i915_irq.c revision 1.37
1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/circ_buf.h>
32#include <linux/slab.h>
33#include <linux/sysrq.h>
34
35#include <drm/drm_drv.h>
36#include <drm/drm_irq.h>
37
38#include "display/intel_display_types.h"
39#include "display/intel_fifo_underrun.h"
40#include "display/intel_hotplug.h"
41#include "display/intel_lpe_audio.h"
42#include "display/intel_psr.h"
43
44#include "gt/intel_gt.h"
45#include "gt/intel_gt_irq.h"
46#include "gt/intel_gt_pm_irq.h"
47#include "gt/intel_rps.h"
48
49#include "i915_drv.h"
50#include "i915_irq.h"
51#include "i915_trace.h"
52#include "intel_pm.h"
53
54/**
55 * DOC: interrupt handling
56 *
57 * These functions provide the basic support for enabling and disabling the
58 * interrupt handling support. There's a lot more functionality in i915_irq.c
59 * and related files, but that will be described in separate chapters.
60 */
61
62typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
63
64static const u32 hpd_ilk[HPD_NUM_PINS] = {
65	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
66};
67
68static const u32 hpd_ivb[HPD_NUM_PINS] = {
69	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
70};
71
72static const u32 hpd_bdw[HPD_NUM_PINS] = {
73	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
74};
75
76static const u32 hpd_ibx[HPD_NUM_PINS] = {
77	[HPD_CRT] = SDE_CRT_HOTPLUG,
78	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
79	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
80	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
81	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
82};
83
84static const u32 hpd_cpt[HPD_NUM_PINS] = {
85	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
86	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
87	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
88	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
89	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
90};
91
92static const u32 hpd_spt[HPD_NUM_PINS] = {
93	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
94	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
95	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
96	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
97	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
98};
99
100static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
101	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
102	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
103	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
104	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
105	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
106	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
107};
108
109static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
110	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
111	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
112	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
113	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
114	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
115	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
116};
117
118static const u32 hpd_status_i915[HPD_NUM_PINS] = {
119	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
120	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
121	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
122	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
123	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
124	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
125};
126
127/* BXT hpd list */
128static const u32 hpd_bxt[HPD_NUM_PINS] = {
129	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
130	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
131	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
132};
133
134static const u32 hpd_gen11[HPD_NUM_PINS] = {
135	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
136	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
137	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
138	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
139};
140
141static const u32 hpd_gen12[HPD_NUM_PINS] = {
142	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
143	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
144	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
145	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
146	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
147	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG,
148};
149
150static const u32 hpd_icp[HPD_NUM_PINS] = {
151	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
152	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
153	[HPD_PORT_C] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
154	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
155	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
156	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
157};
158
159static const u32 hpd_tgp[HPD_NUM_PINS] = {
160	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
161	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
162	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
163	[HPD_PORT_D] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
164	[HPD_PORT_E] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
165	[HPD_PORT_F] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
166	[HPD_PORT_G] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
167	[HPD_PORT_H] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
168	[HPD_PORT_I] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
169};
170
171static void
172intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
173{
174	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
175
176	drm_crtc_handle_vblank(&crtc->base);
177}
178
179void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
180		    i915_reg_t iir, i915_reg_t ier)
181{
182	intel_uncore_write(uncore, imr, 0xffffffff);
183	intel_uncore_posting_read(uncore, imr);
184
185	intel_uncore_write(uncore, ier, 0);
186
187	/* IIR can theoretically queue up two events. Be paranoid. */
188	intel_uncore_write(uncore, iir, 0xffffffff);
189	intel_uncore_posting_read(uncore, iir);
190	intel_uncore_write(uncore, iir, 0xffffffff);
191	intel_uncore_posting_read(uncore, iir);
192}
193
194void gen2_irq_reset(struct intel_uncore *uncore)
195{
196	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
197	intel_uncore_posting_read16(uncore, GEN2_IMR);
198
199	intel_uncore_write16(uncore, GEN2_IER, 0);
200
201	/* IIR can theoretically queue up two events. Be paranoid. */
202	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
203	intel_uncore_posting_read16(uncore, GEN2_IIR);
204	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
205	intel_uncore_posting_read16(uncore, GEN2_IIR);
206}
207
208/*
209 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
210 */
211static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
212{
213	u32 val = intel_uncore_read(uncore, reg);
214
215	if (val == 0)
216		return;
217
218	drm_WARN(&uncore->i915->drm, 1,
219		 "Interrupt register 0x%x is not zero: 0x%08x\n",
220		 i915_mmio_reg_offset(reg), val);
221	intel_uncore_write(uncore, reg, 0xffffffff);
222	intel_uncore_posting_read(uncore, reg);
223	intel_uncore_write(uncore, reg, 0xffffffff);
224	intel_uncore_posting_read(uncore, reg);
225}
226
227static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
228{
229	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
230
231	if (val == 0)
232		return;
233
234	drm_WARN(&uncore->i915->drm, 1,
235		 "Interrupt register 0x%x is not zero: 0x%08x\n",
236		 i915_mmio_reg_offset(GEN2_IIR), val);
237	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
238	intel_uncore_posting_read16(uncore, GEN2_IIR);
239	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
240	intel_uncore_posting_read16(uncore, GEN2_IIR);
241}
242
243void gen3_irq_init(struct intel_uncore *uncore,
244		   i915_reg_t imr, u32 imr_val,
245		   i915_reg_t ier, u32 ier_val,
246		   i915_reg_t iir)
247{
248	gen3_assert_iir_is_zero(uncore, iir);
249
250	intel_uncore_write(uncore, ier, ier_val);
251	intel_uncore_write(uncore, imr, imr_val);
252	intel_uncore_posting_read(uncore, imr);
253}
254
255void gen2_irq_init(struct intel_uncore *uncore,
256		   u32 imr_val, u32 ier_val)
257{
258	gen2_assert_iir_is_zero(uncore);
259
260	intel_uncore_write16(uncore, GEN2_IER, ier_val);
261	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
262	intel_uncore_posting_read16(uncore, GEN2_IMR);
263}
264
265/* For display hotplug interrupt */
266static inline void
267i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
268				     u32 mask,
269				     u32 bits)
270{
271	u32 val;
272
273	lockdep_assert_held(&dev_priv->irq_lock);
274	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
275
276	val = I915_READ(PORT_HOTPLUG_EN);
277	val &= ~mask;
278	val |= bits;
279	I915_WRITE(PORT_HOTPLUG_EN, val);
280}
281
282/**
283 * i915_hotplug_interrupt_update - update hotplug interrupt enable
284 * @dev_priv: driver private
285 * @mask: bits to update
286 * @bits: bits to enable
287 * NOTE: the HPD enable bits are modified both inside and outside
288 * of an interrupt context. To avoid that read-modify-write cycles
289 * interfer, these bits are protected by a spinlock. Since this
290 * function is usually not called from a context where the lock is
291 * held already, this function acquires the lock itself. A non-locking
292 * version is also available.
293 */
294void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
295				   u32 mask,
296				   u32 bits)
297{
298	spin_lock_irq(&dev_priv->irq_lock);
299	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
300	spin_unlock_irq(&dev_priv->irq_lock);
301}
302
303/**
304 * ilk_update_display_irq - update DEIMR
305 * @dev_priv: driver private
306 * @interrupt_mask: mask of interrupt bits to update
307 * @enabled_irq_mask: mask of interrupt bits to enable
308 */
309void ilk_update_display_irq(struct drm_i915_private *dev_priv,
310			    u32 interrupt_mask,
311			    u32 enabled_irq_mask)
312{
313	u32 new_val;
314
315	lockdep_assert_held(&dev_priv->irq_lock);
316
317	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
318
319	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
320		return;
321
322	new_val = dev_priv->irq_mask;
323	new_val &= ~interrupt_mask;
324	new_val |= (~enabled_irq_mask & interrupt_mask);
325
326	if (new_val != dev_priv->irq_mask) {
327		dev_priv->irq_mask = new_val;
328		I915_WRITE(DEIMR, dev_priv->irq_mask);
329		POSTING_READ(DEIMR);
330	}
331}
332
333/**
334 * bdw_update_port_irq - update DE port interrupt
335 * @dev_priv: driver private
336 * @interrupt_mask: mask of interrupt bits to update
337 * @enabled_irq_mask: mask of interrupt bits to enable
338 */
339static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
340				u32 interrupt_mask,
341				u32 enabled_irq_mask)
342{
343	u32 new_val;
344	u32 old_val;
345
346	lockdep_assert_held(&dev_priv->irq_lock);
347
348	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
349
350	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
351		return;
352
353	old_val = I915_READ(GEN8_DE_PORT_IMR);
354
355	new_val = old_val;
356	new_val &= ~interrupt_mask;
357	new_val |= (~enabled_irq_mask & interrupt_mask);
358
359	if (new_val != old_val) {
360		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
361		POSTING_READ(GEN8_DE_PORT_IMR);
362	}
363}
364
365/**
366 * bdw_update_pipe_irq - update DE pipe interrupt
367 * @dev_priv: driver private
368 * @pipe: pipe whose interrupt to update
369 * @interrupt_mask: mask of interrupt bits to update
370 * @enabled_irq_mask: mask of interrupt bits to enable
371 */
372void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
373			 enum pipe pipe,
374			 u32 interrupt_mask,
375			 u32 enabled_irq_mask)
376{
377	u32 new_val;
378
379	lockdep_assert_held(&dev_priv->irq_lock);
380
381	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
382
383	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
384		return;
385
386	new_val = dev_priv->de_irq_mask[pipe];
387	new_val &= ~interrupt_mask;
388	new_val |= (~enabled_irq_mask & interrupt_mask);
389
390	if (new_val != dev_priv->de_irq_mask[pipe]) {
391		dev_priv->de_irq_mask[pipe] = new_val;
392		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
393		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
394	}
395}
396
397/**
398 * ibx_display_interrupt_update - update SDEIMR
399 * @dev_priv: driver private
400 * @interrupt_mask: mask of interrupt bits to update
401 * @enabled_irq_mask: mask of interrupt bits to enable
402 */
403void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
404				  u32 interrupt_mask,
405				  u32 enabled_irq_mask)
406{
407	u32 sdeimr = I915_READ(SDEIMR);
408	sdeimr &= ~interrupt_mask;
409	sdeimr |= (~enabled_irq_mask & interrupt_mask);
410
411	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
412
413	lockdep_assert_held(&dev_priv->irq_lock);
414
415	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
416		return;
417
418	I915_WRITE(SDEIMR, sdeimr);
419	POSTING_READ(SDEIMR);
420}
421
422u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
423			      enum pipe pipe)
424{
425	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
426	u32 enable_mask = status_mask << 16;
427
428	lockdep_assert_held(&dev_priv->irq_lock);
429
430	if (INTEL_GEN(dev_priv) < 5)
431		goto out;
432
433	/*
434	 * On pipe A we don't support the PSR interrupt yet,
435	 * on pipe B and C the same bit MBZ.
436	 */
437	if (drm_WARN_ON_ONCE(&dev_priv->drm,
438			     status_mask & PIPE_A_PSR_STATUS_VLV))
439		return 0;
440	/*
441	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
442	 * A the same bit is for perf counters which we don't use either.
443	 */
444	if (drm_WARN_ON_ONCE(&dev_priv->drm,
445			     status_mask & PIPE_B_PSR_STATUS_VLV))
446		return 0;
447
448	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
449			 SPRITE0_FLIP_DONE_INT_EN_VLV |
450			 SPRITE1_FLIP_DONE_INT_EN_VLV);
451	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
452		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
453	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
454		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
455
456out:
457	drm_WARN_ONCE(&dev_priv->drm,
458		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
459		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
460		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
461		      pipe_name(pipe), enable_mask, status_mask);
462
463	return enable_mask;
464}
465
466void i915_enable_pipestat(struct drm_i915_private *dev_priv,
467			  enum pipe pipe, u32 status_mask)
468{
469	i915_reg_t reg = PIPESTAT(pipe);
470	u32 enable_mask;
471
472	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
473		      "pipe %c: status_mask=0x%x\n",
474		      pipe_name(pipe), status_mask);
475
476	lockdep_assert_held(&dev_priv->irq_lock);
477	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
478
479	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
480		return;
481
482	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
483	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
484
485	I915_WRITE(reg, enable_mask | status_mask);
486	POSTING_READ(reg);
487}
488
489void i915_disable_pipestat(struct drm_i915_private *dev_priv,
490			   enum pipe pipe, u32 status_mask)
491{
492	i915_reg_t reg = PIPESTAT(pipe);
493	u32 enable_mask;
494
495	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
496		      "pipe %c: status_mask=0x%x\n",
497		      pipe_name(pipe), status_mask);
498
499	lockdep_assert_held(&dev_priv->irq_lock);
500	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
501
502	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
503		return;
504
505	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
506	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
507
508	I915_WRITE(reg, enable_mask | status_mask);
509	POSTING_READ(reg);
510}
511
512static bool i915_has_asle(struct drm_i915_private *dev_priv)
513{
514	if (!dev_priv->opregion.asle)
515		return false;
516
517	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
518}
519
520/**
521 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
522 * @dev_priv: i915 device private
523 */
524static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
525{
526	if (!i915_has_asle(dev_priv))
527		return;
528
529	spin_lock_irq(&dev_priv->irq_lock);
530
531	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
532	if (INTEL_GEN(dev_priv) >= 4)
533		i915_enable_pipestat(dev_priv, PIPE_A,
534				     PIPE_LEGACY_BLC_EVENT_STATUS);
535
536	spin_unlock_irq(&dev_priv->irq_lock);
537}
538
539/*
540 * This timing diagram depicts the video signal in and
541 * around the vertical blanking period.
