.v.units.name);
1198		break;
1199	case ESO_SYNTH_PLAY_VOL:
1200		dip->mixer_class = ESO_INPUT_CLASS;
1201		dip->next = dip->prev = AUDIO_MIXER_LAST;
1202		strlcpy(dip->label.name, AudioNfmsynth,
1203		    sizeof dip->label.name);
1204		dip->type = AUDIO_MIXER_VALUE;
1205		dip->un.v.num_channels = 2;
1206		strlcpy(dip->un.v.units.name, AudioNvolume,
1207		    sizeof dip->un.v.units.name);
1208		break;
1209	case ESO_MONO_PLAY_VOL:
1210		dip->mixer_class = ESO_INPUT_CLASS;
1211		dip->next = dip->prev = AUDIO_MIXER_LAST;
1212		strlcpy(dip->label.name, "mono_in", sizeof dip->label.name);
1213		dip->type = AUDIO_MIXER_VALUE;
1214		dip->un.v.num_channels = 1;
1215		strlcpy(dip->un.v.units.name, AudioNvolume,
1216		    sizeof dip->un.v.units.name);
1217		break;
1218	case ESO_CD_PLAY_VOL:
1219		dip->mixer_class = ESO_INPUT_CLASS;
1220		dip->next = dip->prev = AUDIO_MIXER_LAST;
1221		strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name);
1222		dip->type = AUDIO_MIXER_VALUE;
1223		dip->un.v.num_channels = 2;
1224		strlcpy(dip->un.v.units.name, AudioNvolume,
1225		    sizeof dip->un.v.units.name);
1226		break;
1227	case ESO_AUXB_PLAY_VOL:
1228		dip->mixer_class = ESO_INPUT_CLASS;
1229		dip->next = dip->prev = AUDIO_MIXER_LAST;
1230		strlcpy(dip->label.name, "auxb", sizeof dip->label.name);
1231		dip->type = AUDIO_MIXER_VALUE;
1232		dip->un.v.num_channels = 2;
1233		strlcpy(dip->un.v.units.name, AudioNvolume,
1234		    sizeof dip->un.v.units.name);
1235		break;
1236	case ESO_MIC_PREAMP:
1237		dip->mixer_class = ESO_MICROPHONE_CLASS;
1238		dip->next = dip->prev = AUDIO_MIXER_LAST;
1239		strlcpy(dip->label.name, AudioNpreamp, sizeof dip->label.name);
1240		dip->type = AUDIO_MIXER_ENUM;
1241		dip->un.e.num_mem = 2;
1242		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
1243		    sizeof dip->un.e.member[0].label.name);
1244		dip->un.e.member[0].ord = 0;
1245		strlcpy(dip->un.e.member[1].label.name, AudioNon,
1246		    sizeof dip->un.e.member[1].label.name);
1247		dip->un.e.member[1].ord = 1;
1248		break;
1249	case ESO_MICROPHONE_CLASS:
1250		dip->mixer_class = ESO_MICROPHONE_CLASS;
1251		dip->next = dip->prev = AUDIO_MIXER_LAST;
1252		strlcpy(dip->label.name, AudioNmicrophone,
1253		    sizeof dip->label.name);
1254		dip->type = AUDIO_MIXER_CLASS;
1255		break;
1256	case ESO_INPUT_CLASS:
1257		dip->mixer_class = ESO_INPUT_CLASS;
1258		dip->next = dip->prev = AUDIO_MIXER_LAST;
1259		strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name);
1260		dip->type = AUDIO_MIXER_CLASS;
1261		break;
1262	case ESO_MASTER_VOL:
1263		dip->mixer_class = ESO_OUTPUT_CLASS;
1264		dip->prev = AUDIO_MIXER_LAST;
1265		dip->next = ESO_MASTER_MUTE;
1266		strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name);
1267		dip->type = AUDIO_MIXER_VALUE;
1268		dip->un.v.num_channels = 2;
1269		strlcpy(dip->un.v.units.name, AudioNvolume,
1270		    sizeof dip->un.v.units.name);
1271		break;
1272	case ESO_MASTER_MUTE:
1273		dip->mixer_class = ESO_OUTPUT_CLASS;
1274		dip->prev = ESO_MASTER_VOL;
1275		dip->next = AUDIO_MIXER_LAST;
1276		strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name);
1277		dip->type = AUDIO_MIXER_ENUM;
1278		dip->un.e.num_mem = 2;
1279		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
1280		    sizeof dip->un.e.member[0].label.name);
1281		dip->un.e.member[0].ord = 0;
1282		strlcpy(dip->un.e.member[1].label.name, AudioNon,
1283		    sizeof dip->un.e.member[1].label.name);
