1/*
2 * Copyright �� 2008-2018 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#ifndef I915_REQUEST_H
26#define I915_REQUEST_H
27
28#include <linux/dma-fence.h>
29#include <linux/hrtimer.h>
30#include <linux/irq_work.h>
31#include <linux/llist.h>
32#include <linux/lockdep.h>
33
34#include "gem/i915_gem_context_types.h"
35#include "gt/intel_context_types.h"
36#include "gt/intel_engine_types.h"
37#include "gt/intel_timeline_types.h"
38
39#include "i915_gem.h"
40#include "i915_scheduler.h"
41#include "i915_selftest.h"
42#include "i915_sw_fence.h"
43#include "i915_vma_resource.h"
44
45#include <uapi/drm/i915_drm.h>
46
47struct drm_file;
48struct drm_i915_gem_object;
49struct drm_printer;
50struct i915_deps;
51struct i915_request;
52
53#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
54struct i915_capture_list {
55	struct i915_vma_resource *vma_res;
56	struct i915_capture_list *next;
57};
58
59void i915_request_free_capture_list(struct i915_capture_list *capture);
60#else
61#define i915_request_free_capture_list(_a) do {} while (0)
62#endif
63
64#define RQ_TRACE(rq, fmt, ...) do {					\
65	const struct i915_request *rq__ = (rq);				\
66	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
67		     rq__->fence.context, rq__->fence.seqno,		\
68		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
69} while (0)
70
71enum {
72	/*
73	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
74	 *
75	 * Set by __i915_request_submit() on handing over to HW, and cleared
76	 * by __i915_request_unsubmit() if we preempt this request.
77	 *
78	 * Finally cleared for consistency on retiring the request, when
79	 * we know the HW is no longer running this request.
80	 *
81	 * See i915_request_is_active()
82	 */
83	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
84
85	/*
86	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
87	 *
88	 * Using the scheduler, when a request is ready for execution it is put
89	 * into the priority queue, and removed from that queue when transferred
90	 * to the HW runlists. We want to track its membership within the
91	 * priority queue so that we can easily check before rescheduling.
92	 *
93	 * See i915_request_in_priority_queue()
94	 */
95	I915_FENCE_FLAG_PQUEUE,
96
97	/*
98	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
99	 *
100	 * This request has been suspended, pending an ongoing investigation.
101	 */
102	I915_FENCE_FLAG_HOLD,
103
104	/*
105	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
106	 * breadcrumb that marks the end of semaphore waits and start of the
107	 * user payload.
108	 */
109	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
110
111	/*
112	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
113	 *
114	 * Internal bookkeeping used by the breadcrumb code to track when
115	 * a request is on the various signal_list.
116	 */
117	I915_FENCE_FLAG_SIGNAL,
118
119	/*
120	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
121	 *
122	 * The execution of some requests should not be interrupted. This is
123	 * a sensitive operation as it makes the request super important,
124	 * blocking other higher priority work. Abuse of this flag will
125	 * lead to quality of service issues.
126	 */
127	I915_FENCE_FLAG_NOPREEMPT,
128
129	/*
130	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
131	 *
132	 * A high priority sentinel request may be submitted to clear the
133	 * submission queue. As it will be the only request in-flight, upon
134	 * execution all other active requests will have been preempted and
135	 * unsubmitted. This preemptive pulse is used to re-evaluate the
136	 * in-flight requests, particularly in cases where an active context
137	 * is banned and those active requests need to be cancelled.
138	 */
139	I915_FENCE_FLAG_SENTINEL,
140
141	/*
142	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
143	 *
144	 * Some requests are more important than others! In particular, a
145	 * request that the user is waiting on is typically required for
146	 * interactive latency, for which we want to minimise by upclocking
147	 * the GPU. Here we track such boost requests on a per-request basis.
148	 */
149	I915_FENCE_FLAG_BOOST,
150
151	/*
152	 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
153	 * parent-child relationship (parallel submission, multi-lrc) should
154	 * trigger a submission to the GuC rather than just moving the context
155	 * tail.
156	 */
157	I915_FENCE_FLAG_SUBMIT_PARALLEL,
158
159	/*
160	 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
161	 * parent-child relationship (parallel submission, multi-lrc) that
162	 * hit an error while generating requests in the execbuf IOCTL.
163	 * Indicates this request should be skipped as another request in
164	 * submission / relationship encoutered an error.
