1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2014 Intel Corporation
4 */
5
6/**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109#include <linux/interrupt.h>
110#include <linux/string_helpers.h>
111
112#include "i915_drv.h"
113#include "i915_reg.h"
114#include "i915_trace.h"
115#include "i915_vgpu.h"
116#include "gen8_engine_cs.h"
117#include "intel_breadcrumbs.h"
118#include "intel_context.h"
119#include "intel_engine_heartbeat.h"
120#include "intel_engine_pm.h"
121#include "intel_engine_regs.h"
122#include "intel_engine_stats.h"
123#include "intel_execlists_submission.h"
124#include "intel_gt.h"
125#include "intel_gt_irq.h"
126#include "intel_gt_pm.h"
127#include "intel_gt_regs.h"
128#include "intel_gt_requests.h"
129#include "intel_lrc.h"
130#include "intel_lrc_reg.h"
131#include "intel_mocs.h"
132#include "intel_reset.h"
133#include "intel_ring.h"
134#include "intel_workarounds.h"
135#include "shmem_utils.h"
136
137#define RING_EXECLIST_QFULL		(1 << 0x2)
138#define RING_EXECLIST1_VALID		(1 << 0x3)
139#define RING_EXECLIST0_VALID		(1 << 0x4)
140#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
141#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
142#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
143
144#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
145#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
146#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
147#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
148#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
149#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
150
151#define GEN8_CTX_STATUS_COMPLETED_MASK \
152	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
155#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
156#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
157#define GEN12_IDLE_CTX_ID		0x7FF
158#define GEN12_CSB_CTX_VALID(csb_dw) \
159	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161#define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
162#define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
163#define XEHP_IDLE_CTX_ID			0xFFFF
164#define XEHP_CSB_CTX_VALID(csb_dw) \
165	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167/* Typical size of the average request (2 pipecontrols and a MI_BB) */
168#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170struct virtual_engine {
171	struct intel_engine_cs base;
172	struct intel_context context;
173	struct rcu_work rcu;
174
175	/*
176	 * We allow only a single request through the virtual engine at a time
177	 * (each request in the timeline waits for the completion fence of
178	 * the previous before being submitted). By restricting ourselves to
179	 * only submitting a single request, each request is placed on to a
180	 * physical to maximise load spreading (by virtue of the late greedy
181	 * scheduling -- each real engine takes the next available request
182	 * upon idling).
183	 */
184	struct i915_request *request;
185
186	/*
187	 * We keep a rbtree of available virtual engines inside each physical
188	 * engine, sorted by priority. Here we preallocate the nodes we need
189	 * for the virtual engine, indexed by physical_engine->id.
190	 */
191	struct ve_node {
192		struct rb_node rb;
193		int prio;
194	} nodes[I915_NUM_ENGINES];
195
196	/* And finally, which physical engines this virtual engine maps onto. */
197	unsigned int num_siblings;
198	struct intel_engine_cs *siblings[];
199};
200
201static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202{
203	GEM_BUG_ON(!intel_engine_is_virtual(engine));
204	return container_of(engine, struct virtual_engine, base);
205}
206
207static struct intel_context *
208execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209			 unsigned long flags);
210
211static struct i915_request *
212__active_request(const struct intel_timeline * const tl,
213		 struct i915_request *rq,
214		 int error)
215{
216	struct i915_request *active = rq;
217
218	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219		if (__i915_request_is_complete(rq))
220			break;
221
222		if (error) {
223			i915_request_set_error_once(rq, error);
224			__i915_request_skip(rq);
225		}
226		active = rq;
227	}
228
229	return active;
230}
231
232static struct i915_request *
233active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234{
235	return __active_request(tl, rq, 0);
236}
237
238static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239{
240	/*
241	 * We inspect HWS_PREEMPT with a semaphore inside
242	 * engine->emit_fini_breadcrumb. If the dword is true,
243	 * the ring is paused as the semaphore will busywait
244	 * until the dword is false.
245	 */
246	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247	if (state)
248		wmb();
249}
250
251static struct i915_priolist *to_priolist(struct rb_node *rb)
252{
253	return rb_entry(rb, struct i915_priolist, node);
254}
255
256static int rq_prio(const struct i915_request *rq)
257{
258	return READ_ONCE(rq->sched.attr.priority);
259}
260
261static int effective_prio(const struct i915_request *rq)
262{
263	int prio = rq_prio(rq);
264
265	/*
266	 * If this request is special and must not be interrupted at any
267	 * cost, so be it. Note we are only checking the most recent request
268	 * in the context and so may be masking an earlier vip request. It
269	 * is hoped that under the conditions where nopreempt is used, this
270	 * will not matter (i.e. all requests to that context will be
271	 * nopreempt for as long as desired).
272	 */
273	if (i915_request_has_nopreempt(rq))
274		prio = I915_PRIORITY_UNPREEMPTABLE;
275
276	return prio;
277}
278
279static int queue_prio(const struct i915_sched_engine *sched_engine)
280{
281	struct rb_node *rb;
282
283	rb = rb_first_cached(&sched_engine->queue);
284	if (!rb)
285		return INT_MIN;
286
287	return to_priolist(rb)->priority;
288}
289
290static int virtual_prio(const struct intel_engine_execlists *el)
291{
292	struct rb_node *rb = rb_first_cached(&el->virtual);
293
294	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295}
296
297static bool need_preempt(const struct intel_engine_cs *engine,
298			 const struct i915_request *rq)
299{
300	int last_prio;
301
302	if (!intel_engine_has_semaphores(engine))
303		return false;
304
305	/*
306	 * Check if the current priority hint merits a preemption attempt.
307	 *
308	 * We record the highest value priority we saw during rescheduling
309	 * prior to this dequeue, therefore we know that if it is strictly
310	 * less than the current tail of ESLP[0], we do not need to force
311	 * a preempt-to-idle cycle.
312	 *
313	 * However, the priority hint is a mere hint that we may need to
314	 * preempt. If that hint is stale or we may be trying to preempt
315	 * ourselves, ignore the request.
316	 *
317	 * More naturally we would write
318	 *      prio >= max(0, last);
319	 * except that we wish to prevent triggering preemption at the same
320	 * priority level: the task that is running should remain running
321	 * to preserve FIFO ordering of dependencies.
322	 */
323	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324	if (engine->sched_engine->queue_priority_hint <= last_prio)
325		return false;
326
327	/*
328	 * Check against the first request in ELSP[1], it will, thanks to the
329	 * power of PI, be the highest priority of that context.
330	 */
331	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333		return true;
334
335	/*
336	 * If the inflight context did not trigger the preemption, then maybe
337	 * it was the set of queued requests? Pick the highest priority in
338	 * the queue (the first active priolist) and see if it deserves to be
339	 * running instead of ELSP[0].
340	 *
341	 * The highest priority request in the queue can not be either
342	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343	 * context, it's priority would not exceed ELSP[0] aka last_prio.
344	 */
345	return max(virtual_prio(&engine->execlists),
346		   queue_prio(engine->sched_engine)) > last_prio;
347}
348
349__maybe_unused static bool
350assert_priority_queue(const struct i915_request *prev,
351		      const struct i915_request *next)
352{
353	/*
354	 * Without preemption, the prev may refer to the still active element
355	 * which we refuse to let go.
356	 *
357	 * Even with preemption, there are times when we think it is better not
358	 * to preempt and leave an ostensibly lower priority request in flight.
359	 */
360	if (i915_request_is_active(prev))
361		return true;
362
363	return rq_prio(prev) >= rq_prio(next);
364}
365
366static struct i915_request *
367__unwind_incomplete_requests(struct intel_engine_cs *engine)
368{
369	struct i915_request *rq, *rn, *active = NULL;
370	struct list_head *pl;
371	int prio = I915_PRIORITY_INVALID;
372
373	lockdep_assert_held(&engine->sched_engine->lock);
374
375	list_for_each_entry_safe_reverse(rq, rn,
376					 &engine->sched_engine->requests,
377					 sched.link) {
378		if (__i915_request_is_complete(rq)) {
379			list_del_init(&rq->sched.link);
380			continue;
381		}
382
383		__i915_request_unsubmit(rq);
384
385		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386		if (rq_prio(rq) != prio) {
387			prio = rq_prio(rq);
388			pl = i915_sched_lookup_priolist(engine->sched_engine,
389							prio);
390		}
391		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393		list_move(&rq->sched.link, pl);
394		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396		/* Check in case we rollback so far we wrap [size/2] */
397		if (intel_ring_direction(rq->ring,
398					 rq->tail,
399					 rq->ring->tail + 8) > 0)
400			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402		active = rq;
403	}
404
405	return active;
406}
407
408struct i915_request *
409execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410{
411	struct intel_engine_cs *engine =
412		container_of(execlists, typeof(*engine), execlists);
413
414	return __unwind_incomplete_requests(engine);
415}
416
417static void
418execlists_context_status_change(struct i915_request *rq, unsigned long status)
419{
420	/*
421	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
422	 * The compiler should eliminate this function as dead-code.
423	 */
424	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425		return;
426
427	STUB();
428#ifdef notyet
429	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
430				   status, rq);
431#endif
432}
433
434static void reset_active(struct i915_request *rq,
435			 struct intel_engine_cs *engine)
436{
437	struct intel_context * const ce = rq->context;
438	u32 head;
439
440	/*
441	 * The executing context has been cancelled. We want to prevent
442	 * further execution along this context and propagate the error on
443	 * to anything depending on its results.
444	 *
445	 * In __i915_request_submit(), we apply the -EIO and remove the
446	 * requests' payloads for any banned requests. But first, we must
447	 * rewind the context back to the start of the incomplete request so
448	 * that we do not jump back into the middle of the batch.
449	 *
450	 * We preserve the breadcrumbs and semaphores of the incomplete
451	 * requests so that inter-timeline dependencies (i.e other timelines)
452	 * remain correctly ordered. And we defer to __i915_request_submit()
453	 * so that all asynchronous waits are correctly handled.
454	 */
455	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
456		     rq->fence.context, rq->fence.seqno);
457
458	/* On resubmission of the active request, payload will be scrubbed */
459	if (__i915_request_is_complete(rq))
460		head = rq->tail;
461	else
462		head = __active_request(ce->timeline, rq, -EIO)->head;
463	head = intel_ring_wrap(ce->ring, head);
464
465	/* Scrub the context image to prevent replaying the previous batch */
466	lrc_init_regs(ce, engine, true);
467
468	/* We've switched away, so this should be a no-op, but intent matters */
469	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
470}
471
472static bool bad_request(const struct i915_request *rq)
473{
474	return rq->fence.error && i915_request_started(rq);
475}
476
477static struct intel_engine_cs *
478__execlists_schedule_in(struct i915_request *rq)
479{
480	struct intel_engine_cs * const engine = rq->engine;
481	struct intel_context * const ce = rq->context;
482
483	intel_context_get(ce);
484
485	if (unlikely(intel_context_is_closed(ce) &&
486		     !intel_engine_has_heartbeat(engine)))
487		intel_context_set_exiting(ce);
488
489	if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
490		reset_active(rq, engine);
491
492	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
493		lrc_check_regs(ce, engine, "before");
494
495	if (ce->tag) {
496		/* Use a fixed tag for OA and friends */
497		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
498		ce->lrc.ccid = ce->tag;
499	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
500		/* We don't need a strict matching tag, just different values */
501		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
502
503		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
504		clear_bit(tag - 1, &engine->context_tag);
505		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
506
507		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
508
509	} else {
510		/* We don't need a strict matching tag, just different values */
511		unsigned int tag = __ffs(engine->context_tag);
512
513		GEM_BUG_ON(tag >= BITS_PER_LONG);
514		__clear_bit(tag, &engine->context_tag);
515		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
516
517		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
518	}
519
520	ce->lrc.ccid |= engine->execlists.ccid;
521
522	__intel_gt_pm_get(engine->gt);
523	if (engine->fw_domain && !engine->fw_active++)
524		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
525	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
526	intel_engine_context_in(engine);
527
528	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
529
530	return engine;
531}
532
533static void execlists_schedule_in(struct i915_request *rq, int idx)
534{
535	struct intel_context * const ce = rq->context;
536	struct intel_engine_cs *old;
537
538	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
539	trace_i915_request_in(rq, idx);
540
541	old = ce->inflight;
542	if (!old)
543		old = __execlists_schedule_in(rq);
544	WRITE_ONCE(ce->inflight, ptr_inc(old));
545
546	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
547}
548
549static void
550resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
551{
552	struct intel_engine_cs *engine = rq->engine;
553
554	spin_lock_irq(&engine->sched_engine->lock);
555
556	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
557	WRITE_ONCE(rq->engine, &ve->base);
558	ve->base.submit_request(rq);
559
560	spin_unlock_irq(&engine->sched_engine->lock);
561}
562
563static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
564{
565	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
566	struct intel_engine_cs *engine = rq->engine;
567
568	/*
569	 * After this point, the rq may be transferred to a new sibling, so
570	 * before we clear ce->inflight make sure that the context has been
571	 * removed from the b->signalers and furthermore we need to make sure
572	 * that the concurrent iterator in signal_irq_work is no longer
573	 * following ce->signal_link.
574	 */
575	if (!list_empty(&ce->signals))
576		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
577
578	/*
579	 * This engine is now too busy to run this virtual request, so
580	 * see if we can find an alternative engine for it to execute on.
581	 * Once a request has become bonded to this engine, we treat it the
582	 * same as other native request.
583	 */
584	if (i915_request_in_priority_queue(rq) &&
585	    rq->execution_mask != engine->mask)
586		resubmit_virtual_request(rq, ve);
587
588	if (READ_ONCE(ve->request))
589		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
590}
591
592static void __execlists_schedule_out(struct i915_request * const rq,
593				     struct intel_context * const ce)
594{
595	struct intel_engine_cs * const engine = rq->engine;
596	unsigned int ccid;
597
598	/*
599	 * NB process_csb() is not under the engine->sched_engine->lock and hence
600	 * schedule_out can race with schedule_in meaning that we should
601	 * refrain from doing non-trivial work here.
602	 */
603
604	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
605	GEM_BUG_ON(ce->inflight != engine);
606
607	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
608		lrc_check_regs(ce, engine, "after");
609
610	/*
611	 * If we have just completed this context, the engine may now be
612	 * idle and we want to re-enter powersaving.
613	 */
614	if (intel_timeline_is_last(ce->timeline, rq) &&
615	    __i915_request_is_complete(rq))
616		intel_engine_add_retire(engine, ce->timeline);
617
618	ccid = ce->lrc.ccid;
619	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
620		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
621		ccid &= XEHP_MAX_CONTEXT_HW_ID;
622	} else {
623		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
624		ccid &= GEN12_MAX_CONTEXT_HW_ID;
625	}
626
627	if (ccid < BITS_PER_LONG) {
628		GEM_BUG_ON(ccid == 0);
629		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
630		__set_bit(ccid - 1, &engine->context_tag);
631	}
632	intel_engine_context_out(engine);
633	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
634	if (engine->fw_domain && !--engine->fw_active)
635		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
636	intel_gt_pm_put_async(engine->gt);
637
638	/*
639	 * If this is part of a virtual engine, its next request may
640	 * have been blocked waiting for access to the active context.
641	 * We have to kick all the siblings again in case we need to
642	 * switch (e.g. the next request is not runnable on this
643	 * engine). Hopefully, we will already have submitted the next
644	 * request before the tasklet runs and do not need to rebuild
645	 * each virtual tree and kick everyone again.