542 *
543 * Assumptions about the fictitious mode used in this example:
544 *  vblank_start >= 3
545 *  vsync_start = vblank_start + 1
546 *  vsync_end = vblank_start + 2
547 *  vtotal = vblank_start + 3
548 *
549 *           start of vblank:
550 *           latch double buffered registers
551 *           increment frame counter (ctg+)
552 *           generate start of vblank interrupt (gen4+)
553 *           |
554 *           |          frame start:
555 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
556 *           |          may be shifted forward 1-3 extra lines via PIPECONF
557 *           |          |
558 *           |          |  start of vsync:
559 *           |          |  generate vsync interrupt
560 *           |          |  |
561 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
562 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
563 * ----va---> <-----------------vb--------------------> <--------va-------------
564 *       |          |       <----vs----->                     |
565 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
566 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
567 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
568 *       |          |                                         |
569 *       last visible pixel                                   first visible pixel
570 *                  |                                         increment frame counter (gen3/4)
571 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
572 *
573 * x  = horizontal active
574 * _  = horizontal blanking
575 * hs = horizontal sync
576 * va = vertical active
577 * vb = vertical blanking
578 * vs = vertical sync
579 * vbs = vblank_start (number)
580 *
581 * Summary:
582 * - most events happen at the start of horizontal sync
583 * - frame start happens at the start of horizontal blank, 1-4 lines
584 *   (depending on PIPECONF settings) after the start of vblank
585 * - gen3/4 pixel and frame counter are synchronized with the start
586 *   of horizontal active on the first line of vertical active
587 */
588
589/* Called from drm generic code, passed a 'crtc', which
590 * we use as a pipe index
591 */
592u32 i915_get_vblank_counter(struct drm_crtc *crtc)
593{
594	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
595	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
596	const struct drm_display_mode *mode = &vblank->hwmode;
597	enum pipe pipe = to_intel_crtc(crtc)->pipe;
598	i915_reg_t high_frame, low_frame;
599	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
600	unsigned long irqflags;
601
602	/*
603	 * On i965gm TV output the frame counter only works up to
604	 * the point when we enable the TV encoder. After that the
605	 * frame counter ceases to work and reads zero. We need a
606	 * vblank wait before enabling the TV encoder and so we
607	 * have to enable vblank interrupts while the frame counter
608	 * is still in a working state. However the core vblank code
609	 * does not like us returning non-zero frame counter values
610	 * when we've told it that we don't have a working frame
611	 * counter. Thus we must stop non-zero values leaking out.
612	 */
613	if (!vblank->max_vblank_count)
614		return 0;
615
616	htotal = mode->crtc_htotal;
617	hsync_start = mode->crtc_hsync_start;
618	vbl_start = mode->crtc_vblank_start;
619	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
620		vbl_start = DIV_ROUND_UP(vbl_start, 2);
621
622	/* Convert to pixel count */
623	vbl_start *= htotal;
624
625	/* Start of vblank event occurs at start of hsync */
626	vbl_start -= htotal - hsync_start;
627
628	high_frame = PIPEFRAME(pipe);
629	low_frame = PIPEFRAMEPIXEL(pipe);
630
631	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
632
633	/*
634	 * High & low register fields aren't synchronized, so make sure
635	 * we get a low value that's stable across two reads of the high
636	 * register.
637	 */
638	do {
639		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
640		low   = intel_de_read_fw(dev_priv, low_frame);
641		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
642	} while (high1 != high2);
643
644	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
645
646	high1 >>= PIPE_FRAME_HIGH_SHIFT;
647	pixel = low & PIPE_PIXEL_MASK;
648	low >>= PIPE_FRAME_LOW_SHIFT;
649
650	/*
651	 * The frame counter increments at beginning of active.
652	 * Cook up a vblank counter by also checking the pixel
653	 * counter against vblank start.
654	 */
655	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
656}
657
658u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
659{
660	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
661	enum pipe pipe = to_intel_crtc(crtc)->pipe;
662
663	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
664}
665
666/*
667 * On certain encoders on certain platforms, pipe
668 * scanline register will not work to get the scanline,
669 * since the timings are driven from the PORT or issues
670 * with scanline register updates.
671 * This function will use Framestamp and current
672 * timestamp registers to calculate the scanline.
673 */
674static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
675{
676	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
677	struct drm_vblank_crtc *vblank =
678		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
679	const struct drm_display_mode *mode = &vblank->hwmode;
680	u32 vblank_start = mode->crtc_vblank_start;
681	u32 vtotal = mode->crtc_vtotal;
682	u32 htotal = mode->crtc_htotal;
683	u32 clock = mode->crtc_clock;
684	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
685
686	/*
687	 * To avoid the race condition where we might cross into the
688	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
689	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
690	 * during the same frame.
691	 */
692	do {
693		/*
694		 * This field provides read back of the display
695		 * pipe frame time stamp. The time stamp value
696		 * is sampled at every start of vertical blank.
697		 */
698		scan_prev_time = intel_de_read_fw(dev_priv,
699						  PIPE_FRMTMSTMP(crtc->pipe));
700
701		/*
702		 * The TIMESTAMP_CTR register has the current
703		 * time stamp value.
704		 */
705		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
706
707		scan_post_time = intel_de_read_fw(dev_priv,
708						  PIPE_FRMTMSTMP(crtc->pipe));
709	} while (scan_post_time != scan_prev_time);
710
711	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
712					clock), 1000 * htotal);
713	scanline = min(scanline, vtotal - 1);
714	scanline = (scanline + vblank_start) % vtotal;
715
716	return scanline;
717}
718
719/*
720 * intel_de_read_fw(), only for fast reads of display block, no need for
721 * forcewake etc.
722 */
723static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724{
725	struct drm_device *dev = crtc->base.dev;
726	struct drm_i915_private *dev_priv = to_i915(dev);
727	const struct drm_display_mode *mode;
728	struct drm_vblank_crtc *vblank;
729	enum pipe pipe = crtc->pipe;
730	int position, vtotal;
731
732	if (!crtc->active)
733		return -1;
734
735	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
736	mode = &vblank->hwmode;
737
738	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
739		return __intel_get_crtc_scanline_from_timestamp(crtc);
740
741	vtotal = mode->crtc_vtotal;
742	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
743		vtotal /= 2;
744
745	if (IS_GEN(dev_priv, 2))
746		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
747	else
748		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
749
750	/*
751	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
752	 * read it just before the start of vblank.  So try it again
753	 * so we don't accidentally end up spanning a vblank frame
754	 * increment, causing the pipe_update_end() code to squak at us.
755	 *
756	 * The nature of this problem means we can't simply check the ISR
757	 * bit and return the vblank start value; nor can we use the scanline
758	 * debug register in the transcoder as it appears to have the same
759	 * problem.  We may need to extend this to include other platforms,
760	 * but so far testing only shows the problem on HSW.
761	 */
762	if (HAS_DDI(dev_priv) && !position) {
763		int i, temp;
764
765		for (i = 0; i < 100; i++) {
766			udelay(1);
767			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
768			if (temp != position) {
769				position = temp;
770				break;
771			}
772		}
773	}
774
775	/*
776	 * See update_scanline_offset() for the details on the
777	 * scanline_offset adjustment.
778	 */
779	return (position + crtc->scanline_offset) % vtotal;
780}
781
782static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
783				     bool in_vblank_irq,
784				     int *vpos, int *hpos,
785				     ktime_t *stime, ktime_t *etime,
786				     const struct drm_display_mode *mode)
787{
788	struct drm_device *dev = _crtc->dev;
789	struct drm_i915_private *dev_priv = to_i915(dev);
790	struct intel_crtc *crtc = to_intel_crtc(_crtc);
791	enum pipe pipe = crtc->pipe;
792	int position;
793	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
794	unsigned long irqflags;
795	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
796		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
797		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
798
799	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
800		drm_dbg(&dev_priv->drm,
801			"trying to get scanoutpos for disabled "
802			"pipe %c\n", pipe_name(pipe));
803		return false;
804	}
805
806	htotal = mode->crtc_htotal;
807	hsync_start = mode->crtc_hsync_start;
808	vtotal = mode->crtc_vtotal;
809	vbl_start = mode->crtc_vblank_start;
810	vbl_end = mode->crtc_vblank_end;
811
812	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
813		vbl_start = DIV_ROUND_UP(vbl_start, 2);
814		vbl_end /= 2;
815		vtotal /= 2;
816	}
817
818	/*
819	 * Lock uncore.lock, as we will do multiple timing critical raw
820	 * register reads, potentially with preemption disabled, so the
821	 * following code must not block on uncore.lock.
822	 */
823	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
824
825	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
826
827	/* Get optional system timestamp before query. */
828	if (stime)
829		*stime = ktime_get();
830
831	if (use_scanline_counter) {
832		/* No obvious pixelcount register. Only query vertical
833		 * scanout position from Display scan line register.
834		 */
835		position = __intel_get_crtc_scanline(crtc);
836	} else {
837		/* Have access to pixelcount since start of frame.
838		 * We can split this into vertical and horizontal
839		 * scanout position.
840		 */
841		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
842
843		/* convert to pixel counts */
844		vbl_start *= htotal;
845		vbl_end *= htotal;
846		vtotal *= htotal;
847
848		/*
849		 * In interlaced modes, the pixel counter counts all pixels,
850		 * so one field will have htotal more pixels. In order to avoid
851		 * the reported position from jumping backwards when the pixel
852		 * counter is beyond the length of the shorter field, just
853		 * clamp the position the length of the shorter field. This
854		 * matches how the scanline counter based position works since
855		 * the scanline counter doesn't count the two half lines.
856		 */
857		if (position >= vtotal)
858			position = vtotal - 1;
859
860		/*
861		 * Start of vblank interrupt is triggered at start of hsync,
862		 * just prior to the first active line of vblank. However we
863		 * consider lines to start at the leading edge of horizontal
864		 * active. So, should we get here before we've crossed into
865		 * the horizontal active of the first line in vblank, we would
866		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
867		 * always add htotal-hsync_start to the current pixel position.
868		 */
869		position = (position + htotal - hsync_start) % vtotal;
870	}
871
872	/* Get optional system timestamp after query. */
873	if (etime)
874		*etime = ktime_get();
875
876	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
877
878	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
879
880	/*
881	 * While in vblank, position will be negative
882	 * counting up towards 0 at vbl_end. And outside
883	 * vblank, position will be positive counting
884	 * up since vbl_end.
885	 */
886	if (position >= vbl_start)
887		position -= vbl_end;
888	else
889		position += vtotal - vbl_end;
890
891	if (use_scanline_counter) {
892		*vpos = position;
893		*hpos = 0;
894	} else {
895		*vpos = position / htotal;
896		*hpos = position - (*vpos * htotal);
897	}
898
899	return true;
900}
901
902bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
903				     ktime_t *vblank_time, bool in_vblank_irq)
904{
905	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
906		crtc, max_error, vblank_time, in_vblank_irq,
907		i915_get_crtc_scanoutpos);
908}
909
910int intel_get_crtc_scanline(struct intel_crtc *crtc)
911{
912	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
913	unsigned long irqflags;
914	int position;
915
916	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
917	position = __intel_get_crtc_scanline(crtc);
918	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
919
920	return position;
921}
922
923/**
924 * ivb_parity_work - Workqueue called when a parity error interrupt
925 * occurred.
926 * @work: workqueue struct
927 *
928 * Doesn't actually do anything except notify userspace. As a consequence of
929 * this event, userspace should try to remap the bad rows since statistically
930 * it is likely the same row is more likely to go bad again.
931 */
932static void ivb_parity_work(struct work_struct *work)
933{
934	struct drm_i915_private *dev_priv =
935		container_of(work, typeof(*dev_priv), l3_parity.error_work);
936	struct intel_gt *gt = &dev_priv->gt;
937	u32 error_status, row, bank, subbank;
938	char *parity_event[6];
939	u32 misccpctl;
940	u8 slice = 0;
941
942	/* We must turn off DOP level clock gating to access the L3 registers.
943	 * In order to prevent a get/put style interface, acquire struct mutex
944	 * any time we access those registers.
945	 */
946	mutex_lock(&dev_priv->drm.struct_mutex);
947
948	/* If we've screwed up tracking, just let the interrupt fire again */
949	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
950		goto out;
951
952	misccpctl = I915_READ(GEN7_MISCCPCTL);
953	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
954	POSTING_READ(GEN7_MISCCPCTL);
955
956	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
957		i915_reg_t reg;
958
959		slice--;
960		if (drm_WARN_ON_ONCE(&dev_priv->drm,
961				     slice >= NUM_L3_SLICES(dev_priv)))
962			break;
963
964		dev_priv->l3_parity.which_slice &= ~(1<<slice);
965
966		reg = GEN7_L3CDERRST1(slice);
967
968		error_status = I915_READ(reg);
969		row = GEN7_PARITY_ERROR_ROW(error_status);
970		bank = GEN7_PARITY_ERROR_BANK(error_status);
971		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
972
973		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
974		POSTING_READ(reg);
975
976		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
977		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
978		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
979		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
980		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
981		parity_event[5] = NULL;
982
983		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
984				   KOBJ_CHANGE, parity_event);
985
986		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
987			  slice, row, bank, subbank);
988
989		kfree(parity_event[4]);
990		kfree(parity_event[3]);
991		kfree(parity_event[2]);
992		kfree(parity_event[1]);
993	}
994
995	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
996
997out:
998	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
999	spin_lock_irq(&gt->irq_lock);
1000	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1001	spin_unlock_irq(&gt->irq_lock);
1002
1003	mutex_unlock(&dev_priv->drm.struct_mutex);
1004}
1005
1006static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1007{
1008	switch (pin) {
1009	case HPD_PORT_C:
1010		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1011	case HPD_PORT_D:
1012		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1013	case HPD_PORT_E:
1014		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1015	case HPD_PORT_F:
1016		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1017	default:
1018		return false;
1019	}
1020}
1021
1022static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1023{
1024	switch (pin) {
1025	case HPD_PORT_D:
1026		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1027	case HPD_PORT_E:
1028		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1029	case HPD_PORT_F:
1030		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1031	case HPD_PORT_G:
1032		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1033	case HPD_PORT_H:
1034		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1035	case HPD_PORT_I:
1036		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1037	default:
1038		return false;
1039	}
1040}
1041
1042static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1043{
1044	switch (pin) {
1045	case HPD_PORT_A:
1046		return val & PORTA_HOTPLUG_LONG_DETECT;
1047	case HPD_PORT_B:
1048		return val & PORTB_HOTPLUG_LONG_DETECT;
1049	case HPD_PORT_C:
1050		return val & PORTC_HOTPLUG_LONG_DETECT;
1051	default:
1052		return false;
1053	}
1054}
1055
1056static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1057{
1058	switch (pin) {
1059	case HPD_PORT_A:
1060		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1061	case HPD_PORT_B:
1062		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1063	case HPD_PORT_C:
1064		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1065	default:
1066		return false;
1067	}
1068}
1069
1070static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1071{
1072	switch (pin) {
1073	case HPD_PORT_C:
1074		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1075	case HPD_PORT_D:
1076		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1077	case HPD_PORT_E:
1078		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1079	case HPD_PORT_F:
1080		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1081	default:
1082		return false;
1083	}
1084}
1085
1086static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1087{
1088	switch (pin) {
1089	case HPD_PORT_D:
1090		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1091	case HPD_PORT_E:
1092		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1093	case HPD_PORT_F:
1094		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1095	case HPD_PORT_G:
1096		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1097	case HPD_PORT_H:
1098		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1099	case HPD_PORT_I:
1100		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1101	default:
1102		return false;
1103	}
1104}
1105
1106static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1107{
1108	switch (pin) {
1109	case HPD_PORT_E:
1110		return val & PORTE_HOTPLUG_LONG_DETECT;
1111	default:
1112		return false;
1113	}
1114}
1115
1116static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1117{
1118	switch (pin) {
1119	case HPD_PORT_A:
1120		return val & PORTA_HOTPLUG_LONG_DETECT;
1121	case HPD_PORT_B:
1122		return val & PORTB_HOTPLUG_LONG_DETECT;
1123	case HPD_PORT_C:
1124		return val & PORTC_HOTPLUG_LONG_DETECT;
1125	case HPD_PORT_D:
1126		return val & PORTD_HOTPLUG_LONG_DETECT;
1127	default:
1128		return false;
1129	}
1130}
1131
1132static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1133{
1134	switch (pin) {
1135	case HPD_PORT_A:
1136		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1137	default:
1138		return false;
1139	}
1140}
1141
1142static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1143{
1144	switch (pin) {
1145	case HPD_PORT_B:
1146		return val & PORTB_HOTPLUG_LONG_DETECT;
1147	case HPD_PORT_C:
1148		return val & PORTC_HOTPLUG_LONG_DETECT;
1149	case HPD_PORT_D:
1150		return val & PORTD_HOTPLUG_LONG_DETECT;
1151	default:
1152		return false;
1153	}
1154}
1155
1156static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1157{
1158	switch (pin) {
1159	case HPD_PORT_B:
1160		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1161	case HPD_PORT_C:
1162		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1163	case HPD_PORT_D:
1164		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1165	default:
1166		return false;
1167	}
1168}
1169
1170/*
1171 * Get a bit mask of pins that have triggered, and which ones may be long.