165	 */
166	I915_FENCE_FLAG_SKIP_PARALLEL,
167
168	/*
169	 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
170	 * fence (dma_fence_array) and i915 generated for parallel submission.
171	 */
172	I915_FENCE_FLAG_COMPOSITE,
173};
174
175/*
176 * Request queue structure.
177 *
178 * The request queue allows us to note sequence numbers that have been emitted
179 * and may be associated with active buffers to be retired.
180 *
181 * By keeping this list, we can avoid having to do questionable sequence
182 * number comparisons on buffer last_read|write_seqno. It also allows an
183 * emission time to be associated with the request for tracking how far ahead
184 * of the GPU the submission is.
185 *
186 * When modifying this structure be very aware that we perform a lockless
187 * RCU lookup of it that may race against reallocation of the struct
188 * from the slab freelist. We intentionally do not zero the structure on
189 * allocation so that the lookup can use the dangling pointers (and is
190 * cogniscent that those pointers may be wrong). Instead, everything that
191 * needs to be initialised must be done so explicitly.
192 *
193 * The requests are reference counted.
194 */
195struct i915_request {
196	struct dma_fence fence;
197	spinlock_t lock;
198
199	struct drm_i915_private *i915;
200
201	/*
202	 * Context and ring buffer related to this request
203	 * Contexts are refcounted, so when this request is associated with a
204	 * context, we must increment the context's refcount, to guarantee that
205	 * it persists while any request is linked to it. Requests themselves
206	 * are also refcounted, so the request will only be freed when the last
207	 * reference to it is dismissed, and the code in
208	 * i915_request_free() will then decrement the refcount on the
209	 * context.
210	 */
211	struct intel_engine_cs *engine;
212	struct intel_context *context;
213	struct intel_ring *ring;
214	struct intel_timeline __rcu *timeline;
215
216	struct list_head signal_link;
217	struct llist_node signal_node;
218
219	/*
220	 * The rcu epoch of when this request was allocated. Used to judiciously
221	 * apply backpressure on future allocations to ensure that under
222	 * mempressure there is sufficient RCU ticks for us to reclaim our
223	 * RCU protected slabs.
224	 */
225	unsigned long rcustate;
226
227	/*
228	 * We pin the timeline->mutex while constructing the request to
229	 * ensure that no caller accidentally drops it during construction.
230	 * The timeline->mutex must be held to ensure that only this caller
231	 * can use the ring and manipulate the associated timeline during
232	 * construction.
233	 */
234	struct pin_cookie cookie;
235
236	/*
237	 * Fences for the various phases in the request's lifetime.
238	 *
239	 * The submit fence is used to await upon all of the request's
240	 * dependencies. When it is signaled, the request is ready to run.
241	 * It is used by the driver to then queue the request for execution.
242	 */
243	struct i915_sw_fence submit;
244	union {
245		wait_queue_entry_t submitq;
246		struct i915_sw_dma_fence_cb dmaq;
247		struct i915_request_duration_cb {
248			struct dma_fence_cb cb;
249			ktime_t emitted;
250		} duration;
251	};
252	struct llist_head execute_cb;
253	struct i915_sw_fence semaphore;
254	/*
255	 * complete submit fence from an IRQ if needed for locking hierarchy
256	 * reasons.
257	 */
258	struct irq_work submit_work;
259
260	/*
261	 * A list of everyone we wait upon, and everyone who waits upon us.
262	 * Even though we will not be submitted to the hardware before the
263	 * submit fence is signaled (it waits for all external events as well
264	 * as our own requests), the scheduler still needs to know the
265	 * dependency tree for the lifetime of the request (from execbuf
266	 * to retirement), i.e. bidirectional dependency information for the
267	 * request not tied to individual fences.
268	 */
269	struct i915_sched_node sched;
270	struct i915_dependency dep;
271	intel_engine_mask_t execution_mask;
272
273	/*
274	 * A convenience pointer to the current breadcrumb value stored in
275	 * the HW status page (or our timeline's local equivalent). The full
276	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
277	 */
278	const u32 *hwsp_seqno;
279
280	/* Position in the ring of the start of the request */
281	u32 head;
282
283	/* Position in the ring of the start of the user packets */
284	u32 infix;
285
286	/*
287	 * Position in the ring of the start of the postfix.
288	 * This is required to calculate the maximum available ring space
289	 * without overwriting the postfix.