646	 */
647	if (ce->engine != engine)
648		kick_siblings(rq, ce);
649
650	WRITE_ONCE(ce->inflight, NULL);
651	intel_context_put(ce);
652}
653
654static inline void execlists_schedule_out(struct i915_request *rq)
655{
656	struct intel_context * const ce = rq->context;
657
658	trace_i915_request_out(rq);
659
660	GEM_BUG_ON(!ce->inflight);
661	ce->inflight = ptr_dec(ce->inflight);
662	if (!__intel_context_inflight_count(ce->inflight))
663		__execlists_schedule_out(rq, ce);
664
665	i915_request_put(rq);
666}
667
668static u32 map_i915_prio_to_lrc_desc_prio(int prio)
669{
670	if (prio > I915_PRIORITY_NORMAL)
671		return GEN12_CTX_PRIORITY_HIGH;
672	else if (prio < I915_PRIORITY_NORMAL)
673		return GEN12_CTX_PRIORITY_LOW;
674	else
675		return GEN12_CTX_PRIORITY_NORMAL;
676}
677
678static u64 execlists_update_context(struct i915_request *rq)
679{
680	struct intel_context *ce = rq->context;
681	u64 desc;
682	u32 tail, prev;
683
684	desc = ce->lrc.desc;
685	if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
686		desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
687
688	/*
689	 * WaIdleLiteRestore:bdw,skl
690	 *
691	 * We should never submit the context with the same RING_TAIL twice
692	 * just in case we submit an empty ring, which confuses the HW.
693	 *
694	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
695	 * the normal request to be able to always advance the RING_TAIL on
696	 * subsequent resubmissions (for lite restore). Should that fail us,
697	 * and we try and submit the same tail again, force the context
698	 * reload.
699	 *
700	 * If we need to return to a preempted context, we need to skip the
701	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
702	 * HW has a tendency to ignore us rewinding the TAIL to the end of
703	 * an earlier request.
704	 */
705	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
706	prev = rq->ring->tail;
707	tail = intel_ring_set_tail(rq->ring, rq->tail);
708	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
709		desc |= CTX_DESC_FORCE_RESTORE;
710	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
711	rq->tail = rq->wa_tail;
712
713	/*
714	 * Make sure the context image is complete before we submit it to HW.
715	 *
716	 * Ostensibly, writes (including the WCB) should be flushed prior to
717	 * an uncached write such as our mmio register access, the empirical
718	 * evidence (esp. on Braswell) suggests that the WC write into memory
719	 * may not be visible to the HW prior to the completion of the UC
720	 * register write and that we may begin execution from the context
721	 * before its image is complete leading to invalid PD chasing.
722	 */
723	wmb();
724
725	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
726	return desc;
727}
728
729static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
730{
731	if (execlists->ctrl_reg) {
732		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
733		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
734	} else {
735		writel(upper_32_bits(desc), execlists->submit_reg);
736		writel(lower_32_bits(desc), execlists->submit_reg);
737	}
738}
739
740static __maybe_unused char *
741dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
742{
743	if (!rq)
744		return "";
745
746	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
747		 prefix,
748		 rq->context->lrc.ccid,
749		 rq->fence.context, rq->fence.seqno,
750		 __i915_request_is_complete(rq) ? "!" :
751		 __i915_request_has_started(rq) ? "*" :
752		 "",
753		 rq_prio(rq));
754
755	return buf;
756}
757
758static __maybe_unused noinline void
759trace_ports(const struct intel_engine_execlists *execlists,
760	    const char *msg,
761	    struct i915_request * const *ports)
762{
763	const struct intel_engine_cs *engine =
764		container_of(execlists, typeof(*engine), execlists);
765	char __maybe_unused p0[40], p1[40];
766
767	if (!ports[0])
768		return;
769
770	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
771		     dump_port(p0, sizeof(p0), "", ports[0]),
772		     dump_port(p1, sizeof(p1), ", ", ports[1]));
773}
774
775static bool
776reset_in_progress(const struct intel_engine_cs *engine)
777{
778	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
779}
780
781static __maybe_unused noinline bool
782assert_pending_valid(const struct intel_engine_execlists *execlists,
783		     const char *msg)
784{
785	struct intel_engine_cs *engine =
786		container_of(execlists, typeof(*engine), execlists);
787	struct i915_request * const *port, *rq, *prev = NULL;
788	struct intel_context *ce = NULL;
789	u32 ccid = -1;
790
791	trace_ports(execlists, msg, execlists->pending);
792
793	/* We may be messing around with the lists during reset, lalala */
794	if (reset_in_progress(engine))
795		return true;
796
797	if (!execlists->pending[0]) {
798		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
799			      engine->name);
800		return false;
801	}
802
803	if (execlists->pending[execlists_num_ports(execlists)]) {
804		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
805			      engine->name, execlists_num_ports(execlists));
806		return false;
807	}
808
809	for (port = execlists->pending; (rq = *port); port++) {
810		unsigned long flags;
811		bool ok = true;
812
813		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
814		GEM_BUG_ON(!i915_request_is_active(rq));
815
816		if (ce == rq->context) {
817			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
818				      engine->name,
819				      ce->timeline->fence_context,
820				      port - execlists->pending);
821			return false;
822		}
823		ce = rq->context;
824
825		if (ccid == ce->lrc.ccid) {
826			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
827				      engine->name,
828				      ccid, ce->timeline->fence_context,
829				      port - execlists->pending);
830			return false;
831		}
832		ccid = ce->lrc.ccid;
833
834		/*
835		 * Sentinels are supposed to be the last request so they flush
836		 * the current execution off the HW. Check that they are the only
837		 * request in the pending submission.
838		 *
839		 * NB: Due to the async nature of preempt-to-busy and request
840		 * cancellation we need to handle the case where request
841		 * becomes a sentinel in parallel to CSB processing.
842		 */
843		if (prev && i915_request_has_sentinel(prev) &&
844		    !READ_ONCE(prev->fence.error)) {
845			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
846				      engine->name,
847				      ce->timeline->fence_context,
848				      port - execlists->pending);
849			return false;
850		}
851		prev = rq;
852
853		/*
854		 * We want virtual requests to only be in the first slot so
855		 * that they are never stuck behind a hog and can be immediately
856		 * transferred onto the next idle engine.
857		 */
858		if (rq->execution_mask != engine->mask &&
859		    port != execlists->pending) {
860			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
861				      engine->name,
862				      ce->timeline->fence_context,
863				      port - execlists->pending);
864			return false;
865		}
866
867		/* Hold tightly onto the lock to prevent concurrent retires! */
868		if (!spin_trylock_irqsave(&rq->lock, flags))
869			continue;
870
871		if (__i915_request_is_complete(rq))
872			goto unlock;
873
874		if (i915_active_is_idle(&ce->active) &&
875		    !intel_context_is_barrier(ce)) {
876			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
877				      engine->name,
878				      ce->timeline->fence_context,
879				      port - execlists->pending);
880			ok = false;
881			goto unlock;
882		}
883
884		if (!i915_vma_is_pinned(ce->state)) {
885			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
886				      engine->name,
887				      ce->timeline->fence_context,
888				      port - execlists->pending);
889			ok = false;
890			goto unlock;
891		}
892
893		if (!i915_vma_is_pinned(ce->ring->vma)) {
894			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
895				      engine->name,
896				      ce->timeline->fence_context,
897				      port - execlists->pending);
898			ok = false;
899			goto unlock;
900		}
901
902unlock:
903		spin_unlock_irqrestore(&rq->lock, flags);
904		if (!ok)
905			return false;
906	}
907
908	return ce;
909}
910
911static void execlists_submit_ports(struct intel_engine_cs *engine)
912{
913	struct intel_engine_execlists *execlists = &engine->execlists;
914	unsigned int n;
915
916	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
917
918	/*
919	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
920	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
921	 * not be relinquished until the device is idle (see
922	 * i915_gem_idle_work_handler()). As a precaution, we make sure
923	 * that all ELSP are drained i.e. we have processed the CSB,
924	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
925	 */
926	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
927
928	/*
929	 * ELSQ note: the submit queue is not cleared after being submitted
930	 * to the HW so we need to make sure we always clean it up. This is
931	 * currently ensured by the fact that we always write the same number
932	 * of elsq entries, keep this in mind before changing the loop below.
933	 */
934	for (n = execlists_num_ports(execlists); n--; ) {
935		struct i915_request *rq = execlists->pending[n];
936
937		write_desc(execlists,
938			   rq ? execlists_update_context(rq) : 0,
939			   n);
940	}
941
942	/* we need to manually load the submit queue */
943	if (execlists->ctrl_reg)
944		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
945}
946
947static bool ctx_single_port_submission(const struct intel_context *ce)
948{
949	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
950		intel_context_force_single_submission(ce));
951}
952
953static bool can_merge_ctx(const struct intel_context *prev,
954			  const struct intel_context *next)
955{
956	if (prev != next)
957		return false;
958
959	if (ctx_single_port_submission(prev))
960		return false;
961
962	return true;
963}
964
965static unsigned long i915_request_flags(const struct i915_request *rq)
966{
967	return READ_ONCE(rq->fence.flags);
968}
969
970static bool can_merge_rq(const struct i915_request *prev,
971			 const struct i915_request *next)
972{
973	GEM_BUG_ON(prev == next);
974	GEM_BUG_ON(!assert_priority_queue(prev, next));
975
976	/*
977	 * We do not submit known completed requests. Therefore if the next
978	 * request is already completed, we can pretend to merge it in
979	 * with the previous context (and we will skip updating the ELSP
980	 * and tracking). Thus hopefully keeping the ELSP full with active
981	 * contexts, despite the best efforts of preempt-to-busy to confuse
982	 * us.
983	 */
984	if (__i915_request_is_complete(next))
985		return true;
986
987	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
988		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
989		      BIT(I915_FENCE_FLAG_SENTINEL))))
990		return false;
991
992	if (!can_merge_ctx(prev->context, next->context))
993		return false;
994
995	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
996	return true;
997}
998
999static bool virtual_matches(const struct virtual_engine *ve,
1000			    const struct i915_request *rq,
1001			    const struct intel_engine_cs *engine)
1002{
1003	const struct intel_engine_cs *inflight;
1004
1005	if (!rq)
1006		return false;
1007
1008	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1009		return false;
1010
1011	/*
1012	 * We track when the HW has completed saving the context image
1013	 * (i.e. when we have seen the final CS event switching out of
1014	 * the context) and must not overwrite the context image before
1015	 * then. This restricts us to only using the active engine
1016	 * while the previous virtualized request is inflight (so
1017	 * we reuse the register offsets). This is a very small
1018	 * hystersis on the greedy seelction algorithm.
1019	 */
1020	inflight = intel_context_inflight(&ve->context);
1021	if (inflight && inflight != engine)
1022		return false;
1023
1024	return true;
1025}
1026
1027static struct virtual_engine *
1028first_virtual_engine(struct intel_engine_cs *engine)
1029{
1030	struct intel_engine_execlists *el = &engine->execlists;
1031	struct rb_node *rb = rb_first_cached(&el->virtual);
1032
1033	while (rb) {
1034		struct virtual_engine *ve =
1035			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1036		struct i915_request *rq = READ_ONCE(ve->request);
1037
1038		/* lazily cleanup after another engine handled rq */
1039		if (!rq || !virtual_matches(ve, rq, engine)) {
1040			rb_erase_cached(rb, &el->virtual);
1041			RB_CLEAR_NODE(rb);
1042			rb = rb_first_cached(&el->virtual);
1043			continue;
1044		}
1045
1046		return ve;
1047	}
1048
1049	return NULL;
1050}
1051
1052static void virtual_xfer_context(struct virtual_engine *ve,
1053				 struct intel_engine_cs *engine)
1054{
1055	unsigned int n;
1056
1057	if (likely(engine == ve->siblings[0]))
1058		return;
1059
1060	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1061	if (!intel_engine_has_relative_mmio(engine))
1062		lrc_update_offsets(&ve->context, engine);
1063
1064	/*
1065	 * Move the bound engine to the top of the list for
1066	 * future execution. We then kick this tasklet first
1067	 * before checking others, so that we preferentially
1068	 * reuse this set of bound registers.
1069	 */
1070	for (n = 1; n < ve->num_siblings; n++) {
1071		if (ve->siblings[n] == engine) {
1072			swap(ve->siblings[n], ve->siblings[0]);
1073			break;
1074		}
1075	}
1076}
1077
1078static void defer_request(struct i915_request *rq, struct list_head * const pl)
1079{
1080	DRM_LIST_HEAD(list);
1081
1082	/*
1083	 * We want to move the interrupted request to the back of
1084	 * the round-robin list (i.e. its priority level), but
1085	 * in doing so, we must then move all requests that were in
1086	 * flight and were waiting for the interrupted request to
1087	 * be run after it again.
1088	 */
1089	do {
1090		struct i915_dependency *p;
1091
1092		GEM_BUG_ON(i915_request_is_active(rq));
1093		list_move_tail(&rq->sched.link, pl);
1094
1095		for_each_waiter(p, rq) {
1096			struct i915_request *w =
1097				container_of(p->waiter, typeof(*w), sched);
1098
1099			if (p->flags & I915_DEPENDENCY_WEAK)
1100				continue;
1101
1102			/* Leave semaphores spinning on the other engines */
1103			if (w->engine != rq->engine)
1104				continue;
1105
1106			/* No waiter should start before its signaler */
1107			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1108				   __i915_request_has_started(w) &&
1109				   !__i915_request_is_complete(rq));
1110
1111			if (!i915_request_is_ready(w))
1112				continue;
1113
1114			if (rq_prio(w) < rq_prio(rq))
1115				continue;
1116
1117			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1118			GEM_BUG_ON(i915_request_is_active(w));
1119			list_move_tail(&w->sched.link, &list);
1120		}
1121
1122		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1123	} while (rq);
1124}
1125
1126static void defer_active(struct intel_engine_cs *engine)
1127{
1128	struct i915_request *rq;
1129
1130	rq = __unwind_incomplete_requests(engine);
1131	if (!rq)
1132		return;
1133
1134	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1135						     rq_prio(rq)));
1136}
1137
1138static bool
1139timeslice_yield(const struct intel_engine_execlists *el,
1140		const struct i915_request *rq)
1141{
1142	/*
1143	 * Once bitten, forever smitten!
1144	 *
1145	 * If the active context ever busy-waited on a semaphore,
1146	 * it will be treated as a hog until the end of its timeslice (i.e.
1147	 * until it is scheduled out and replaced by a new submission,
1148	 * possibly even its own lite-restore). The HW only sends an interrupt
1149	 * on the first miss, and we do know if that semaphore has been
1150	 * signaled, or even if it is now stuck on another semaphore. Play
1151	 * safe, yield if it might be stuck -- it will be given a fresh
1152	 * timeslice in the near future.
1153	 */
1154	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1155}
1156
1157static bool needs_timeslice(const struct intel_engine_cs *engine,
1158			    const struct i915_request *rq)
1159{
1160	if (!intel_engine_has_timeslices(engine))
1161		return false;
1162
1163	/* If not currently active, or about to switch, wait for next event */
1164	if (!rq || __i915_request_is_complete(rq))
1165		return false;
1166
1167	/* We do not need to start the timeslice until after the ACK */
1168	if (READ_ONCE(engine->execlists.pending[0]))
1169		return false;
1170
1171	/* If ELSP[1] is occupied, always check to see if worth slicing */
1172	if (!list_is_last_rcu(&rq->sched.link,
1173			      &engine->sched_engine->requests)) {
1174		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1175		return true;
1176	}
1177
1178	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1179	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1180		ENGINE_TRACE(engine, "timeslice required for queue\n");
1181		return true;
1182	}
1183
1184	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1185		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1186		return true;
1187	}
1188
1189	return false;
1190}
1191
1192static bool
1193timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1194{
1195	const struct intel_engine_execlists *el = &engine->execlists;
1196
1197	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1198		return false;
1199
1200	if (!needs_timeslice(engine, rq))
1201		return false;
1202
1203	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1204}
1205
1206static unsigned long timeslice(const struct intel_engine_cs *engine)
1207{
1208	return READ_ONCE(engine->props.timeslice_duration_ms);
1209}
1210
1211static void start_timeslice(struct intel_engine_cs *engine)
1212{
1213	struct intel_engine_execlists *el = &engine->execlists;
1214	unsigned long duration;
1215
1216	/* Disable the timer if there is nothing to switch to */
1217	duration = 0;
1218	if (needs_timeslice(engine, *el->active)) {
1219		/* Avoid continually prolonging an active timeslice */
1220		if (timer_active(&el->timer)) {
1221			/*
1222			 * If we just submitted a new ELSP after an old
1223			 * context, that context may have already consumed
1224			 * its timeslice, so recheck.
