1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2019 Intel Corporation
4 */
5
6#include <drm/drm_managed.h>
7#include <drm/intel-gtt.h>
8
9#include "gem/i915_gem_internal.h"
10#include "gem/i915_gem_lmem.h"
11
12#include "i915_drv.h"
13#include "i915_perf_oa_regs.h"
14#include "i915_reg.h"
15#include "intel_context.h"
16#include "intel_engine_pm.h"
17#include "intel_engine_regs.h"
18#include "intel_ggtt_gmch.h"
19#include "intel_gt.h"
20#include "intel_gt_buffer_pool.h"
21#include "intel_gt_clock_utils.h"
22#include "intel_gt_debugfs.h"
23#include "intel_gt_mcr.h"
24#include "intel_gt_pm.h"
25#include "intel_gt_print.h"
26#include "intel_gt_regs.h"
27#include "intel_gt_requests.h"
28#include "intel_migrate.h"
29#include "intel_mocs.h"
30#include "intel_pci_config.h"
31#include "intel_rc6.h"
32#include "intel_renderstate.h"
33#include "intel_rps.h"
34#include "intel_sa_media.h"
35#include "intel_gt_sysfs.h"
36#include "intel_tlb.h"
37#include "intel_uncore.h"
38#include "shmem_utils.h"
39
40void intel_gt_common_init_early(struct intel_gt *gt)
41{
42	mtx_init(gt->irq_lock, IPL_TTY);
43
44	INIT_LIST_HEAD(&gt->closed_vma);
45	mtx_init(&gt->closed_lock, IPL_TTY);
46
47	init_llist_head(&gt->watchdog.list);
48	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
49
50	intel_gt_init_buffer_pool(gt);
51	intel_gt_init_reset(gt);
52	intel_gt_init_requests(gt);
53	intel_gt_init_timelines(gt);
54	intel_gt_init_tlb(gt);
55	intel_gt_pm_init_early(gt);
56
57	intel_wopcm_init_early(&gt->wopcm);
58	intel_uc_init_early(&gt->uc);
59	intel_rps_init_early(&gt->rps);
60}
61
62/* Preliminary initialization of Tile 0 */
63int intel_root_gt_init_early(struct drm_i915_private *i915)
64{
65	struct intel_gt *gt = to_gt(i915);
66
67	gt->i915 = i915;
68	gt->uncore = &i915->uncore;
69	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
70	if (!gt->irq_lock)
71		return -ENOMEM;
72
73	intel_gt_common_init_early(gt);
74
75	return 0;
76}
77
78static int intel_gt_probe_lmem(struct intel_gt *gt)
79{
80	struct drm_i915_private *i915 = gt->i915;
81	unsigned int instance = gt->info.id;
82	int id = INTEL_REGION_LMEM_0 + instance;
83	struct intel_memory_region *mem;
84	int err;
85
86	mem = intel_gt_setup_lmem(gt);
87	if (IS_ERR(mem)) {
88		err = PTR_ERR(mem);
89		if (err == -ENODEV)
90			return 0;
91
92		gt_err(gt, "Failed to setup region(%d) type=%d\n",
93		       err, INTEL_MEMORY_LOCAL);
94		return err;
95	}
96
97	mem->id = id;
98	mem->instance = instance;
99
100	intel_memory_region_set_name(mem, "local%u", mem->instance);
101
102	GEM_BUG_ON(!HAS_REGION(i915, id));
103	GEM_BUG_ON(i915->mm.regions[id]);
104	i915->mm.regions[id] = mem;
105
106	return 0;
107}
108
109int intel_gt_assign_ggtt(struct intel_gt *gt)
110{
111	/* Media GT shares primary GT's GGTT */
112	if (gt->type == GT_MEDIA) {
113		gt->ggtt = to_gt(gt->i915)->ggtt;
114	} else {
115		gt->ggtt = i915_ggtt_create(gt->i915);
116		if (IS_ERR(gt->ggtt))
117			return PTR_ERR(gt->ggtt);
118	}
119
120	list_add_tail(&gt->ggtt_link, &gt->ggtt->gt_list);
121
122	return 0;
123}
124
125int intel_gt_init_mmio(struct intel_gt *gt)
126{
127	intel_gt_init_clock_frequency(gt);
128
129	intel_uc_init_mmio(&gt->uc);
130	intel_sseu_info_init(gt);
131	intel_gt_mcr_init(gt);
132
133	return intel_engines_init_mmio(gt);
134}
135
136static void init_unused_ring(struct intel_gt *gt, u32 base)
137{
138	struct intel_uncore *uncore = gt->uncore;
139