290	 */
291	u32 postfix;
292
293	/* Position in the ring of the end of the whole request */
294	u32 tail;
295
296	/* Position in the ring of the end of any workarounds after the tail */
297	u32 wa_tail;
298
299	/* Preallocate space in the ring for the emitting the request */
300	u32 reserved_space;
301
302	/* Batch buffer pointer for selftest internal use. */
303	I915_SELFTEST_DECLARE(struct i915_vma *batch);
304
305	struct i915_vma_resource *batch_res;
306
307#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
308	/*
309	 * Additional buffers requested by userspace to be captured upon
310	 * a GPU hang. The vma/obj on this list are protected by their
311	 * active reference - all objects on this list must also be
312	 * on the active_list (of their final request).
313	 */
314	struct i915_capture_list *capture_list;
315#endif
316
317	/* Time at which this request was emitted, in jiffies. */
318	unsigned long emitted_jiffies;
319
320	/* timeline->request entry for this request */
321	struct list_head link;
322
323	/* Watchdog support fields. */
324	struct i915_request_watchdog {
325		struct llist_node link;
326		struct timeout timer;
327	} watchdog;
328
329	/*
330	 * Requests may need to be stalled when using GuC submission waiting for
331	 * certain GuC operations to complete. If that is the case, stalled
332	 * requests are added to a per context list of stalled requests. The
333	 * below list_head is the link in that list. Protected by
334	 * ce->guc_state.lock.
335	 */
336	struct list_head guc_fence_link;
337
338	/*
339	 * Priority level while the request is in flight. Differs
340	 * from i915 scheduler priority. See comment above
341	 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
342	 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
343	 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
344	 * if the priority has not been initialized yet or if no more updates
345	 * are possible because the request has completed.
346	 */
347#define	GUC_PRIO_INIT	0xff
348#define	GUC_PRIO_FINI	0xfe
349	u8 guc_prio;
350
351	/*
352	 * wait queue entry used to wait on the HuC load to complete
353	 */
354	wait_queue_entry_t hucq;
355
356	I915_SELFTEST_DECLARE(struct {
357		struct list_head link;
358		unsigned long delay;
359	} mock;)
360};
361
362#define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
363
364extern const struct dma_fence_ops i915_fence_ops;
365
366static inline bool dma_fence_is_i915(const struct dma_fence *fence)
367{
368	return fence->ops == &i915_fence_ops;
369}
370
371#ifdef __linux__
372struct kmem_cache *i915_request_slab_cache(void);
373#else
374struct pool *i915_request_slab_cache(void);
375#endif
376
377struct i915_request * __must_check
378__i915_request_create(struct intel_context *ce, gfp_t gfp);
379struct i915_request * __must_check
380i915_request_create(struct intel_context *ce);
381
382void __i915_request_skip(struct i915_request *rq);
383bool i915_request_set_error_once(struct i915_request *rq, int error);
384struct i915_request *i915_request_mark_eio(struct i915_request *rq);
385
386struct i915_request *__i915_request_commit(struct i915_request *request);
387void __i915_request_queue(struct i915_request *rq,
388			  const struct i915_sched_attr *attr);
389void __i915_request_queue_bh(struct i915_request *rq);
390
391bool i915_request_retire(struct i915_request *rq);
392void i915_request_retire_upto(struct i915_request *rq);
393
394static inline struct i915_request *
395to_request(struct dma_fence *fence)
396{
397	/* We assume that NULL fence/request are interoperable */
398	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
399	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
400	return container_of(fence, struct i915_request, fence);
401}
402
403static inline struct i915_request *
404i915_request_get(struct i915_request *rq)
405{
406	return to_request(dma_fence_get(&rq->fence));
407}
408
409static inline struct i915_request *
410i915_request_get_rcu(struct i915_request *rq)
411{
412	return to_request(dma_fence_get_rcu(&rq->fence));
413}
414
415static inline void
416i915_request_put(struct i915_request *rq)
417{
418	dma_fence_put(&rq->fence);
419}
420
421int i915_request_await_object(struct i915_request *to,
422			      struct drm_i915_gem_object *obj,
423			      bool write);
424int i915_request_await_dma_fence(struct i915_request *rq,
425				 struct dma_fence *fence);
426int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
427int i915_request_await_execution(struct i915_request *rq,
428				 struct dma_fence *fence);
429
430void i915_request_add(struct i915_request *rq);
431
432bool __i915_request_submit(struct i915_request *request);
433void i915_request_submit(struct i915_request *request);
434
435void __i915_request_unsubmit(struct i915_request *request);
436void i915_request_unsubmit(struct i915_request *request);
437
438void i915_request_cancel(struct i915_request *rq, int error);
439
440long i915_request_wait_timeout(struct i915_request *rq,
441			       unsigned int flags,
442			       long timeout)
443	__attribute__((nonnull(1)));
444
445long i915_request_wait(struct i915_request *rq,
446		       unsigned int flags,
447		       long timeout)
448	__attribute__((nonnull(1)));
449#define I915_WAIT_INTERRUPTIBLE	BIT(0)
450#define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
451#define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
452
453void i915_request_show(struct drm_printer *m,
454		       const struct i915_request *rq,
455		       const char *prefix,
456		       int indent);
457
458static inline bool i915_request_signaled(const struct i915_request *rq)
459{
460	/* The request may live longer than its HWSP, so check flags first! */
461	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
462}
463
464static inline bool i915_request_is_active(const struct i915_request *rq)
465{
466	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
467}
468
469static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
470{
471	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
472}
473
474static inline bool
475i915_request_has_initial_breadcrumb(const struct i915_request *rq)
476{
477	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
478}
479
480/*
481 * Returns true if seq1 is later than seq2.
