1// SPDX-License-Identifier: MIT
2/*
3 * Copyright �� 2019 Intel Corporation
4 */
5
6#include <drm/drm_atomic_state_helper.h>
7
8#include "i915_drv.h"
9#include "i915_reg.h"
10#include "i915_utils.h"
11#include "intel_atomic.h"
12#include "intel_bw.h"
13#include "intel_cdclk.h"
14#include "intel_display_core.h"
15#include "intel_display_types.h"
16#include "skl_watermark.h"
17#include "intel_mchbar_regs.h"
18#include "intel_pcode.h"
19
20/* Parameters for Qclk Geyserville (QGV) */
21struct intel_qgv_point {
22	u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
23};
24
25struct intel_psf_gv_point {
26	u8 clk; /* clock in multiples of 16.6666 MHz */
27};
28
29struct intel_qgv_info {
30	struct intel_qgv_point points[I915_NUM_QGV_POINTS];
31	struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
32	u8 num_points;
33	u8 num_psf_points;
34	u8 t_bl;
35	u8 max_numchannels;
36	u8 channel_width;
37	u8 deinterleave;
38};
39
40static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
41					  struct intel_qgv_point *sp,
42					  int point)
43{
44	u32 dclk_ratio, dclk_reference;
45	u32 val;
46
47	val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
48	dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
49	if (val & DG1_QCLK_REFERENCE)
50		dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
51	else
52		dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
53	sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
54
55	val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
56	if (val & DG1_GEAR_TYPE)
57		sp->dclk *= 2;
58
59	if (sp->dclk == 0)
60		return -EINVAL;
61
62	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
63	sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
64	sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
65
66	val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
67	sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
68	sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
69
70	sp->t_rc = sp->t_rp + sp->t_ras;
71
72	return 0;
73}
74
75static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
76					 struct intel_qgv_point *sp,
77					 int point)
78{
79	u32 val = 0, val2 = 0;
80	u16 dclk;
81	int ret;
82
83	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
84			     ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
85			     &val, &val2);
86	if (ret)
87		return ret;
88
89	dclk = val & 0xffff;
90	sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
91	sp->t_rp = (val & 0xff0000) >> 16;
92	sp->t_rcd = (val & 0xff000000) >> 24;
93
94	sp->t_rdpre = val2 & 0xff;
95	sp->t_ras = (val2 & 0xff00) >> 8;
96
97	sp->t_rc = sp->t_rp + sp->t_ras;
98
99	return 0;
100}
101
102static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
103					    struct intel_psf_gv_point *points)
104{
105	u32 val = 0;
106	int ret;
107	int i;
108
109	ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
110			     ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
111	if (ret)
112		return ret;
113
114	for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
115		points[i].clk = val & 0xff;
116		val >>= 8;
117	}
118
119	return 0;
120}
121
122static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
123{
124	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
125	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
126	u16 qgv_points = 0, psf_points = 0;
127
128	/*
129	 * We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
130	 * it with failure if we try masking any unadvertised points.
131	 * So need to operate only with those returned from PCode.
132	 */
133	if (num_qgv_points > 0)
134		qgv_points = GENMASK(num_qgv_points - 1, 0);
135
136	if (num_psf_gv_points > 0)
137		psf_points = GENMASK(num_psf_gv_points - 1, 0);
138
139	return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
140}
141
142static bool is_sagv_enabled(struct drm_i915_private *i915, u16 points_mask)
143{
144	return !is_power_of_2(~points_mask & icl_qgv_points_mask(i915) &
145			      ICL_PCODE_REQ_QGV_PT_MASK);
146}
147
148int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
149				  u32 points_mask)
150{
151	int ret;
152
153	if (DISPLAY_VER(dev_priv) >= 14)
154		return 0;
155
156	/* bspec says to keep retrying for at least 1 ms */
157	ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
158				points_mask,
159				ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
160				ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
161				1);
162
163	if (ret < 0) {
164		drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
165		return ret;
166	}
167
168	dev_priv->display.sagv.status = is_sagv_enabled(dev_priv, points_mask) ?