1284		dip->un.e.member[1].ord = 1;
1285		break;
1286	case ESO_PCSPEAKER_VOL:
1287		dip->mixer_class = ESO_OUTPUT_CLASS;
1288		dip->next = dip->prev = AUDIO_MIXER_LAST;
1289		strlcpy(dip->label.name, "pc_speaker", sizeof dip->label.name);
1290		dip->type = AUDIO_MIXER_VALUE;
1291		dip->un.v.num_channels = 1;
1292		strlcpy(dip->un.v.units.name, AudioNvolume,
1293		    sizeof dip->un.v.units.name);
1294		break;
1295	case ESO_MONOOUT_SOURCE:
1296		dip->mixer_class = ESO_OUTPUT_CLASS;
1297		dip->next = dip->prev = AUDIO_MIXER_LAST;
1298		strlcpy(dip->label.name, "mono_out", sizeof dip->label.name);
1299		dip->type = AUDIO_MIXER_ENUM;
1300		dip->un.e.num_mem = 3;
1301		strlcpy(dip->un.e.member[0].label.name, AudioNmute,
1302		    sizeof dip->un.e.member[0].label.name);
1303		dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
1304		strlcpy(dip->un.e.member[1].label.name, AudioNdac,
1305		    sizeof dip->un.e.member[1].label.name);
1306		dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
1307		strlcpy(dip->un.e.member[2].label.name, AudioNmixerout,
1308		    sizeof dip->un.e.member[2].label.name);
1309		dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
1310		break;
1311	case ESO_MONOIN_BYPASS:
1312		dip->mixer_class = ESO_MONOIN_CLASS;
1313		dip->next = dip->prev = AUDIO_MIXER_LAST;
1314		strlcpy(dip->label.name, "bypass", sizeof dip->label.name);
1315		dip->type = AUDIO_MIXER_ENUM;
1316		dip->un.e.num_mem = 2;
1317		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
1318		    sizeof dip->un.e.member[0].label.name);
1319		dip->un.e.member[0].ord = 0;
1320		strlcpy(dip->un.e.member[1].label.name, AudioNon,
1321		    sizeof dip->un.e.member[1].label.name);
1322		dip->un.e.member[1].ord = 1;
1323		break;
1324	case ESO_MONOIN_CLASS:
1325		dip->mixer_class = ESO_MONOIN_CLASS;
1326		dip->next = dip->prev = AUDIO_MIXER_LAST;
1327		strlcpy(dip->label.name, "mono_in", sizeof dip->label.name);
1328		dip->type = AUDIO_MIXER_CLASS;
1329		break;
1330	case ESO_SPATIALIZER:
1331		dip->mixer_class = ESO_OUTPUT_CLASS;
1332		dip->prev = AUDIO_MIXER_LAST;
1333		dip->next = ESO_SPATIALIZER_ENABLE;
1334		strlcpy(dip->label.name, AudioNspatial,
1335		    sizeof dip->label.name);
1336		dip->type = AUDIO_MIXER_VALUE;
1337		dip->un.v.num_channels = 1;
1338		strlcpy(dip->un.v.units.name, "level",
1339		    sizeof dip->un.v.units.name);
1340		break;
1341	case ESO_SPATIALIZER_ENABLE:
1342		dip->mixer_class = ESO_OUTPUT_CLASS;
1343		dip->prev = ESO_SPATIALIZER;
1344		dip->next = AUDIO_MIXER_LAST;
1345		strlcpy(dip->label.name, "enable", sizeof dip->label.name);
1346		dip->type = AUDIO_MIXER_ENUM;
1347		dip->un.e.num_mem = 2;
1348		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
1349		    sizeof dip->un.e.member[0].label.name);
1350		dip->un.e.member[0].ord = 0;
1351		strlcpy(dip->un.e.member[1].label.name, AudioNon,
1352		    sizeof dip->un.e.member[1].label.name);
1353		dip->un.e.member[1].ord = 1;
1354		break;
1355	case ESO_OUTPUT_CLASS:
1356		dip->mixer_class = ESO_OUTPUT_CLASS;
1357		dip->next = dip->prev = AUDIO_MIXER_LAST;
1358		strlcpy(dip->label.name, AudioCoutputs,
1359		    sizeof dip->label.name);
1360		dip->type = AUDIO_MIXER_CLASS;
1361		break;
1362	case ESO_RECORD_MONITOR:
1363		dip->mixer_class = ESO_MONITOR_CLASS;
1364		dip->next = dip->prev = AUDIO_MIXER_LAST;
1365		strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name);
1366		dip->type = AUDIO_MIXER_ENUM;