482 */
483static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
484{
485	return (s32)(seq1 - seq2) >= 0;
486}
487
488static inline u32 __hwsp_seqno(const struct i915_request *rq)
489{
490	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
491
492	return READ_ONCE(*hwsp);
493}
494
495/**
496 * hwsp_seqno - the current breadcrumb value in the HW status page
497 * @rq: the request, to chase the relevant HW status page
498 *
499 * The emphasis in naming here is that hwsp_seqno() is not a property of the
500 * request, but an indication of the current HW state (associated with this
501 * request). Its value will change as the GPU executes more requests.
502 *
503 * Returns the current breadcrumb value in the associated HW status page (or
504 * the local timeline's equivalent) for this request. The request itself
505 * has the associated breadcrumb value of rq->fence.seqno, when the HW
506 * status page has that breadcrumb or later, this request is complete.
507 */
508static inline u32 hwsp_seqno(const struct i915_request *rq)
509{
510	u32 seqno;
511
512	rcu_read_lock(); /* the HWSP may be freed at runtime */
513	seqno = __hwsp_seqno(rq);
514	rcu_read_unlock();
515
516	return seqno;
517}
518
519static inline bool __i915_request_has_started(const struct i915_request *rq)
520{
521	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
522}
523
524/**
525 * i915_request_started - check if the request has begun being executed
526 * @rq: the request
527 *
528 * If the timeline is not using initial breadcrumbs, a request is
529 * considered started if the previous request on its timeline (i.e.
530 * context) has been signaled.
531 *
532 * If the timeline is using semaphores, it will also be emitting an
533 * "initial breadcrumb" after the semaphores are complete and just before
534 * it began executing the user payload. A request can therefore be active
535 * on the HW and not yet started as it is still busywaiting on its
536 * dependencies (via HW semaphores).
537 *
538 * If the request has started, its dependencies will have been signaled
539 * (either by fences or by semaphores) and it will have begun processing
540 * the user payload.
541 *
542 * However, even if a request has started, it may have been preempted and
543 * so no longer active, or it may have already completed.
544 *
545 * See also i915_request_is_active().
546 *
547 * Returns true if the request has begun executing the user payload, or
548 * has completed:
549 */
550static inline bool i915_request_started(const struct i915_request *rq)
551{
552	bool result;
553
554	if (i915_request_signaled(rq))
555		return true;
556
557	result = true;
558	rcu_read_lock(); /* the HWSP may be freed at runtime */
559	if (likely(!i915_request_signaled(rq)))
560		/* Remember: started but may have since been preempted! */
561		result = __i915_request_has_started(rq);
562	rcu_read_unlock();
563
564	return result;
565}
566
567/**
568 * i915_request_is_running - check if the request may actually be executing
569 * @rq: the request
570 *
571 * Returns true if the request is currently submitted to hardware, has passed
572 * its start point (i.e. the context is setup and not busywaiting). Note that
573 * it may no longer be running by the time the function returns!