169		I915_SAGV_ENABLED : I915_SAGV_DISABLED;
170
171	return 0;
172}
173
174static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv,
175				   struct intel_qgv_point *sp, int point)
176{
177	u32 val, val2;
178	u16 dclk;
179
180	val = intel_uncore_read(&dev_priv->uncore,
181				MTL_MEM_SS_INFO_QGV_POINT_LOW(point));
182	val2 = intel_uncore_read(&dev_priv->uncore,
183				 MTL_MEM_SS_INFO_QGV_POINT_HIGH(point));
184	dclk = REG_FIELD_GET(MTL_DCLK_MASK, val);
185	sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000);
186	sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val);
187	sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val);
188
189	sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2);
190	sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2);
191
192	sp->t_rc = sp->t_rp + sp->t_ras;
193
194	return 0;
195}
196
197static int
198intel_read_qgv_point_info(struct drm_i915_private *dev_priv,
199			  struct intel_qgv_point *sp,
200			  int point)
201{
202	if (DISPLAY_VER(dev_priv) >= 14)
203		return mtl_read_qgv_point_info(dev_priv, sp, point);
204	else if (IS_DG1(dev_priv))
205		return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point);
206	else
207		return icl_pcode_read_qgv_point_info(dev_priv, sp, point);
208}
209
210static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
211			      struct intel_qgv_info *qi,
212			      bool is_y_tile)
213{
214	const struct dram_info *dram_info = &dev_priv->dram_info;
215	int i, ret;
216
217	qi->num_points = dram_info->num_qgv_points;
218	qi->num_psf_points = dram_info->num_psf_gv_points;
219
220	if (DISPLAY_VER(dev_priv) >= 14) {
221		switch (dram_info->type) {
222		case INTEL_DRAM_DDR4:
223			qi->t_bl = 4;
224			qi->max_numchannels = 2;
225			qi->channel_width = 64;
226			qi->deinterleave = 2;
227			break;
228		case INTEL_DRAM_DDR5:
229			qi->t_bl = 8;
230			qi->max_numchannels = 4;
231			qi->channel_width = 32;
232			qi->deinterleave = 2;
233			break;
234		case INTEL_DRAM_LPDDR4:
235		case INTEL_DRAM_LPDDR5:
236			qi->t_bl = 16;
237			qi->max_numchannels = 8;
238			qi->channel_width = 16;
239			qi->deinterleave = 4;
240			break;
241		default:
242			MISSING_CASE(dram_info->type);
243			return -EINVAL;
244		}
245	} else if (DISPLAY_VER(dev_priv) >= 12) {
246		switch (dram_info->type) {
247		case INTEL_DRAM_DDR4:
248			qi->t_bl = is_y_tile ? 8 : 4;
249			qi->max_numchannels = 2;
250			qi->channel_width = 64;
251			qi->deinterleave = is_y_tile ? 1 : 2;
252			break;
253		case INTEL_DRAM_DDR5:
254			qi->t_bl = is_y_tile ? 16 : 8;
255			qi->max_numchannels = 4;
256			qi->channel_width = 32;
257			qi->deinterleave = is_y_tile ? 1 : 2;
258			break;
259		case INTEL_DRAM_LPDDR4:
260			if (IS_ROCKETLAKE(dev_priv)) {
261				qi->t_bl = 8;
262				qi->max_numchannels = 4;
263				qi->channel_width = 32;
264				qi->deinterleave = 2;
265				break;
266			}
267			fallthrough;
268		case INTEL_DRAM_LPDDR5:
269			qi->t_bl = 16;
270			qi->max_numchannels = 8;
271			qi->channel_width = 16;
272			qi->deinterleave = is_y_tile ? 2 : 4;
273			break;
274		default:
275			qi->t_bl = 16;
276			qi->max_numchannels = 1;
277			break;
278		}
279	} else if (DISPLAY_VER(dev_priv) == 11) {
280		qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
281		qi->max_numchannels = 1;
282	}
283
284	if (drm_WARN_ON(&dev_priv->drm,
285			qi->num_points > ARRAY_SIZE(qi->points)))
286		qi->num_points = ARRAY_SIZE(qi->points);
287
288	for (i = 0; i < qi->num_points; i++) {
289		struct intel_qgv_point *sp = &qi->points[i];
290
291		ret = intel_read_qgv_point_info(dev_priv, sp, i);
292		if (ret)
293			return ret;
294
295		drm_dbg_kms(&dev_priv->drm,
296			    "QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
297			    i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
298			    sp->t_rcd, sp->t_rc);
299	}
300
301	if (qi->num_psf_points > 0) {
302		ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