140	intel_uncore_write(uncore, RING_CTL(base), 0);
141	intel_uncore_write(uncore, RING_HEAD(base), 0);
142	intel_uncore_write(uncore, RING_TAIL(base), 0);
143	intel_uncore_write(uncore, RING_START(base), 0);
144}
145
146static void init_unused_rings(struct intel_gt *gt)
147{
148	struct drm_i915_private *i915 = gt->i915;
149
150	if (IS_I830(i915)) {
151		init_unused_ring(gt, PRB1_BASE);
152		init_unused_ring(gt, SRB0_BASE);
153		init_unused_ring(gt, SRB1_BASE);
154		init_unused_ring(gt, SRB2_BASE);
155		init_unused_ring(gt, SRB3_BASE);
156	} else if (GRAPHICS_VER(i915) == 2) {
157		init_unused_ring(gt, SRB0_BASE);
158		init_unused_ring(gt, SRB1_BASE);
159	} else if (GRAPHICS_VER(i915) == 3) {
160		init_unused_ring(gt, PRB1_BASE);
161		init_unused_ring(gt, PRB2_BASE);
162	}
163}
164
165int intel_gt_init_hw(struct intel_gt *gt)
166{
167	struct drm_i915_private *i915 = gt->i915;
168	struct intel_uncore *uncore = gt->uncore;
169	int ret;
170
171	gt->last_init_time = ktime_get();
172
173	/* Double layer security blanket, see i915_gem_init() */
174	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
175
176	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
177		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
178
179	if (IS_HASWELL(i915))
180		intel_uncore_write(uncore,
181				   HSW_MI_PREDICATE_RESULT_2,
182				   IS_HASWELL_GT3(i915) ?
183				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
184
185	/* Apply the GT workarounds... */
186	intel_gt_apply_workarounds(gt);
187	/* ...and determine whether they are sticking. */
188	intel_gt_verify_workarounds(gt, "init");
189
190	intel_gt_init_swizzling(gt);
191
192	/*
193	 * At least 830 can leave some of the unused rings
194	 * "active" (ie. head != tail) after resume which
195	 * will prevent c3 entry. Makes sure all unused rings
196	 * are totally idle.
197	 */
198	init_unused_rings(gt);
199
200	ret = i915_ppgtt_init_hw(gt);
201	if (ret) {
202		gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
203		goto out;
204	}
205
206	/* We can't enable contexts until all firmware is loaded */
207	ret = intel_uc_init_hw(&gt->uc);
208	if (ret) {
209		gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
210		goto out;
211	}
212
213	intel_mocs_init(gt);
214
215out:
216	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
217	return ret;
218}
219
220static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
221{
222	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
223	GEN6_RING_FAULT_REG_POSTING_READ(engine);
224}
225
226i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
227{
228	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
229	if (GRAPHICS_VER(gt->i915) < 11)
230		return INVALID_MMIO_REG;
231
232	return gt->type == GT_MEDIA ?
233		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
234}
235
236void
237intel_gt_clear_error_registers(struct intel_gt *gt,
238			       intel_engine_mask_t engine_mask)
239{
240	struct drm_i915_private *i915 = gt->i915;
241	struct intel_uncore *uncore = gt->uncore;
242	u32 eir;
243
244	if (GRAPHICS_VER(i915) != 2)
245		intel_uncore_write(uncore, PGTBL_ER, 0);
246
247	if (GRAPHICS_VER(i915) < 4)
248		intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
249	else
250		intel_uncore_write(uncore, IPEIR_I965, 0);
251
252	intel_uncore_write(uncore, EIR, 0);
253	eir = intel_uncore_read(uncore, EIR);
254	if (eir) {
255		/*
256		 * some errors might have become stuck,
257		 * mask them.