574 */
575static inline bool i915_request_is_running(const struct i915_request *rq)
576{
577	bool result;
578
579	if (!i915_request_is_active(rq))
580		return false;
581
582	rcu_read_lock();
583	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
584	rcu_read_unlock();
585
586	return result;
587}
588
589/**
590 * i915_request_is_ready - check if the request is ready for execution
591 * @rq: the request
592 *
593 * Upon construction, the request is instructed to wait upon various
594 * signals before it is ready to be executed by the HW. That is, we do
595 * not want to start execution and read data before it is written. In practice,
596 * this is controlled with a mixture of interrupts and semaphores. Once
597 * the submit fence is completed, the backend scheduler will place the
598 * request into its queue and from there submit it for execution. So we
599 * can detect when a request is eligible for execution (and is under control
600 * of the scheduler) by querying where it is in any of the scheduler's lists.
601 *
602 * Returns true if the request is ready for execution (it may be inflight),
603 * false otherwise.
604 */
605static inline bool i915_request_is_ready(const struct i915_request *rq)
606{
607	return !list_empty(&rq->sched.link);
608}
609
610static inline bool __i915_request_is_complete(const struct i915_request *rq)
611{
612	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
613}
614
615static inline bool i915_request_completed(const struct i915_request *rq)
616{
617	bool result;
618
619	if (i915_request_signaled(rq))
620		return true;
621
622	result = true;
623	rcu_read_lock(); /* the HWSP may be freed at runtime */
624	if (likely(!i915_request_signaled(rq)))
625		result = __i915_request_is_complete(rq);
626	rcu_read_unlock();
627
628	return result;
629}
630
631static inline void i915_request_mark_complete(struct i915_request *rq)
632{
633	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
634		   (u32 *)&rq->fence.seqno);
635}
636
637static inline bool i915_request_has_waitboost(const struct i915_request *rq)
638{
639	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
640}
641
642static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
643{
644	/* Preemption should only be disabled very rarely */
645	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
646}
647
648static inline bool i915_request_has_sentinel(const struct i915_request *rq)
649{
650	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
651}
652
653static inline bool i915_request_on_hold(const struct i915_request *rq)
654{
655	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
656}
657
658static inline void i915_request_set_hold(struct i915_request *rq)
659{
660	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
661}
662
663static inline void i915_request_clear_hold(struct i915_request *rq)
664{
665	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
666}
667
668static inline struct intel_timeline *
669i915_request_timeline(const struct i915_request *rq)
670{
671	/* Valid only while the request is being constructed (or retired). */
672	return rcu_dereference_protected(rq->timeline,
673					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) ||
674					 test_bit(CONTEXT_IS_PARKING, &rq->context->flags));
675}
676
677static inline struct i915_gem_context *
678i915_request_gem_context(const struct i915_request *rq)
679{
680	/* Valid only while the request is being constructed (or retired). */
681	return rcu_dereference_protected(rq->context->gem_context, true);
682}
683
684static inline struct intel_timeline *
685i915_request_active_timeline(const struct i915_request *rq)
686{
687	/*
688	 * When in use during submission, we are protected by a guarantee that
689	 * the context/timeline is pinned and must remain pinned until after
690	 * this submission.
691	 */
692	return rcu_dereference_protected(rq->timeline,
693					 lockdep_is_held(&rq->engine->sched_engine->lock));
694}
695
696static inline u32
697i915_request_active_seqno(const struct i915_request *rq)
698{
699	u32 hwsp_phys_base =
700		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
701	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
702
703	/*
704	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
705	 * but instead use the fact that the relative for vaddr is the
706	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
707	 * and combine them with the relative offset in rq->hwsp_seqno.
708	 *
709	 * As rw->hwsp_seqno is rewritten when signaled, this only works
710	 * when the request isn't signaled yet, but at that point you
711	 * no longer need the offset.
712	 */
713
714	return hwsp_phys_base + hwsp_relative_offset;
715}
716
717bool
718i915_request_active_engine(struct i915_request *rq,
719			   struct intel_engine_cs **active);
720
721void i915_request_notify_execute_cb_imm(struct i915_request *rq);
722
723enum i915_request_state {
724	I915_REQUEST_UNKNOWN = 0,
725	I915_REQUEST_COMPLETE,
726	I915_REQUEST_PENDING,
727	I915_REQUEST_QUEUED,
728	I915_REQUEST_ACTIVE,
729};
730
731enum i915_request_state i915_test_request_state(struct i915_request *rq);
732
733void i915_request_module_exit(void);
734int i915_request_module_init(void);
735
736#endif /* I915_REQUEST_H */
737