303		if (ret) {
304			drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
305			qi->num_psf_points = 0;
306		}
307
308		for (i = 0; i < qi->num_psf_points; i++)
309			drm_dbg_kms(&dev_priv->drm,
310				    "PSF GV %d: CLK=%d \n",
311				    i, qi->psf_points[i].clk);
312	}
313
314	return 0;
315}
316
317static int adl_calc_psf_bw(int clk)
318{
319	/*
320	 * clk is multiples of 16.666MHz (100/6)
321	 * According to BSpec PSF GV bandwidth is
322	 * calculated as BW = 64 * clk * 16.666Mhz
323	 */
324	return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
325}
326
327static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
328{
329	u16 dclk = 0;
330	int i;
331
332	for (i = 0; i < qi->num_points; i++)
333		dclk = max(dclk, qi->points[i].dclk);
334
335	return dclk;
336}
337
338struct intel_sa_info {
339	u16 displayrtids;
340	u8 deburst, deprogbwlimit, derating;
341};
342
343static const struct intel_sa_info icl_sa_info = {
344	.deburst = 8,
345	.deprogbwlimit = 25, /* GB/s */
346	.displayrtids = 128,
347	.derating = 10,
348};
349
350static const struct intel_sa_info tgl_sa_info = {
351	.deburst = 16,
352	.deprogbwlimit = 34, /* GB/s */
353	.displayrtids = 256,
354	.derating = 10,
355};
356
357static const struct intel_sa_info rkl_sa_info = {
358	.deburst = 8,
359	.deprogbwlimit = 20, /* GB/s */
360	.displayrtids = 128,
361	.derating = 10,
362};
363
364static const struct intel_sa_info adls_sa_info = {
365	.deburst = 16,
366	.deprogbwlimit = 38, /* GB/s */
367	.displayrtids = 256,
368	.derating = 10,
369};
370
371static const struct intel_sa_info adlp_sa_info = {
372	.deburst = 16,
373	.deprogbwlimit = 38, /* GB/s */
374	.displayrtids = 256,
375	.derating = 20,
376};
377
378static const struct intel_sa_info mtl_sa_info = {
379	.deburst = 32,
380	.deprogbwlimit = 38, /* GB/s */
381	.displayrtids = 256,
382	.derating = 10,
383};
384
385static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
386{
387	struct intel_qgv_info qi = {};
388	bool is_y_tile = true; /* assume y tile may be used */
389	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
390	int ipqdepth, ipqdepthpch = 16;
391	int dclk_max;
392	int maxdebw;
393	int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
394	int i, ret;
395
396	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
397	if (ret) {
398		drm_dbg_kms(&dev_priv->drm,
399			    "Failed to get memory subsystem information, ignoring bandwidth limits");
400		return ret;
401	}
402
403	dclk_max = icl_sagv_max_dclk(&qi);
404	maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
405	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
406	qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
407
408	for (i = 0; i < num_groups; i++) {
409		struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
410		int clpchgroup;
411		int j;
412
413		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
414		bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
415
416		bi->num_qgv_points = qi.num_points;
417		bi->num_psf_gv_points = qi.num_psf_points;
418
419		for (j = 0; j < qi.num_points; j++) {
420			const struct intel_qgv_point *sp = &qi.points[j];
421			int ct, bw;
422
423			/*
424			 * Max row cycle time
425			 *
426			 * FIXME what is the logic behind the
427			 * assumed burst length?
428			 */
429			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
430				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
431			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
432
433			bi->deratedbw[j] = min(maxdebw,
434					       bw * (100 - sa->derating) / 100);
435
436			drm_dbg_kms(&dev_priv->drm,
437				    "BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
438				    i, j, bi->num_planes, bi->deratedbw[j]);
439		}
440	}
441	/*
442	 * In case if SAGV is disabled in BIOS, we always get 1
443	 * SAGV point, but we can't send PCode commands to restrict it
444	 * as it will fail and pointless anyway.