1172 * This can be called multiple times with the same masks to accumulate
1173 * hotplug detection results from several registers.
1174 *
1175 * Note that the caller is expected to zero out the masks initially.
1176 */
1177static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1178			       u32 *pin_mask, u32 *long_mask,
1179			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1180			       const u32 hpd[HPD_NUM_PINS],
1181			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1182{
1183	enum hpd_pin pin;
1184
1185	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1186
1187	for_each_hpd_pin(pin) {
1188		if ((hpd[pin] & hotplug_trigger) == 0)
1189			continue;
1190
1191		*pin_mask |= BIT(pin);
1192
1193		if (long_pulse_detect(pin, dig_hotplug_reg))
1194			*long_mask |= BIT(pin);
1195	}
1196
1197	drm_dbg(&dev_priv->drm,
1198		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1199		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1200
1201}
1202
1203static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1204{
1205	wake_up_all(&dev_priv->gmbus_wait_queue);
1206}
1207
1208static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1209{
1210	wake_up_all(&dev_priv->gmbus_wait_queue);
1211}
1212
1213#if defined(CONFIG_DEBUG_FS)
1214static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1215					 enum pipe pipe,
1216					 u32 crc0, u32 crc1,
1217					 u32 crc2, u32 crc3,
1218					 u32 crc4)
1219{
1220	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1221	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1222	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1223
1224	trace_intel_pipe_crc(crtc, crcs);
1225
1226	spin_lock(&pipe_crc->lock);
1227	/*
1228	 * For some not yet identified reason, the first CRC is
1229	 * bonkers. So let's just wait for the next vblank and read
1230	 * out the buggy result.
1231	 *
1232	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1233	 * don't trust that one either.
1234	 */
1235	if (pipe_crc->skipped <= 0 ||
1236	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1237		pipe_crc->skipped++;
1238		spin_unlock(&pipe_crc->lock);
1239		return;
1240	}
1241	spin_unlock(&pipe_crc->lock);
1242
1243	drm_crtc_add_crc_entry(&crtc->base, true,
1244				drm_crtc_accurate_vblank_count(&crtc->base),
1245				crcs);
1246}
1247#else
1248static inline void
1249display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1250			     enum pipe pipe,
1251			     u32 crc0, u32 crc1,
1252			     u32 crc2, u32 crc3,
1253			     u32 crc4) {}
1254#endif
1255
1256
1257static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1258				     enum pipe pipe)
1259{
1260	display_pipe_crc_irq_handler(dev_priv, pipe,
1261				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1262				     0, 0, 0, 0);
1263}
1264
1265static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1266				     enum pipe pipe)
1267{
1268	display_pipe_crc_irq_handler(dev_priv, pipe,
1269				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1270				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1271				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1272				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1273				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1274}
1275
1276static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1277				      enum pipe pipe)
1278{
1279	u32 res1, res2;
1280
1281	if (INTEL_GEN(dev_priv) >= 3)
1282		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1283	else
1284		res1 = 0;
1285
1286	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1287		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1288	else
1289		res2 = 0;
1290
1291	display_pipe_crc_irq_handler(dev_priv, pipe,
1292				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1293				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1294				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1295				     res1, res2);
1296}
1297
1298static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1299{
1300	enum pipe pipe;
1301
1302	for_each_pipe(dev_priv, pipe) {
1303		I915_WRITE(PIPESTAT(pipe),
1304			   PIPESTAT_INT_STATUS_MASK |
1305			   PIPE_FIFO_UNDERRUN_STATUS);
1306
1307		dev_priv->pipestat_irq_mask[pipe] = 0;
1308	}
1309}
1310
1311static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1312				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1313{
1314	enum pipe pipe;
1315
1316	spin_lock(&dev_priv->irq_lock);
1317
1318	if (!dev_priv->display_irqs_enabled) {
1319		spin_unlock(&dev_priv->irq_lock);
1320		return;
1321	}
1322
1323	for_each_pipe(dev_priv, pipe) {
1324		i915_reg_t reg;
1325		u32 status_mask, enable_mask, iir_bit = 0;
1326
1327		/*
1328		 * PIPESTAT bits get signalled even when the interrupt is
1329		 * disabled with the mask bits, and some of the status bits do
1330		 * not generate interrupts at all (like the underrun bit). Hence
1331		 * we need to be careful that we only handle what we want to
1332		 * handle.
1333		 */
1334
1335		/* fifo underruns are filterered in the underrun handler. */
1336		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1337
1338		switch (pipe) {
1339		default:
1340		case PIPE_A:
1341			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1342			break;
1343		case PIPE_B:
1344			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1345			break;
1346		case PIPE_C:
1347			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1348			break;
1349		}
1350		if (iir & iir_bit)
1351			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1352
1353		if (!status_mask)
1354			continue;
1355
1356		reg = PIPESTAT(pipe);
1357		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1358		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1359
1360		/*
1361		 * Clear the PIPE*STAT regs before the IIR
1362		 *
1363		 * Toggle the enable bits to make sure we get an
1364		 * edge in the ISR pipe event bit if we don't clear
1365		 * all the enabled status bits. Otherwise the edge
1366		 * triggered IIR on i965/g4x wouldn't notice that
1367		 * an interrupt is still pending.
1368		 */
1369		if (pipe_stats[pipe]) {
1370			I915_WRITE(reg, pipe_stats[pipe]);
1371			I915_WRITE(reg, enable_mask);
1372		}
1373	}
1374	spin_unlock(&dev_priv->irq_lock);
1375}
1376
1377static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1378				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1379{
1380	enum pipe pipe;
1381
1382	for_each_pipe(dev_priv, pipe) {
1383		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1384			intel_handle_vblank(dev_priv, pipe);
1385
1386		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1387			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1388
1389		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1390			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1391	}
1392}
1393
1394static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1395				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1396{
1397	bool blc_event = false;
1398	enum pipe pipe;
1399
1400	for_each_pipe(dev_priv, pipe) {
1401		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1402			intel_handle_vblank(dev_priv, pipe);
1403
1404		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1405			blc_event = true;
1406
1407		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1408			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1409
1410		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1411			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1412	}
1413
1414	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1415		intel_opregion_asle_intr(dev_priv);
1416}
1417
1418static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1419				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1420{
1421	bool blc_event = false;
1422	enum pipe pipe;
1423
1424	for_each_pipe(dev_priv, pipe) {
1425		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1426			intel_handle_vblank(dev_priv, pipe);
1427
1428		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1429			blc_event = true;
1430
1431		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1432			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1433
1434		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1435			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1436	}
1437
1438	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1439		intel_opregion_asle_intr(dev_priv);
1440
1441	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1442		gmbus_irq_handler(dev_priv);
1443}
1444
1445static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1446					    u32 pipe_stats[I915_MAX_PIPES])
1447{
1448	enum pipe pipe;
1449
1450	for_each_pipe(dev_priv, pipe) {
1451		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1452			intel_handle_vblank(dev_priv, pipe);
1453
1454		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1455			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1456
1457		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1458			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1459	}
1460
1461	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1462		gmbus_irq_handler(dev_priv);
1463}
1464
1465static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1466{
1467	u32 hotplug_status = 0, hotplug_status_mask;
1468	int i;
1469
1470	if (IS_G4X(dev_priv) ||
1471	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1472		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1473			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1474	else
1475		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1476
1477	/*
1478	 * We absolutely have to clear all the pending interrupt
1479	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1480	 * interrupt bit won't have an edge, and the i965/g4x
1481	 * edge triggered IIR will not notice that an interrupt
1482	 * is still pending. We can't use PORT_HOTPLUG_EN to
1483	 * guarantee the edge as the act of toggling the enable
1484	 * bits can itself generate a new hotplug interrupt :(
1485	 */
1486	for (i = 0; i < 10; i++) {
1487		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1488
1489		if (tmp == 0)
1490			return hotplug_status;
1491
1492		hotplug_status |= tmp;
1493		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1494	}
1495
1496	drm_WARN_ONCE(&dev_priv->drm, 1,
1497		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1498		      I915_READ(PORT_HOTPLUG_STAT));
1499
1500	return hotplug_status;
1501}
1502
1503static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1504				 u32 hotplug_status)
1505{
1506	u32 pin_mask = 0, long_mask = 0;
1507
1508	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1509	    IS_CHERRYVIEW(dev_priv)) {
1510		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1511
1512		if (hotplug_trigger) {
1513			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1514					   hotplug_trigger, hotplug_trigger,
1515					   hpd_status_g4x,
1516					   i9xx_port_hotplug_long_detect);
1517
1518			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1519		}
1520
1521		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1522			dp_aux_irq_handler(dev_priv);
1523	} else {
1524		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1525
1526		if (hotplug_trigger) {
1527			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1528					   hotplug_trigger, hotplug_trigger,
1529					   hpd_status_i915,
1530					   i9xx_port_hotplug_long_detect);
1531			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1532		}
1533	}
1534}
1535
1536static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1537{
1538	struct drm_i915_private *dev_priv = arg;
1539	irqreturn_t ret = IRQ_NONE;
1540
1541	if (!intel_irqs_enabled(dev_priv))
1542		return IRQ_NONE;
1543
1544	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1545	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1546
1547	do {
1548		u32 iir, gt_iir, pm_iir;
1549		u32 pipe_stats[I915_MAX_PIPES] = {};
1550		u32 hotplug_status = 0;
1551		u32 ier = 0;
1552
1553		gt_iir = I915_READ(GTIIR);
1554		pm_iir = I915_READ(GEN6_PMIIR);
1555		iir = I915_READ(VLV_IIR);
1556
1557		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1558			break;
1559
1560		ret = IRQ_HANDLED;
1561
1562		/*
1563		 * Theory on interrupt generation, based on empirical evidence:
1564		 *
1565		 * x = ((VLV_IIR & VLV_IER) ||
1566		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1567		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1568		 *
1569		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1570		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1571		 * guarantee the CPU interrupt will be raised again even if we
1572		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1573		 * bits this time around.
1574		 */
1575		I915_WRITE(VLV_MASTER_IER, 0);
1576		ier = I915_READ(VLV_IER);
1577		I915_WRITE(VLV_IER, 0);
1578
1579		if (gt_iir)
1580			I915_WRITE(GTIIR, gt_iir);
1581		if (pm_iir)
1582			I915_WRITE(GEN6_PMIIR, pm_iir);
1583
1584		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1585			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1586
1587		/* Call regardless, as some status bits might not be
1588		 * signalled in iir */
1589		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1590
1591		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1592			   I915_LPE_PIPE_B_INTERRUPT))
1593			intel_lpe_audio_irq_handler(dev_priv);
1594
1595		/*
1596		 * VLV_IIR is single buffered, and reflects the level
1597		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1598		 */
1599		if (iir)
1600			I915_WRITE(VLV_IIR, iir);
1601
1602		I915_WRITE(VLV_IER, ier);
1603		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1604
1605		if (gt_iir)
1606			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1607		if (pm_iir)
1608			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1609
1610		if (hotplug_status)
1611			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1612
1613		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1614	} while (0);
1615
1616	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1617
1618	return ret;
1619}
1620
1621static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1622{
1623	struct drm_i915_private *dev_priv = arg;
1624	irqreturn_t ret = IRQ_NONE;
1625
1626	if (!intel_irqs_enabled(dev_priv))
1627		return IRQ_NONE;
1628
1629	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1630	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1631
1632	do {
1633		u32 master_ctl, iir;
1634		u32 pipe_stats[I915_MAX_PIPES] = {};
1635		u32 hotplug_status = 0;
1636		u32 ier = 0;
1637
1638		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1639		iir = I915_READ(VLV_IIR);
1640
1641		if (master_ctl == 0 && iir == 0)
1642			break;
1643
1644		ret = IRQ_HANDLED;
1645
1646		/*
1647		 * Theory on interrupt generation, based on empirical evidence:
1648		 *
1649		 * x = ((VLV_IIR & VLV_IER) ||
1650		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1651		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1652		 *
1653		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1654		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1655		 * guarantee the CPU interrupt will be raised again even if we
1656		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1657		 * bits this time around.