1367		dip->un.e.num_mem = 2;
1368		strlcpy(dip->un.e.member[0].label.name, AudioNoff,
1369		    sizeof dip->un.e.member[0].label.name);
1370		dip->un.e.member[0].ord = 0;
1371		strlcpy(dip->un.e.member[1].label.name, AudioNon,
1372		    sizeof dip->un.e.member[1].label.name);
1373		dip->un.e.member[1].ord = 1;
1374		break;
1375	case ESO_MONITOR_CLASS:
1376		dip->mixer_class = ESO_MONITOR_CLASS;
1377		dip->next = dip->prev = AUDIO_MIXER_LAST;
1378		strlcpy(dip->label.name, AudioCmonitor,
1379		    sizeof dip->label.name);
1380		dip->type = AUDIO_MIXER_CLASS;
1381		break;
1382	case ESO_RECORD_VOL:
1383		dip->mixer_class = ESO_RECORD_CLASS;
1384		dip->next = dip->prev = AUDIO_MIXER_LAST;
1385		strlcpy(dip->label.name, AudioNrecord, sizeof dip->label.name);
1386		dip->type = AUDIO_MIXER_VALUE;
1387		strlcpy(dip->un.v.units.name, AudioNvolume,
1388		    sizeof dip->un.v.units.name);
1389		break;
1390	case ESO_RECORD_SOURCE:
1391		dip->mixer_class = ESO_RECORD_CLASS;
1392		dip->next = dip->prev = AUDIO_MIXER_LAST;
1393		strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name);
1394		dip->type = AUDIO_MIXER_ENUM;
1395		dip->un.e.num_mem = 4;
1396		strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone,
1397		    sizeof dip->un.e.member[0].label.name);
1398		dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
1399		strlcpy(dip->un.e.member[1].label.name, AudioNline,
1400		    sizeof dip->un.e.member[1].label.name);
1401		dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
1402		strlcpy(dip->un.e.member[2].label.name, AudioNcd,
1403		    sizeof dip->un.e.member[2].label.name);
1404		dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
1405		strlcpy(dip->un.e.member[3].label.name, AudioNmixerout,
1406		    sizeof dip->un.e.member[3].label.name);
1407		dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
1408		break;
1409	case ESO_DAC_REC_VOL:
1410		dip->mixer_class = ESO_RECORD_CLASS;
1411		dip->next = dip->prev = AUDIO_MIXER_LAST;
1412		strlcpy(dip->label.name, AudioNdac, sizeof dip->label.name);
1413		dip->type = AUDIO_MIXER_VALUE;
1414		dip->un.v.num_channels = 2;
1415		strlcpy(dip->un.v.units.name, AudioNvolume,
1416		    sizeof dip->un.v.units.name);
1417		break;
1418	case ESO_MIC_REC_VOL:
1419		dip->mixer_class = ESO_RECORD_CLASS;
1420		dip->next = dip->prev = AUDIO_MIXER_LAST;
1421		strlcpy(dip->label.name, AudioNmicrophone,
1422		    sizeof dip->label.name);
1423		dip->type = AUDIO_MIXER_VALUE;
1424		dip->un.v.num_channels = 2;
1425		strlcpy(dip->un.v.units.name, AudioNvolume,
1426		    sizeof dip->un.v.units.name);
1427		break;
1428	case ESO_LINE_REC_VOL:
1429		dip->mixer_class = ESO_RECORD_CLASS;
1430		dip->next = dip->prev = AUDIO_MIXER_LAST;
1431		strlcpy(dip->label.name, AudioNline, sizeof dip->label.name);
1432		dip->type = AUDIO_MIXER_VALUE;
1433		dip->un.v.num_channels = 2;
1434		strlcpy(dip->un.v.units.name, AudioNvolume,
1435		    sizeof dip->un.v.units.name);
1436		break;
1437	case ESO_SYNTH_REC_VOL:
1438		dip->mixer_class = ESO_RECORD_CLASS;
1439		dip->next = dip->prev = AUDIO_MIXER_LAST;
1440		strlcpy(dip->label.name, AudioNfmsynth,
1441		    sizeof dip->label.name);
1442		dip->type = AUDIO_MIXER_VALUE;
1443		dip->un.v.num_channels = 2;
1444		strlcpy(dip->un.v.units.name, AudioNvolume,
1445		    sizeof dip->un.v.units.name);
1446		break;
1447	case ESO_MONO_REC_VOL:
1448		dip->mixer_class = ESO_RECORD_CLASS;