445	 */
446	if (qi.num_points == 1)
447		dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
448	else
449		dev_priv->display.sagv.status = I915_SAGV_ENABLED;
450
451	return 0;
452}
453
454static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
455{
456	struct intel_qgv_info qi = {};
457	const struct dram_info *dram_info = &dev_priv->dram_info;
458	bool is_y_tile = true; /* assume y tile may be used */
459	int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
460	int ipqdepth, ipqdepthpch = 16;
461	int dclk_max;
462	int maxdebw, peakbw;
463	int clperchgroup;
464	int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
465	int i, ret;
466
467	ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
468	if (ret) {
469		drm_dbg_kms(&dev_priv->drm,
470			    "Failed to get memory subsystem information, ignoring bandwidth limits");
471		return ret;
472	}
473
474	if (DISPLAY_VER(dev_priv) < 14 &&
475	    (dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5))
476		num_channels *= 2;
477
478	qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
479
480	if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
481		qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
482
483	if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
484		drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
485	if (qi.max_numchannels != 0)
486		num_channels = min_t(u8, num_channels, qi.max_numchannels);
487
488	dclk_max = icl_sagv_max_dclk(&qi);
489
490	peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
491	maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
492
493	ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
494	/*
495	 * clperchgroup = 4kpagespermempage * clperchperblock,
496	 * clperchperblock = 8 / num_channels * interleave
497	 */
498	clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
499
500	for (i = 0; i < num_groups; i++) {
501		struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
502		struct intel_bw_info *bi_next;
503		int clpchgroup;
504		int j;
505
506		clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
507
508		if (i < num_groups - 1) {
509			bi_next = &dev_priv->display.bw.max[i + 1];
510
511			if (clpchgroup < clperchgroup)
512				bi_next->num_planes = (ipqdepth - clpchgroup) /
513						       clpchgroup + 1;
514			else
515				bi_next->num_planes = 0;
516		}
517
518		bi->num_qgv_points = qi.num_points;
519		bi->num_psf_gv_points = qi.num_psf_points;
520
521		for (j = 0; j < qi.num_points; j++) {
522			const struct intel_qgv_point *sp = &qi.points[j];
523			int ct, bw;
524
525			/*
526			 * Max row cycle time
527			 *
528			 * FIXME what is the logic behind the
529			 * assumed burst length?
530			 */
531			ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
532				   (clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
533			bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
534
535			bi->deratedbw[j] = min(maxdebw,
536					       bw * (100 - sa->derating) / 100);
537			bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk *
538							  num_channels *
539							  qi.channel_width, 8);
540
541			drm_dbg_kms(&dev_priv->drm,
542				    "BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n",
543				    i, j, bi->num_planes, bi->deratedbw[j],
544				    bi->peakbw[j]);
545		}
546
547		for (j = 0; j < qi.num_psf_points; j++) {
548			const struct intel_psf_gv_point *sp = &qi.psf_points[j];
549
550			bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
551
552			drm_dbg_kms(&dev_priv->drm,
553				    "BW%d / PSF GV %d: num_planes=%d bw=%u\n",
554				    i, j, bi->num_planes, bi->psf_bw[j]);
555		}
556	}
557
558	/*
559	 * In case if SAGV is disabled in BIOS, we always get 1
560	 * SAGV point, but we can't send PCode commands to restrict it
561	 * as it will fail and pointless anyway.
562	 */
563	if (qi.num_points == 1)
564		dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
565	else
566		dev_priv->display.sagv.status = I915_SAGV_ENABLED;
567
568	return 0;
569}
570
571static void dg2_get_bw_info(struct drm_i915_private *i915)
572{
573	unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
574	int num_groups = ARRAY_SIZE(i915->display.bw.max);
575	int i;
576
577	/*
578	 * DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
579	 * that doesn't depend on the number of planes enabled. So fill all the
580	 * plane group with constant bw information for uniformity with other
581	 * platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
582	 * whereas DG2-G11 platforms have 38 GB/s.
583	 */
584	for (i = 0; i < num_groups; i++) {
585		struct intel_bw_info *bi = &i915->display.bw.max[i];
586
587		bi->num_planes = 1;
588		/* Need only one dummy QGV point per group */
589		bi->num_qgv_points = 1;
590		bi->deratedbw[0] = deratedbw;
591	}
592
593	i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
594}
595
596static unsigned int icl_max_bw_index(struct drm_i915_private *dev_priv,
597				     int num_planes, int qgv_point)
598{
599	int i;
600
601	/*
602	 * Let's return max bw for 0 planes
603	 */
604	num_planes = max(1, num_planes);
605
606	for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) {
607		const struct intel_bw_info *bi =
608			&dev_priv->display.bw.max[i];
609
610		/*
611		 * Pcode will not expose all QGV points when
612		 * SAGV is forced to off/min/med/max.
613		 */
614		if (qgv_point >= bi->num_qgv_points)
615			return UINT_MAX;
616
617		if (num_planes >= bi->num_planes)
618			return i;
619	}
620
621	return UINT_MAX;
622}
623
624static unsigned int tgl_max_bw_index(struct drm_i915_private *dev_priv,
625				     int num_planes, int qgv_point)
626{
627	int i;
628
629	/*
630	 * Let's return max bw for 0 planes
631	 */
632	num_planes = max(1, num_planes);
633
634	for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) {
635		const struct intel_bw_info *bi =
636			&dev_priv->display.bw.max[i];
637
638		/*
639		 * Pcode will not expose all QGV points when
640		 * SAGV is forced to off/min/med/max.