1658		 */
1659		I915_WRITE(GEN8_MASTER_IRQ, 0);
1660		ier = I915_READ(VLV_IER);
1661		I915_WRITE(VLV_IER, 0);
1662
1663		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1664
1665		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1666			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1667
1668		/* Call regardless, as some status bits might not be
1669		 * signalled in iir */
1670		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1671
1672		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1673			   I915_LPE_PIPE_B_INTERRUPT |
1674			   I915_LPE_PIPE_C_INTERRUPT))
1675			intel_lpe_audio_irq_handler(dev_priv);
1676
1677		/*
1678		 * VLV_IIR is single buffered, and reflects the level
1679		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1680		 */
1681		if (iir)
1682			I915_WRITE(VLV_IIR, iir);
1683
1684		I915_WRITE(VLV_IER, ier);
1685		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1686
1687		if (hotplug_status)
1688			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1689
1690		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1691	} while (0);
1692
1693	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1694
1695	return ret;
1696}
1697
1698static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1699				u32 hotplug_trigger,
1700				const u32 hpd[HPD_NUM_PINS])
1701{
1702	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1703
1704	/*
1705	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1706	 * unless we touch the hotplug register, even if hotplug_trigger is
1707	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1708	 * errors.
1709	 */
1710	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1711	if (!hotplug_trigger) {
1712		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1713			PORTD_HOTPLUG_STATUS_MASK |
1714			PORTC_HOTPLUG_STATUS_MASK |
1715			PORTB_HOTPLUG_STATUS_MASK;
1716		dig_hotplug_reg &= ~mask;
1717	}
1718
1719	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1720	if (!hotplug_trigger)
1721		return;
1722
1723	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1724			   dig_hotplug_reg, hpd,
1725			   pch_port_hotplug_long_detect);
1726
1727	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1728}
1729
1730static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1731{
1732	enum pipe pipe;
1733	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1734
1735	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
1736
1737	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1738		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1739			       SDE_AUDIO_POWER_SHIFT);
1740		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1741			port_name(port));
1742	}
1743
1744	if (pch_iir & SDE_AUX_MASK)
1745		dp_aux_irq_handler(dev_priv);
1746
1747	if (pch_iir & SDE_GMBUS)
1748		gmbus_irq_handler(dev_priv);
1749
1750	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1751		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1752
1753	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1754		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1755
1756	if (pch_iir & SDE_POISON)
1757		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1758
1759	if (pch_iir & SDE_FDI_MASK) {
1760		for_each_pipe(dev_priv, pipe)
1761			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1762				pipe_name(pipe),
1763				I915_READ(FDI_RX_IIR(pipe)));
1764	}
1765
1766	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1767		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1768
1769	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1770		drm_dbg(&dev_priv->drm,
1771			"PCH transcoder CRC error interrupt\n");
1772
1773	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1774		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1775
1776	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1777		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1778}
1779
1780static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1781{
1782	u32 err_int = I915_READ(GEN7_ERR_INT);
1783	enum pipe pipe;
1784
1785	if (err_int & ERR_INT_POISON)
1786		drm_err(&dev_priv->drm, "Poison interrupt\n");
1787
1788	for_each_pipe(dev_priv, pipe) {
1789		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1790			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1791
1792		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1793			if (IS_IVYBRIDGE(dev_priv))
1794				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1795			else
1796				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1797		}
1798	}
1799
1800	I915_WRITE(GEN7_ERR_INT, err_int);
1801}
1802
1803static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1804{
1805	u32 serr_int = I915_READ(SERR_INT);
1806	enum pipe pipe;
1807
1808	if (serr_int & SERR_INT_POISON)
1809		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1810
1811	for_each_pipe(dev_priv, pipe)
1812		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1813			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1814
1815	I915_WRITE(SERR_INT, serr_int);
1816}
1817
1818static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1819{
1820	enum pipe pipe;
1821	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1822
1823	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
1824
1825	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1826		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1827			       SDE_AUDIO_POWER_SHIFT_CPT);
1828		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1829			port_name(port));
1830	}
1831
1832	if (pch_iir & SDE_AUX_MASK_CPT)
1833		dp_aux_irq_handler(dev_priv);
1834
1835	if (pch_iir & SDE_GMBUS_CPT)
1836		gmbus_irq_handler(dev_priv);
1837
1838	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1839		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1840
1841	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1842		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1843
1844	if (pch_iir & SDE_FDI_MASK_CPT) {
1845		for_each_pipe(dev_priv, pipe)
1846			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1847				pipe_name(pipe),
1848				I915_READ(FDI_RX_IIR(pipe)));
1849	}
1850
1851	if (pch_iir & SDE_ERROR_CPT)
1852		cpt_serr_int_handler(dev_priv);
1853}
1854
1855static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1856{
1857	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1858	u32 pin_mask = 0, long_mask = 0;
1859	bool (*tc_port_hotplug_long_detect)(enum hpd_pin pin, u32 val);
1860	const u32 *pins;
1861
1862	if (HAS_PCH_TGP(dev_priv)) {
1863		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1864		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1865		tc_port_hotplug_long_detect = tgp_tc_port_hotplug_long_detect;
1866		pins = hpd_tgp;
1867	} else if (HAS_PCH_JSP(dev_priv)) {
1868		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1869		tc_hotplug_trigger = 0;
1870		pins = hpd_tgp;
1871	} else if (HAS_PCH_MCC(dev_priv)) {
1872		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1873		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1874		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1875		pins = hpd_icp;
1876	} else {
1877		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1878			 "Unrecognized PCH type 0x%x\n",
1879			 INTEL_PCH_TYPE(dev_priv));
1880
1881		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1882		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1883		tc_port_hotplug_long_detect = icp_tc_port_hotplug_long_detect;
1884		pins = hpd_icp;
1885	}
1886
1887	if (ddi_hotplug_trigger) {
1888		u32 dig_hotplug_reg;
1889
1890		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1891		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1892
1893		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1894				   ddi_hotplug_trigger,
1895				   dig_hotplug_reg, pins,
1896				   icp_ddi_port_hotplug_long_detect);
1897	}
1898
1899	if (tc_hotplug_trigger) {
1900		u32 dig_hotplug_reg;
1901
1902		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1903		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1904
1905		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1906				   tc_hotplug_trigger,
1907				   dig_hotplug_reg, pins,
1908				   tc_port_hotplug_long_detect);
1909	}
1910
1911	if (pin_mask)
1912		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1913
1914	if (pch_iir & SDE_GMBUS_ICP)
1915		gmbus_irq_handler(dev_priv);
1916}
1917
1918static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1919{
1920	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1921		~SDE_PORTE_HOTPLUG_SPT;
1922	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1923	u32 pin_mask = 0, long_mask = 0;
1924
1925	if (hotplug_trigger) {
1926		u32 dig_hotplug_reg;
1927
1928		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1929		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1930
1931		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
1933				   spt_port_hotplug_long_detect);
1934	}
1935
1936	if (hotplug2_trigger) {
1937		u32 dig_hotplug_reg;
1938
1939		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1940		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1941
1942		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1943				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
1944				   spt_port_hotplug2_long_detect);
1945	}
1946
1947	if (pin_mask)
1948		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1949
1950	if (pch_iir & SDE_GMBUS_CPT)
1951		gmbus_irq_handler(dev_priv);
1952}
1953
1954static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1955				u32 hotplug_trigger,
1956				const u32 hpd[HPD_NUM_PINS])
1957{
1958	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1959
1960	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1961	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1962
1963	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
1964			   dig_hotplug_reg, hpd,
1965			   ilk_port_hotplug_long_detect);
1966
1967	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1968}
1969
1970static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
1971				    u32 de_iir)
1972{
1973	enum pipe pipe;
1974	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1975
1976	if (hotplug_trigger)
1977		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
1978
1979	if (de_iir & DE_AUX_CHANNEL_A)
1980		dp_aux_irq_handler(dev_priv);
1981
1982	if (de_iir & DE_GSE)
1983		intel_opregion_asle_intr(dev_priv);
1984
1985	if (de_iir & DE_POISON)
1986		drm_err(&dev_priv->drm, "Poison interrupt\n");
1987
1988	for_each_pipe(dev_priv, pipe) {
1989		if (de_iir & DE_PIPE_VBLANK(pipe))
1990			intel_handle_vblank(dev_priv, pipe);
1991
1992		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1993			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1994
1995		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1996			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1997	}
1998
1999	/* check event from PCH */
2000	if (de_iir & DE_PCH_EVENT) {
2001		u32 pch_iir = I915_READ(SDEIIR);
2002
2003		if (HAS_PCH_CPT(dev_priv))
2004			cpt_irq_handler(dev_priv, pch_iir);
2005		else
2006			ibx_irq_handler(dev_priv, pch_iir);
2007
2008		/* should clear PCH hotplug event before clear CPU irq */
2009		I915_WRITE(SDEIIR, pch_iir);
2010	}
2011
2012	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2013		gen5_rps_irq_handler(&dev_priv->gt.rps);
2014}
2015
2016static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2017				    u32 de_iir)
2018{
2019	enum pipe pipe;
2020	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2021
2022	if (hotplug_trigger)
2023		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2024
2025	if (de_iir & DE_ERR_INT_IVB)
2026		ivb_err_int_handler(dev_priv);
2027
2028	if (de_iir & DE_EDP_PSR_INT_HSW) {
2029		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2030
2031		intel_psr_irq_handler(dev_priv, psr_iir);
2032		I915_WRITE(EDP_PSR_IIR, psr_iir);
2033	}
2034
2035	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2036		dp_aux_irq_handler(dev_priv);
2037
2038	if (de_iir & DE_GSE_IVB)
2039		intel_opregion_asle_intr(dev_priv);
2040
2041	for_each_pipe(dev_priv, pipe) {
2042		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2043			intel_handle_vblank(dev_priv, pipe);
2044	}
2045
2046	/* check event from PCH */
2047	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2048		u32 pch_iir = I915_READ(SDEIIR);
2049
2050		cpt_irq_handler(dev_priv, pch_iir);
2051
2052		/* clear PCH hotplug event before clear CPU irq */
2053		I915_WRITE(SDEIIR, pch_iir);
2054	}
2055}
2056
2057/*
2058 * To handle irqs with the minimum potential races with fresh interrupts, we:
2059 * 1 - Disable Master Interrupt Control.
2060 * 2 - Find the source(s) of the interrupt.
2061 * 3 - Clear the Interrupt Identity bits (IIR).
2062 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2063 * 5 - Re-enable Master Interrupt Control.