1449		dip->next = dip->prev = AUDIO_MIXER_LAST;
1450		strlcpy(dip->label.name, "mono_in", sizeof dip->label.name);
1451		dip->type = AUDIO_MIXER_VALUE;
1452		dip->un.v.num_channels = 1; /* No lies */
1453		strlcpy(dip->un.v.units.name, AudioNvolume,
1454		    sizeof dip->un.v.units.name);
1455		break;
1456	case ESO_CD_REC_VOL:
1457		dip->mixer_class = ESO_RECORD_CLASS;
1458		dip->next = dip->prev = AUDIO_MIXER_LAST;
1459		strlcpy(dip->label.name, AudioNcd, sizeof dip->label.name);
1460		dip->type = AUDIO_MIXER_VALUE;
1461		dip->un.v.num_channels = 2;
1462		strlcpy(dip->un.v.units.name, AudioNvolume,
1463		    sizeof dip->un.v.units.name);
1464		break;
1465	case ESO_AUXB_REC_VOL:
1466		dip->mixer_class = ESO_RECORD_CLASS;
1467		dip->next = dip->prev = AUDIO_MIXER_LAST;
1468		strlcpy(dip->label.name, "auxb", sizeof dip->label.name);
1469		dip->type = AUDIO_MIXER_VALUE;
1470		dip->un.v.num_channels = 2;
1471		strlcpy(dip->un.v.units.name, AudioNvolume,
1472		    sizeof dip->un.v.units.name);
1473		break;
1474	case ESO_RECORD_CLASS:
1475		dip->mixer_class = ESO_RECORD_CLASS;
1476		dip->next = dip->prev = AUDIO_MIXER_LAST;
1477		strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name);
1478		dip->type = AUDIO_MIXER_CLASS;
1479		break;
1480	default:
1481		return (ENXIO);
1482	}
1483
1484	return (0);
1485}
1486
1487int
1488eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
1489    size_t boundary, int flags, int direction, struct eso_dma *ed)
1490{
1491	int error, wait;
1492
1493	wait = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK;
1494	ed->ed_size = size;
1495
1496	error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
1497	    ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
1498	    &ed->ed_nsegs, wait);
1499	if (error)
1500		goto out;
1501
1502	error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1503	    ed->ed_size, &ed->ed_addr, wait | BUS_DMA_COHERENT);
1504	if (error)
1505		goto free;
1506
1507	error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size,
1508	    boundary,  wait, &ed->ed_map);
1509	if (error)
1510		goto unmap;
1511
1512	error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_addr,
1513	    ed->ed_size, NULL, wait |
1514	    (direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE);
1515	if (error)
1516		goto destroy;
1517
1518	return (0);
1519
1520 destroy:
1521	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1522 unmap:
1523	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1524 free:
1525	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1526 out:
1527	return (error);
1528}
1529
1530void
1531eso_freemem(struct eso_dma *ed)
1532{
1533	bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
1534	bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
1535	bus_dmamem_unmap(ed->ed_dmat, ed->ed_addr, ed->ed_size);
1536	bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
1537}
1538
1539void *
1540eso_allocm(void *hdl, int direction, size_t size, int type, int flags)
1541{
1542	struct eso_softc *sc = hdl;
1543	struct eso_dma *ed;
1544	size_t boundary;
1545	int error;
1546
1547	if ((ed = malloc(sizeof (*ed), type, flags)) == NULL)
1548		return (NULL);
1549
1550	/*
1551	 * Apparently the Audio 1 DMA controller's current address
1552	 * register can't roll over a 64K address boundary, so we have to
1553	 * take care of that ourselves.  Similarly, the Audio 2 DMA
1554	 * controller needs a 1M address boundary.