641		 */
642		if (qgv_point >= bi->num_qgv_points)
643			return UINT_MAX;
644
645		if (num_planes <= bi->num_planes)
646			return i;
647	}
648
649	return 0;
650}
651
652static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
653			       int psf_gv_point)
654{
655	const struct intel_bw_info *bi =
656			&dev_priv->display.bw.max[0];
657
658	return bi->psf_bw[psf_gv_point];
659}
660
661void intel_bw_init_hw(struct drm_i915_private *dev_priv)
662{
663	if (!HAS_DISPLAY(dev_priv))
664		return;
665
666	if (DISPLAY_VER(dev_priv) >= 14)
667		tgl_get_bw_info(dev_priv, &mtl_sa_info);
668	else if (IS_DG2(dev_priv))
669		dg2_get_bw_info(dev_priv);
670	else if (IS_ALDERLAKE_P(dev_priv))
671		tgl_get_bw_info(dev_priv, &adlp_sa_info);
672	else if (IS_ALDERLAKE_S(dev_priv))
673		tgl_get_bw_info(dev_priv, &adls_sa_info);
674	else if (IS_ROCKETLAKE(dev_priv))
675		tgl_get_bw_info(dev_priv, &rkl_sa_info);
676	else if (DISPLAY_VER(dev_priv) == 12)
677		tgl_get_bw_info(dev_priv, &tgl_sa_info);
678	else if (DISPLAY_VER(dev_priv) == 11)
679		icl_get_bw_info(dev_priv, &icl_sa_info);
680}
681
682static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
683{
684	/*
685	 * We assume cursors are small enough
686	 * to not not cause bandwidth problems.
687	 */
688	return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
689}
690
691static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
692{
693	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
694	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
695	unsigned int data_rate = 0;
696	enum plane_id plane_id;
697
698	for_each_plane_id_on_crtc(crtc, plane_id) {
699		/*
700		 * We assume cursors are small enough
701		 * to not not cause bandwidth problems.
702		 */
703		if (plane_id == PLANE_CURSOR)
704			continue;
705
706		data_rate += crtc_state->data_rate[plane_id];
707
708		if (DISPLAY_VER(i915) < 11)
709			data_rate += crtc_state->data_rate_y[plane_id];
710	}
711
712	return data_rate;
713}
714
715/* "Maximum Pipe Read Bandwidth" */
716static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
717{
718	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
719	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
720
721	if (DISPLAY_VER(i915) < 12)
722		return 0;
723
724	return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
725}
726
727void intel_bw_crtc_update(struct intel_bw_state *bw_state,
728			  const struct intel_crtc_state *crtc_state)
729{
730	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
731	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
732
733	bw_state->data_rate[crtc->pipe] =
734		intel_bw_crtc_data_rate(crtc_state);
735	bw_state->num_active_planes[crtc->pipe] =
736		intel_bw_crtc_num_active_planes(crtc_state);
737
738	drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
739		    pipe_name(crtc->pipe),
740		    bw_state->data_rate[crtc->pipe],
741		    bw_state->num_active_planes[crtc->pipe]);
742}
743
744static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
745					       const struct intel_bw_state *bw_state)
746{
747	unsigned int num_active_planes = 0;
748	enum pipe pipe;
749
750	for_each_pipe(dev_priv, pipe)
751		num_active_planes += bw_state->num_active_planes[pipe];
752
753	return num_active_planes;
754}
755
756static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
757				       const struct intel_bw_state *bw_state)
758{
759	unsigned int data_rate = 0;
760	enum pipe pipe;
761
762	for_each_pipe(dev_priv, pipe)
763		data_rate += bw_state->data_rate[pipe];
764
765	if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
766		data_rate = DIV_ROUND_UP(data_rate * 105, 100);
767
768	return data_rate;
769}
770
771struct intel_bw_state *
772intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
773{
774	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
775	struct intel_global_state *bw_state;
776
777	bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj);
778
779	return to_intel_bw_state(bw_state);
780}
781
782struct intel_bw_state *
783intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
784{
785	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
786	struct intel_global_state *bw_state;
787
788	bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj);
789
790	return to_intel_bw_state(bw_state);
791}
792
793struct intel_bw_state *
794intel_atomic_get_bw_state(struct intel_atomic_state *state)
795{
796	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
797	struct intel_global_state *bw_state;
798