1225			 */
1226			if (!timer_pending(&el->timer))
1227				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1228			return;
1229		}
1230
1231		duration = timeslice(engine);
1232	}
1233
1234	set_timer_ms(&el->timer, duration);
1235}
1236
1237static void record_preemption(struct intel_engine_execlists *execlists)
1238{
1239	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1240}
1241
1242static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1243					    const struct i915_request *rq)
1244{
1245	if (!rq)
1246		return 0;
1247
1248	/* Only allow ourselves to force reset the currently active context */
1249	engine->execlists.preempt_target = rq;
1250
1251	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1252	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1253		return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1254
1255	return READ_ONCE(engine->props.preempt_timeout_ms);
1256}
1257
1258static void set_preempt_timeout(struct intel_engine_cs *engine,
1259				const struct i915_request *rq)
1260{
1261	if (!intel_engine_has_preempt_reset(engine))
1262		return;
1263
1264	set_timer_ms(&engine->execlists.preempt,
1265		     active_preempt_timeout(engine, rq));
1266}
1267
1268static bool completed(const struct i915_request *rq)
1269{
1270	if (i915_request_has_sentinel(rq))
1271		return false;
1272
1273	return __i915_request_is_complete(rq);
1274}
1275
1276static void execlists_dequeue(struct intel_engine_cs *engine)
1277{
1278	struct intel_engine_execlists * const execlists = &engine->execlists;
1279	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1280	struct i915_request **port = execlists->pending;
1281	struct i915_request ** const last_port = port + execlists->port_mask;
1282	struct i915_request *last, * const *active;
1283	struct virtual_engine *ve;
1284	struct rb_node *rb;
1285	bool submit = false;
1286
1287	/*
1288	 * Hardware submission is through 2 ports. Conceptually each port
1289	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1290	 * static for a context, and unique to each, so we only execute
1291	 * requests belonging to a single context from each ring. RING_HEAD
1292	 * is maintained by the CS in the context image, it marks the place
1293	 * where it got up to last time, and through RING_TAIL we tell the CS
1294	 * where we want to execute up to this time.
1295	 *
1296	 * In this list the requests are in order of execution. Consecutive
1297	 * requests from the same context are adjacent in the ringbuffer. We
1298	 * can combine these requests into a single RING_TAIL update:
1299	 *
1300	 *              RING_HEAD...req1...req2
1301	 *                                    ^- RING_TAIL
1302	 * since to execute req2 the CS must first execute req1.
1303	 *
1304	 * Our goal then is to point each port to the end of a consecutive
1305	 * sequence of requests as being the most optimal (fewest wake ups
1306	 * and context switches) submission.
1307	 */
1308
1309	spin_lock(&sched_engine->lock);
1310
1311	/*
1312	 * If the queue is higher priority than the last
1313	 * request in the currently active context, submit afresh.
1314	 * We will resubmit again afterwards in case we need to split
1315	 * the active context to interject the preemption request,
1316	 * i.e. we will retrigger preemption following the ack in case
1317	 * of trouble.
1318	 *
1319	 */
1320	active = execlists->active;
1321	while ((last = *active) && completed(last))
1322		active++;
1323
1324	if (last) {
1325		if (need_preempt(engine, last)) {
1326			ENGINE_TRACE(engine,
1327				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1328				     last->fence.context,
1329				     last->fence.seqno,
1330				     last->sched.attr.priority,
1331				     sched_engine->queue_priority_hint);
1332			record_preemption(execlists);
1333
1334			/*
1335			 * Don't let the RING_HEAD advance past the breadcrumb
1336			 * as we unwind (and until we resubmit) so that we do
1337			 * not accidentally tell it to go backwards.
1338			 */
1339			ring_set_paused(engine, 1);
1340
1341			/*
1342			 * Note that we have not stopped the GPU at this point,
1343			 * so we are unwinding the incomplete requests as they
1344			 * remain inflight and so by the time we do complete
1345			 * the preemption, some of the unwound requests may
1346			 * complete!
1347			 */
1348			__unwind_incomplete_requests(engine);
1349
1350			last = NULL;
1351		} else if (timeslice_expired(engine, last)) {
1352			ENGINE_TRACE(engine,
1353				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1354				     str_yes_no(timer_expired(&execlists->timer)),
1355				     last->fence.context, last->fence.seqno,
1356				     rq_prio(last),
1357				     sched_engine->queue_priority_hint,
1358				     str_yes_no(timeslice_yield(execlists, last)));
1359
1360			/*
1361			 * Consume this timeslice; ensure we start a new one.
1362			 *
1363			 * The timeslice expired, and we will unwind the
1364			 * running contexts and recompute the next ELSP.
1365			 * If that submit will be the same pair of contexts
1366			 * (due to dependency ordering), we will skip the
1367			 * submission. If we don't cancel the timer now,
1368			 * we will see that the timer has expired and
1369			 * reschedule the tasklet; continually until the
1370			 * next context switch or other preemption event.
1371			 *
1372			 * Since we have decided to reschedule based on
1373			 * consumption of this timeslice, if we submit the
1374			 * same context again, grant it a full timeslice.
1375			 */
1376			cancel_timer(&execlists->timer);
1377			ring_set_paused(engine, 1);
1378			defer_active(engine);
1379
1380			/*
1381			 * Unlike for preemption, if we rewind and continue
1382			 * executing the same context as previously active,
1383			 * the order of execution will remain the same and
1384			 * the tail will only advance. We do not need to
1385			 * force a full context restore, as a lite-restore
1386			 * is sufficient to resample the monotonic TAIL.
1387			 *
1388			 * If we switch to any other context, similarly we
1389			 * will not rewind TAIL of current context, and
1390			 * normal save/restore will preserve state and allow
1391			 * us to later continue executing the same request.
1392			 */
1393			last = NULL;
1394		} else {
1395			/*
1396			 * Otherwise if we already have a request pending
1397			 * for execution after the current one, we can
1398			 * just wait until the next CS event before
1399			 * queuing more. In either case we will force a
1400			 * lite-restore preemption event, but if we wait
1401			 * we hopefully coalesce several updates into a single
1402			 * submission.
1403			 */
1404			if (active[1]) {
1405				/*
1406				 * Even if ELSP[1] is occupied and not worthy
1407				 * of timeslices, our queue might be.
1408				 */
1409				spin_unlock(&sched_engine->lock);
1410				return;
1411			}
1412		}
1413	}
1414
1415	/* XXX virtual is always taking precedence */
1416	while ((ve = first_virtual_engine(engine))) {
1417		struct i915_request *rq;
1418
1419		spin_lock(&ve->base.sched_engine->lock);
1420
1421		rq = ve->request;
1422		if (unlikely(!virtual_matches(ve, rq, engine)))
1423			goto unlock; /* lost the race to a sibling */
1424
1425		GEM_BUG_ON(rq->engine != &ve->base);
1426		GEM_BUG_ON(rq->context != &ve->context);
1427
1428		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1429			spin_unlock(&ve->base.sched_engine->lock);
1430			break;
1431		}
1432
1433		if (last && !can_merge_rq(last, rq)) {
1434			spin_unlock(&ve->base.sched_engine->lock);
1435			spin_unlock(&engine->sched_engine->lock);
1436			return; /* leave this for another sibling */
1437		}
1438
1439		ENGINE_TRACE(engine,
1440			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1441			     rq->fence.context,
1442			     rq->fence.seqno,
1443			     __i915_request_is_complete(rq) ? "!" :
1444			     __i915_request_has_started(rq) ? "*" :
1445			     "",
1446			     str_yes_no(engine != ve->siblings[0]));
1447
1448		WRITE_ONCE(ve->request, NULL);
1449		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1450
1451		rb = &ve->nodes[engine->id].rb;
1452		rb_erase_cached(rb, &execlists->virtual);
1453		RB_CLEAR_NODE(rb);
1454
1455		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1456		WRITE_ONCE(rq->engine, engine);
1457
1458		if (__i915_request_submit(rq)) {
1459			/*
1460			 * Only after we confirm that we will submit
1461			 * this request (i.e. it has not already
1462			 * completed), do we want to update the context.
1463			 *
1464			 * This serves two purposes. It avoids
1465			 * unnecessary work if we are resubmitting an
1466			 * already completed request after timeslicing.
1467			 * But more importantly, it prevents us altering
1468			 * ve->siblings[] on an idle context, where
1469			 * we may be using ve->siblings[] in
1470			 * virtual_context_enter / virtual_context_exit.
1471			 */
1472			virtual_xfer_context(ve, engine);
1473			GEM_BUG_ON(ve->siblings[0] != engine);
1474
1475			submit = true;
1476			last = rq;
1477		}
1478
1479		i915_request_put(rq);
1480unlock:
1481		spin_unlock(&ve->base.sched_engine->lock);
1482
1483		/*
1484		 * Hmm, we have a bunch of virtual engine requests,
1485		 * but the first one was already completed (thanks
1486		 * preempt-to-busy!). Keep looking at the veng queue
1487		 * until we have no more relevant requests (i.e.
1488		 * the normal submit queue has higher priority).
1489		 */
1490		if (submit)
1491			break;
1492	}
1493
1494	while ((rb = rb_first_cached(&sched_engine->queue))) {
1495		struct i915_priolist *p = to_priolist(rb);
1496		struct i915_request *rq, *rn;
1497
1498		priolist_for_each_request_consume(rq, rn, p) {
1499			bool merge = true;
1500
1501			/*
1502			 * Can we combine this request with the current port?
1503			 * It has to be the same context/ringbuffer and not
1504			 * have any exceptions (e.g. GVT saying never to
1505			 * combine contexts).
1506			 *
1507			 * If we can combine the requests, we can execute both
1508			 * by updating the RING_TAIL to point to the end of the
1509			 * second request, and so we never need to tell the
1510			 * hardware about the first.
1511			 */
1512			if (last && !can_merge_rq(last, rq)) {
1513				/*
1514				 * If we are on the second port and cannot
1515				 * combine this request with the last, then we
1516				 * are done.
1517				 */
1518				if (port == last_port)
1519					goto done;
1520
1521				/*
1522				 * We must not populate both ELSP[] with the
1523				 * same LRCA, i.e. we must submit 2 different
1524				 * contexts if we submit 2 ELSP.
1525				 */
1526				if (last->context == rq->context)
1527					goto done;
1528
1529				if (i915_request_has_sentinel(last))
1530					goto done;
1531
1532				/*
1533				 * We avoid submitting virtual requests into
1534				 * the secondary ports so that we can migrate
1535				 * the request immediately to another engine
1536				 * rather than wait for the primary request.
1537				 */
1538				if (rq->execution_mask != engine->mask)
1539					goto done;
1540
1541				/*
1542				 * If GVT overrides us we only ever submit
1543				 * port[0], leaving port[1] empty. Note that we
1544				 * also have to be careful that we don't queue
1545				 * the same context (even though a different
1546				 * request) to the second port.
1547				 */
1548				if (ctx_single_port_submission(last->context) ||
1549				    ctx_single_port_submission(rq->context))
1550					goto done;
1551
1552				merge = false;
1553			}
1554
1555			if (__i915_request_submit(rq)) {
1556				if (!merge) {
1557					*port++ = i915_request_get(last);
1558					last = NULL;
1559				}
1560
1561				GEM_BUG_ON(last &&
1562					   !can_merge_ctx(last->context,
1563							  rq->context));
1564				GEM_BUG_ON(last &&
1565					   i915_seqno_passed(last->fence.seqno,
1566							     rq->fence.seqno));
1567
1568				submit = true;
1569				last = rq;
1570			}
1571		}
1572
1573		rb_erase_cached(&p->node, &sched_engine->queue);
1574		i915_priolist_free(p);
1575	}
1576done:
1577	*port++ = i915_request_get(last);
1578
1579	/*
1580	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1581	 *
1582	 * We choose the priority hint such that if we add a request of greater
1583	 * priority than this, we kick the submission tasklet to decide on
1584	 * the right order of submitting the requests to hardware. We must
1585	 * also be prepared to reorder requests as they are in-flight on the
1586	 * HW. We derive the priority hint then as the first "hole" in
1587	 * the HW submission ports and if there are no available slots,
1588	 * the priority of the lowest executing request, i.e. last.
1589	 *
1590	 * When we do receive a higher priority request ready to run from the
1591	 * user, see queue_request(), the priority hint is bumped to that
1592	 * request triggering preemption on the next dequeue (or subsequent
1593	 * interrupt for secondary ports).
1594	 */
1595	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1596	i915_sched_engine_reset_on_empty(sched_engine);
1597	spin_unlock(&sched_engine->lock);
1598
1599	/*
1600	 * We can skip poking the HW if we ended up with exactly the same set
1601	 * of requests as currently running, e.g. trying to timeslice a pair
1602	 * of ordered contexts.
1603	 */
1604	if (submit &&
1605	    memcmp(active,
1606		   execlists->pending,
1607		   (port - execlists->pending) * sizeof(*port))) {
1608		*port = NULL;
1609		while (port-- != execlists->pending)
1610			execlists_schedule_in(*port, port - execlists->pending);
1611
1612		WRITE_ONCE(execlists->yield, -1);
1613		set_preempt_timeout(engine, *active);
1614		execlists_submit_ports(engine);
1615	} else {
1616		ring_set_paused(engine, 0);
1617		while (port-- != execlists->pending)
1618			i915_request_put(*port);
1619		*execlists->pending = NULL;
1620	}
1621}
1622
1623static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1624{
1625	local_irq_disable(); /* Suspend interrupts across request submission */
1626	execlists_dequeue(engine);
1627	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1628}
1629
1630static void clear_ports(struct i915_request **ports, int count)
1631{
1632	memset_p((void **)ports, NULL, count);
1633}
1634
1635static void
1636copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1637{
1638	/* A memcpy_p() would be very useful here! */
1639	while (count--)
1640		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1641}
1642
1643static struct i915_request **
1644cancel_port_requests(struct intel_engine_execlists * const execlists,
1645		     struct i915_request **inactive)
1646{
1647	struct i915_request * const *port;
1648
1649	for (port = execlists->pending; *port; port++)
1650		*inactive++ = *port;
1651	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1652
1653	/* Mark the end of active before we overwrite *active */
1654	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1655		*inactive++ = *port;
1656	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1657
1658	smp_wmb(); /* complete the seqlock for execlists_active() */
1659	WRITE_ONCE(execlists->active, execlists->inflight);
1660
1661	/* Having cancelled all outstanding process_csb(), stop their timers */
1662	GEM_BUG_ON(execlists->pending[0]);
1663	cancel_timer(&execlists->timer);
1664	cancel_timer(&execlists->preempt);
1665
1666	return inactive;
1667}
1668
1669/*
1670 * Starting with Gen12, the status has a new format:
1671 *
1672 *     bit  0:     switched to new queue
1673 *     bit  1:     reserved
1674 *     bit  2:     semaphore wait mode (poll or signal), only valid when
1675 *                 switch detail is set to "wait on semaphore"
1676 *     bits 3-5:   engine class
1677 *     bits 6-11:  engine instance
1678 *     bits 12-14: reserved
1679 *     bits 15-25: sw context id of the lrc the GT switched to
1680 *     bits 26-31: sw counter of the lrc the GT switched to
1681 *     bits 32-35: context switch detail
1682 *                  - 0: ctx complete
1683 *                  - 1: wait on sync flip
1684 *                  - 2: wait on vblank
1685 *                  - 3: wait on scanline
1686 *                  - 4: wait on semaphore
1687 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1688 *                       WAIT_FOR_EVENT)
1689 *     bit  36:    reserved
1690 *     bits 37-43: wait detail (for switch detail 1 to 4)
1691 *     bits 44-46: reserved
1692 *     bits 47-57: sw context id of the lrc the GT switched away from
1693 *     bits 58-63: sw counter of the lrc the GT switched away from
1694 *
1695 * Xe_HP csb shuffles things around compared to TGL:
1696 *
1697 *     bits 0-3:   context switch detail (same possible values as TGL)
1698 *     bits 4-9:   engine instance
1699 *     bits 10-25: sw context id of the lrc the GT switched to
1700 *     bits 26-31: sw counter of the lrc the GT switched to
1701 *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1702 *                 switch detail is set to "wait on semaphore"
1703 *     bit  33:    switched to new queue
1704 *     bits 34-41: wait detail (for switch detail 1 to 4)
1705 *     bits 42-57: sw context id of the lrc the GT switched away from
1706 *     bits 58-63: sw counter of the lrc the GT switched away from
1707 */
1708static inline bool
1709__gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1710		  u8 switch_detail)
1711{
1712	/*
1713	 * The context switch detail is not guaranteed to be 5 when a preemption
1714	 * occurs, so we can't just check for that. The check below works for
1715	 * all the cases we care about, including preemptions of WAIT
1716	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1717	 * would require some extra handling, but we don't support that.