1555	 */
1556	if (direction == AUMODE_RECORD)
1557		boundary = 0x10000;
1558	else
1559		boundary = 0x100000;
1560
1561	/*
1562	 * XXX Work around allocation problems for Audio 1, which
1563	 * XXX implements the 24 low address bits only, with
1564	 * XXX machine-specific DMA tag use.
1565	 */
1566#ifdef alpha
1567	/*
1568	 * XXX Force allocation through the (ISA) SGMAP.
1569	 */
1570	if (direction == AUMODE_RECORD)
1571		ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
1572	else
1573#elif defined(amd64) || defined(i386)
1574	/*
1575	 * XXX Force allocation through the ISA DMA tag.
1576	 */
1577	if (direction == AUMODE_RECORD)
1578		ed->ed_dmat = &isa_bus_dma_tag;
1579	else
1580#endif
1581		ed->ed_dmat = sc->sc_dmat;
1582
1583	error = eso_allocmem(sc, size, 32, boundary, flags, direction, ed);
1584	if (error) {
1585		free(ed, type);
1586		return (NULL);
1587	}
1588	ed->ed_next = sc->sc_dmas;
1589	sc->sc_dmas = ed;
1590
1591	return (KVADDR(ed));
1592}
1593
1594void
1595eso_freem(void *hdl, void *addr, int type)
1596{
1597	struct eso_softc *sc = hdl;
1598	struct eso_dma *p, **pp;
1599
1600	for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->ed_next) {
1601		if (KVADDR(p) == addr) {
1602			eso_freemem(p);
1603			*pp = p->ed_next;
1604			free(p, type);
1605			return;
1606		}
1607	}
1608}
1609
1610size_t
1611eso_round_buffersize(void *hdl, int direction, size_t bufsize)
1612{
1613	size_t maxsize;
1614
1615	/*
1616	 * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
1617	 * bytes.  This is because IO_A2DMAC is a two byte value
1618	 * indicating the literal byte count, and the 4 least significant
1619	 * bits are read-only.  Zero is not used as a special case for
1620	 * 0x10000.
1621	 *
1622	 * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
1623	 * be represented.
1624	 */
1625	maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;
1626
1627	if (bufsize > maxsize)
1628		bufsize = maxsize;
1629
1630	return (bufsize);
1631}
1632
1633paddr_t
1634eso_mappage(void *hdl, void *addr, off_t offs, int prot)
1635{
1636	struct eso_softc *sc = hdl;
1637	struct eso_dma *ed;
1638
1639	if (offs < 0)
1640		return (-1);
1641	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != addr;
1642	     ed = ed->ed_next)
1643		;
1644	if (ed == NULL)
1645		return (-1);
1646
1647	return (bus_dmamem_mmap(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
1648	    offs, prot, BUS_DMA_WAITOK));
1649}
1650
1651/* ARGSUSED */
1652int
1653eso_get_props(void *hdl)
1654{
1655	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1656	    AUDIO_PROP_FULLDUPLEX);
1657}
1658
1659int
1660eso_trigger_output(void *hdl, void *start, void *end, int blksize,
1661    void (*intr)(void *), void *arg, struct audio_params *param)
1662{
1663	struct eso_softc *sc = hdl;
1664	struct eso_dma *ed;
1665	uint8_t a2c1;
1666
1667	DPRINTF((
1668	    "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
1669	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1670	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1671	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1672	    param->precision, param->channels, param->sw_code, param->factor));
1673
1674	/* Find DMA buffer. */
1675	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1676	     ed = ed->ed_next)
1677		;
1678	if (ed == NULL) {
1679		printf("%s: trigger_output: bad addr %p\n",
1680		    sc->sc_dev.dv_xname, start);
1681		return (EINVAL);
1682	}
1683	DPRINTF(("%s: output dmaaddr %lx\n",
1684	    sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1685
1686	sc->sc_pintr = intr;
1687	sc->sc_parg = arg;
1688
1689	/* Compute drain timeout. */
1690	sc->sc_pdrain = (blksize * NBBY * hz) /
1691	    (param->sample_rate * param->channels *
1692	     param->precision * param->factor) + 2;	/* slop */
1693
1694	/* DMA transfer count (in `words'!) reload using 2's complement. */
1695	blksize = -(blksize >> 1);
1696	eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
1697	eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);
1698
1699	/* Update DAC to reflect DMA count and audio parameters. */
1700	/* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
1701	if (param->precision * param->factor == 16)
1702		sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
1703	else
1704		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
1705	if (param->channels == 2)
1706		sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
1707	else
1708		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
1709	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1710	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1711		sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
1712	else
1713		sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