258		 */
259		gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
260		intel_uncore_rmw(uncore, EMR, 0, eir);
261		intel_uncore_write(uncore, GEN2_IIR,
262				   I915_MASTER_ERROR_INTERRUPT);
263	}
264
265	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
266		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
267					   RING_FAULT_VALID, 0);
268		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
269	} else if (GRAPHICS_VER(i915) >= 12) {
270		intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
271		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
272	} else if (GRAPHICS_VER(i915) >= 8) {
273		intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
274		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
275	} else if (GRAPHICS_VER(i915) >= 6) {
276		struct intel_engine_cs *engine;
277		enum intel_engine_id id;
278
279		for_each_engine_masked(engine, gt, engine_mask, id)
280			gen6_clear_engine_error_register(engine);
281	}
282}
283
284static void gen6_check_faults(struct intel_gt *gt)
285{
286	struct intel_engine_cs *engine;
287	enum intel_engine_id id;
288	u32 fault;
289
290	for_each_engine(engine, gt, id) {
291		fault = GEN6_RING_FAULT_REG_READ(engine);
292		if (fault & RING_FAULT_VALID) {
293			gt_dbg(gt, "Unexpected fault\n"
294			       "\tAddr: 0x%08lx\n"
295			       "\tAddress space: %s\n"
296			       "\tSource ID: %d\n"
297			       "\tType: %d\n",
298			       (unsigned long)(fault & LINUX_PAGE_MASK),
299			       fault & RING_FAULT_GTTSEL_MASK ?
300			       "GGTT" : "PPGTT",
301			       RING_FAULT_SRCID(fault),
302			       RING_FAULT_FAULT_TYPE(fault));
303		}
304	}
305}
306
307static void xehp_check_faults(struct intel_gt *gt)
308{
309	u32 fault;
310
311	/*
312	 * Although the fault register now lives in an MCR register range,
313	 * the GAM registers are special and we only truly need to read
314	 * the "primary" GAM instance rather than handling each instance
315	 * individually.  intel_gt_mcr_read_any() will automatically steer
316	 * toward the primary instance.
317	 */
318	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
319	if (fault & RING_FAULT_VALID) {
320		u32 fault_data0, fault_data1;
321		u64 fault_addr;
322
323		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
324		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
325
326		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
327			     ((u64)fault_data0 << 12);
328
329		gt_dbg(gt, "Unexpected fault\n"
330		       "\tAddr: 0x%08x_%08x\n"
331		       "\tAddress space: %s\n"
332		       "\tEngine ID: %d\n"
333		       "\tSource ID: %d\n"
334		       "\tType: %d\n",
335		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
336		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
337		       GEN8_RING_FAULT_ENGINE_ID(fault),
338		       RING_FAULT_SRCID(fault),
339		       RING_FAULT_FAULT_TYPE(fault));
340	}
341}
342
343static void gen8_check_faults(struct intel_gt *gt)
344{
345	struct intel_uncore *uncore = gt->uncore;
346	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
347	u32 fault;
348
349	if (GRAPHICS_VER(gt->i915) >= 12) {
350		fault_reg = GEN12_RING_FAULT_REG;
351		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
352		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
353	} else {
354		fault_reg = GEN8_RING_FAULT_REG;
355		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
356		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
357	}
358
359	fault = intel_uncore_read(uncore, fault_reg);
360	if (fault & RING_FAULT_VALID) {
361		u32 fault_data0, fault_data1;
362		u64 fault_addr;
363
364		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
365		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
366
367		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
368			     ((u64)fault_data0 << 12);
369
370		gt_dbg(gt, "Unexpected fault\n"
371		       "\tAddr: 0x%08x_%08x\n"
372		       "\tAddress space: %s\n"
373		       "\tEngine ID: %d\n"
374		       "\tSource ID: %d\n"
375		       "\tType: %d\n",
376		       upper_32_bits(fault_addr), lower_32_bits(fault_addr),
377		       fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
378		       GEN8_RING_FAULT_ENGINE_ID(fault),
379		       RING_FAULT_SRCID(fault),
380		       RING_FAULT_FAULT_TYPE(fault));
381	}
382}
383
384void intel_gt_check_and_clear_faults(struct intel_gt *gt)
385{
386	struct drm_i915_private *i915 = gt->i915;
387
388	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
389	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
390		xehp_check_faults(gt);
391	else if (GRAPHICS_VER(i915) >= 8)
392		gen8_check_faults(gt);
393	else if (GRAPHICS_VER(i915) >= 6)
394		gen6_check_faults(gt);
395	else
396		return;
397
398	intel_gt_clear_error_registers(gt, ALL_ENGINES);
399}
400
401void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
402{
403	struct intel_uncore *uncore = gt->uncore;
404	intel_wakeref_t wakeref;
405
406	/*
407	 * No actual flushing is required for the GTT write domain for reads
408	 * from the GTT domain. Writes to it "immediately" go to main memory
409	 * as far as we know, so there's no chipset flush. It also doesn't
410	 * land in the GPU render cache.