2064 */
2065static irqreturn_t ilk_irq_handler(int irq, void *arg)
2066{
2067	struct drm_i915_private *dev_priv = arg;
2068	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2069	irqreturn_t ret = IRQ_NONE;
2070
2071	if (!intel_irqs_enabled(dev_priv))
2072		return IRQ_NONE;
2073
2074	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2075	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2076
2077	/* disable master interrupt before clearing iir  */
2078	de_ier = I915_READ(DEIER);
2079	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2080
2081	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2082	 * interrupts will will be stored on its back queue, and then we'll be
2083	 * able to process them after we restore SDEIER (as soon as we restore
2084	 * it, we'll get an interrupt if SDEIIR still has something to process
2085	 * due to its back queue). */
2086	if (!HAS_PCH_NOP(dev_priv)) {
2087		sde_ier = I915_READ(SDEIER);
2088		I915_WRITE(SDEIER, 0);
2089	}
2090
2091	/* Find, clear, then process each source of interrupt */
2092
2093	gt_iir = I915_READ(GTIIR);
2094	if (gt_iir) {
2095		I915_WRITE(GTIIR, gt_iir);
2096		ret = IRQ_HANDLED;
2097		if (INTEL_GEN(dev_priv) >= 6)
2098			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2099		else
2100			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2101	}
2102
2103	de_iir = I915_READ(DEIIR);
2104	if (de_iir) {
2105		I915_WRITE(DEIIR, de_iir);
2106		ret = IRQ_HANDLED;
2107		if (INTEL_GEN(dev_priv) >= 7)
2108			ivb_display_irq_handler(dev_priv, de_iir);
2109		else
2110			ilk_display_irq_handler(dev_priv, de_iir);
2111	}
2112
2113	if (INTEL_GEN(dev_priv) >= 6) {
2114		u32 pm_iir = I915_READ(GEN6_PMIIR);
2115		if (pm_iir) {
2116			I915_WRITE(GEN6_PMIIR, pm_iir);
2117			ret = IRQ_HANDLED;
2118			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
2119		}
2120	}
2121
2122	I915_WRITE(DEIER, de_ier);
2123	if (!HAS_PCH_NOP(dev_priv))
2124		I915_WRITE(SDEIER, sde_ier);
2125
2126	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2127	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2128
2129	return ret;
2130}
2131
2132static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2133				u32 hotplug_trigger,
2134				const u32 hpd[HPD_NUM_PINS])
2135{
2136	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2137
2138	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2139	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2140
2141	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2142			   dig_hotplug_reg, hpd,
2143			   bxt_port_hotplug_long_detect);
2144
2145	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2146}
2147
2148static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2149{
2150	u32 pin_mask = 0, long_mask = 0;
2151	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2152	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2153	long_pulse_detect_func long_pulse_detect;
2154	const u32 *hpd;
2155
2156	if (INTEL_GEN(dev_priv) >= 12) {
2157		long_pulse_detect = gen12_port_hotplug_long_detect;
2158		hpd = hpd_gen12;
2159	} else {
2160		long_pulse_detect = gen11_port_hotplug_long_detect;
2161		hpd = hpd_gen11;
2162	}
2163
2164	if (trigger_tc) {
2165		u32 dig_hotplug_reg;
2166
2167		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2168		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2169
2170		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2171				   dig_hotplug_reg, hpd, long_pulse_detect);
2172	}
2173
2174	if (trigger_tbt) {
2175		u32 dig_hotplug_reg;
2176
2177		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2178		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2179
2180		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2181				   dig_hotplug_reg, hpd, long_pulse_detect);
2182	}
2183
2184	if (pin_mask)
2185		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2186	else
2187		drm_err(&dev_priv->drm,
2188			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2189}
2190
2191static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2192{
2193	u32 mask;
2194
2195	if (INTEL_GEN(dev_priv) >= 12)
2196		return TGL_DE_PORT_AUX_DDIA |
2197			TGL_DE_PORT_AUX_DDIB |
2198			TGL_DE_PORT_AUX_DDIC |
2199			TGL_DE_PORT_AUX_USBC1 |
2200			TGL_DE_PORT_AUX_USBC2 |
2201			TGL_DE_PORT_AUX_USBC3 |
2202			TGL_DE_PORT_AUX_USBC4 |
2203			TGL_DE_PORT_AUX_USBC5 |
2204			TGL_DE_PORT_AUX_USBC6;
2205
2206
2207	mask = GEN8_AUX_CHANNEL_A;
2208	if (INTEL_GEN(dev_priv) >= 9)
2209		mask |= GEN9_AUX_CHANNEL_B |
2210			GEN9_AUX_CHANNEL_C |
2211			GEN9_AUX_CHANNEL_D;
2212
2213	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2214		mask |= CNL_AUX_CHANNEL_F;
2215
2216	if (IS_GEN(dev_priv, 11))
2217		mask |= ICL_AUX_CHANNEL_E;
2218
2219	return mask;
2220}
2221
2222static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2223{
2224	if (INTEL_GEN(dev_priv) >= 11)
2225		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2226	else if (INTEL_GEN(dev_priv) >= 9)
2227		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2228	else
2229		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2230}
2231
2232static void
2233gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2234{
2235	bool found = false;
2236
2237	if (iir & GEN8_DE_MISC_GSE) {
2238		intel_opregion_asle_intr(dev_priv);
2239		found = true;
2240	}
2241
2242	if (iir & GEN8_DE_EDP_PSR) {
2243		u32 psr_iir;
2244		i915_reg_t iir_reg;
2245
2246		if (INTEL_GEN(dev_priv) >= 12)
2247			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2248		else
2249			iir_reg = EDP_PSR_IIR;
2250
2251		psr_iir = I915_READ(iir_reg);
2252		I915_WRITE(iir_reg, psr_iir);
2253
2254		if (psr_iir)
2255			found = true;
2256
2257		intel_psr_irq_handler(dev_priv, psr_iir);
2258	}
2259
2260	if (!found)
2261		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2262}
2263
2264static irqreturn_t
2265gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2266{
2267	irqreturn_t ret = IRQ_NONE;
2268	u32 iir;
2269	enum pipe pipe;
2270
2271	if (master_ctl & GEN8_DE_MISC_IRQ) {
2272		iir = I915_READ(GEN8_DE_MISC_IIR);
2273		if (iir) {
2274			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2275			ret = IRQ_HANDLED;
2276			gen8_de_misc_irq_handler(dev_priv, iir);
2277		} else {
2278			drm_err(&dev_priv->drm,
2279				"The master control interrupt lied (DE MISC)!\n");
2280		}
2281	}
2282
2283	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2284		iir = I915_READ(GEN11_DE_HPD_IIR);
2285		if (iir) {
2286			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2287			ret = IRQ_HANDLED;
2288			gen11_hpd_irq_handler(dev_priv, iir);
2289		} else {
2290			drm_err(&dev_priv->drm,
2291				"The master control interrupt lied, (DE HPD)!\n");
2292		}
2293	}
2294
2295	if (master_ctl & GEN8_DE_PORT_IRQ) {
2296		iir = I915_READ(GEN8_DE_PORT_IIR);
2297		if (iir) {
2298			u32 tmp_mask;
2299			bool found = false;
2300
2301			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302			ret = IRQ_HANDLED;
2303
2304			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2305				dp_aux_irq_handler(dev_priv);
2306				found = true;
2307			}
2308
2309			if (IS_GEN9_LP(dev_priv)) {
2310				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2311				if (tmp_mask) {
2312					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2313							    hpd_bxt);
2314					found = true;
2315				}
2316			} else if (IS_BROADWELL(dev_priv)) {
2317				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2318				if (tmp_mask) {
2319					ilk_hpd_irq_handler(dev_priv,
2320							    tmp_mask, hpd_bdw);
2321					found = true;
2322				}
2323			}
2324
2325			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2326				gmbus_irq_handler(dev_priv);
2327				found = true;
2328			}
2329
2330			if (!found)
2331				drm_err(&dev_priv->drm,
2332					"Unexpected DE Port interrupt\n");
2333		}
2334		else
2335			drm_err(&dev_priv->drm,
2336				"The master control interrupt lied (DE PORT)!\n");
2337	}
2338
2339	for_each_pipe(dev_priv, pipe) {
2340		u32 fault_errors;
2341
2342		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2343			continue;
2344
2345		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2346		if (!iir) {
2347			drm_err(&dev_priv->drm,
2348				"The master control interrupt lied (DE PIPE)!\n");
2349			continue;
2350		}
2351
2352		ret = IRQ_HANDLED;
2353		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2354
2355		if (iir & GEN8_PIPE_VBLANK)
2356			intel_handle_vblank(dev_priv, pipe);
2357
2358		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2359			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2360
2361		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2362			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2363
2364		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2365		if (fault_errors)
2366			drm_err(&dev_priv->drm,
2367				"Fault errors on pipe %c: 0x%08x\n",
2368				pipe_name(pipe),
2369				fault_errors);
2370	}
2371
2372	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2373	    master_ctl & GEN8_DE_PCH_IRQ) {
2374		/*
2375		 * FIXME(BDW): Assume for now that the new interrupt handling
2376		 * scheme also closed the SDE interrupt handling race we've seen
2377		 * on older pch-split platforms. But this needs testing.
2378		 */
2379		iir = I915_READ(SDEIIR);
2380		if (iir) {
2381			I915_WRITE(SDEIIR, iir);
2382			ret = IRQ_HANDLED;
2383
2384			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2385				icp_irq_handler(dev_priv, iir);
2386			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2387				spt_irq_handler(dev_priv, iir);
2388			else
2389				cpt_irq_handler(dev_priv, iir);
2390		} else {
2391			/*
2392			 * Like on previous PCH there seems to be something
2393			 * fishy going on with forwarding PCH interrupts.
2394			 */
2395			drm_dbg(&dev_priv->drm,
2396				"The master control interrupt lied (SDE)!\n");
2397		}
2398	}
2399
2400	return ret;
2401}
2402
2403static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2404{
2405	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2406
2407	/*
2408	 * Now with master disabled, get a sample of level indications
2409	 * for this interrupt. Indications will be cleared on related acks.
2410	 * New indications can and will light up during processing,
2411	 * and will generate new interrupt after enabling master.
2412	 */
2413	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2414}
2415
2416static inline void gen8_master_intr_enable(void __iomem * const regs)
2417{
2418	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2419}
2420
2421static irqreturn_t gen8_irq_handler(int irq, void *arg)
2422{
2423	struct drm_i915_private *dev_priv = arg;
2424	void __iomem * const regs = dev_priv->uncore.regs;
2425	u32 master_ctl;
2426
2427	if (!intel_irqs_enabled(dev_priv))
2428		return IRQ_NONE;
2429
2430	master_ctl = gen8_master_intr_disable(regs);
2431	if (!master_ctl) {
2432		gen8_master_intr_enable(regs);
2433		return IRQ_NONE;
2434	}
2435
2436	/* Find, queue (onto bottom-halves), then clear each source */
2437	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2438
2439	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2440	if (master_ctl & ~GEN8_GT_IRQS) {
2441		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2442		gen8_de_irq_handler(dev_priv, master_ctl);
2443		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2444	}
2445
2446	gen8_master_intr_enable(regs);
2447
2448	return IRQ_HANDLED;
2449}
2450
2451static u32
2452gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2453{
2454	void __iomem * const regs = gt->uncore->regs;
2455	u32 iir;
2456
2457	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2458		return 0;
2459
2460	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2461	if (likely(iir))
2462		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2463
2464	return iir;
2465}
2466
2467static void
2468gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2469{
2470	if (iir & GEN11_GU_MISC_GSE)
2471		intel_opregion_asle_intr(gt->i915);
2472}
2473
2474static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2475{
2476	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2477
2478	/*
2479	 * Now with master disabled, get a sample of level indications
2480	 * for this interrupt. Indications will be cleared on related acks.
2481	 * New indications can and will light up during processing,
2482	 * and will generate new interrupt after enabling master.
2483	 */
2484	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2485}
2486
2487static inline void gen11_master_intr_enable(void __iomem * const regs)
2488{
2489	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2490}
2491
2492static void
2493gen11_display_irq_handler(struct drm_i915_private *i915)
2494{
2495	void __iomem * const regs = i915->uncore.regs;
2496	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2497
2498	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2499	/*
2500	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2501	 * for the display related bits.
2502	 */
2503	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2504	gen8_de_irq_handler(i915, disp_ctl);
2505	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2506		      GEN11_DISPLAY_IRQ_ENABLE);
2507
2508	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2509}
2510
2511static __always_inline irqreturn_t
2512__gen11_irq_handler(struct drm_i915_private * const i915,
2513		    u32 (*intr_disable)(void __iomem * const regs),
2514		    void (*intr_enable)(void __iomem * const regs))
2515{
2516	void __iomem * const regs = i915->uncore.regs;
2517	struct intel_gt *gt = &i915->gt;
2518	u32 master_ctl;
2519	u32 gu_misc_iir;
2520
2521	if (!intel_irqs_enabled(i915))
2522		return IRQ_NONE;
2523
2524	master_ctl = intr_disable(regs);
2525	if (!master_ctl) {
2526		intr_enable(regs);
2527		return IRQ_NONE;
2528	}
2529
2530	/* Find, queue (onto bottom-halves), then clear each source */
2531	gen11_gt_irq_handler(gt, master_ctl);
2532
2533	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2534	if (master_ctl & GEN11_DISPLAY_IRQ)
2535		gen11_display_irq_handler(i915);
2536
2537	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2538
2539	intr_enable(regs);
2540
2541	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2542
2543	return IRQ_HANDLED;
2544}
2545
2546static irqreturn_t gen11_irq_handler(int irq, void *arg)
2547{
2548	return __gen11_irq_handler(arg,
2549				   gen11_master_intr_disable,
2550				   gen11_master_intr_enable);
2551}
2552
2553/* Called from drm generic code, passed 'crtc' which
2554 * we use as a pipe index
2555 */
2556int i8xx_enable_vblank(struct drm_crtc *crtc)
2557{
2558	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2559	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2560	unsigned long irqflags;
2561
2562	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2563	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2564	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2565
2566	return 0;
2567}
2568
2569int i915gm_enable_vblank(struct drm_crtc *crtc)
2570{
2571	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2572
2573	/*
2574	 * Vblank interrupts fail to wake the device up from C2+.
2575	 * Disabling render clock gating during C-states avoids
2576	 * the problem. There is a small power cost so we do this
2577	 * only when vblank interrupts are actually enabled.
2578	 */
2579	if (dev_priv->vblank_enabled++ == 0)
2580		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2581
2582	return i8xx_enable_vblank(crtc);
2583}
2584
2585int i965_enable_vblank(struct drm_crtc *crtc)
2586{
2587	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2588	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2589	unsigned long irqflags;
2590
2591	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2592	i915_enable_pipestat(dev_priv, pipe,
2593			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2594	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2595
2596	return 0;
2597}
2598
2599int ilk_enable_vblank(struct drm_crtc *crtc)
2600{
2601	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2602	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2603	unsigned long irqflags;
2604	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2605		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2606
2607	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2608	ilk_enable_display_irq(dev_priv, bit);
2609	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2610
2611	/* Even though there is no DMC, frame counter can get stuck when
2612	 * PSR is active as no frames are generated.
2613	 */
2614	if (HAS_PSR(dev_priv))
2615		drm_crtc_vblank_restore(crtc);
2616
2617	return 0;
2618}
2619
2620int bdw_enable_vblank(struct drm_crtc *crtc)
2621{
2622	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2623	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2624	unsigned long irqflags;
2625
2626	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2627	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2628	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2629
2630	/* Even if there is no DMC, frame counter can get stuck when
2631	 * PSR is active as no frames are generated, so check only for PSR.
2632	 */
2633	if (HAS_PSR(dev_priv))
2634		drm_crtc_vblank_restore(crtc);
2635
2636	return 0;
2637}
2638
2639/* Called from drm generic code, passed 'crtc' which
2640 * we use as a pipe index
2641 */
2642void i8xx_disable_vblank(struct drm_crtc *crtc)
2643{
2644	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2645	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2646	unsigned long irqflags;
2647
2648	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2649	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2650	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2651}
2652
2653void i915gm_disable_vblank(struct drm_crtc *crtc)
2654{
2655	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2656
2657	i8xx_disable_vblank(crtc);
2658
2659	if (--dev_priv->vblank_enabled == 0)
2660		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2661}
2662
2663void i965_disable_vblank(struct drm_crtc *crtc)
2664{
2665	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2666	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2667	unsigned long irqflags;
2668
2669	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2670	i915_disable_pipestat(dev_priv, pipe,
2671			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2672	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2673}
2674
2675void ilk_disable_vblank(struct drm_crtc *crtc)
2676{
2677	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2678	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2679	unsigned long irqflags;
2680	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2681		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2682
2683	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2684	ilk_disable_display_irq(dev_priv, bit);
2685	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2686}
2687
2688void bdw_disable_vblank(struct drm_crtc *crtc)
2689{
2690	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2691	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2692	unsigned long irqflags;
2693
2694	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2695	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2696	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2697}
2698
2699static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2700{
2701	struct intel_uncore *uncore = &dev_priv->uncore;
2702
2703	if (HAS_PCH_NOP(dev_priv))
2704		return;
2705
2706	GEN3_IRQ_RESET(uncore, SDE);
2707
2708	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2709		I915_WRITE(SERR_INT, 0xffffffff);
2710}
2711
2712/*
2713 * SDEIER is also touched by the interrupt handler to work around missed PCH
2714 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2715 * instead we unconditionally enable all PCH interrupt sources here, but then
2716 * only unmask them as needed with SDEIMR.