1714	/* Unmask IRQ. */
1715	sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
1716	eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);
1717
1718	/* Set up DMA controller. */
1719	bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA, DMAADDR(ed));
1720	bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
1721	    (uint8_t *)end - (uint8_t *)start);
1722	bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
1723	    ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);
1724
1725	/* Start DMA. */
1726	a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
1727	a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
1728	a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
1729	    ESO_MIXREG_A2C1_AUTO;
1730	eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);
1731
1732	return (0);
1733}
1734
1735int
1736eso_trigger_input(void *hdl, void *start, void *end, int blksize,
1737    void (*intr)(void *), void *arg, struct audio_params *param)
1738{
1739	struct eso_softc *sc = hdl;
1740	struct eso_dma *ed;
1741	uint8_t actl, a1c1;
1742
1743	DPRINTF((
1744	    "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
1745	    sc->sc_dev.dv_xname, start, end, blksize, intr, arg));
1746	DPRINTF(("%s: param: rate %lu, encoding %u, precision %u, channels %u, sw_code %p, factor %d\n",
1747	    sc->sc_dev.dv_xname, param->sample_rate, param->encoding,
1748	    param->precision, param->channels, param->sw_code, param->factor));
1749
1750	/*
1751	 * If we failed to configure the Audio 1 DMA controller, bail here
1752	 * while retaining availability of the DAC direction (in Audio 2).
1753	 */
1754	if (!sc->sc_dmac_configured)
1755		return (EIO);
1756
1757	/* Find DMA buffer. */
1758	for (ed = sc->sc_dmas; ed != NULL && KVADDR(ed) != start;
1759	     ed = ed->ed_next)
1760		;
1761	if (ed == NULL) {
1762		printf("%s: trigger_input: bad addr %p\n",
1763		    sc->sc_dev.dv_xname, start);
1764		return (EINVAL);
1765	}
1766	DPRINTF(("%s: input dmaaddr %lx\n",
1767	    sc->sc_dev.dv_xname, (unsigned long)DMAADDR(ed)));
1768
1769	sc->sc_rintr = intr;
1770	sc->sc_rarg = arg;
1771
1772	/* Compute drain timeout. */
1773	sc->sc_rdrain = (blksize * NBBY * hz) /
1774	    (param->sample_rate * param->channels *
1775	     param->precision * param->factor) + 2;	/* slop */
1776
1777	/* Set up ADC DMA converter parameters. */
1778	actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
1779	if (param->channels == 2) {
1780		actl &= ~ESO_CTLREG_ACTL_MONO;
1781		actl |= ESO_CTLREG_ACTL_STEREO;
1782	} else {
1783		actl &= ~ESO_CTLREG_ACTL_STEREO;
1784		actl |= ESO_CTLREG_ACTL_MONO;
1785	}
1786	eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);
1787
1788	/* Set up Transfer Type: maybe move to attach time? */
1789	eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);
1790
1791	/* DMA transfer count reload using 2's complement. */
1792	blksize = -blksize;
1793	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
1794	eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);
1795
1796	/* Set up and enable Audio 1 DMA FIFO. */
1797	a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
1798	if (param->precision * param->factor == 16)
1799		a1c1 |= ESO_CTLREG_A1C1_16BIT;
1800	if (param->channels == 2)
1801		a1c1 |= ESO_CTLREG_A1C1_STEREO;
1802	else
1803		a1c1 |= ESO_CTLREG_A1C1_MONO;
1804	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1805	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1806		a1c1 |= ESO_CTLREG_A1C1_SIGNED;
1807	eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);
1808
1809	/* Set up ADC IRQ/DRQ parameters. */
1810	eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
1811	    ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
1812	eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
1813	    ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);
1814
1815	/* Set up and enable DMA controller. */
1816	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
1817	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
1818	    ESO_DMAC_MASK_MASK);
1819	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
1820	    DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
1821	bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
1822	    DMAADDR(ed));
1823	bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
1824	    (uint8_t *)end - (uint8_t *)start - 1);
1825	bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);
1826
1827	/* Start DMA. */
1828	eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
1829	    ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
1830	    ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);
1831
1832	return (0);
1833}
1834
1835/*
1836 * Mixer utility functions.