411	 *
412	 * However, we do have to enforce the order so that all writes through
413	 * the GTT land before any writes to the device, such as updates to
414	 * the GATT itself.
415	 *
416	 * We also have to wait a bit for the writes to land from the GTT.
417	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
418	 * timing. This issue has only been observed when switching quickly
419	 * between GTT writes and CPU reads from inside the kernel on recent hw,
420	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
421	 * system agents we cannot reproduce this behaviour, until Cannonlake
422	 * that was!).
423	 */
424
425	wmb();
426
427	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
428		return;
429
430	intel_gt_chipset_flush(gt);
431
432	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
433		unsigned long flags;
434
435		spin_lock_irqsave(&uncore->lock, flags);
436		intel_uncore_posting_read_fw(uncore,
437					     RING_HEAD(RENDER_RING_BASE));
438		spin_unlock_irqrestore(&uncore->lock, flags);
439	}
440}
441
442void intel_gt_chipset_flush(struct intel_gt *gt)
443{
444	wmb();
445	if (GRAPHICS_VER(gt->i915) < 6)
446		intel_ggtt_gmch_flush();
447}
448
449void intel_gt_driver_register(struct intel_gt *gt)
450{
451	intel_gsc_init(&gt->gsc, gt->i915);
452
453	intel_rps_driver_register(&gt->rps);
454
455	intel_gt_debugfs_register(gt);
456	intel_gt_sysfs_register(gt);
457}
458
459static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
460{
461	struct drm_i915_private *i915 = gt->i915;
462	struct drm_i915_gem_object *obj;
463	struct i915_vma *vma;
464	int ret;
465
466	obj = i915_gem_object_create_lmem(i915, size,
467					  I915_BO_ALLOC_VOLATILE |
468					  I915_BO_ALLOC_GPU_ONLY);
469	if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */
470		obj = i915_gem_object_create_stolen(i915, size);
471	if (IS_ERR(obj))
472		obj = i915_gem_object_create_internal(i915, size);
473	if (IS_ERR(obj)) {
474		gt_err(gt, "Failed to allocate scratch page\n");
475		return PTR_ERR(obj);
476	}
477
478	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
479	if (IS_ERR(vma)) {
480		ret = PTR_ERR(vma);
481		goto err_unref;
482	}
483
484	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
485	if (ret)
486		goto err_unref;
487
488	gt->scratch = i915_vma_make_unshrinkable(vma);
489
490	return 0;
491
492err_unref:
493	i915_gem_object_put(obj);
494	return ret;
495}
496
497static void intel_gt_fini_scratch(struct intel_gt *gt)
498{
499	i915_vma_unpin_and_release(&gt->scratch, 0);
500}
501
502static struct i915_address_space *kernel_vm(struct intel_gt *gt)
503{
504	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
505		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
506	else
507		return i915_vm_get(&gt->ggtt->vm);
508}
509
510static int __engines_record_defaults(struct intel_gt *gt)
511{
512	struct i915_request *requests[I915_NUM_ENGINES] = {};
513	struct intel_engine_cs *engine;
514	enum intel_engine_id id;
515	int err = 0;
516
517	/*
518	 * As we reset the gpu during very early sanitisation, the current
519	 * register state on the GPU should reflect its defaults values.