799	bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj);
800	if (IS_ERR(bw_state))
801		return ERR_CAST(bw_state);
802
803	return to_intel_bw_state(bw_state);
804}
805
806static int mtl_find_qgv_points(struct drm_i915_private *i915,
807			       unsigned int data_rate,
808			       unsigned int num_active_planes,
809			       struct intel_bw_state *new_bw_state)
810{
811	unsigned int best_rate = UINT_MAX;
812	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
813	unsigned int qgv_peak_bw  = 0;
814	int i;
815	int ret;
816
817	ret = intel_atomic_lock_global_state(&new_bw_state->base);
818	if (ret)
819		return ret;
820
821	/*
822	 * If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's
823	 * for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is
824	 * not enabled. PM Demand code will clamp the value for the register
825	 */
826	if (!intel_can_enable_sagv(i915, new_bw_state)) {
827		new_bw_state->qgv_point_peakbw = U16_MAX;
828		drm_dbg_kms(&i915->drm, "No SAGV, use UINT_MAX as peak bw.");
829		return 0;
830	}
831
832	/*
833	 * Find the best QGV point by comparing the data_rate with max data rate
834	 * offered per plane group
835	 */
836	for (i = 0; i < num_qgv_points; i++) {
837		unsigned int bw_index =
838			tgl_max_bw_index(i915, num_active_planes, i);
839		unsigned int max_data_rate;
840
841		if (bw_index >= ARRAY_SIZE(i915->display.bw.max))
842			continue;
843
844		max_data_rate = i915->display.bw.max[bw_index].deratedbw[i];
845
846		if (max_data_rate < data_rate)
847			continue;
848
849		if (max_data_rate - data_rate < best_rate) {
850			best_rate = max_data_rate - data_rate;
851			qgv_peak_bw = i915->display.bw.max[bw_index].peakbw[i];
852		}
853
854		drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n",
855			    i, max_data_rate, data_rate, qgv_peak_bw);
856	}
857
858	drm_dbg_kms(&i915->drm, "Matching peaks QGV bw: %d for required data rate: %d\n",
859		    qgv_peak_bw, data_rate);
860
861	/*
862	 * The display configuration cannot be supported if no QGV point
863	 * satisfying the required data rate is found
864	 */
865	if (qgv_peak_bw == 0) {
866		drm_dbg_kms(&i915->drm, "No QGV points for bw %d for display configuration(%d active planes).\n",
867			    data_rate, num_active_planes);
868		return -EINVAL;
869	}
870
871	/* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */
872	new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100);
873
874	return 0;
875}
876
877static int icl_find_qgv_points(struct drm_i915_private *i915,
878			       unsigned int data_rate,
879			       unsigned int num_active_planes,
880			       const struct intel_bw_state *old_bw_state,
881			       struct intel_bw_state *new_bw_state)
882{
883	unsigned int max_bw_point = 0;
884	unsigned int max_bw = 0;
885	unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
886	unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
887	u16 psf_points = 0;
888	u16 qgv_points = 0;
889	int i;
890	int ret;
891
892	ret = intel_atomic_lock_global_state(&new_bw_state->base);
893	if (ret)
894		return ret;
895
896	for (i = 0; i < num_qgv_points; i++) {
897		unsigned int idx;
898		unsigned int max_data_rate;
899
900		if (DISPLAY_VER(i915) > 11)
901			idx = tgl_max_bw_index(i915, num_active_planes, i);
902		else
903			idx = icl_max_bw_index(i915, num_active_planes, i);
904
905		if (idx >= ARRAY_SIZE(i915->display.bw.max))
906			continue;
907
908		max_data_rate = i915->display.bw.max[idx].deratedbw[i];
909
910		/*
911		 * We need to know which qgv point gives us
912		 * maximum bandwidth in order to disable SAGV
913		 * if we find that we exceed SAGV block time
914		 * with watermarks. By that moment we already
915		 * have those, as it is calculated earlier in
916		 * intel_atomic_check,
917		 */
918		if (max_data_rate > max_bw) {
919			max_bw_point = i;
920			max_bw = max_data_rate;
921		}
922		if (max_data_rate >= data_rate)
923			qgv_points |= BIT(i);
924
925		drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d\n",
926			    i, max_data_rate, data_rate);
927	}
928
929	for (i = 0; i < num_psf_gv_points; i++) {
930		unsigned int max_data_rate = adl_psf_bw(i915, i);
931
932		if (max_data_rate >= data_rate)
933			psf_points |= BIT(i);
934
935		drm_dbg_kms(&i915->drm, "PSF GV point %d: max bw %d"
936			    " required %d\n",
937			    i, max_data_rate, data_rate);
938	}
939
940	/*
941	 * BSpec states that we always should have at least one allowed point
942	 * left, so if we couldn't - simply reject the configuration for obvious
943	 * reasons.