2717 *
2718 * This function needs to be called before interrupts are enabled.
2719 */
2720static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2721{
2722	if (HAS_PCH_NOP(dev_priv))
2723		return;
2724
2725	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2726	I915_WRITE(SDEIER, 0xffffffff);
2727	POSTING_READ(SDEIER);
2728}
2729
2730static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2731{
2732	struct intel_uncore *uncore = &dev_priv->uncore;
2733
2734	if (IS_CHERRYVIEW(dev_priv))
2735		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2736	else
2737		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2738
2739	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2740	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2741
2742	i9xx_pipestat_irq_reset(dev_priv);
2743
2744	GEN3_IRQ_RESET(uncore, VLV_);
2745	dev_priv->irq_mask = ~0u;
2746}
2747
2748static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2749{
2750	struct intel_uncore *uncore = &dev_priv->uncore;
2751
2752	u32 pipestat_mask;
2753	u32 enable_mask;
2754	enum pipe pipe;
2755
2756	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2757
2758	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2759	for_each_pipe(dev_priv, pipe)
2760		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2761
2762	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2763		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2764		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2765		I915_LPE_PIPE_A_INTERRUPT |
2766		I915_LPE_PIPE_B_INTERRUPT;
2767
2768	if (IS_CHERRYVIEW(dev_priv))
2769		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2770			I915_LPE_PIPE_C_INTERRUPT;
2771
2772	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2773
2774	dev_priv->irq_mask = ~enable_mask;
2775
2776	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2777}
2778
2779/* drm_dma.h hooks
2780*/
2781static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2782{
2783	struct intel_uncore *uncore = &dev_priv->uncore;
2784
2785	GEN3_IRQ_RESET(uncore, DE);
2786	if (IS_GEN(dev_priv, 7))
2787		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2788
2789	if (IS_HASWELL(dev_priv)) {
2790		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2791		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2792	}
2793
2794	gen5_gt_irq_reset(&dev_priv->gt);
2795
2796	ibx_irq_reset(dev_priv);
2797}
2798
2799static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2800{
2801	I915_WRITE(VLV_MASTER_IER, 0);
2802	POSTING_READ(VLV_MASTER_IER);
2803
2804	gen5_gt_irq_reset(&dev_priv->gt);
2805
2806	spin_lock_irq(&dev_priv->irq_lock);
2807	if (dev_priv->display_irqs_enabled)
2808		vlv_display_irq_reset(dev_priv);
2809	spin_unlock_irq(&dev_priv->irq_lock);
2810}
2811
2812static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2813{
2814	struct intel_uncore *uncore = &dev_priv->uncore;
2815	enum pipe pipe;
2816
2817	gen8_master_intr_disable(dev_priv->uncore.regs);
2818
2819	gen8_gt_irq_reset(&dev_priv->gt);
2820
2821	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2822	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2823
2824	for_each_pipe(dev_priv, pipe)
2825		if (intel_display_power_is_enabled(dev_priv,
2826						   POWER_DOMAIN_PIPE(pipe)))
2827			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2828
2829	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2830	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2831	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2832
2833	if (HAS_PCH_SPLIT(dev_priv))
2834		ibx_irq_reset(dev_priv);
2835}
2836
2837static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2838{
2839	struct intel_uncore *uncore = &dev_priv->uncore;
2840	enum pipe pipe;
2841
2842	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2843
2844	if (INTEL_GEN(dev_priv) >= 12) {
2845		enum transcoder trans;
2846
2847		for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
2848			enum intel_display_power_domain domain;
2849
2850			domain = POWER_DOMAIN_TRANSCODER(trans);
2851			if (!intel_display_power_is_enabled(dev_priv, domain))
2852				continue;
2853
2854			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2855			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2856		}
2857	} else {
2858		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2859		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2860	}
2861
2862	for_each_pipe(dev_priv, pipe)
2863		if (intel_display_power_is_enabled(dev_priv,
2864						   POWER_DOMAIN_PIPE(pipe)))
2865			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2866
2867	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2868	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2869	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2870
2871	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2872		GEN3_IRQ_RESET(uncore, SDE);
2873}
2874
2875static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2876{
2877	struct intel_uncore *uncore = &dev_priv->uncore;
2878
2879	gen11_master_intr_disable(dev_priv->uncore.regs);
2880
2881	gen11_gt_irq_reset(&dev_priv->gt);
2882	gen11_display_irq_reset(dev_priv);
2883
2884	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2885	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2886}
2887
2888void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2889				     u8 pipe_mask)
2890{
2891	struct intel_uncore *uncore = &dev_priv->uncore;
2892
2893	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2894	enum pipe pipe;
2895
2896	spin_lock_irq(&dev_priv->irq_lock);
2897
2898	if (!intel_irqs_enabled(dev_priv)) {
2899		spin_unlock_irq(&dev_priv->irq_lock);
2900		return;
2901	}
2902
2903	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2904		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2905				  dev_priv->de_irq_mask[pipe],
2906				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2907
2908	spin_unlock_irq(&dev_priv->irq_lock);
2909}
2910
2911void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2912				     u8 pipe_mask)
2913{
2914	struct intel_uncore *uncore = &dev_priv->uncore;
2915	enum pipe pipe;
2916
2917	spin_lock_irq(&dev_priv->irq_lock);
2918
2919	if (!intel_irqs_enabled(dev_priv)) {
2920		spin_unlock_irq(&dev_priv->irq_lock);
2921		return;
2922	}
2923
2924	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2925		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2926
2927	spin_unlock_irq(&dev_priv->irq_lock);
2928
2929	/* make sure we're done processing display irqs */
2930	intel_synchronize_irq(dev_priv);
2931}
2932
2933static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2934{
2935	struct intel_uncore *uncore = &dev_priv->uncore;
2936
2937	I915_WRITE(GEN8_MASTER_IRQ, 0);
2938	POSTING_READ(GEN8_MASTER_IRQ);
2939
2940	gen8_gt_irq_reset(&dev_priv->gt);
2941
2942	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2943
2944	spin_lock_irq(&dev_priv->irq_lock);
2945	if (dev_priv->display_irqs_enabled)
2946		vlv_display_irq_reset(dev_priv);
2947	spin_unlock_irq(&dev_priv->irq_lock);
2948}
2949
2950static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2951				  const u32 hpd[HPD_NUM_PINS])
2952{
2953	struct intel_encoder *encoder;
2954	u32 enabled_irqs = 0;
2955
2956	for_each_intel_encoder(&dev_priv->drm, encoder)
2957		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2958			enabled_irqs |= hpd[encoder->hpd_pin];
2959
2960	return enabled_irqs;
2961}
2962
2963static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
2964{
2965	u32 hotplug;
2966
2967	/*
2968	 * Enable digital hotplug on the PCH, and configure the DP short pulse
2969	 * duration to 2ms (which is the minimum in the Display Port spec).
2970	 * The pulse duration bits are reserved on LPT+.
2971	 */
2972	hotplug = I915_READ(PCH_PORT_HOTPLUG);
2973	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
2974		     PORTC_PULSE_DURATION_MASK |
2975		     PORTD_PULSE_DURATION_MASK);
2976	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
2977	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
2978	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
2979	/*
2980	 * When CPU and PCH are on the same package, port A
2981	 * HPD must be enabled in both north and south.
2982	 */
2983	if (HAS_PCH_LPT_LP(dev_priv))
2984		hotplug |= PORTA_HOTPLUG_ENABLE;
2985	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
2986}
2987
2988static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
2989{
2990	u32 hotplug_irqs, enabled_irqs;
2991
2992	if (HAS_PCH_IBX(dev_priv)) {
2993		hotplug_irqs = SDE_HOTPLUG_MASK;
2994		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
2995	} else {
2996		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
2997		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
2998	}
2999
3000	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3001
3002	ibx_hpd_detection_setup(dev_priv);
3003}
3004
3005static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3006				    u32 ddi_hotplug_enable_mask,
3007				    u32 tc_hotplug_enable_mask)
3008{
3009	u32 hotplug;
3010
3011	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3012	hotplug |= ddi_hotplug_enable_mask;
3013	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3014
3015	if (tc_hotplug_enable_mask) {
3016		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3017		hotplug |= tc_hotplug_enable_mask;
3018		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3019	}
3020}
3021
3022static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3023			      u32 sde_ddi_mask, u32 sde_tc_mask,
3024			      u32 ddi_enable_mask, u32 tc_enable_mask,
3025			      const u32 *pins)
3026{
3027	u32 hotplug_irqs, enabled_irqs;
3028
3029	hotplug_irqs = sde_ddi_mask | sde_tc_mask;
3030	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, pins);
3031
3032	I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3033
3034	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3035
3036	icp_hpd_detection_setup(dev_priv, ddi_enable_mask, tc_enable_mask);
3037}
3038
3039/*
3040 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3041 * equivalent of SDE.
3042 */
3043static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3044{
3045	icp_hpd_irq_setup(dev_priv,
3046			  SDE_DDI_MASK_ICP, SDE_TC_HOTPLUG_ICP(PORT_TC1),
3047			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1),
3048			  hpd_icp);
3049}
3050
3051/*
3052 * JSP behaves exactly the same as MCC above except that port C is mapped to
3053 * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3054 * masks & tables rather than ICP's masks & tables.
3055 */
3056static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3057{
3058	icp_hpd_irq_setup(dev_priv,
3059			  SDE_DDI_MASK_TGP, 0,
3060			  TGP_DDI_HPD_ENABLE_MASK, 0,
3061			  hpd_tgp);
3062}
3063
3064static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3065{
3066	u32 hotplug;
3067
3068	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3069	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3070		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3071		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3072		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3073	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3074
3075	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3076	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3077		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3078		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3079		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3080	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3081}
3082
3083static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3084{
3085	u32 hotplug_irqs, enabled_irqs;
3086	const u32 *hpd;
3087	u32 val;
3088
3089	hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3090	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3091	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3092
3093	val = I915_READ(GEN11_DE_HPD_IMR);
3094	val &= ~hotplug_irqs;
3095	val |= ~enabled_irqs & hotplug_irqs;
3096	I915_WRITE(GEN11_DE_HPD_IMR, val);
3097	POSTING_READ(GEN11_DE_HPD_IMR);
3098
3099	gen11_hpd_detection_setup(dev_priv);
3100
3101	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3102		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_TGP, SDE_TC_MASK_TGP,
3103				  TGP_DDI_HPD_ENABLE_MASK,
3104				  TGP_TC_HPD_ENABLE_MASK, hpd_tgp);
3105	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3106		icp_hpd_irq_setup(dev_priv, SDE_DDI_MASK_ICP, SDE_TC_MASK_ICP,
3107				  ICP_DDI_HPD_ENABLE_MASK,
3108				  ICP_TC_HPD_ENABLE_MASK, hpd_icp);
3109}
3110
3111static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3112{
3113	u32 val, hotplug;
3114
3115	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3116	if (HAS_PCH_CNP(dev_priv)) {
3117		val = I915_READ(SOUTH_CHICKEN1);
3118		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3119		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3120		I915_WRITE(SOUTH_CHICKEN1, val);
3121	}
3122
3123	/* Enable digital hotplug on the PCH */
3124	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3125	hotplug |= PORTA_HOTPLUG_ENABLE |
3126		   PORTB_HOTPLUG_ENABLE |
3127		   PORTC_HOTPLUG_ENABLE |
3128		   PORTD_HOTPLUG_ENABLE;
3129	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3130
3131	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3132	hotplug |= PORTE_HOTPLUG_ENABLE;
3133	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3134}
3135
3136static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3137{
3138	u32 hotplug_irqs, enabled_irqs;
3139
3140	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3141		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3142
3143	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3144	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3145
3146	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3147
3148	spt_hpd_detection_setup(dev_priv);
3149}
3150
3151static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3152{
3153	u32 hotplug;
3154
3155	/*
3156	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3157	 * duration to 2ms (which is the minimum in the Display Port spec)
3158	 * The pulse duration bits are reserved on HSW+.
3159	 */
3160	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3161	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3162	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3163		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3164	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3165}
3166
3167static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3168{
3169	u32 hotplug_irqs, enabled_irqs;
3170
3171	if (INTEL_GEN(dev_priv) >= 8) {
3172		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3173		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3174
3175		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3176	} else if (INTEL_GEN(dev_priv) >= 7) {
3177		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3178		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3179
3180		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3181	} else {
3182		hotplug_irqs = DE_DP_A_HOTPLUG;
3183		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3184
3185		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3186	}
3187
3188	ilk_hpd_detection_setup(dev_priv);
3189
3190	ibx_hpd_irq_setup(dev_priv);
3191}
3192
3193static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3194				      u32 enabled_irqs)
3195{
3196	u32 hotplug;
3197
3198	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3199	hotplug |= PORTA_HOTPLUG_ENABLE |
3200		   PORTB_HOTPLUG_ENABLE |
3201		   PORTC_HOTPLUG_ENABLE;
3202
3203	drm_dbg_kms(&dev_priv->drm,
3204		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3205		    hotplug, enabled_irqs);
3206	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3207
3208	/*
3209	 * For BXT invert bit has to be set based on AOB design
3210	 * for HPD detection logic, update it based on VBT fields.