520	 * We load a context onto the hw (with restore-inhibit), then switch
521	 * over to a second context to save that default register state. We
522	 * can then prime every new context with that state so they all start
523	 * from the same default HW values.
524	 */
525
526	for_each_engine(engine, gt, id) {
527		struct intel_renderstate so;
528		struct intel_context *ce;
529		struct i915_request *rq;
530
531		/* We must be able to switch to something! */
532		GEM_BUG_ON(!engine->kernel_context);
533
534		ce = intel_context_create(engine);
535		if (IS_ERR(ce)) {
536			err = PTR_ERR(ce);
537			goto out;
538		}
539
540		err = intel_renderstate_init(&so, ce);
541		if (err)
542			goto err;
543
544		rq = i915_request_create(ce);
545		if (IS_ERR(rq)) {
546			err = PTR_ERR(rq);
547			goto err_fini;
548		}
549
550		err = intel_engine_emit_ctx_wa(rq);
551		if (err)
552			goto err_rq;
553
554		err = intel_renderstate_emit(&so, rq);
555		if (err)
556			goto err_rq;
557
558err_rq:
559		requests[id] = i915_request_get(rq);
560		i915_request_add(rq);
561err_fini:
562		intel_renderstate_fini(&so, ce);
563err:
564		if (err) {
565			intel_context_put(ce);
566			goto out;
567		}
568	}
569
570	/* Flush the default context image to memory, and enable powersaving. */
571	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
572		err = -EIO;
573		goto out;
574	}
575
576	for (id = 0; id < ARRAY_SIZE(requests); id++) {
577		struct i915_request *rq;
578		struct uvm_object *state;
579
580		rq = requests[id];
581		if (!rq)
582			continue;
583
584		if (rq->fence.error) {
585			err = -EIO;
586			goto out;
587		}
588
589		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
590		if (!rq->context->state)
591			continue;
592
593		/* Keep a copy of the state's backing pages; free the obj */
594#ifdef __linux__
595		state = shmem_create_from_object(rq->context->state->obj);
596#else
597		state = uao_create_from_object(rq->context->state->obj);
598#endif
599		if (IS_ERR(state)) {
600			err = PTR_ERR(state);
601			goto out;
602		}
603		rq->engine->default_state = state;
604	}
605
606out:
607	/*
608	 * If we have to abandon now, we expect the engines to be idle
609	 * and ready to be torn-down. The quickest way we can accomplish
610	 * this is by declaring ourselves wedged.
611	 */
612	if (err)
613		intel_gt_set_wedged(gt);
614
615	for (id = 0; id < ARRAY_SIZE(requests); id++) {
616		struct intel_context *ce;
617		struct i915_request *rq;
618
619		rq = requests[id];
620		if (!rq)
621			continue;
622
623		ce = rq->context;
624		i915_request_put(rq);
625		intel_context_put(ce);
626	}
627	return err;
628}
629
630static int __engines_verify_workarounds(struct intel_gt *gt)
631{
632	struct intel_engine_cs *engine;
633	enum intel_engine_id id;
634	int err = 0;
635
636	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
637		return 0;
638
639	for_each_engine(engine, gt, id) {
640		if (intel_engine_verify_workarounds(engine, "load"))
641			err = -EIO;
642	}
643
644	/* Flush and restore the kernel context for safety */
645	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
646		err = -EIO;
647
648	return err;
649}
650
651static void __intel_gt_disable(struct intel_gt *gt)
652{
653	intel_gt_set_wedged_on_fini(gt);
654
655	intel_gt_suspend_prepare(gt);
656	intel_gt_suspend_late(gt);
657
658	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
659}
660
661int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
662{
663	long remaining_timeout;
664
665	/* If the device is asleep, we have no requests outstanding */
666	if (!intel_gt_pm_is_awake(gt))
667		return 0;
668
669	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
670							   &remaining_timeout)) > 0) {
671		cond_resched();
672		if (signal_pending(current))
673			return -EINTR;
674	}
675
676	if (timeout)
677		return timeout;
678
679	if (remaining_timeout < 0)
680		remaining_timeout = 0;
681
682	return intel_uc_wait_for_idle(&gt->uc, remaining_timeout);
683}
684
685int intel_gt_init(struct intel_gt *gt)
686{
687	int err;
688
689	err = i915_inject_probe_error(gt->i915, -ENODEV);
690	if (err)
691		return err;
692
693	intel_gt_init_workarounds(gt);
694
695	/*
696	 * This is just a security blanket to placate dragons.