944	 */
945	if (qgv_points == 0) {
946		drm_dbg_kms(&i915->drm, "No QGV points provide sufficient memory"
947			    " bandwidth %d for display configuration(%d active planes).\n",
948			    data_rate, num_active_planes);
949		return -EINVAL;
950	}
951
952	if (num_psf_gv_points > 0 && psf_points == 0) {
953		drm_dbg_kms(&i915->drm, "No PSF GV points provide sufficient memory"
954			    " bandwidth %d for display configuration(%d active planes).\n",
955			    data_rate, num_active_planes);
956		return -EINVAL;
957	}
958
959	/*
960	 * Leave only single point with highest bandwidth, if
961	 * we can't enable SAGV due to the increased memory latency it may
962	 * cause.
963	 */
964	if (!intel_can_enable_sagv(i915, new_bw_state)) {
965		qgv_points = BIT(max_bw_point);
966		drm_dbg_kms(&i915->drm, "No SAGV, using single QGV point %d\n",
967			    max_bw_point);
968	}
969
970	/*
971	 * We store the ones which need to be masked as that is what PCode
972	 * actually accepts as a parameter.
973	 */
974	new_bw_state->qgv_points_mask =
975		~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
976		  ADLS_PCODE_REQ_PSF_PT(psf_points)) &
977		icl_qgv_points_mask(i915);
978
979	/*
980	 * If the actual mask had changed we need to make sure that
981	 * the commits are serialized(in case this is a nomodeset, nonblocking)
982	 */
983	if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
984		ret = intel_atomic_serialize_global_state(&new_bw_state->base);
985		if (ret)
986			return ret;
987	}
988
989	return 0;
990}
991
992static int intel_bw_check_qgv_points(struct drm_i915_private *i915,
993				     const struct intel_bw_state *old_bw_state,
994				     struct intel_bw_state *new_bw_state)
995{
996	unsigned int data_rate = intel_bw_data_rate(i915, new_bw_state);
997	unsigned int num_active_planes =
998			intel_bw_num_active_planes(i915, new_bw_state);
999
1000	data_rate = DIV_ROUND_UP(data_rate, 1000);
1001
1002	if (DISPLAY_VER(i915) >= 14)
1003		return mtl_find_qgv_points(i915, data_rate, num_active_planes,
1004					   new_bw_state);
1005	else
1006		return icl_find_qgv_points(i915, data_rate, num_active_planes,
1007					   old_bw_state, new_bw_state);
1008}
1009
1010static bool intel_bw_state_changed(struct drm_i915_private *i915,
1011				   const struct intel_bw_state *old_bw_state,
1012				   const struct intel_bw_state *new_bw_state)
1013{
1014	enum pipe pipe;
1015
1016	for_each_pipe(i915, pipe) {
1017		const struct intel_dbuf_bw *old_crtc_bw =
1018			&old_bw_state->dbuf_bw[pipe];
1019		const struct intel_dbuf_bw *new_crtc_bw =
1020			&new_bw_state->dbuf_bw[pipe];
1021		enum dbuf_slice slice;
1022
1023		for_each_dbuf_slice(i915, slice) {
1024			if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
1025			    old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
1026				return true;
1027		}
1028
1029		if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
1030			return true;
1031	}
1032
1033	return false;
1034}
1035
1036static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
1037				   struct intel_crtc *crtc,
1038				   enum plane_id plane_id,
1039				   const struct skl_ddb_entry *ddb,
1040				   unsigned int data_rate)
1041{
1042	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1043	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
1044	unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
1045	enum dbuf_slice slice;
1046
1047	/*
1048	 * The arbiter can only really guarantee an
1049	 * equal share of the total bw to each plane.
1050	 */
1051	for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
1052		crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
1053		crtc_bw->active_planes[slice] |= BIT(plane_id);
1054	}
1055}
1056
1057static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
1058				  const struct intel_crtc_state *crtc_state)
1059{
1060	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1061	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1062	struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
1063	enum plane_id plane_id;
1064
1065	memset(crtc_bw, 0, sizeof(*crtc_bw));
1066
1067	if (!crtc_state->hw.active)
1068		return;
1069
1070	for_each_plane_id_on_crtc(crtc, plane_id) {
1071		/*
1072		 * We assume cursors are small enough
1073		 * to not cause bandwidth problems.