1718	 */
1719	if (!ctx_away_valid || new_queue) {
1720		GEM_BUG_ON(!ctx_to_valid);
1721		return true;
1722	}
1723
1724	/*
1725	 * switch detail = 5 is covered by the case above and we do not expect a
1726	 * context switch on an unsuccessful wait instruction since we always
1727	 * use polling mode.
1728	 */
1729	GEM_BUG_ON(switch_detail);
1730	return false;
1731}
1732
1733static bool xehp_csb_parse(const u64 csb)
1734{
1735	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1736				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1737				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1738				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1739}
1740
1741static bool gen12_csb_parse(const u64 csb)
1742{
1743	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1744				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1745				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1746				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1747}
1748
1749static bool gen8_csb_parse(const u64 csb)
1750{
1751	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1752}
1753
1754static noinline u64
1755wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1756{
1757	u64 entry;
1758
1759	/*
1760	 * Reading from the HWSP has one particular advantage: we can detect
1761	 * a stale entry. Since the write into HWSP is broken, we have no reason
1762	 * to trust the HW at all, the mmio entry may equally be unordered, so
1763	 * we prefer the path that is self-checking and as a last resort,
1764	 * return the mmio value.
1765	 *
1766	 * tgl,dg1:HSDES#22011327657
1767	 */
1768	preempt_disable();
1769	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1770		int idx = csb - engine->execlists.csb_status;
1771		int status;
1772
1773		status = GEN8_EXECLISTS_STATUS_BUF;
1774		if (idx >= 6) {
1775			status = GEN11_EXECLISTS_STATUS_BUF2;
1776			idx -= 6;
1777		}
1778		status += sizeof(u64) * idx;
1779
1780		entry = intel_uncore_read64(engine->uncore,
1781					    _MMIO(engine->mmio_base + status));
1782	}
1783	preempt_enable();
1784
1785	return entry;
1786}
1787
1788static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1789{
1790	u64 entry = READ_ONCE(*csb);
1791
1792	/*
1793	 * Unfortunately, the GPU does not always serialise its write
1794	 * of the CSB entries before its write of the CSB pointer, at least
1795	 * from the perspective of the CPU, using what is known as a Global
1796	 * Observation Point. We may read a new CSB tail pointer, but then
1797	 * read the stale CSB entries, causing us to misinterpret the
1798	 * context-switch events, and eventually declare the GPU hung.
1799	 *
1800	 * icl:HSDES#1806554093
1801	 * tgl:HSDES#22011248461
1802	 */
1803	if (unlikely(entry == -1))
1804		entry = wa_csb_read(engine, csb);
1805
1806	/* Consume this entry so that we can spot its future reuse. */
1807	WRITE_ONCE(*csb, -1);
1808
1809	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1810	return entry;
1811}
1812
1813static void new_timeslice(struct intel_engine_execlists *el)
1814{
1815	/* By cancelling, we will start afresh in start_timeslice() */
1816	cancel_timer(&el->timer);
1817}
1818
1819static struct i915_request **
1820process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1821{
1822	struct intel_engine_execlists * const execlists = &engine->execlists;
1823	u64 * const buf = execlists->csb_status;
1824	const u8 num_entries = execlists->csb_size;
1825	struct i915_request **prev;
1826	u8 head, tail;
1827
1828	/*
1829	 * As we modify our execlists state tracking we require exclusive
1830	 * access. Either we are inside the tasklet, or the tasklet is disabled
1831	 * and we assume that is only inside the reset paths and so serialised.
1832	 */
1833	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1834		   !reset_in_progress(engine));
1835
1836	/*
1837	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1838	 * When reading from the csb_write mmio register, we have to be
1839	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1840	 * the low 4bits. As it happens we know the next 4bits are always
1841	 * zero and so we can simply masked off the low u8 of the register
1842	 * and treat it identically to reading from the HWSP (without having
1843	 * to use explicit shifting and masking, and probably bifurcating
1844	 * the code to handle the legacy mmio read).
1845	 */
1846	head = execlists->csb_head;
1847	tail = READ_ONCE(*execlists->csb_write);
1848	if (unlikely(head == tail))
1849		return inactive;
1850
1851	/*
1852	 * We will consume all events from HW, or at least pretend to.
1853	 *
1854	 * The sequence of events from the HW is deterministic, and derived
1855	 * from our writes to the ELSP, with a smidgen of variability for
1856	 * the arrival of the asynchronous requests wrt to the inflight
1857	 * execution. If the HW sends an event that does not correspond with
1858	 * the one we are expecting, we have to abandon all hope as we lose
1859	 * all tracking of what the engine is actually executing. We will
1860	 * only detect we are out of sequence with the HW when we get an
1861	 * 'impossible' event because we have already drained our own
1862	 * preemption/promotion queue. If this occurs, we know that we likely
1863	 * lost track of execution earlier and must unwind and restart, the
1864	 * simplest way is by stop processing the event queue and force the
1865	 * engine to reset.
1866	 */
1867	execlists->csb_head = tail;
1868	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1869
1870	/*
1871	 * Hopefully paired with a wmb() in HW!
1872	 *
1873	 * We must complete the read of the write pointer before any reads
1874	 * from the CSB, so that we do not see stale values. Without an rmb
1875	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1876	 * we perform the READ_ONCE(*csb_write).
1877	 */
1878	rmb();
1879
1880	/* Remember who was last running under the timer */
1881	prev = inactive;
1882	*prev = NULL;
1883
1884	do {
1885		bool promote;
1886		u64 csb;
1887
1888		if (++head == num_entries)
1889			head = 0;
1890
1891		/*
1892		 * We are flying near dragons again.
1893		 *
1894		 * We hold a reference to the request in execlist_port[]
1895		 * but no more than that. We are operating in softirq
1896		 * context and so cannot hold any mutex or sleep. That
1897		 * prevents us stopping the requests we are processing
1898		 * in port[] from being retired simultaneously (the
1899		 * breadcrumb will be complete before we see the
1900		 * context-switch). As we only hold the reference to the
1901		 * request, any pointer chasing underneath the request
1902		 * is subject to a potential use-after-free. Thus we
1903		 * store all of the bookkeeping within port[] as
1904		 * required, and avoid using unguarded pointers beneath
1905		 * request itself. The same applies to the atomic
1906		 * status notifier.
1907		 */
1908
1909		csb = csb_read(engine, buf + head);
1910		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1911			     head, upper_32_bits(csb), lower_32_bits(csb));
1912
1913		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1914			promote = xehp_csb_parse(csb);
1915		else if (GRAPHICS_VER(engine->i915) >= 12)
1916			promote = gen12_csb_parse(csb);
1917		else
1918			promote = gen8_csb_parse(csb);
1919		if (promote) {
1920			struct i915_request * const *old = execlists->active;
1921
1922			if (GEM_WARN_ON(!*execlists->pending)) {
1923				execlists->error_interrupt |= ERROR_CSB;
1924				break;
1925			}
1926
1927			ring_set_paused(engine, 0);
1928
1929			/* Point active to the new ELSP; prevent overwriting */
1930			WRITE_ONCE(execlists->active, execlists->pending);
1931			smp_wmb(); /* notify execlists_active() */
1932
1933			/* cancel old inflight, prepare for switch */
1934			trace_ports(execlists, "preempted", old);
1935			while (*old)
1936				*inactive++ = *old++;
1937
1938			/* switch pending to inflight */
1939			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1940			copy_ports(execlists->inflight,
1941				   execlists->pending,
1942				   execlists_num_ports(execlists));
1943			smp_wmb(); /* complete the seqlock */
1944			WRITE_ONCE(execlists->active, execlists->inflight);
1945
1946			/* XXX Magic delay for tgl */
1947			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1948
1949			WRITE_ONCE(execlists->pending[0], NULL);
1950		} else {
1951			if (GEM_WARN_ON(!*execlists->active)) {
1952				execlists->error_interrupt |= ERROR_CSB;
1953				break;
1954			}
1955
1956			/* port0 completed, advanced to port1 */
1957			trace_ports(execlists, "completed", execlists->active);
1958
1959			/*
1960			 * We rely on the hardware being strongly
1961			 * ordered, that the breadcrumb write is
1962			 * coherent (visible from the CPU) before the
1963			 * user interrupt is processed. One might assume
1964			 * that the breadcrumb write being before the
1965			 * user interrupt and the CS event for the context
1966			 * switch would therefore be before the CS event
1967			 * itself...
1968			 */
1969			if (GEM_SHOW_DEBUG() &&
1970			    !__i915_request_is_complete(*execlists->active)) {
1971				struct i915_request *rq = *execlists->active;
1972				const u32 *regs __maybe_unused =
1973					rq->context->lrc_reg_state;
1974
1975				ENGINE_TRACE(engine,
1976					     "context completed before request!\n");
1977				ENGINE_TRACE(engine,
1978					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1979					     ENGINE_READ(engine, RING_START),
1980					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1981					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1982					     ENGINE_READ(engine, RING_CTL),
1983					     ENGINE_READ(engine, RING_MI_MODE));
1984				ENGINE_TRACE(engine,
1985					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1986					     i915_ggtt_offset(rq->ring->vma),
1987					     rq->head, rq->tail,
1988					     rq->fence.context,
1989					     lower_32_bits(rq->fence.seqno),
1990					     hwsp_seqno(rq));
1991				ENGINE_TRACE(engine,
1992					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1993					     regs[CTX_RING_START],
1994					     regs[CTX_RING_HEAD],
1995					     regs[CTX_RING_TAIL]);
1996			}
1997
1998			*inactive++ = *execlists->active++;
1999
2000			GEM_BUG_ON(execlists->active - execlists->inflight >
2001				   execlists_num_ports(execlists));
2002		}
2003	} while (head != tail);
2004
2005	/*
2006	 * Gen11 has proven to fail wrt global observation point between
2007	 * entry and tail update, failing on the ordering and thus
2008	 * we see an old entry in the context status buffer.
2009	 *
2010	 * Forcibly evict out entries for the next gpu csb update,
2011	 * to increase the odds that we get a fresh entries with non
2012	 * working hardware. The cost for doing so comes out mostly with
2013	 * the wash as hardware, working or not, will need to do the
2014	 * invalidation before.
2015	 */
2016	drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2017
2018	/*
2019	 * We assume that any event reflects a change in context flow
2020	 * and merits a fresh timeslice. We reinstall the timer after
2021	 * inspecting the queue to see if we need to resumbit.
2022	 */
2023	if (*prev != *execlists->active) { /* elide lite-restores */
2024		struct intel_context *prev_ce = NULL, *active_ce = NULL;
2025
2026		/*
2027		 * Note the inherent discrepancy between the HW runtime,
2028		 * recorded as part of the context switch, and the CPU
2029		 * adjustment for active contexts. We have to hope that
2030		 * the delay in processing the CS event is very small
2031		 * and consistent. It works to our advantage to have
2032		 * the CPU adjustment _undershoot_ (i.e. start later than)
2033		 * the CS timestamp so we never overreport the runtime
2034		 * and correct overselves later when updating from HW.
2035		 */
2036		if (*prev)
2037			prev_ce = (*prev)->context;
2038		if (*execlists->active)
2039			active_ce = (*execlists->active)->context;
2040		if (prev_ce != active_ce) {
2041			if (prev_ce)
2042				lrc_runtime_stop(prev_ce);
2043			if (active_ce)
2044				lrc_runtime_start(active_ce);
2045		}
2046		new_timeslice(execlists);
2047	}
2048
2049	return inactive;
2050}
2051
2052static void post_process_csb(struct i915_request **port,
2053			     struct i915_request **last)
2054{
2055	while (port != last)
2056		execlists_schedule_out(*port++);
2057}
2058
2059static void __execlists_hold(struct i915_request *rq)
2060{
2061	DRM_LIST_HEAD(list);
2062
2063	do {
2064		struct i915_dependency *p;
2065
2066		if (i915_request_is_active(rq))
2067			__i915_request_unsubmit(rq);
2068
2069		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2070		list_move_tail(&rq->sched.link,
2071			       &rq->engine->sched_engine->hold);
2072		i915_request_set_hold(rq);
2073		RQ_TRACE(rq, "on hold\n");
2074
2075		for_each_waiter(p, rq) {
2076			struct i915_request *w =
2077				container_of(p->waiter, typeof(*w), sched);
2078
2079			if (p->flags & I915_DEPENDENCY_WEAK)
2080				continue;
2081
2082			/* Leave semaphores spinning on the other engines */
2083			if (w->engine != rq->engine)
2084				continue;
2085
2086			if (!i915_request_is_ready(w))
2087				continue;
2088
2089			if (__i915_request_is_complete(w))
2090				continue;
2091
2092			if (i915_request_on_hold(w))
2093				continue;
2094
2095			list_move_tail(&w->sched.link, &list);
2096		}
2097
2098		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2099	} while (rq);
2100}
2101
2102static bool execlists_hold(struct intel_engine_cs *engine,
2103			   struct i915_request *rq)
2104{
2105	if (i915_request_on_hold(rq))
2106		return false;
2107
2108	spin_lock_irq(&engine->sched_engine->lock);
2109
2110	if (__i915_request_is_complete(rq)) { /* too late! */
2111		rq = NULL;
2112		goto unlock;
2113	}
2114
2115	/*
2116	 * Transfer this request onto the hold queue to prevent it
2117	 * being resumbitted to HW (and potentially completed) before we have
2118	 * released it. Since we may have already submitted following
2119	 * requests, we need to remove those as well.
2120	 */
2121	GEM_BUG_ON(i915_request_on_hold(rq));
2122	GEM_BUG_ON(rq->engine != engine);
2123	__execlists_hold(rq);
2124	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2125
2126unlock:
2127	spin_unlock_irq(&engine->sched_engine->lock);
2128	return rq;
2129}
2130
2131static bool hold_request(const struct i915_request *rq)
2132{
2133	struct i915_dependency *p;
2134	bool result = false;
2135
2136	/*
2137	 * If one of our ancestors is on hold, we must also be on hold,
2138	 * otherwise we will bypass it and execute before it.