697	 * On some systems, we very sporadically observe that the first TLBs
698	 * used by the CS may be stale, despite us poking the TLB reset. If
699	 * we hold the forcewake during initialisation these problems
700	 * just magically go away.
701	 */
702	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
703
704	err = intel_gt_init_scratch(gt,
705				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
706	if (err)
707		goto out_fw;
708
709	intel_gt_pm_init(gt);
710
711	gt->vm = kernel_vm(gt);
712	if (!gt->vm) {
713		err = -ENOMEM;
714		goto err_pm;
715	}
716
717	intel_set_mocs_index(gt);
718
719	err = intel_engines_init(gt);
720	if (err)
721		goto err_engines;
722
723	err = intel_uc_init(&gt->uc);
724	if (err)
725		goto err_engines;
726
727	err = intel_gt_resume(gt);
728	if (err)
729		goto err_uc_init;
730
731	err = intel_gt_init_hwconfig(gt);
732	if (err)
733		gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
734
735	err = __engines_record_defaults(gt);
736	if (err)
737		goto err_gt;
738
739	err = __engines_verify_workarounds(gt);
740	if (err)
741		goto err_gt;
742
743	err = i915_inject_probe_error(gt->i915, -EIO);
744	if (err)
745		goto err_gt;
746
747	intel_uc_init_late(&gt->uc);
748
749	intel_migrate_init(&gt->migrate, gt);
750
751	goto out_fw;
752err_gt:
753	__intel_gt_disable(gt);
754	intel_uc_fini_hw(&gt->uc);
755err_uc_init:
756	intel_uc_fini(&gt->uc);
757err_engines:
758	intel_engines_release(gt);
759	i915_vm_put(fetch_and_zero(&gt->vm));
760err_pm:
761	intel_gt_pm_fini(gt);
762	intel_gt_fini_scratch(gt);
763out_fw:
764	if (err)
765		intel_gt_set_wedged_on_init(gt);
766	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
767	return err;
768}
769
770void intel_gt_driver_remove(struct intel_gt *gt)
771{
772	__intel_gt_disable(gt);
773
774	intel_migrate_fini(&gt->migrate);
775	intel_uc_driver_remove(&gt->uc);
776
777	intel_engines_release(gt);
778
779	intel_gt_flush_buffer_pool(gt);
780}
781
782void intel_gt_driver_unregister(struct intel_gt *gt)
783{
784	intel_wakeref_t wakeref;
785
786	intel_gt_sysfs_unregister(gt);
787	intel_rps_driver_unregister(&gt->rps);
788	intel_gsc_fini(&gt->gsc);
789
790	/*
791	 * If we unload the driver and wedge before the GSC worker is complete,
792	 * the worker will hit an error on its submission to the GSC engine and
793	 * then exit. This is hard to hit for a user, but it is reproducible
794	 * with skipping selftests. The error is handled gracefully by the
795	 * worker, so there are no functional issues, but we still end up with
796	 * an error message in dmesg, which is something we want to avoid as
797	 * this is a supported scenario. We could modify the worker to better
798	 * handle a wedging occurring during its execution, but that gets
799	 * complicated for a couple of reasons:
800	 * - We do want the error on runtime wedging, because there are
801	 *   implications for subsystems outside of GT (i.e., PXP, HDCP), it's
802	 *   only the error on driver unload that we want to silence.
803	 * - The worker is responsible for multiple submissions (GSC FW load,
804	 *   HuC auth, SW proxy), so all of those will have to be adapted to
805	 *   handle the wedged_on_fini scenario.
806	 * Therefore, it's much simpler to just wait for the worker to be done
807	 * before wedging on driver removal, also considering that the worker
808	 * will likely already be idle in the great majority of non-selftest
809	 * scenarios.