1837 */
1838int
1839eso_set_recsrc(struct eso_softc *sc, u_int recsrc)
1840{
1841	mixer_devinfo_t di;
1842	int i, error;
1843
1844	di.index = ESO_RECORD_SOURCE;
1845	error = eso_query_devinfo(sc, &di);
1846	if (error != 0) {
1847		printf("eso_set_recsrc: eso_query_devinfo failed");
1848		return (error);
1849	}
1850
1851	for (i = 0; i < di.un.e.num_mem; i++) {
1852		if (recsrc == di.un.e.member[i].ord) {
1853			eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
1854			sc->sc_recsrc = recsrc;
1855			return (0);
1856		}
1857	}
1858
1859	return (EINVAL);
1860}
1861
1862int
1863eso_set_monooutsrc(struct eso_softc *sc, uint monooutsrc)
1864{
1865	mixer_devinfo_t di;
1866	int i, error;
1867	uint8_t mpm;
1868
1869	di.index = ESO_MONOOUT_SOURCE;
1870	error = eso_query_devinfo(sc, &di);
1871	if (error != 0) {
1872		printf("eso_set_monooutsrc: eso_query_devinfo failed");
1873		return (error);
1874	}
1875
1876	for (i = 0; i < di.un.e.num_mem; i++) {
1877		if (monooutsrc == di.un.e.member[i].ord) {
1878			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1879			mpm &= ~ESO_MIXREG_MPM_MOMASK;
1880			mpm |= monooutsrc;
1881			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1882			sc->sc_monooutsrc = monooutsrc;
1883			return (0);
1884		}
1885	}
1886
1887	return (EINVAL);
1888}
1889
1890int
1891eso_set_monoinbypass(struct eso_softc *sc, uint monoinbypass)
1892{
1893	mixer_devinfo_t di;
1894	int i, error;
1895	uint8_t mpm;
1896
1897	di.index = ESO_MONOIN_BYPASS;
1898	error = eso_query_devinfo(sc, &di);
1899	if (error != 0) {
1900		printf("eso_set_monoinbypass: eso_query_devinfo failed");
1901		return (error);
1902	}
1903
1904	for (i = 0; i < di.un.e.num_mem; i++) {
1905		if (monoinbypass == di.un.e.member[i].ord) {
1906			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1907			mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
1908			mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
1909			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1910			sc->sc_monoinbypass = monoinbypass;
1911			return (0);
1912		}
1913	}
1914
1915	return (EINVAL);
1916}
1917
1918int
1919eso_set_preamp(struct eso_softc *sc, uint preamp)
1920{
1921	mixer_devinfo_t di;
1922	int i, error;
1923	uint8_t mpm;
1924
1925	di.index = ESO_MIC_PREAMP;
1926	error = eso_query_devinfo(sc, &di);
1927	if (error != 0) {
1928		printf("eso_set_preamp: eso_query_devinfo failed");
1929		return (error);
1930	}
1931
1932	for (i = 0; i < di.un.e.num_mem; i++) {
1933		if (preamp == di.un.e.member[i].ord) {
1934			mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
1935			mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
1936			mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
1937			eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
1938			sc->sc_preamp = preamp;
1939			return (0);
1940		}
1941	}
1942
1943	return (EINVAL);
1944}
1945
1946/*
1947 * Reload Master Volume and Mute values in softc from mixer; used when
1948 * those have previously been invalidated by use of hardware volume controls.