2139	 */
2140	rcu_read_lock();
2141	for_each_signaler(p, rq) {
2142		const struct i915_request *s =
2143			container_of(p->signaler, typeof(*s), sched);
2144
2145		if (s->engine != rq->engine)
2146			continue;
2147
2148		result = i915_request_on_hold(s);
2149		if (result)
2150			break;
2151	}
2152	rcu_read_unlock();
2153
2154	return result;
2155}
2156
2157static void __execlists_unhold(struct i915_request *rq)
2158{
2159	DRM_LIST_HEAD(list);
2160
2161	do {
2162		struct i915_dependency *p;
2163
2164		RQ_TRACE(rq, "hold release\n");
2165
2166		GEM_BUG_ON(!i915_request_on_hold(rq));
2167		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2168
2169		i915_request_clear_hold(rq);
2170		list_move_tail(&rq->sched.link,
2171			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2172							  rq_prio(rq)));
2173		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2174
2175		/* Also release any children on this engine that are ready */
2176		for_each_waiter(p, rq) {
2177			struct i915_request *w =
2178				container_of(p->waiter, typeof(*w), sched);
2179
2180			if (p->flags & I915_DEPENDENCY_WEAK)
2181				continue;
2182
2183			if (w->engine != rq->engine)
2184				continue;
2185
2186			if (!i915_request_on_hold(w))
2187				continue;
2188
2189			/* Check that no other parents are also on hold */
2190			if (hold_request(w))
2191				continue;
2192
2193			list_move_tail(&w->sched.link, &list);
2194		}
2195
2196		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2197	} while (rq);
2198}
2199
2200static void execlists_unhold(struct intel_engine_cs *engine,
2201			     struct i915_request *rq)
2202{
2203	spin_lock_irq(&engine->sched_engine->lock);
2204
2205	/*
2206	 * Move this request back to the priority queue, and all of its
2207	 * children and grandchildren that were suspended along with it.
2208	 */
2209	__execlists_unhold(rq);
2210
2211	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2212		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2213		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2214	}
2215
2216	spin_unlock_irq(&engine->sched_engine->lock);
2217}
2218
2219struct execlists_capture {
2220	struct work_struct work;
2221	struct i915_request *rq;
2222	struct i915_gpu_coredump *error;
2223};
2224
2225static void execlists_capture_work(struct work_struct *work)
2226{
2227	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2228	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2229		__GFP_NOWARN;
2230	struct intel_engine_cs *engine = cap->rq->engine;
2231	struct intel_gt_coredump *gt = cap->error->gt;
2232	struct intel_engine_capture_vma *vma;
2233
2234	/* Compress all the objects attached to the request, slow! */
2235	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2236	if (vma) {
2237		struct i915_vma_compress *compress =
2238			i915_vma_capture_prepare(gt);
2239
2240		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2241		i915_vma_capture_finish(gt, compress);
2242	}
2243
2244	gt->simulated = gt->engine->simulated;
2245	cap->error->simulated = gt->simulated;
2246
2247	/* Publish the error state, and announce it to the world */
2248	i915_error_state_store(cap->error);
2249	i915_gpu_coredump_put(cap->error);
2250
2251	/* Return this request and all that depend upon it for signaling */
2252	execlists_unhold(engine, cap->rq);
2253	i915_request_put(cap->rq);
2254
2255	kfree(cap);
2256}
2257
2258static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2259{
2260	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2261	struct execlists_capture *cap;
2262
2263	cap = kmalloc(sizeof(*cap), gfp);
2264	if (!cap)
2265		return NULL;
2266
2267	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2268	if (!cap->error)
2269		goto err_cap;
2270
2271	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2272	if (!cap->error->gt)
2273		goto err_gpu;
2274
2275	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2276	if (!cap->error->gt->engine)
2277		goto err_gt;
2278
2279	cap->error->gt->engine->hung = true;
2280
2281	return cap;
2282
2283err_gt:
2284	kfree(cap->error->gt);
2285err_gpu:
2286	kfree(cap->error);
2287err_cap:
2288	kfree(cap);
2289	return NULL;
2290}
2291
2292static struct i915_request *
2293active_context(struct intel_engine_cs *engine, u32 ccid)
2294{
2295	const struct intel_engine_execlists * const el = &engine->execlists;
2296	struct i915_request * const *port, *rq;
2297
2298	/*
2299	 * Use the most recent result from process_csb(), but just in case
2300	 * we trigger an error (via interrupt) before the first CS event has
2301	 * been written, peek at the next submission.
2302	 */
2303
2304	for (port = el->active; (rq = *port); port++) {
2305		if (rq->context->lrc.ccid == ccid) {
2306			ENGINE_TRACE(engine,
2307				     "ccid:%x found at active:%zd\n",
2308				     ccid, port - el->active);
2309			return rq;
2310		}
2311	}
2312
2313	for (port = el->pending; (rq = *port); port++) {
2314		if (rq->context->lrc.ccid == ccid) {
2315			ENGINE_TRACE(engine,
2316				     "ccid:%x found at pending:%zd\n",
2317				     ccid, port - el->pending);
2318			return rq;
2319		}
2320	}
2321
2322	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2323	return NULL;
2324}
2325
2326static u32 active_ccid(struct intel_engine_cs *engine)
2327{
2328	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2329}
2330
2331static void execlists_capture(struct intel_engine_cs *engine)
2332{
2333	struct drm_i915_private *i915 = engine->i915;
2334	struct execlists_capture *cap;
2335
2336	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2337		return;
2338
2339	/*
2340	 * We need to _quickly_ capture the engine state before we reset.
2341	 * We are inside an atomic section (softirq) here and we are delaying
2342	 * the forced preemption event.
2343	 */
2344	cap = capture_regs(engine);
2345	if (!cap)
2346		return;
2347
2348	spin_lock_irq(&engine->sched_engine->lock);
2349	cap->rq = active_context(engine, active_ccid(engine));
2350	if (cap->rq) {
2351		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2352		cap->rq = i915_request_get_rcu(cap->rq);
2353	}
2354	spin_unlock_irq(&engine->sched_engine->lock);
2355	if (!cap->rq)
2356		goto err_free;
2357
2358	/*
2359	 * Remove the request from the execlists queue, and take ownership
2360	 * of the request. We pass it to our worker who will _slowly_ compress
2361	 * all the pages the _user_ requested for debugging their batch, after
2362	 * which we return it to the queue for signaling.
2363	 *
2364	 * By removing them from the execlists queue, we also remove the
2365	 * requests from being processed by __unwind_incomplete_requests()
2366	 * during the intel_engine_reset(), and so they will *not* be replayed
2367	 * afterwards.
2368	 *
2369	 * Note that because we have not yet reset the engine at this point,
2370	 * it is possible for the request that we have identified as being
2371	 * guilty, did in fact complete and we will then hit an arbitration
2372	 * point allowing the outstanding preemption to succeed. The likelihood
2373	 * of that is very low (as capturing of the engine registers should be
2374	 * fast enough to run inside an irq-off atomic section!), so we will
2375	 * simply hold that request accountable for being non-preemptible
2376	 * long enough to force the reset.
2377	 */
2378	if (!execlists_hold(engine, cap->rq))
2379		goto err_rq;
2380
2381	INIT_WORK(&cap->work, execlists_capture_work);
2382	queue_work(i915->unordered_wq, &cap->work);
2383	return;
2384
2385err_rq:
2386	i915_request_put(cap->rq);
2387err_free:
2388	i915_gpu_coredump_put(cap->error);
2389	kfree(cap);
2390}
2391
2392static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2393{
2394	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2395	unsigned long *lock = &engine->gt->reset.flags;
2396
2397	if (!intel_has_reset_engine(engine->gt))
2398		return;
2399
2400	if (test_and_set_bit(bit, lock))
2401		return;
2402
2403	ENGINE_TRACE(engine, "reset for %s\n", msg);
2404
2405	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2406	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2407
2408	ring_set_paused(engine, 1); /* Freeze the current request in place */
2409	execlists_capture(engine);
2410	intel_engine_reset(engine, msg);
2411
2412	tasklet_enable(&engine->sched_engine->tasklet);
2413	clear_and_wake_up_bit(bit, lock);
2414}
2415
2416static bool preempt_timeout(const struct intel_engine_cs *const engine)
2417{
2418	const struct timeout *t = &engine->execlists.preempt;
2419
2420	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2421		return false;
2422
2423	if (!timer_expired(t))
2424		return false;
2425
2426	return engine->execlists.pending[0];
2427}
2428
2429/*
2430 * Check the unread Context Status Buffers and manage the submission of new
2431 * contexts to the ELSP accordingly.
2432 */
2433static void execlists_submission_tasklet(struct tasklet_struct *t)
2434{
2435	struct i915_sched_engine *sched_engine =
2436		from_tasklet(sched_engine, t, tasklet);
2437	struct intel_engine_cs * const engine = sched_engine->private_data;
2438	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2439	struct i915_request **inactive;
2440
2441	rcu_read_lock();
2442	inactive = process_csb(engine, post);
2443	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2444
2445	if (unlikely(preempt_timeout(engine))) {
2446		const struct i915_request *rq = *engine->execlists.active;
2447
2448		/*
2449		 * If after the preempt-timeout expired, we are still on the
2450		 * same active request/context as before we initiated the
2451		 * preemption, reset the engine.
2452		 *
2453		 * However, if we have processed a CS event to switch contexts,
2454		 * but not yet processed the CS event for the pending
2455		 * preemption, reset the timer allowing the new context to
2456		 * gracefully exit.
2457		 */
2458		cancel_timer(&engine->execlists.preempt);
2459		if (rq == engine->execlists.preempt_target)
2460			engine->execlists.error_interrupt |= ERROR_PREEMPT;
2461		else
2462			set_timer_ms(&engine->execlists.preempt,
2463				     active_preempt_timeout(engine, rq));
2464	}
2465
2466	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2467		const char *msg;
2468
2469		/* Generate the error message in priority wrt to the user! */
2470		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2471			msg = "CS error"; /* thrown by a user payload */
2472		else if (engine->execlists.error_interrupt & ERROR_CSB)
2473			msg = "invalid CSB event";
2474		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2475			msg = "preemption time out";
2476		else
2477			msg = "internal error";
2478
2479		engine->execlists.error_interrupt = 0;
2480		execlists_reset(engine, msg);
2481	}
2482
2483	if (!engine->execlists.pending[0]) {
2484		execlists_dequeue_irq(engine);
2485		start_timeslice(engine);
2486	}
2487
2488	post_process_csb(post, inactive);
2489	rcu_read_unlock();
2490}
2491
2492static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2493{
2494	bool tasklet = false;
2495
2496	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2497		u32 eir;
2498
2499		/* Upper 16b are the enabling mask, rsvd for internal errors */
2500		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2501		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2502
2503		/* Disable the error interrupt until after the reset */
2504		if (likely(eir)) {
2505			ENGINE_WRITE(engine, RING_EMR, ~0u);
2506			ENGINE_WRITE(engine, RING_EIR, eir);
2507			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2508			tasklet = true;
2509		}
2510	}
2511
2512	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2513		WRITE_ONCE(engine->execlists.yield,
2514			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2515		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2516			     engine->execlists.yield);
2517		if (del_timer(&engine->execlists.timer))
2518			tasklet = true;
2519	}
2520
2521	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2522		tasklet = true;
2523
2524	if (iir & GT_RENDER_USER_INTERRUPT)
2525		intel_engine_signal_breadcrumbs(engine);
2526
2527	if (tasklet)
2528		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2529}
2530
2531static void __execlists_kick(struct intel_engine_execlists *execlists)
2532{
2533	struct intel_engine_cs *engine =
2534		container_of(execlists, typeof(*engine), execlists);
2535
2536	/* Kick the tasklet for some interrupt coalescing and reset handling */
2537	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2538}
2539
2540#define execlists_kick(t, member) \
2541	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2542
2543static void execlists_timeslice(void *arg)
2544{
2545	struct timeout *timer = (struct timeout *)arg;
2546	execlists_kick(timer, timer);
2547}
2548
2549static void execlists_preempt(void *arg)
2550{
2551	struct timeout *timer = (struct timeout *)arg;
2552	execlists_kick(timer, preempt);
2553}
2554
2555static void queue_request(struct intel_engine_cs *engine,
2556			  struct i915_request *rq)
2557{
2558	GEM_BUG_ON(!list_empty(&rq->sched.link));
2559	list_add_tail(&rq->sched.link,
2560		      i915_sched_lookup_priolist(engine->sched_engine,
2561						 rq_prio(rq)));
2562	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2563}
2564
2565static bool submit_queue(struct intel_engine_cs *engine,
2566			 const struct i915_request *rq)
2567{
2568	struct i915_sched_engine *sched_engine = engine->sched_engine;
2569
2570	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2571		return false;
2572
2573	sched_engine->queue_priority_hint = rq_prio(rq);
2574	return true;
2575}
2576
2577static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2578			     const struct i915_request *rq)
2579{
2580	GEM_BUG_ON(i915_request_on_hold(rq));
2581	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2582}
2583
2584static void execlists_submit_request(struct i915_request *request)
2585{
2586	struct intel_engine_cs *engine = request->engine;
2587	unsigned long flags;
2588
2589	/* Will be called from irq-context when using foreign fences. */
2590	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2591
2592	if (unlikely(ancestor_on_hold(engine, request))) {
2593		RQ_TRACE(request, "ancestor on hold\n");
2594		list_add_tail(&request->sched.link,
2595			      &engine->sched_engine->hold);
2596		i915_request_set_hold(request);
2597	} else {
2598		queue_request(engine, request);
2599
2600		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2601		GEM_BUG_ON(list_empty(&request->sched.link));
2602
2603		if (submit_queue(engine, request))
2604			__execlists_kick(&engine->execlists);
2605	}
2606
2607	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2608}
2609
2610static int
2611__execlists_context_pre_pin(struct intel_context *ce,
2612			    struct intel_engine_cs *engine,
2613			    struct i915_gem_ww_ctx *ww, void **vaddr)
2614{
2615	int err;
2616
2617	err = lrc_pre_pin(ce, engine, ww, vaddr);
2618	if (err)
2619		return err;
2620
2621	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2622		lrc_init_state(ce, engine, *vaddr);
2623
2624		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2625	}
2626
2627	return 0;
2628}
2629
2630static int execlists_context_pre_pin(struct intel_context *ce,
2631				     struct i915_gem_ww_ctx *ww,
2632				     void **vaddr)
2633{
2634	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2635}
2636
2637static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2638{
2639	return lrc_pin(ce, ce->engine, vaddr);
2640}
2641
2642static int execlists_context_alloc(struct intel_context *ce)
2643{
2644	return lrc_alloc(ce, ce->engine);
2645}
2646
2647static void execlists_context_cancel_request(struct intel_context *ce,
2648					     struct i915_request *rq)
2649{
2650	struct intel_engine_cs *engine = NULL;
2651
2652	i915_request_active_engine(rq, &engine);
2653
2654	if (engine && intel_engine_pulse(engine))
2655		intel_gt_handle_error(engine->gt, engine->mask, 0,
2656				      "request cancellation by %s",
2657				      curproc->p_p->ps_comm);
2658}
2659
2660static struct intel_context *
2661execlists_create_parallel(struct intel_engine_cs **engines,
2662			  unsigned int num_siblings,
2663			  unsigned int width)
2664{
2665	struct intel_context *parent = NULL, *ce, *err;
2666	int i;
2667
2668	GEM_BUG_ON(num_siblings != 1);
2669
2670	for (i = 0; i < width; ++i) {
2671		ce = intel_context_create(engines[i]);
2672		if (IS_ERR(ce)) {
2673			err = ce;
2674			goto unwind;
2675		}
2676
2677		if (i == 0)
2678			parent = ce;
2679		else
2680			intel_context_bind_parent_child(parent, ce);
2681	}
2682
2683	parent->parallel.fence_context = dma_fence_context_alloc(1);
2684
2685	intel_context_set_nopreempt(parent);
2686	for_each_child(parent, ce)
2687		intel_context_set_nopreempt(ce);
2688
2689	return parent;
2690
2691unwind:
2692	if (parent)
2693		intel_context_put(parent);
2694	return err;
2695}
2696
2697static const struct intel_context_ops execlists_context_ops = {
2698	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2699
2700	.alloc = execlists_context_alloc,
2701
2702	.cancel_request = execlists_context_cancel_request,
2703
2704	.pre_pin = execlists_context_pre_pin,
2705	.pin = execlists_context_pin,
2706	.unpin = lrc_unpin,
2707	.post_unpin = lrc_post_unpin,
2708
2709	.enter = intel_context_enter_engine,
2710	.exit = intel_context_exit_engine,
2711
2712	.reset = lrc_reset,
2713	.destroy = lrc_destroy,
2714
2715	.create_parallel = execlists_create_parallel,
2716	.create_virtual = execlists_create_virtual,
2717};
2718
2719static int emit_pdps(struct i915_request *rq)
2720{
2721	const struct intel_engine_cs * const engine = rq->engine;
2722	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2723	int err, i;
2724	u32 *cs;
2725
2726	GEM_BUG_ON(intel_vgpu_active(rq->i915));
2727
2728	/*
2729	 * Beware ye of the dragons, this sequence is magic!