3211	 */
3212	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3213	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3214		hotplug |= BXT_DDIA_HPD_INVERT;
3215	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3216	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3217		hotplug |= BXT_DDIB_HPD_INVERT;
3218	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3219	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3220		hotplug |= BXT_DDIC_HPD_INVERT;
3221
3222	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3223}
3224
3225static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3226{
3227	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3228}
3229
3230static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3231{
3232	u32 hotplug_irqs, enabled_irqs;
3233
3234	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3235	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3236
3237	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3238
3239	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3240}
3241
3242static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3243{
3244	u32 mask;
3245
3246	if (HAS_PCH_NOP(dev_priv))
3247		return;
3248
3249	if (HAS_PCH_IBX(dev_priv))
3250		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3251	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3252		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3253	else
3254		mask = SDE_GMBUS_CPT;
3255
3256	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3257	I915_WRITE(SDEIMR, ~mask);
3258
3259	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3260	    HAS_PCH_LPT(dev_priv))
3261		ibx_hpd_detection_setup(dev_priv);
3262	else
3263		spt_hpd_detection_setup(dev_priv);
3264}
3265
3266static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3267{
3268	struct intel_uncore *uncore = &dev_priv->uncore;
3269	u32 display_mask, extra_mask;
3270
3271	if (INTEL_GEN(dev_priv) >= 7) {
3272		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3273				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3274		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3275			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3276			      DE_DP_A_HOTPLUG_IVB);
3277	} else {
3278		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3279				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3280				DE_PIPEA_CRC_DONE | DE_POISON);
3281		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3282			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3283			      DE_DP_A_HOTPLUG);
3284	}
3285
3286	if (IS_HASWELL(dev_priv)) {
3287		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3288		display_mask |= DE_EDP_PSR_INT_HSW;
3289	}
3290
3291	dev_priv->irq_mask = ~display_mask;
3292
3293	ibx_irq_pre_postinstall(dev_priv);
3294
3295	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3296		      display_mask | extra_mask);
3297
3298	gen5_gt_irq_postinstall(&dev_priv->gt);
3299
3300	ilk_hpd_detection_setup(dev_priv);
3301
3302	ibx_irq_postinstall(dev_priv);
3303
3304	if (IS_IRONLAKE_M(dev_priv)) {
3305		/* Enable PCU event interrupts
3306		 *
3307		 * spinlocking not required here for correctness since interrupt
3308		 * setup is guaranteed to run in single-threaded context. But we
3309		 * need it to make the assert_spin_locked happy. */
3310		spin_lock_irq(&dev_priv->irq_lock);
3311		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3312		spin_unlock_irq(&dev_priv->irq_lock);
3313	}
3314}
3315
3316void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3317{
3318	lockdep_assert_held(&dev_priv->irq_lock);
3319
3320	if (dev_priv->display_irqs_enabled)
3321		return;
3322
3323	dev_priv->display_irqs_enabled = true;
3324
3325	if (intel_irqs_enabled(dev_priv)) {
3326		vlv_display_irq_reset(dev_priv);
3327		vlv_display_irq_postinstall(dev_priv);
3328	}
3329}
3330
3331void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3332{
3333	lockdep_assert_held(&dev_priv->irq_lock);
3334
3335	if (!dev_priv->display_irqs_enabled)
3336		return;
3337
3338	dev_priv->display_irqs_enabled = false;
3339
3340	if (intel_irqs_enabled(dev_priv))
3341		vlv_display_irq_reset(dev_priv);
3342}
3343
3344
3345static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3346{
3347	gen5_gt_irq_postinstall(&dev_priv->gt);
3348
3349	spin_lock_irq(&dev_priv->irq_lock);
3350	if (dev_priv->display_irqs_enabled)
3351		vlv_display_irq_postinstall(dev_priv);
3352	spin_unlock_irq(&dev_priv->irq_lock);
3353
3354	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3355	POSTING_READ(VLV_MASTER_IER);
3356}
3357
3358static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3359{
3360	struct intel_uncore *uncore = &dev_priv->uncore;
3361
3362	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3363		GEN8_PIPE_CDCLK_CRC_DONE;
3364	u32 de_pipe_enables;
3365	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3366	u32 de_port_enables;
3367	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3368	enum pipe pipe;
3369
3370	if (INTEL_GEN(dev_priv) <= 10)
3371		de_misc_masked |= GEN8_DE_MISC_GSE;
3372
3373	if (IS_GEN9_LP(dev_priv))
3374		de_port_masked |= BXT_DE_PORT_GMBUS;
3375
3376	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3377					   GEN8_PIPE_FIFO_UNDERRUN;
3378
3379	de_port_enables = de_port_masked;
3380	if (IS_GEN9_LP(dev_priv))
3381		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3382	else if (IS_BROADWELL(dev_priv))
3383		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3384
3385	if (INTEL_GEN(dev_priv) >= 12) {
3386		enum transcoder trans;
3387
3388		for (trans = TRANSCODER_A; trans <= TRANSCODER_D; trans++) {
3389			enum intel_display_power_domain domain;
3390
3391			domain = POWER_DOMAIN_TRANSCODER(trans);
3392			if (!intel_display_power_is_enabled(dev_priv, domain))
3393				continue;
3394
3395			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3396		}
3397	} else {
3398		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3399	}
3400
3401	for_each_pipe(dev_priv, pipe) {
3402		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3403
3404		if (intel_display_power_is_enabled(dev_priv,
3405				POWER_DOMAIN_PIPE(pipe)))
3406			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3407					  dev_priv->de_irq_mask[pipe],
3408					  de_pipe_enables);
3409	}
3410
3411	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3412	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3413
3414	if (INTEL_GEN(dev_priv) >= 11) {
3415		u32 de_hpd_masked = 0;
3416		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3417				     GEN11_DE_TBT_HOTPLUG_MASK;
3418
3419		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3420			      de_hpd_enables);
3421		gen11_hpd_detection_setup(dev_priv);
3422	} else if (IS_GEN9_LP(dev_priv)) {
3423		bxt_hpd_detection_setup(dev_priv);
3424	} else if (IS_BROADWELL(dev_priv)) {
3425		ilk_hpd_detection_setup(dev_priv);
3426	}
3427}
3428
3429static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3430{
3431	if (HAS_PCH_SPLIT(dev_priv))
3432		ibx_irq_pre_postinstall(dev_priv);
3433
3434	gen8_gt_irq_postinstall(&dev_priv->gt);
3435	gen8_de_irq_postinstall(dev_priv);
3436
3437	if (HAS_PCH_SPLIT(dev_priv))
3438		ibx_irq_postinstall(dev_priv);
3439
3440	gen8_master_intr_enable(dev_priv->uncore.regs);
3441}
3442
3443static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3444{
3445	u32 mask = SDE_GMBUS_ICP;
3446
3447	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3448	I915_WRITE(SDEIER, 0xffffffff);
3449	POSTING_READ(SDEIER);
3450
3451	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3452	I915_WRITE(SDEIMR, ~mask);
3453
3454	if (HAS_PCH_TGP(dev_priv))
3455		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3456					TGP_TC_HPD_ENABLE_MASK);
3457	else if (HAS_PCH_JSP(dev_priv))
3458		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3459	else if (HAS_PCH_MCC(dev_priv))
3460		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3461					ICP_TC_HPD_ENABLE(PORT_TC1));
3462	else
3463		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3464					ICP_TC_HPD_ENABLE_MASK);
3465}
3466
3467static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3468{
3469	struct intel_uncore *uncore = &dev_priv->uncore;
3470	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3471
3472	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3473		icp_irq_postinstall(dev_priv);
3474
3475	gen11_gt_irq_postinstall(&dev_priv->gt);
3476	gen8_de_irq_postinstall(dev_priv);
3477
3478	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3479
3480	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3481
3482	gen11_master_intr_enable(uncore->regs);
3483	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3484}
3485
3486static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3487{
3488	gen8_gt_irq_postinstall(&dev_priv->gt);
3489
3490	spin_lock_irq(&dev_priv->irq_lock);
3491	if (dev_priv->display_irqs_enabled)
3492		vlv_display_irq_postinstall(dev_priv);
3493	spin_unlock_irq(&dev_priv->irq_lock);
3494
3495	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3496	POSTING_READ(GEN8_MASTER_IRQ);
3497}
3498
3499static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3500{
3501	struct intel_uncore *uncore = &dev_priv->uncore;
3502
3503	i9xx_pipestat_irq_reset(dev_priv);
3504
3505	GEN2_IRQ_RESET(uncore);
3506}
3507
3508static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3509{
3510	struct intel_uncore *uncore = &dev_priv->uncore;
3511	u16 enable_mask;
3512
3513	intel_uncore_write16(uncore,
3514			     EMR,
3515			     ~(I915_ERROR_PAGE_TABLE |
3516			       I915_ERROR_MEMORY_REFRESH));
3517
3518	/* Unmask the interrupts that we always want on. */
3519	dev_priv->irq_mask =
3520		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3521		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3522		  I915_MASTER_ERROR_INTERRUPT);
3523
3524	enable_mask =
3525		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3526		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3527		I915_MASTER_ERROR_INTERRUPT |
3528		I915_USER_INTERRUPT;
3529
3530	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3531
3532	/* Interrupt setup is already guaranteed to be single-threaded, this is
3533	 * just to make the assert_spin_locked check happy. */
3534	spin_lock_irq(&dev_priv->irq_lock);
3535	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3536	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3537	spin_unlock_irq(&dev_priv->irq_lock);
3538}
3539
3540static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3541			       u16 *eir, u16 *eir_stuck)
3542{
3543	struct intel_uncore *uncore = &i915->uncore;
3544	u16 emr;
3545
3546	*eir = intel_uncore_read16(uncore, EIR);
3547
3548	if (*eir)
3549		intel_uncore_write16(uncore, EIR, *eir);
3550
3551	*eir_stuck = intel_uncore_read16(uncore, EIR);
3552	if (*eir_stuck == 0)
3553		return;
3554
3555	/*
3556	 * Toggle all EMR bits to make sure we get an edge
3557	 * in the ISR master error bit if we don't clear
3558	 * all the EIR bits. Otherwise the edge triggered
3559	 * IIR on i965/g4x wouldn't notice that an interrupt
3560	 * is still pending. Also some EIR bits can't be
3561	 * cleared except by handling the underlying error
3562	 * (or by a GPU reset) so we mask any bit that
3563	 * remains set.
3564	 */
3565	emr = intel_uncore_read16(uncore, EMR);
3566	intel_uncore_write16(uncore, EMR, 0xffff);
3567	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3568}
3569
3570static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3571				   u16 eir, u16 eir_stuck)
3572{
3573	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3574
3575	if (eir_stuck)
3576		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3577			eir_stuck);
3578}
3579
3580static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3581			       u32 *eir, u32 *eir_stuck)
3582{
3583	u32 emr;
3584
3585	*eir = I915_READ(EIR);
3586
3587	I915_WRITE(EIR, *eir);
3588
3589	*eir_stuck = I915_READ(EIR);
3590	if (*eir_stuck == 0)
3591		return;
3592
3593	/*
3594	 * Toggle all EMR bits to make sure we get an edge
3595	 * in the ISR master error bit if we don't clear
3596	 * all the EIR bits. Otherwise the edge triggered
3597	 * IIR on i965/g4x wouldn't notice that an interrupt
3598	 * is still pending. Also some EIR bits can't be
3599	 * cleared except by handling the underlying error
3600	 * (or by a GPU reset) so we mask any bit that
3601	 * remains set.
3602	 */
3603	emr = I915_READ(EMR);
3604	I915_WRITE(EMR, 0xffffffff);
3605	I915_WRITE(EMR, emr | *eir_stuck);
3606}
3607
3608static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3609				   u32 eir, u32 eir_stuck)
3610{
3611	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3612
3613	if (eir_stuck)
3614		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3615			eir_stuck);
3616}
3617
3618static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3619{
3620	struct drm_i915_private *dev_priv = arg;
3621	irqreturn_t ret = IRQ_NONE;
3622
3623	if (!intel_irqs_enabled(dev_priv))
3624		return IRQ_NONE;
3625
3626	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3627	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3628
3629	do {
3630		u32 pipe_stats[I915_MAX_PIPES] = {};
3631		u16 eir = 0, eir_stuck = 0;
3632		u16 iir;
3633
3634		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3635		if (iir == 0)
3636			break;
3637
3638		ret = IRQ_HANDLED;
3639
3640		/* Call regardless, as some status bits might not be
3641		 * signalled in iir */
3642		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3643
3644		if (iir & I915_MASTER_ERROR_INTERRUPT)
3645			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3646
3647		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3648
3649		if (iir & I915_USER_INTERRUPT)
3650			intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3651
3652		if (iir & I915_MASTER_ERROR_INTERRUPT)
3653			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3654
3655		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3656	} while (0);
3657
3658	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3659
3660	return ret;
3661}
3662
3663static void i915_irq_reset(struct drm_i915_private *dev_priv)
3664{
3665	struct intel_uncore *uncore = &dev_priv->uncore;
3666
3667	if (I915_HAS_HOTPLUG(dev_priv)) {
3668		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3669		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3670	}
3671
3672	i9xx_pipestat_irq_reset(dev_priv);
3673
3674	GEN3_IRQ_RESET(uncore, GEN2_);
3675}
3676
3677static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3678{
3679	struct intel_uncore *uncore = &dev_priv->uncore;
3680	u32 enable_mask;
3681
3682	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3683			  I915_ERROR_MEMORY_REFRESH));
3684
3685	/* Unmask the interrupts that we always want on. */
3686	dev_priv->irq_mask =
3687		~(I915_ASLE_INTERRUPT |
3688		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3689		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3690		  I915_MASTER_ERROR_INTERRUPT);
3691
3692	enable_mask =
3693		I915_ASLE_INTERRUPT |
3694		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3695		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3696		I915_MASTER_ERROR_INTERRUPT |
3697		I915_USER_INTERRUPT;
3698
3699	if (I915_HAS_HOTPLUG(dev_priv)) {
3700		/* Enable in IER... */
3701		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3702		/* and unmask in IMR */
3703		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3704	}
3705
3706	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3707
3708	/* Interrupt setup is already guaranteed to be single-threaded, this is
3709	 * just to make the assert_spin_locked check happy. */
3710	spin_lock_irq(&dev_priv->irq_lock);
3711	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3712	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3713	spin_unlock_irq(&dev_priv->irq_lock);
3714
3715	i915_enable_asle_pipestat(dev_priv);
3716}
3717
3718static irqreturn_t i915_irq_handler(int irq, void *arg)
3719{
3720	struct drm_i915_private *dev_priv = arg;
3721	irqreturn_t ret = IRQ_NONE;
3722
3723	if (!intel_irqs_enabled(dev_priv))
3724		return IRQ_NONE;
3725
3726	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3727	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3728
3729	do {
3730		u32 pipe_stats[I915_MAX_PIPES] = {};
3731		u32 eir = 0, eir_stuck = 0;
3732		u32 hotplug_status = 0;
3733		u32 iir;
3734
3735		iir = I915_READ(GEN2_IIR);
3736		if (iir == 0)
3737			break;
3738
3739		ret = IRQ_HANDLED;
3740
3741		if (I915_HAS_HOTPLUG(dev_priv) &&
3742		    iir & I915_DISPLAY_PORT_INTERRUPT)
3743			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3744
3745		/* Call regardless, as some status bits might not be
3746		 * signalled in iir */
3747		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3748
3749		if (iir & I915_MASTER_ERROR_INTERRUPT)
3750			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3751
3752		I915_WRITE(GEN2_IIR, iir);
3753
3754		if (iir & I915_USER_INTERRUPT)
3755			intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3756
3757		if (iir & I915_MASTER_ERROR_INTERRUPT)
3758			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3759
3760		if (hotplug_status)
3761			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3762
3763		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3764	} while (0);
3765
3766	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3767
3768	return ret;
3769}
3770
3771static void i965_irq_reset(struct drm_i915_private *dev_priv)
3772{
3773	struct intel_uncore *uncore = &dev_priv->uncore;
3774
3775	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3776	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3777
3778	i9xx_pipestat_irq_reset(dev_priv);
3779
3780	GEN3_IRQ_RESET(uncore, GEN2_);
3781}
3782
3783static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3784{
3785	struct intel_uncore *uncore = &dev_priv->uncore;
3786	u32 enable_mask;
3787	u32 error_mask;
3788
3789	/*
3790	 * Enable some error detection, note the instruction error mask
3791	 * bit is reserved, so we leave it masked.