810	 */
811	intel_gsc_uc_flush_work(&gt->uc.gsc);
812
813	/*
814	 * Upon unregistering the device to prevent any new users, cancel
815	 * all in-flight requests so that we can quickly unbind the active
816	 * resources.
817	 */
818	intel_gt_set_wedged_on_fini(gt);
819
820	/* Scrub all HW state upon release */
821	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
822		__intel_gt_reset(gt, ALL_ENGINES);
823}
824
825void intel_gt_driver_release(struct intel_gt *gt)
826{
827	struct i915_address_space *vm;
828
829	vm = fetch_and_zero(&gt->vm);
830	if (vm) /* FIXME being called twice on error paths :( */
831		i915_vm_put(vm);
832
833	intel_wa_list_free(&gt->wa_list);
834	intel_gt_pm_fini(gt);
835	intel_gt_fini_scratch(gt);
836	intel_gt_fini_buffer_pool(gt);
837	intel_gt_fini_hwconfig(gt);
838}
839
840void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
841{
842	struct intel_gt *gt;
843	unsigned int id;
844
845	/* We need to wait for inflight RCU frees to release their grip */
846	rcu_barrier();
847
848	for_each_gt(gt, i915, id) {
849		intel_uc_driver_late_release(&gt->uc);
850		intel_gt_fini_requests(gt);
851		intel_gt_fini_reset(gt);
852		intel_gt_fini_timelines(gt);
853		intel_gt_fini_tlb(gt);
854		intel_engines_free(gt);
855	}
856}
857
858static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
859{
860	int ret;
861
862	if (!gt_is_root(gt)) {
863		struct intel_uncore *uncore;
864		spinlock_t *irq_lock;
865
866		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
867		if (!uncore)
868			return -ENOMEM;
869
870		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
871		if (!irq_lock)
872			return -ENOMEM;
873
874		gt->uncore = uncore;
875		gt->irq_lock = irq_lock;
876
877		intel_gt_common_init_early(gt);
878	}
879
880	intel_uncore_init_early(gt->uncore, gt);
881
882	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
883	if (ret)
884		return ret;
885
886	gt->phys_addr = phys_addr;
887
888	return 0;
889}
890
891#ifdef __linux__
892
893int intel_gt_probe_all(struct drm_i915_private *i915)
894{
895	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
896	struct intel_gt *gt = to_gt(i915);
897	const struct intel_gt_definition *gtdef;
898	phys_addr_t phys_addr;
899	unsigned int mmio_bar;
900	unsigned int i;
901	int ret;
902
903	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
904	phys_addr = pci_resource_start(pdev, mmio_bar);
905
906	/*
907	 * We always have at least one primary GT on any device
908	 * and it has been already initialized early during probe
909	 * in i915_driver_probe()
910	 */
911	gt->i915 = i915;
912	gt->name = "Primary GT";
913	gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
914
915	gt_dbg(gt, "Setting up %s\n", gt->name);
916	ret = intel_gt_tile_setup(gt, phys_addr);
917	if (ret)
918		return ret;
919
920	i915->gt[0] = gt;
921
922	if (!HAS_EXTRA_GT_LIST(i915))
923		return 0;
924
925	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
926	     gtdef->name != NULL;
927	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
928		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
929		if (!gt) {
930			ret = -ENOMEM;
931			goto err;
932		}
933
934		gt->i915 = i915;
935		gt->name = gtdef->name;
936		gt->type = gtdef->type;
937		gt->info.engine_mask = gtdef->engine_mask;
938		gt->info.id = i;
939
940		gt_dbg(gt, "Setting up %s\n", gt->name);
941		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
942						  gtdef->mapping_base,
943						  SZ_16M,
944						  pci_resource_len(pdev, mmio_bar)))) {
945			ret = -ENODEV;
946			goto err;
947		}
948
949		switch (gtdef->type) {
950		case GT_TILE:
951			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
952			break;
953
954		case GT_MEDIA:
955			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
956						     gtdef->gsi_offset);