2730	 *
2731	 * Small changes to this sequence can cause anything from
2732	 * GPU hangs to forcewake errors and machine lockups!
2733	 */
2734
2735	cs = intel_ring_begin(rq, 2);
2736	if (IS_ERR(cs))
2737		return PTR_ERR(cs);
2738
2739	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2740	*cs++ = MI_NOOP;
2741	intel_ring_advance(rq, cs);
2742
2743	/* Flush any residual operations from the context load */
2744	err = engine->emit_flush(rq, EMIT_FLUSH);
2745	if (err)
2746		return err;
2747
2748	/* Magic required to prevent forcewake errors! */
2749	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2750	if (err)
2751		return err;
2752
2753	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2754	if (IS_ERR(cs))
2755		return PTR_ERR(cs);
2756
2757	/* Ensure the LRI have landed before we invalidate & continue */
2758	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2759	for (i = GEN8_3LVL_PDPES; i--; ) {
2760		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2761		u32 base = engine->mmio_base;
2762
2763		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2764		*cs++ = upper_32_bits(pd_daddr);
2765		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2766		*cs++ = lower_32_bits(pd_daddr);
2767	}
2768	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2769	intel_ring_advance(rq, cs);
2770
2771	intel_ring_advance(rq, cs);
2772
2773	return 0;
2774}
2775
2776static int execlists_request_alloc(struct i915_request *request)
2777{
2778	int ret;
2779
2780	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2781
2782	/*
2783	 * Flush enough space to reduce the likelihood of waiting after
2784	 * we start building the request - in which case we will just
2785	 * have to repeat work.
2786	 */
2787	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2788
2789	/*
2790	 * Note that after this point, we have committed to using
2791	 * this request as it is being used to both track the
2792	 * state of engine initialisation and liveness of the
2793	 * golden renderstate above. Think twice before you try
2794	 * to cancel/unwind this request now.
2795	 */
2796
2797	if (!i915_vm_is_4lvl(request->context->vm)) {
2798		ret = emit_pdps(request);
2799		if (ret)
2800			return ret;
2801	}
2802
2803	/* Unconditionally invalidate GPU caches and TLBs. */
2804	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2805	if (ret)
2806		return ret;
2807
2808	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2809	return 0;
2810}
2811
2812static void reset_csb_pointers(struct intel_engine_cs *engine)
2813{
2814	struct intel_engine_execlists * const execlists = &engine->execlists;
2815	const unsigned int reset_value = execlists->csb_size - 1;
2816
2817	ring_set_paused(engine, 0);
2818
2819	/*
2820	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2821	 * Bludgeon them with a mmio update to be sure.
2822	 */
2823	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2824		     0xffff << 16 | reset_value << 8 | reset_value);
2825	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2826
2827	/*
2828	 * After a reset, the HW starts writing into CSB entry [0]. We
2829	 * therefore have to set our HEAD pointer back one entry so that
2830	 * the *first* entry we check is entry 0. To complicate this further,
2831	 * as we don't wait for the first interrupt after reset, we have to
2832	 * fake the HW write to point back to the last entry so that our
2833	 * inline comparison of our cached head position against the last HW
2834	 * write works even before the first interrupt.
2835	 */
2836	execlists->csb_head = reset_value;
2837	WRITE_ONCE(*execlists->csb_write, reset_value);
2838	wmb(); /* Make sure this is visible to HW (paranoia?) */
2839
2840	/* Check that the GPU does indeed update the CSB entries! */
2841	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2842	drm_clflush_virt_range(execlists->csb_status,
2843			       execlists->csb_size *
2844			       sizeof(execlists->csb_status));
2845
2846	/* Once more for luck and our trusty paranoia */
2847	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2848		     0xffff << 16 | reset_value << 8 | reset_value);
2849	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2850
2851	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2852}
2853
2854static void sanitize_hwsp(struct intel_engine_cs *engine)
2855{
2856	struct intel_timeline *tl;
2857
2858	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2859		intel_timeline_reset_seqno(tl);
2860}
2861
2862static void execlists_sanitize(struct intel_engine_cs *engine)
2863{
2864	GEM_BUG_ON(execlists_active(&engine->execlists));
2865
2866	/*
2867	 * Poison residual state on resume, in case the suspend didn't!
2868	 *
2869	 * We have to assume that across suspend/resume (or other loss
2870	 * of control) that the contents of our pinned buffers has been
2871	 * lost, replaced by garbage. Since this doesn't always happen,
2872	 * let's poison such state so that we more quickly spot when
2873	 * we falsely assume it has been preserved.
2874	 */
2875	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2876		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2877
2878	reset_csb_pointers(engine);
2879
2880	/*
2881	 * The kernel_context HWSP is stored in the status_page. As above,
2882	 * that may be lost on resume/initialisation, and so we need to
2883	 * reset the value in the HWSP.
2884	 */
2885	sanitize_hwsp(engine);
2886
2887	/* And scrub the dirty cachelines for the HWSP */
2888	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2889
2890	intel_engine_reset_pinned_contexts(engine);
2891}
2892
2893static void enable_error_interrupt(struct intel_engine_cs *engine)
2894{
2895	u32 status;
2896
2897	engine->execlists.error_interrupt = 0;
2898	ENGINE_WRITE(engine, RING_EMR, ~0u);
2899	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2900
2901	status = ENGINE_READ(engine, RING_ESR);
2902	if (unlikely(status)) {
2903		drm_err(&engine->i915->drm,
2904			"engine '%s' resumed still in error: %08x\n",
2905			engine->name, status);
2906		__intel_gt_reset(engine->gt, engine->mask);
2907	}
2908
2909	/*
2910	 * On current gen8+, we have 2 signals to play with
2911	 *
2912	 * - I915_ERROR_INSTUCTION (bit 0)
2913	 *
2914	 *    Generate an error if the command parser encounters an invalid
2915	 *    instruction
2916	 *
2917	 *    This is a fatal error.
2918	 *
2919	 * - CP_PRIV (bit 2)
2920	 *
2921	 *    Generate an error on privilege violation (where the CP replaces
2922	 *    the instruction with a no-op). This also fires for writes into
2923	 *    read-only scratch pages.
2924	 *
2925	 *    This is a non-fatal error, parsing continues.
2926	 *
2927	 * * there are a few others defined for odd HW that we do not use
2928	 *
2929	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2930	 * error (as the HW is validating and suppressing the mistakes), we
2931	 * only unmask the instruction error bit.
2932	 */
2933	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2934}
2935
2936static void enable_execlists(struct intel_engine_cs *engine)
2937{
2938	u32 mode;
2939
2940	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2941
2942	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2943
2944	if (GRAPHICS_VER(engine->i915) >= 11)
2945		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2946	else
2947		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2948	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2949
2950	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2951
2952	ENGINE_WRITE_FW(engine,
2953			RING_HWS_PGA,
2954			i915_ggtt_offset(engine->status_page.vma));
2955	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2956
2957	enable_error_interrupt(engine);
2958}
2959
2960static int execlists_resume(struct intel_engine_cs *engine)
2961{
2962	intel_mocs_init_engine(engine);
2963	intel_breadcrumbs_reset(engine->breadcrumbs);
2964
2965	enable_execlists(engine);
2966
2967	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2968		xehp_enable_ccs_engines(engine);
2969
2970	return 0;
2971}
2972
2973static void execlists_reset_prepare(struct intel_engine_cs *engine)
2974{
2975	ENGINE_TRACE(engine, "depth<-%d\n",
2976		     atomic_read(&engine->sched_engine->tasklet.count));
2977
2978	/*
2979	 * Prevent request submission to the hardware until we have
2980	 * completed the reset in i915_gem_reset_finish(). If a request
2981	 * is completed by one engine, it may then queue a request
2982	 * to a second via its execlists->tasklet *just* as we are
2983	 * calling engine->resume() and also writing the ELSP.
2984	 * Turning off the execlists->tasklet until the reset is over
2985	 * prevents the race.
2986	 */
2987	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2988	GEM_BUG_ON(!reset_in_progress(engine));
2989
2990	/*
2991	 * We stop engines, otherwise we might get failed reset and a
2992	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2993	 * from system hang if batchbuffer is progressing when
2994	 * the reset is issued, regardless of READY_TO_RESET ack.
2995	 * Thus assume it is best to stop engines on all gens
2996	 * where we have a gpu reset.
2997	 *
2998	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2999	 *
3000	 * FIXME: Wa for more modern gens needs to be validated
3001	 */
3002	ring_set_paused(engine, 1);
3003	intel_engine_stop_cs(engine);
3004
3005	/*
3006	 * Wa_22011802037: In addition to stopping the cs, we need
3007	 * to wait for any pending mi force wakeups
3008	 */
3009	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
3010		intel_engine_wait_for_pending_mi_fw(engine);
3011
3012	engine->execlists.reset_ccid = active_ccid(engine);
3013}
3014
3015static struct i915_request **
3016reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3017{
3018	struct intel_engine_execlists * const execlists = &engine->execlists;
3019
3020	drm_clflush_virt_range(execlists->csb_write,
3021			       sizeof(execlists->csb_write[0]));
3022
3023	inactive = process_csb(engine, inactive); /* drain preemption events */
3024
3025	/* Following the reset, we need to reload the CSB read/write pointers */
3026	reset_csb_pointers(engine);
3027
3028	return inactive;
3029}
3030
3031static void
3032execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3033{
3034	struct intel_context *ce;
3035	struct i915_request *rq;
3036	u32 head;
3037
3038	/*
3039	 * Save the currently executing context, even if we completed
3040	 * its request, it was still running at the time of the
3041	 * reset and will have been clobbered.
3042	 */
3043	rq = active_context(engine, engine->execlists.reset_ccid);
3044	if (!rq)
3045		return;
3046
3047	ce = rq->context;
3048	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3049
3050	if (__i915_request_is_complete(rq)) {
3051		/* Idle context; tidy up the ring so we can restart afresh */
3052		head = intel_ring_wrap(ce->ring, rq->tail);
3053		goto out_replay;
3054	}
3055
3056	/* We still have requests in-flight; the engine should be active */
3057	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3058
3059	/* Context has requests still in-flight; it should not be idle! */
3060	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3061
3062	rq = active_request(ce->timeline, rq);
3063	head = intel_ring_wrap(ce->ring, rq->head);
3064	GEM_BUG_ON(head == ce->ring->tail);
3065
3066	/*
3067	 * If this request hasn't started yet, e.g. it is waiting on a
3068	 * semaphore, we need to avoid skipping the request or else we
3069	 * break the signaling chain. However, if the context is corrupt
3070	 * the request will not restart and we will be stuck with a wedged
3071	 * device. It is quite often the case that if we issue a reset
3072	 * while the GPU is loading the context image, that the context
3073	 * image becomes corrupt.
3074	 *
3075	 * Otherwise, if we have not started yet, the request should replay
3076	 * perfectly and we do not need to flag the result as being erroneous.
3077	 */
3078	if (!__i915_request_has_started(rq))
3079		goto out_replay;
3080
3081	/*
3082	 * If the request was innocent, we leave the request in the ELSP
3083	 * and will try to replay it on restarting. The context image may
3084	 * have been corrupted by the reset, in which case we may have
3085	 * to service a new GPU hang, but more likely we can continue on
3086	 * without impact.
3087	 *
3088	 * If the request was guilty, we presume the context is corrupt
3089	 * and have to at least restore the RING register in the context
3090	 * image back to the expected values to skip over the guilty request.
3091	 */
3092	__i915_request_reset(rq, stalled);
3093
3094	/*
3095	 * We want a simple context + ring to execute the breadcrumb update.
3096	 * We cannot rely on the context being intact across the GPU hang,
3097	 * so clear it and rebuild just what we need for the breadcrumb.
3098	 * All pending requests for this context will be zapped, and any
3099	 * future request will be after userspace has had the opportunity
3100	 * to recreate its own state.
3101	 */
3102out_replay:
3103	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3104		     head, ce->ring->tail);
3105	lrc_reset_regs(ce, engine);
3106	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3107}
3108
3109static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3110{
3111	struct intel_engine_execlists * const execlists = &engine->execlists;
3112	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3113	struct i915_request **inactive;
3114
3115	rcu_read_lock();
3116	inactive = reset_csb(engine, post);
3117
3118	execlists_reset_active(engine, true);
3119
3120	inactive = cancel_port_requests(execlists, inactive);
3121	post_process_csb(post, inactive);
3122	rcu_read_unlock();
3123}
3124
3125static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3126{
3127	unsigned long flags;
3128
3129	ENGINE_TRACE(engine, "\n");
3130
3131	/* Process the csb, find the guilty context and throw away */
3132	execlists_reset_csb(engine, stalled);
3133
3134	/* Push back any incomplete requests for replay after the reset. */
3135	rcu_read_lock();
3136	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3137	__unwind_incomplete_requests(engine);
3138	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3139	rcu_read_unlock();
3140}
3141
3142static void nop_submission_tasklet(struct tasklet_struct *t)
3143{
3144	struct i915_sched_engine *sched_engine =
3145		from_tasklet(sched_engine, t, tasklet);
3146	struct intel_engine_cs * const engine = sched_engine->private_data;
3147
3148	/* The driver is wedged; don't process any more events. */
3149	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3150}
3151
3152static void execlists_reset_cancel(struct intel_engine_cs *engine)
3153{
3154	struct intel_engine_execlists * const execlists = &engine->execlists;
3155	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3156	struct i915_request *rq, *rn;
3157	struct rb_node *rb;
3158	unsigned long flags;
3159
3160	ENGINE_TRACE(engine, "\n");
3161
3162	/*
3163	 * Before we call engine->cancel_requests(), we should have exclusive
3164	 * access to the submission state. This is arranged for us by the
3165	 * caller disabling the interrupt generation, the tasklet and other
3166	 * threads that may then access the same state, giving us a free hand
3167	 * to reset state. However, we still need to let lockdep be aware that
3168	 * we know this state may be accessed in hardirq context, so we
3169	 * disable the irq around this manipulation and we want to keep
3170	 * the spinlock focused on its duties and not accidentally conflate
3171	 * coverage to the submission's irq state. (Similarly, although we
3172	 * shouldn't need to disable irq around the manipulation of the
3173	 * submission's irq state, we also wish to remind ourselves that
3174	 * it is irq state.)