1949 */
1950void
1951eso_reload_master_vol(struct eso_softc *sc)
1952{
1953	uint8_t mv;
1954
1955	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1956	sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
1957	    (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
1958	mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
1959	sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
1960	    (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
1961	/* Currently both channels are muted simultaneously; either is OK. */
1962	sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
1963}
1964
1965void
1966eso_set_gain(struct eso_softc *sc, uint port)
1967{
1968	uint8_t mixreg, tmp;
1969
1970	switch (port) {
1971	case ESO_DAC_PLAY_VOL:
1972		mixreg = ESO_MIXREG_PVR_A2;
1973		break;
1974	case ESO_MIC_PLAY_VOL:
1975		mixreg = ESO_MIXREG_PVR_MIC;
1976		break;
1977	case ESO_LINE_PLAY_VOL:
1978		mixreg = ESO_MIXREG_PVR_LINE;
1979		break;
1980	case ESO_SYNTH_PLAY_VOL:
1981		mixreg = ESO_MIXREG_PVR_SYNTH;
1982		break;
1983	case ESO_CD_PLAY_VOL:
1984		mixreg = ESO_MIXREG_PVR_CD;
1985		break;
1986	case ESO_AUXB_PLAY_VOL:
1987		mixreg = ESO_MIXREG_PVR_AUXB;
1988		break;
1989	case ESO_DAC_REC_VOL:
1990		mixreg = ESO_MIXREG_RVR_A2;
1991		break;
1992	case ESO_MIC_REC_VOL:
1993		mixreg = ESO_MIXREG_RVR_MIC;
1994		break;
1995	case ESO_LINE_REC_VOL:
1996		mixreg = ESO_MIXREG_RVR_LINE;
1997		break;
1998	case ESO_SYNTH_REC_VOL:
1999		mixreg = ESO_MIXREG_RVR_SYNTH;
2000		break;
2001	case ESO_CD_REC_VOL:
2002		mixreg = ESO_MIXREG_RVR_CD;
2003		break;
2004	case ESO_AUXB_REC_VOL:
2005		mixreg = ESO_MIXREG_RVR_AUXB;
2006		break;
2007	case ESO_MONO_PLAY_VOL:
2008		mixreg = ESO_MIXREG_PVR_MONO;
2009		break;
2010	case ESO_MONO_REC_VOL:
2011		mixreg = ESO_MIXREG_RVR_MONO;
2012		break;
2013	case ESO_PCSPEAKER_VOL:
2014		/* Special case - only 3-bit, mono, and reserved bits. */
2015		tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
2016		tmp &= ESO_MIXREG_PCSVR_RESV;
2017		/* Map bits 7:5 -> 2:0. */
2018		tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
2019		eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
2020		return;
2021	case ESO_MASTER_VOL:
2022		/* Special case - separate regs, and 6-bit precision. */
2023		/* Map bits 7:2 -> 5:0, reflect mute settings. */
2024		eso_write_mixreg(sc, ESO_MIXREG_LMVM,
2025		    (sc->sc_gain[port][ESO_LEFT] >> 2) |
2026		    (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
2027		eso_write_mixreg(sc, ESO_MIXREG_RMVM,
2028		    (sc->sc_gain[port][ESO_RIGHT] >> 2) |
2029		    (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
2030		return;
2031	case ESO_SPATIALIZER:
2032		/* Special case - only `mono', and higher precision. */
2033		eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
2034		    sc->sc_gain[port][ESO_LEFT]);
2035		return;
2036	case ESO_RECORD_VOL:
2037		/* Very Special case, controller register. */
2038		eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
2039		   sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2040		return;
2041	default:
2042#ifdef DIAGNOSTIC
2043		printf("eso_set_gain: bad port %u", port);
2044		return;
2045		/* NOTREACHED */
2046#else
2047		return;
2048#endif
2049		}
2050
2051	eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
2052	    sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
2053}
2054
2055void
2056eso_powerhook(int why, void *self)
2057{
2058	struct eso_softc *sc = (struct eso_softc *)self;
2059
2060	if (why != PWR_RESUME) {
2061		eso_halt_output(sc);
2062		eso_halt_input(sc);
2063
2064		bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);
2065		bus_space_write_1(sc->sc_dmac_iot,
2066				  sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
2067		bus_space_write_1(sc->sc_sb_iot,
2068				  sc->sc_sb_ioh, ESO_SB_STATUSFLAGS, 3);
2069
2070		/* shut down dma */
2071		pci_conf_write(sc->sc_pa.pa_pc,
2072			       sc->sc_pa.pa_tag, ESO_PCI_DDMAC, 0);
2073	} else
2074		eso_setup(sc, 0);
2075}
2076