3792	 */
3793	if (IS_G4X(dev_priv)) {
3794		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3795			       GM45_ERROR_MEM_PRIV |
3796			       GM45_ERROR_CP_PRIV |
3797			       I915_ERROR_MEMORY_REFRESH);
3798	} else {
3799		error_mask = ~(I915_ERROR_PAGE_TABLE |
3800			       I915_ERROR_MEMORY_REFRESH);
3801	}
3802	I915_WRITE(EMR, error_mask);
3803
3804	/* Unmask the interrupts that we always want on. */
3805	dev_priv->irq_mask =
3806		~(I915_ASLE_INTERRUPT |
3807		  I915_DISPLAY_PORT_INTERRUPT |
3808		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3809		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3810		  I915_MASTER_ERROR_INTERRUPT);
3811
3812	enable_mask =
3813		I915_ASLE_INTERRUPT |
3814		I915_DISPLAY_PORT_INTERRUPT |
3815		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3816		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3817		I915_MASTER_ERROR_INTERRUPT |
3818		I915_USER_INTERRUPT;
3819
3820	if (IS_G4X(dev_priv))
3821		enable_mask |= I915_BSD_USER_INTERRUPT;
3822
3823	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3824
3825	/* Interrupt setup is already guaranteed to be single-threaded, this is
3826	 * just to make the assert_spin_locked check happy. */
3827	spin_lock_irq(&dev_priv->irq_lock);
3828	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3829	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3830	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3831	spin_unlock_irq(&dev_priv->irq_lock);
3832
3833	i915_enable_asle_pipestat(dev_priv);
3834}
3835
3836static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3837{
3838	u32 hotplug_en;
3839
3840	lockdep_assert_held(&dev_priv->irq_lock);
3841
3842	/* Note HDMI and DP share hotplug bits */
3843	/* enable bits are the same for all generations */
3844	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3845	/* Programming the CRT detection parameters tends
3846	   to generate a spurious hotplug event about three
3847	   seconds later.  So just do it once.
3848	*/
3849	if (IS_G4X(dev_priv))
3850		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3851	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3852
3853	/* Ignore TV since it's buggy */
3854	i915_hotplug_interrupt_update_locked(dev_priv,
3855					     HOTPLUG_INT_EN_MASK |
3856					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3857					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3858					     hotplug_en);
3859}
3860
3861static irqreturn_t i965_irq_handler(int irq, void *arg)
3862{
3863	struct drm_i915_private *dev_priv = arg;
3864	irqreturn_t ret = IRQ_NONE;
3865
3866	if (!intel_irqs_enabled(dev_priv))
3867		return IRQ_NONE;
3868
3869	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3870	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3871
3872	do {
3873		u32 pipe_stats[I915_MAX_PIPES] = {};
3874		u32 eir = 0, eir_stuck = 0;
3875		u32 hotplug_status = 0;
3876		u32 iir;
3877
3878		iir = I915_READ(GEN2_IIR);
3879		if (iir == 0)
3880			break;
3881
3882		ret = IRQ_HANDLED;
3883
3884		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3885			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3886
3887		/* Call regardless, as some status bits might not be
3888		 * signalled in iir */
3889		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3890
3891		if (iir & I915_MASTER_ERROR_INTERRUPT)
3892			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3893
3894		I915_WRITE(GEN2_IIR, iir);
3895
3896		if (iir & I915_USER_INTERRUPT)
3897			intel_engine_signal_breadcrumbs(dev_priv->engine[RCS0]);
3898
3899		if (iir & I915_BSD_USER_INTERRUPT)
3900			intel_engine_signal_breadcrumbs(dev_priv->engine[VCS0]);
3901
3902		if (iir & I915_MASTER_ERROR_INTERRUPT)
3903			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3904
3905		if (hotplug_status)
3906			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3907
3908		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3909	} while (0);
3910
3911	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3912
3913	return ret;
3914}
3915
3916/**
3917 * intel_irq_init - initializes irq support
3918 * @dev_priv: i915 device instance
3919 *
3920 * This function initializes all the irq support including work items, timers
3921 * and all the vtables. It does not setup the interrupt itself though.
3922 */
3923void intel_irq_init(struct drm_i915_private *dev_priv)
3924{
3925	struct drm_device *dev = &dev_priv->drm;
3926	int i;
3927
3928	intel_hpd_init_work(dev_priv);
3929
3930	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3931	for (i = 0; i < MAX_L3_SLICES; ++i)
3932		dev_priv->l3_parity.remap_info[i] = NULL;
3933
3934	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3935	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3936		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3937
3938	dev->vblank_disable_immediate = true;
3939
3940	/* Most platforms treat the display irq block as an always-on
3941	 * power domain. vlv/chv can disable it at runtime and need
3942	 * special care to avoid writing any of the display block registers
3943	 * outside of the power domain. We defer setting up the display irqs
3944	 * in this case to the runtime pm.
3945	 */
3946	dev_priv->display_irqs_enabled = true;
3947	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3948		dev_priv->display_irqs_enabled = false;
3949
3950	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3951	/* If we have MST support, we want to avoid doing short HPD IRQ storm
3952	 * detection, as short HPD storms will occur as a natural part of
3953	 * sideband messaging with MST.
3954	 * On older platforms however, IRQ storms can occur with both long and
3955	 * short pulses, as seen on some G4x systems.
3956	 */
3957	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3958
3959	if (HAS_GMCH(dev_priv)) {
3960		if (I915_HAS_HOTPLUG(dev_priv))
3961			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3962	} else {
3963		if (HAS_PCH_JSP(dev_priv))
3964			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
3965		else if (HAS_PCH_MCC(dev_priv))
3966			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
3967		else if (INTEL_GEN(dev_priv) >= 11)
3968			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
3969		else if (IS_GEN9_LP(dev_priv))
3970			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
3971		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
3972			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
3973		else
3974			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
3975	}
3976}
3977
3978/**
3979 * intel_irq_fini - deinitializes IRQ support
3980 * @i915: i915 device instance
3981 *
3982 * This function deinitializes all the IRQ support.
3983 */
3984void intel_irq_fini(struct drm_i915_private *i915)
3985{
3986	int i;
3987
3988	for (i = 0; i < MAX_L3_SLICES; ++i)
3989		kfree(i915->l3_parity.remap_info[i]);
3990}
3991
3992static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
3993{
3994	if (HAS_GMCH(dev_priv)) {
3995		if (IS_CHERRYVIEW(dev_priv))
3996			return cherryview_irq_handler;
3997		else if (IS_VALLEYVIEW(dev_priv))
3998			return valleyview_irq_handler;
3999		else if (IS_GEN(dev_priv, 4))
4000			return i965_irq_handler;
4001		else if (IS_GEN(dev_priv, 3))
4002			return i915_irq_handler;
4003		else
4004			return i8xx_irq_handler;
4005	} else {
4006		if (INTEL_GEN(dev_priv) >= 11)
4007			return gen11_irq_handler;
4008		else if (INTEL_GEN(dev_priv) >= 8)
4009			return gen8_irq_handler;
4010		else
4011			return ilk_irq_handler;
4012	}
4013}
4014
4015static void intel_irq_reset(struct drm_i915_private *dev_priv)
4016{
4017	if (HAS_GMCH(dev_priv)) {
4018		if (IS_CHERRYVIEW(dev_priv))
4019			cherryview_irq_reset(dev_priv);
4020		else if (IS_VALLEYVIEW(dev_priv))
4021			valleyview_irq_reset(dev_priv);
4022		else if (IS_GEN(dev_priv, 4))
4023			i965_irq_reset(dev_priv);
4024		else if (IS_GEN(dev_priv, 3))
4025			i915_irq_reset(dev_priv);
4026		else
4027			i8xx_irq_reset(dev_priv);
4028	} else {
4029		if (INTEL_GEN(dev_priv) >= 11)
4030			gen11_irq_reset(dev_priv);
4031		else if (INTEL_GEN(dev_priv) >= 8)
4032			gen8_irq_reset(dev_priv);
4033		else
4034			ilk_irq_reset(dev_priv);
4035	}
4036}
4037
4038static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4039{
4040	if (HAS_GMCH(dev_priv)) {
4041		if (IS_CHERRYVIEW(dev_priv))
4042			cherryview_irq_postinstall(dev_priv);
4043		else if (IS_VALLEYVIEW(dev_priv))
4044			valleyview_irq_postinstall(dev_priv);
4045		else if (IS_GEN(dev_priv, 4))
4046			i965_irq_postinstall(dev_priv);
4047		else if (IS_GEN(dev_priv, 3))
4048			i915_irq_postinstall(dev_priv);
4049		else
4050			i8xx_irq_postinstall(dev_priv);
4051	} else {
4052		if (INTEL_GEN(dev_priv) >= 11)
4053			gen11_irq_postinstall(dev_priv);
4054		else if (INTEL_GEN(dev_priv) >= 8)
4055			gen8_irq_postinstall(dev_priv);
4056		else
4057			ilk_irq_postinstall(dev_priv);
4058	}
4059}
4060
4061/**
4062 * intel_irq_install - enables the hardware interrupt
4063 * @dev_priv: i915 device instance
4064 *
4065 * This function enables the hardware interrupt handling, but leaves the hotplug
4066 * handling still disabled. It is called after intel_irq_init().
4067 *
4068 * In the driver load and resume code we need working interrupts in a few places
4069 * but don't want to deal with the hassle of concurrent probe and hotplug
4070 * workers. Hence the split into this two-stage approach.
4071 */
4072int intel_irq_install(struct drm_i915_private *dev_priv)
4073{
4074	int irq = dev_priv->drm.pdev->irq;
4075	int ret;
4076
4077	/*
4078	 * We enable some interrupt sources in our postinstall hooks, so mark
4079	 * interrupts as enabled _before_ actually enabling them to avoid
4080	 * special cases in our ordering checks.
4081	 */
4082	dev_priv->runtime_pm.irqs_enabled = true;
4083
4084	dev_priv->drm.irq_enabled = true;
4085
4086	intel_irq_reset(dev_priv);
4087
4088	ret = request_irq(irq, intel_irq_handler(dev_priv),
4089			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4090	if (ret < 0) {
4091		dev_priv->drm.irq_enabled = false;
4092		return ret;
4093	}
4094#ifdef __OpenBSD__
4095	dev_priv->irq_handler = intel_irq_handler(dev_priv);
4096#endif
4097
4098	intel_irq_postinstall(dev_priv);
4099
4100	return ret;
4101}
4102
4103/**
4104 * intel_irq_uninstall - finilizes all irq handling
4105 * @dev_priv: i915 device instance
4106 *
4107 * This stops interrupt and hotplug handling and unregisters and frees all
4108 * resources acquired in the init functions.
4109 */
4110void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4111{
4112	int irq = dev_priv->drm.pdev->irq;
4113
4114	/*
4115	 * FIXME we can get called twice during driver probe
4116	 * error handling as well as during driver remove due to
4117	 * intel_modeset_driver_remove() calling us out of sequence.
4118	 * Would be nice if it didn't do that...
4119	 */
4120	if (!dev_priv->drm.irq_enabled)
4121		return;
4122
4123	dev_priv->drm.irq_enabled = false;
4124
4125	intel_irq_reset(dev_priv);
4126
4127	free_irq(irq, dev_priv);
4128#ifdef __OpenBSD__
4129	dev_priv->irq_handler = NULL;
4130#endif
4131
4132	intel_hpd_cancel_work(dev_priv);
4133	dev_priv->runtime_pm.irqs_enabled = false;
4134}
4135
4136/**
4137 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4138 * @dev_priv: i915 device instance
4139 *
4140 * This function is used to disable interrupts at runtime, both in the runtime
4141 * pm and the system suspend/resume code.
4142 */
4143void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4144{
4145	intel_irq_reset(dev_priv);
4146	dev_priv->runtime_pm.irqs_enabled = false;
4147	intel_synchronize_irq(dev_priv);
4148}
4149
4150/**
4151 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4152 * @dev_priv: i915 device instance
4153 *
4154 * This function is used to enable interrupts at runtime, both in the runtime
4155 * pm and the system suspend/resume code.
4156 */
4157void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4158{
4159	dev_priv->runtime_pm.irqs_enabled = true;
4160	intel_irq_reset(dev_priv);
4161	intel_irq_postinstall(dev_priv);
4162}
4163
4164bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4165{
4166	/*
4167	 * We only use drm_irq_uninstall() at unload and VT switch, so
4168	 * this is the only thing we need to check.
4169	 */
4170	return dev_priv->runtime_pm.irqs_enabled;
4171}
4172
4173void intel_synchronize_irq(struct drm_i915_private *i915)
4174{
4175#ifdef __linux__
4176	synchronize_irq(i915->drm.pdev->irq);
4177#else
4178	intr_barrier(i915->irqh);
4179#endif
4180}
4181