3175	 */
3176	execlists_reset_csb(engine, true);
3177
3178	rcu_read_lock();
3179	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3180
3181	/* Mark all executing requests as skipped. */
3182	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3183		i915_request_put(i915_request_mark_eio(rq));
3184	intel_engine_signal_breadcrumbs(engine);
3185
3186	/* Flush the queued requests to the timeline list (for retiring). */
3187	while ((rb = rb_first_cached(&sched_engine->queue))) {
3188		struct i915_priolist *p = to_priolist(rb);
3189
3190		priolist_for_each_request_consume(rq, rn, p) {
3191			if (i915_request_mark_eio(rq)) {
3192				__i915_request_submit(rq);
3193				i915_request_put(rq);
3194			}
3195		}
3196
3197		rb_erase_cached(&p->node, &sched_engine->queue);
3198		i915_priolist_free(p);
3199	}
3200
3201	/* On-hold requests will be flushed to timeline upon their release */
3202	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3203		i915_request_put(i915_request_mark_eio(rq));
3204
3205	/* Cancel all attached virtual engines */
3206	while ((rb = rb_first_cached(&execlists->virtual))) {
3207		struct virtual_engine *ve =
3208			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3209
3210		rb_erase_cached(rb, &execlists->virtual);
3211		RB_CLEAR_NODE(rb);
3212
3213		spin_lock(&ve->base.sched_engine->lock);
3214		rq = fetch_and_zero(&ve->request);
3215		if (rq) {
3216			if (i915_request_mark_eio(rq)) {
3217				rq->engine = engine;
3218				__i915_request_submit(rq);
3219				i915_request_put(rq);
3220			}
3221			i915_request_put(rq);
3222
3223			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3224		}
3225		spin_unlock(&ve->base.sched_engine->lock);
3226	}
3227
3228	/* Remaining _unready_ requests will be nop'ed when submitted */
3229
3230	sched_engine->queue_priority_hint = INT_MIN;
3231	sched_engine->queue = RB_ROOT_CACHED;
3232
3233	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3234	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3235
3236	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3237	rcu_read_unlock();
3238}
3239
3240static void execlists_reset_finish(struct intel_engine_cs *engine)
3241{
3242	struct intel_engine_execlists * const execlists = &engine->execlists;
3243
3244	/*
3245	 * After a GPU reset, we may have requests to replay. Do so now while
3246	 * we still have the forcewake to be sure that the GPU is not allowed
3247	 * to sleep before we restart and reload a context.
3248	 *
3249	 * If the GPU reset fails, the engine may still be alive with requests
3250	 * inflight. We expect those to complete, or for the device to be
3251	 * reset as the next level of recovery, and as a final resort we
3252	 * will declare the device wedged.
3253	 */
3254	GEM_BUG_ON(!reset_in_progress(engine));
3255
3256	/* And kick in case we missed a new request submission. */
3257	if (__tasklet_enable(&engine->sched_engine->tasklet))
3258		__execlists_kick(execlists);
3259
3260	ENGINE_TRACE(engine, "depth->%d\n",
3261		     atomic_read(&engine->sched_engine->tasklet.count));
3262}
3263
3264static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3265{
3266	ENGINE_WRITE(engine, RING_IMR,
3267		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3268	ENGINE_POSTING_READ(engine, RING_IMR);
3269}
3270
3271static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3272{
3273	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3274}
3275
3276static void execlists_park(struct intel_engine_cs *engine)
3277{
3278	cancel_timer(&engine->execlists.timer);
3279	cancel_timer(&engine->execlists.preempt);
3280
3281	/* Reset upon idling, or we may delay the busy wakeup. */
3282	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3283}
3284
3285static void add_to_engine(struct i915_request *rq)
3286{
3287	lockdep_assert_held(&rq->engine->sched_engine->lock);
3288	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3289}
3290
3291static void remove_from_engine(struct i915_request *rq)
3292{
3293	struct intel_engine_cs *engine, *locked;
3294
3295	/*
3296	 * Virtual engines complicate acquiring the engine timeline lock,
3297	 * as their rq->engine pointer is not stable until under that
3298	 * engine lock. The simple ploy we use is to take the lock then
3299	 * check that the rq still belongs to the newly locked engine.
3300	 */
3301	locked = READ_ONCE(rq->engine);
3302	spin_lock_irq(&locked->sched_engine->lock);
3303	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3304		spin_unlock(&locked->sched_engine->lock);
3305		spin_lock(&engine->sched_engine->lock);
3306		locked = engine;
3307	}
3308	list_del_init(&rq->sched.link);
3309
3310	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3311	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3312
3313	/* Prevent further __await_execution() registering a cb, then flush */
3314	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3315
3316	spin_unlock_irq(&locked->sched_engine->lock);
3317
3318	i915_request_notify_execute_cb_imm(rq);
3319}
3320
3321static bool can_preempt(struct intel_engine_cs *engine)
3322{
3323	if (GRAPHICS_VER(engine->i915) > 8)
3324		return true;
3325
3326	/* GPGPU on bdw requires extra w/a; not implemented */
3327	return engine->class != RENDER_CLASS;
3328}
3329
3330static void kick_execlists(const struct i915_request *rq, int prio)
3331{
3332	struct intel_engine_cs *engine = rq->engine;
3333	struct i915_sched_engine *sched_engine = engine->sched_engine;
3334	const struct i915_request *inflight;
3335
3336	/*
3337	 * We only need to kick the tasklet once for the high priority
3338	 * new context we add into the queue.
3339	 */
3340	if (prio <= sched_engine->queue_priority_hint)
3341		return;
3342
3343	rcu_read_lock();
3344
3345	/* Nothing currently active? We're overdue for a submission! */
3346	inflight = execlists_active(&engine->execlists);
3347	if (!inflight)
3348		goto unlock;
3349
3350	/*
3351	 * If we are already the currently executing context, don't
3352	 * bother evaluating if we should preempt ourselves.
3353	 */
3354	if (inflight->context == rq->context)
3355		goto unlock;
3356
3357	ENGINE_TRACE(engine,
3358		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3359		     prio,
3360		     rq->fence.context, rq->fence.seqno,
3361		     inflight->fence.context, inflight->fence.seqno,
3362		     inflight->sched.attr.priority);
3363
3364	sched_engine->queue_priority_hint = prio;
3365
3366	/*
3367	 * Allow preemption of low -> normal -> high, but we do
3368	 * not allow low priority tasks to preempt other low priority
3369	 * tasks under the impression that latency for low priority
3370	 * tasks does not matter (as much as background throughput),
3371	 * so kiss.
3372	 */
3373	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3374		tasklet_hi_schedule(&sched_engine->tasklet);
3375
3376unlock:
3377	rcu_read_unlock();
3378}
3379
3380static void execlists_set_default_submission(struct intel_engine_cs *engine)
3381{
3382	engine->submit_request = execlists_submit_request;
3383	engine->sched_engine->schedule = i915_schedule;
3384	engine->sched_engine->kick_backend = kick_execlists;
3385	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3386}
3387
3388static void execlists_shutdown(struct intel_engine_cs *engine)
3389{
3390	/* Synchronise with residual timers and any softirq they raise */
3391	del_timer_sync(&engine->execlists.timer);
3392	del_timer_sync(&engine->execlists.preempt);
3393	tasklet_kill(&engine->sched_engine->tasklet);
3394}
3395
3396static void execlists_release(struct intel_engine_cs *engine)
3397{
3398	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3399
3400	execlists_shutdown(engine);
3401
3402	intel_engine_cleanup_common(engine);
3403	lrc_fini_wa_ctx(engine);
3404}
3405
3406static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3407					   ktime_t *now)
3408{
3409	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3410	ktime_t total = stats->total;
3411
3412	/*
3413	 * If the engine is executing something at the moment
3414	 * add it to the total.
3415	 */
3416	*now = ktime_get();
3417	if (READ_ONCE(stats->active))
3418		total = ktime_add(total, ktime_sub(*now, stats->start));
3419
3420	return total;
3421}
3422
3423static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3424					 ktime_t *now)
3425{
3426	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3427	unsigned int seq;
3428	ktime_t total;
3429
3430	do {
3431		seq = read_seqcount_begin(&stats->lock);
3432		total = __execlists_engine_busyness(engine, now);
3433	} while (read_seqcount_retry(&stats->lock, seq));
3434
3435	return total;
3436}
3437
3438static void
3439logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3440{
3441	/* Default vfuncs which can be overridden by each engine. */
3442
3443	engine->resume = execlists_resume;
3444
3445	engine->cops = &execlists_context_ops;
3446	engine->request_alloc = execlists_request_alloc;
3447	engine->add_active_request = add_to_engine;
3448	engine->remove_active_request = remove_from_engine;
3449
3450	engine->reset.prepare = execlists_reset_prepare;
3451	engine->reset.rewind = execlists_reset_rewind;
3452	engine->reset.cancel = execlists_reset_cancel;
3453	engine->reset.finish = execlists_reset_finish;
3454
3455	engine->park = execlists_park;
3456	engine->unpark = NULL;
3457
3458	engine->emit_flush = gen8_emit_flush_xcs;
3459	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3460	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3461	if (GRAPHICS_VER(engine->i915) >= 12) {
3462		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3463		engine->emit_flush = gen12_emit_flush_xcs;
3464	}
3465	engine->set_default_submission = execlists_set_default_submission;
3466
3467	if (GRAPHICS_VER(engine->i915) < 11) {
3468		engine->irq_enable = gen8_logical_ring_enable_irq;
3469		engine->irq_disable = gen8_logical_ring_disable_irq;
3470	} else {
3471		/*
3472		 * TODO: On Gen11 interrupt masks need to be clear
3473		 * to allow C6 entry. Keep interrupts enabled at
3474		 * and take the hit of generating extra interrupts
3475		 * until a more refined solution exists.
3476		 */
3477	}
3478	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3479
3480	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3481	if (!intel_vgpu_active(engine->i915)) {
3482		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3483		if (can_preempt(engine)) {
3484			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3485			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3486				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3487		}
3488	}
3489
3490	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3491		if (intel_engine_has_preemption(engine))
3492			engine->emit_bb_start = xehp_emit_bb_start;
3493		else
3494			engine->emit_bb_start = xehp_emit_bb_start_noarb;
3495	} else {
3496		if (intel_engine_has_preemption(engine))
3497			engine->emit_bb_start = gen8_emit_bb_start;
3498		else
3499			engine->emit_bb_start = gen8_emit_bb_start_noarb;
3500	}
3501
3502	engine->busyness = execlists_engine_busyness;
3503}
3504
3505static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3506{
3507	unsigned int shift = 0;
3508
3509	if (GRAPHICS_VER(engine->i915) < 11) {
3510		const u8 irq_shifts[] = {
3511			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3512			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3513			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3514			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3515			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3516		};
3517
3518		shift = irq_shifts[engine->id];
3519	}
3520
3521	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3522	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3523	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3524	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3525}
3526
3527static void rcs_submission_override(struct intel_engine_cs *engine)
3528{
3529	switch (GRAPHICS_VER(engine->i915)) {
3530	case 12:
3531		engine->emit_flush = gen12_emit_flush_rcs;
3532		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3533		break;
3534	case 11:
3535		engine->emit_flush = gen11_emit_flush_rcs;
3536		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3537		break;
3538	default:
3539		engine->emit_flush = gen8_emit_flush_rcs;
3540		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3541		break;
3542	}
3543}
3544
3545int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3546{
3547	struct intel_engine_execlists * const execlists = &engine->execlists;
3548	struct drm_i915_private *i915 = engine->i915;
3549	struct intel_uncore *uncore = engine->uncore;
3550	u32 base = engine->mmio_base;
3551
3552	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3553#ifdef __linux__
3554	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3555	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3556#else
3557	timeout_set(&engine->execlists.timer, execlists_timeslice,
3558	    &engine->execlists.timer);
3559	timeout_set(&engine->execlists.preempt, execlists_preempt,
3560	    &engine->execlists.preempt);
3561#endif
3562
3563	logical_ring_default_vfuncs(engine);
3564	logical_ring_default_irqs(engine);
3565
3566	seqcount_init(&engine->stats.execlists.lock);
3567
3568	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3569		rcs_submission_override(engine);
3570
3571	lrc_init_wa_ctx(engine);
3572
3573	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3574		execlists->submit_reg = intel_uncore_regs(uncore) +
3575			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3576		execlists->ctrl_reg = intel_uncore_regs(uncore) +
3577			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3578
3579		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3580				    RING_EXECLIST_CONTROL(engine->mmio_base),
3581				    FW_REG_WRITE);
3582	} else {
3583		execlists->submit_reg = intel_uncore_regs(uncore) +
3584			i915_mmio_reg_offset(RING_ELSP(base));
3585	}
3586
3587	execlists->csb_status =
3588		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3589
3590	execlists->csb_write =
3591		&engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3592
3593	if (GRAPHICS_VER(i915) < 11)
3594		execlists->csb_size = GEN8_CSB_ENTRIES;
3595	else
3596		execlists->csb_size = GEN11_CSB_ENTRIES;
3597
3598	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3599	if (GRAPHICS_VER(engine->i915) >= 11 &&
3600	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3601		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3602		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3603	}
3604
3605	/* Finally, take ownership and responsibility for cleanup! */
3606	engine->sanitize = execlists_sanitize;
3607	engine->release = execlists_release;
3608
3609	return 0;
3610}
3611
3612static struct list_head *virtual_queue(struct virtual_engine *ve)
3613{
3614	return &ve->base.sched_engine->default_priolist.requests;
3615}
3616
3617static void rcu_virtual_context_destroy(struct work_struct *wrk)
3618{
3619	struct virtual_engine *ve =
3620		container_of(wrk, typeof(*ve), rcu.work);
3621	unsigned int n;
3622
3623	GEM_BUG_ON(ve->context.inflight);
3624
3625	/* Preempt-to-busy may leave a stale request behind. */
3626	if (unlikely(ve->request)) {
3627		struct i915_request *old;
3628
3629		spin_lock_irq(&ve->base.sched_engine->lock);
3630
3631		old = fetch_and_zero(&ve->request);
3632		if (old) {
3633			GEM_BUG_ON(!__i915_request_is_complete(old));
3634			__i915_request_submit(old);
3635			i915_request_put(old);
3636		}
3637
3638		spin_unlock_irq(&ve->base.sched_engine->lock);
3639	}
3640
3641	/*
3642	 * Flush the tasklet in case it is still running on another core.
3643	 *
3644	 * This needs to be done before we remove ourselves from the siblings'
3645	 * rbtrees as in the case it is running in parallel, it may reinsert
3646	 * the rb_node into a sibling.
3647	 */
3648	tasklet_kill(&ve->base.sched_engine->tasklet);
3649
3650	/* Decouple ourselves from the siblings, no more access allowed. */
3651	for (n = 0; n < ve->num_siblings; n++) {
3652		struct intel_engine_cs *sibling = ve->siblings[n];
3653		struct rb_node *node = &ve->nodes[sibling->id].rb;
3654
3655		if (RB_EMPTY_NODE(node))
3656			continue;
3657
3658		spin_lock_irq(&sibling->sched_engine->lock);
3659
3660		/* Detachment is lazily performed in the sched_engine->tasklet */
3661		if (!RB_EMPTY_NODE(node))
3662			rb_erase_cached(node, &sibling->execlists.virtual);
3663
3664		spin_unlock_irq(&sibling->sched_engine->lock);
3665	}
3666	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3667	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3668
3669	lrc_fini(&ve->context);
3670	intel_context_fini(&ve->context);
3671
3672	if (ve->base.breadcrumbs)
3673		intel_breadcrumbs_put(ve->base.breadcrumbs);
3674	if (ve->base.sched_engine)
3675		i915_sched_engine_put(ve->base.sched_engine);
3676	intel_engine_free_request_pool(&ve->base);
3677
3678	kfree(ve);
3679}
3680
3681static void virtual_context_destroy(struct kref *kref)
3682{
3683	struct virtual_engine *ve =
3684		container_of(kref, typeof(*ve), context.ref);
3685
3686	GEM_BUG_ON(!list_empty(&ve->context.signals));
3687
3688	/*
3689	 * When destroying the virtual engine, we have to be aware that
3690	 * it may still be in use from an hardirq/softirq context causing
3691	 * the resubmission of a completed request (background completion
3692	 * due to preempt-to-busy). Before we can free the engine, we need
3693	 * to flush the submission code and tasklets that are still potentially
3694	 * accessing the engine. Flushing the tasklets requires process context,
3695	 * and since we can guard the resubmit onto the engine with an RCU read
3696	 * lock, we can delegate the free of the engine to an RCU worker.