957			break;
958
959		case GT_PRIMARY:
960			/* Primary GT should not appear in extra GT list */
961		default:
962			MISSING_CASE(gtdef->type);
963			ret = -ENODEV;
964		}
965
966		if (ret)
967			goto err;
968
969		i915->gt[i] = gt;
970	}
971
972	return 0;
973
974err:
975	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
976	return ret;
977}
978
979#else
980
981int intel_gt_probe_all(struct drm_i915_private *i915)
982{
983	struct pci_dev *pdev = i915->drm.pdev;
984	struct intel_gt *gt = to_gt(i915);
985	const struct intel_gt_definition *gtdef;
986	phys_addr_t phys_addr;
987	bus_size_t len;
988	pcireg_t type;
989	int flags;
990	unsigned int mmio_bar;
991	unsigned int i;
992	int ret;
993
994	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
995	type = pci_mapreg_type(i915->pc, i915->tag, 0x10 + (mmio_bar * 4));
996	ret = -pci_mapreg_info(i915->pc, i915->tag, 0x10 + (mmio_bar * 4), type,
997	    &phys_addr, &len, NULL);
998	if (ret)
999		return ret;
1000
1001	/*
1002	 * We always have at least one primary GT on any device
1003	 * and it has been already initialized early during probe
1004	 * in i915_driver_probe()
1005	 */
1006	gt->i915 = i915;
1007	gt->name = "Primary GT";
1008	gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
1009
1010	gt_dbg(gt, "Setting up %s\n", gt->name);
1011	ret = intel_gt_tile_setup(gt, phys_addr);
1012	if (ret)
1013		return ret;
1014
1015	i915->gt[0] = gt;
1016
1017	if (!HAS_EXTRA_GT_LIST(i915))
1018		return 0;
1019
1020	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
1021	     gtdef->name != NULL;
1022	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
1023		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
1024		if (!gt) {
1025			ret = -ENOMEM;
1026			goto err;
1027		}
1028
1029		gt->i915 = i915;
1030		gt->name = gtdef->name;
1031		gt->type = gtdef->type;
1032		gt->info.engine_mask = gtdef->engine_mask;
1033		gt->info.id = i;
1034
1035		gt_dbg(gt, "Setting up %s\n", gt->name);
1036		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
1037						  gtdef->mapping_base,
1038						  SZ_16M,
1039						  len))) {
1040			ret = -ENODEV;
1041			goto err;
1042		}
1043
1044		switch (gtdef->type) {
1045		case GT_TILE:
1046			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
1047			break;
1048
1049		case GT_MEDIA:
1050			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
1051						     gtdef->gsi_offset);
1052			break;
1053
1054		case GT_PRIMARY:
1055			/* Primary GT should not appear in extra GT list */
1056		default:
1057			MISSING_CASE(gtdef->type);
1058			ret = -ENODEV;
1059		}
1060
1061		if (ret)
1062			goto err;
1063
1064		i915->gt[i] = gt;
1065	}
1066
1067	return 0;
1068
1069err:
1070	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
1071	return ret;
1072}
1073
1074#endif
1075
1076int intel_gt_tiles_init(struct drm_i915_private *i915)
1077{
1078	struct intel_gt *gt;
1079	unsigned int id;
1080	int ret;
1081
1082	for_each_gt(gt, i915, id) {
1083		ret = intel_gt_probe_lmem(gt);
1084		if (ret)
1085			return ret;
1086	}
1087
1088	return 0;
1089}
1090
1091void intel_gt_info_print(const struct intel_gt_info *info,
1092			 struct drm_printer *p)
1093{
1094	drm_printf(p, "available engines: %x\n", info->engine_mask);
1095
1096	intel_sseu_dump(&info->sseu, p);
1097}
1098
1099enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt,
1100					      struct drm_i915_gem_object *obj,
1101					      bool always_coherent)
1102{
1103	/*
1104	 * Wa_22016122933: always return I915_MAP_WC for Media
1105	 * version 13.0 when the object is on the Media GT
1106	 */
1107	if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt))
1108		return I915_MAP_WC;
1109	if (HAS_LLC(gt->i915) || always_coherent)
1110		return I915_MAP_WB;
1111	else
1112		return I915_MAP_WC;
1113}
1114