3697	 */
3698	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3699	queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3700}
3701
3702static void virtual_engine_initial_hint(struct virtual_engine *ve)
3703{
3704	int swp;
3705
3706	/*
3707	 * Pick a random sibling on starting to help spread the load around.
3708	 *
3709	 * New contexts are typically created with exactly the same order
3710	 * of siblings, and often started in batches. Due to the way we iterate
3711	 * the array of sibling when submitting requests, sibling[0] is
3712	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3713	 * randomised across the system, we also help spread the load by the
3714	 * first engine we inspect being different each time.
3715	 *
3716	 * NB This does not force us to execute on this engine, it will just
3717	 * typically be the first we inspect for submission.
3718	 */
3719	swp = get_random_u32_below(ve->num_siblings);
3720	if (swp)
3721		swap(ve->siblings[swp], ve->siblings[0]);
3722}
3723
3724static int virtual_context_alloc(struct intel_context *ce)
3725{
3726	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3727
3728	return lrc_alloc(ce, ve->siblings[0]);
3729}
3730
3731static int virtual_context_pre_pin(struct intel_context *ce,
3732				   struct i915_gem_ww_ctx *ww,
3733				   void **vaddr)
3734{
3735	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3736
3737	 /* Note: we must use a real engine class for setting up reg state */
3738	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3739}
3740
3741static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3742{
3743	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3744
3745	return lrc_pin(ce, ve->siblings[0], vaddr);
3746}
3747
3748static void virtual_context_enter(struct intel_context *ce)
3749{
3750	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3751	unsigned int n;
3752
3753	for (n = 0; n < ve->num_siblings; n++)
3754		intel_engine_pm_get(ve->siblings[n]);
3755
3756	intel_timeline_enter(ce->timeline);
3757}
3758
3759static void virtual_context_exit(struct intel_context *ce)
3760{
3761	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3762	unsigned int n;
3763
3764	intel_timeline_exit(ce->timeline);
3765
3766	for (n = 0; n < ve->num_siblings; n++)
3767		intel_engine_pm_put(ve->siblings[n]);
3768}
3769
3770static struct intel_engine_cs *
3771virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3772{
3773	struct virtual_engine *ve = to_virtual_engine(engine);
3774
3775	if (sibling >= ve->num_siblings)
3776		return NULL;
3777
3778	return ve->siblings[sibling];
3779}
3780
3781static const struct intel_context_ops virtual_context_ops = {
3782	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3783
3784	.alloc = virtual_context_alloc,
3785
3786	.cancel_request = execlists_context_cancel_request,
3787
3788	.pre_pin = virtual_context_pre_pin,
3789	.pin = virtual_context_pin,
3790	.unpin = lrc_unpin,
3791	.post_unpin = lrc_post_unpin,
3792
3793	.enter = virtual_context_enter,
3794	.exit = virtual_context_exit,
3795
3796	.destroy = virtual_context_destroy,
3797
3798	.get_sibling = virtual_get_sibling,
3799};
3800
3801static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3802{
3803	struct i915_request *rq;
3804	intel_engine_mask_t mask;
3805
3806	rq = READ_ONCE(ve->request);
3807	if (!rq)
3808		return 0;
3809
3810	/* The rq is ready for submission; rq->execution_mask is now stable. */
3811	mask = rq->execution_mask;
3812	if (unlikely(!mask)) {
3813		/* Invalid selection, submit to a random engine in error */
3814		i915_request_set_error_once(rq, -ENODEV);
3815		mask = ve->siblings[0]->mask;
3816	}
3817
3818	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3819		     rq->fence.context, rq->fence.seqno,
3820		     mask, ve->base.sched_engine->queue_priority_hint);
3821
3822	return mask;
3823}
3824
3825static void virtual_submission_tasklet(struct tasklet_struct *t)
3826{
3827	struct i915_sched_engine *sched_engine =
3828		from_tasklet(sched_engine, t, tasklet);
3829	struct virtual_engine * const ve =
3830		(struct virtual_engine *)sched_engine->private_data;
3831	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3832	intel_engine_mask_t mask;
3833	unsigned int n;
3834
3835	rcu_read_lock();
3836	mask = virtual_submission_mask(ve);
3837	rcu_read_unlock();
3838	if (unlikely(!mask))
3839		return;
3840
3841	for (n = 0; n < ve->num_siblings; n++) {
3842		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3843		struct ve_node * const node = &ve->nodes[sibling->id];
3844		struct rb_node **parent, *rb;
3845		bool first;
3846
3847		if (!READ_ONCE(ve->request))
3848			break; /* already handled by a sibling's tasklet */
3849
3850		spin_lock_irq(&sibling->sched_engine->lock);
3851
3852		if (unlikely(!(mask & sibling->mask))) {
3853			if (!RB_EMPTY_NODE(&node->rb)) {
3854				rb_erase_cached(&node->rb,
3855						&sibling->execlists.virtual);
3856				RB_CLEAR_NODE(&node->rb);
3857			}
3858
3859			goto unlock_engine;
3860		}
3861
3862		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3863			/*
3864			 * Cheat and avoid rebalancing the tree if we can
3865			 * reuse this node in situ.
3866			 */
3867			first = rb_first_cached(&sibling->execlists.virtual) ==
3868				&node->rb;
3869			if (prio == node->prio || (prio > node->prio && first))
3870				goto submit_engine;
3871
3872			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3873		}
3874
3875		rb = NULL;
3876		first = true;
3877		parent = &sibling->execlists.virtual.rb_root.rb_node;
3878		while (*parent) {
3879			struct ve_node *other;
3880
3881			rb = *parent;
3882			other = rb_entry(rb, typeof(*other), rb);
3883			if (prio > other->prio) {
3884				parent = &rb->rb_left;
3885			} else {
3886				parent = &rb->rb_right;
3887				first = false;
3888			}
3889		}
3890
3891		rb_link_node(&node->rb, rb, parent);
3892		rb_insert_color_cached(&node->rb,
3893				       &sibling->execlists.virtual,
3894				       first);
3895
3896submit_engine:
3897		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3898		node->prio = prio;
3899		if (first && prio > sibling->sched_engine->queue_priority_hint)
3900			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3901
3902unlock_engine:
3903		spin_unlock_irq(&sibling->sched_engine->lock);
3904
3905		if (intel_context_inflight(&ve->context))
3906			break;
3907	}
3908}
3909
3910static void virtual_submit_request(struct i915_request *rq)
3911{
3912	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3913	unsigned long flags;
3914
3915	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3916		     rq->fence.context,
3917		     rq->fence.seqno);
3918
3919	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3920
3921	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3922
3923	/* By the time we resubmit a request, it may be completed */
3924	if (__i915_request_is_complete(rq)) {
3925		__i915_request_submit(rq);
3926		goto unlock;
3927	}
3928
3929	if (ve->request) { /* background completion from preempt-to-busy */
3930		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3931		__i915_request_submit(ve->request);
3932		i915_request_put(ve->request);
3933	}
3934
3935	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3936	ve->request = i915_request_get(rq);
3937
3938	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3939	list_move_tail(&rq->sched.link, virtual_queue(ve));
3940
3941	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3942
3943unlock:
3944	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3945}
3946
3947static struct intel_context *
3948execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3949			 unsigned long flags)
3950{
3951	struct drm_i915_private *i915 = siblings[0]->i915;
3952	struct virtual_engine *ve;
3953	unsigned int n;
3954	int err;
3955
3956	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3957	if (!ve)
3958		return ERR_PTR(-ENOMEM);
3959
3960	ve->base.i915 = i915;
3961	ve->base.gt = siblings[0]->gt;
3962	ve->base.uncore = siblings[0]->uncore;
3963	ve->base.id = -1;
3964
3965	ve->base.class = OTHER_CLASS;
3966	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3967	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3968	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3969
3970	/*
3971	 * The decision on whether to submit a request using semaphores
3972	 * depends on the saturated state of the engine. We only compute
3973	 * this during HW submission of the request, and we need for this
3974	 * state to be globally applied to all requests being submitted
3975	 * to this engine. Virtual engines encompass more than one physical
3976	 * engine and so we cannot accurately tell in advance if one of those
3977	 * engines is already saturated and so cannot afford to use a semaphore
3978	 * and be pessimized in priority for doing so -- if we are the only
3979	 * context using semaphores after all other clients have stopped, we
3980	 * will be starved on the saturated system. Such a global switch for
3981	 * semaphores is less than ideal, but alas is the current compromise.
3982	 */
3983	ve->base.saturated = ALL_ENGINES;
3984
3985	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3986
3987	intel_engine_init_execlists(&ve->base);
3988
3989	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3990	if (!ve->base.sched_engine) {
3991		err = -ENOMEM;
3992		goto err_put;
3993	}
3994	ve->base.sched_engine->private_data = &ve->base;
3995
3996	ve->base.cops = &virtual_context_ops;
3997	ve->base.request_alloc = execlists_request_alloc;
3998
3999	ve->base.sched_engine->schedule = i915_schedule;
4000	ve->base.sched_engine->kick_backend = kick_execlists;
4001	ve->base.submit_request = virtual_submit_request;
4002
4003	INIT_LIST_HEAD(virtual_queue(ve));
4004	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
4005
4006	intel_context_init(&ve->context, &ve->base);
4007
4008	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
4009	if (!ve->base.breadcrumbs) {
4010		err = -ENOMEM;
4011		goto err_put;
4012	}
4013
4014	for (n = 0; n < count; n++) {
4015		struct intel_engine_cs *sibling = siblings[n];
4016
4017		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4018		if (sibling->mask & ve->base.mask) {
4019			drm_dbg(&i915->drm,
4020				"duplicate %s entry in load balancer\n",
4021				sibling->name);
4022			err = -EINVAL;
4023			goto err_put;
4024		}
4025
4026		/*
4027		 * The virtual engine implementation is tightly coupled to
4028		 * the execlists backend -- we push out request directly
4029		 * into a tree inside each physical engine. We could support
4030		 * layering if we handle cloning of the requests and
4031		 * submitting a copy into each backend.
4032		 */
4033		if (sibling->sched_engine->tasklet.callback !=
4034		    execlists_submission_tasklet) {
4035			err = -ENODEV;
4036			goto err_put;
4037		}
4038
4039		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4040		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4041
4042		ve->siblings[ve->num_siblings++] = sibling;
4043		ve->base.mask |= sibling->mask;
4044		ve->base.logical_mask |= sibling->logical_mask;
4045
4046		/*
4047		 * All physical engines must be compatible for their emission
4048		 * functions (as we build the instructions during request
4049		 * construction and do not alter them before submission
4050		 * on the physical engine). We use the engine class as a guide
4051		 * here, although that could be refined.
4052		 */
4053		if (ve->base.class != OTHER_CLASS) {
4054			if (ve->base.class != sibling->class) {
4055				drm_dbg(&i915->drm,
4056					"invalid mixing of engine class, sibling %d, already %d\n",
4057					sibling->class, ve->base.class);
4058				err = -EINVAL;
4059				goto err_put;
4060			}
4061			continue;
4062		}
4063
4064		ve->base.class = sibling->class;
4065		ve->base.uabi_class = sibling->uabi_class;
4066		snprintf(ve->base.name, sizeof(ve->base.name),
4067			 "v%dx%d", ve->base.class, count);
4068		ve->base.context_size = sibling->context_size;
4069
4070		ve->base.add_active_request = sibling->add_active_request;
4071		ve->base.remove_active_request = sibling->remove_active_request;
4072		ve->base.emit_bb_start = sibling->emit_bb_start;
4073		ve->base.emit_flush = sibling->emit_flush;
4074		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4075		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4076		ve->base.emit_fini_breadcrumb_dw =
4077			sibling->emit_fini_breadcrumb_dw;
4078
4079		ve->base.flags = sibling->flags;
4080	}
4081
4082	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4083
4084	virtual_engine_initial_hint(ve);
4085	return &ve->context;
4086
4087err_put:
4088	intel_context_put(&ve->context);
4089	return ERR_PTR(err);
4090}
4091
4092void intel_execlists_show_requests(struct intel_engine_cs *engine,
4093				   struct drm_printer *m,
4094				   void (*show_request)(struct drm_printer *m,
4095							const struct i915_request *rq,
4096							const char *prefix,
4097							int indent),
4098				   unsigned int max)
4099{
4100	const struct intel_engine_execlists *execlists = &engine->execlists;
4101	struct i915_sched_engine *sched_engine = engine->sched_engine;
4102	struct i915_request *rq, *last;
4103	unsigned long flags;
4104	unsigned int count;
4105	struct rb_node *rb;
4106
4107	spin_lock_irqsave(&sched_engine->lock, flags);
4108
4109	last = NULL;
4110	count = 0;
4111	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4112		if (count++ < max - 1)
4113			show_request(m, rq, "\t\t", 0);
4114		else
4115			last = rq;
4116	}
4117	if (last) {
4118		if (count > max) {
4119			drm_printf(m,
4120				   "\t\t...skipping %d executing requests...\n",
4121				   count - max);
4122		}
4123		show_request(m, last, "\t\t", 0);
4124	}
4125
4126	if (sched_engine->queue_priority_hint != INT_MIN)
4127		drm_printf(m, "\t\tQueue priority hint: %d\n",
4128			   READ_ONCE(sched_engine->queue_priority_hint));
4129
4130	last = NULL;
4131	count = 0;
4132	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4133		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4134
4135		priolist_for_each_request(rq, p) {
4136			if (count++ < max - 1)
4137				show_request(m, rq, "\t\t", 0);
4138			else
4139				last = rq;
4140		}
4141	}
4142	if (last) {
4143		if (count > max) {
4144			drm_printf(m,
4145				   "\t\t...skipping %d queued requests...\n",
4146				   count - max);
4147		}
4148		show_request(m, last, "\t\t", 0);
4149	}
4150
4151	last = NULL;
4152	count = 0;
4153	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4154		struct virtual_engine *ve =
4155			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4156		struct i915_request *rq = READ_ONCE(ve->request);
4157
4158		if (rq) {
4159			if (count++ < max - 1)
4160				show_request(m, rq, "\t\t", 0);
4161			else
4162				last = rq;
4163		}
4164	}
4165	if (last) {
4166		if (count > max) {
4167			drm_printf(m,
4168				   "\t\t...skipping %d virtual requests...\n",
4169				   count - max);
4170		}
4171		show_request(m, last, "\t\t", 0);
4172	}
4173
4174	spin_unlock_irqrestore(&sched_engine->lock, flags);
4175}
4176
4177void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4178					  struct i915_request *hung_rq,
4179					  struct drm_printer *m)
4180{
4181	unsigned long flags;
4182
4183	spin_lock_irqsave(&engine->sched_engine->lock, flags);
4184
4185	intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4186
4187	drm_printf(m, "\tOn hold?: %zu\n",
4188		   list_count_nodes(&engine->sched_engine->hold));
4189
4190	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4191}
4192
4193#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4194#include "selftest_execlists.c"
4195#endif
4196