1074		 */
1075		if (plane_id == PLANE_CURSOR)
1076			continue;
1077
1078		skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
1079				       &crtc_state->wm.skl.plane_ddb[plane_id],
1080				       crtc_state->data_rate[plane_id]);
1081
1082		if (DISPLAY_VER(i915) < 11)
1083			skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
1084					       &crtc_state->wm.skl.plane_ddb_y[plane_id],
1085					       crtc_state->data_rate[plane_id]);
1086	}
1087}
1088
1089/* "Maximum Data Buffer Bandwidth" */
1090static int
1091intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
1092			const struct intel_bw_state *bw_state)
1093{
1094	unsigned int total_max_bw = 0;
1095	enum dbuf_slice slice;
1096
1097	for_each_dbuf_slice(i915, slice) {
1098		int num_active_planes = 0;
1099		unsigned int max_bw = 0;
1100		enum pipe pipe;
1101
1102		/*
1103		 * The arbiter can only really guarantee an
1104		 * equal share of the total bw to each plane.
1105		 */
1106		for_each_pipe(i915, pipe) {
1107			const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];
1108
1109			max_bw = max(crtc_bw->max_bw[slice], max_bw);
1110			num_active_planes += hweight8(crtc_bw->active_planes[slice]);
1111		}
1112		max_bw *= num_active_planes;
1113
1114		total_max_bw = max(total_max_bw, max_bw);
1115	}
1116
1117	return DIV_ROUND_UP(total_max_bw, 64);
1118}
1119
1120int intel_bw_min_cdclk(struct drm_i915_private *i915,
1121		       const struct intel_bw_state *bw_state)
1122{
1123	enum pipe pipe;
1124	int min_cdclk;
1125
1126	min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);
1127
1128	for_each_pipe(i915, pipe)
1129		min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);
1130
1131	return min_cdclk;
1132}
1133
1134int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
1135			    bool *need_cdclk_calc)
1136{
1137	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1138	struct intel_bw_state *new_bw_state = NULL;
1139	const struct intel_bw_state *old_bw_state = NULL;
1140	const struct intel_cdclk_state *cdclk_state;
1141	const struct intel_crtc_state *crtc_state;
1142	int old_min_cdclk, new_min_cdclk;
1143	struct intel_crtc *crtc;
1144	int i;
1145
1146	if (DISPLAY_VER(dev_priv) < 9)
1147		return 0;
1148
1149	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
1150		new_bw_state = intel_atomic_get_bw_state(state);
1151		if (IS_ERR(new_bw_state))
1152			return PTR_ERR(new_bw_state);
1153
1154		old_bw_state = intel_atomic_get_old_bw_state(state);
1155
1156		skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
1157
1158		new_bw_state->min_cdclk[crtc->pipe] =
1159			intel_bw_crtc_min_cdclk(crtc_state);
1160	}
1161
1162	if (!old_bw_state)
1163		return 0;
1164
1165	if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
1166		int ret = intel_atomic_lock_global_state(&new_bw_state->base);
1167		if (ret)
1168			return ret;
1169	}
1170
1171	old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
1172	new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);
1173
1174	/*
1175	 * No need to check against the cdclk state if
1176	 * the min cdclk doesn't increase.
1177	 *
1178	 * Ie. we only ever increase the cdclk due to bandwidth
1179	 * requirements. This can reduce back and forth
1180	 * display blinking due to constant cdclk changes.
1181	 */
1182	if (new_min_cdclk <= old_min_cdclk)
1183		return 0;
1184
1185	cdclk_state = intel_atomic_get_cdclk_state(state);
1186	if (IS_ERR(cdclk_state))
1187		return PTR_ERR(cdclk_state);
1188
1189	/*
1190	 * No need to recalculate the cdclk state if
1191	 * the min cdclk doesn't increase.
1192	 *
1193	 * Ie. we only ever increase the cdclk due to bandwidth
1194	 * requirements. This can reduce back and forth
1195	 * display blinking due to constant cdclk changes.
1196	 */
1197	if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
1198		return 0;
1199
1200	drm_dbg_kms(&dev_priv->drm,
1201		    "new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
1202		    new_min_cdclk, cdclk_state->bw_min_cdclk);
1203	*need_cdclk_calc = true;
1204
1205	return 0;
1206}
1207
1208static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
1209{
1210	struct drm_i915_private *i915 = to_i915(state->base.dev);
1211	const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
1212	struct intel_crtc *crtc;
1213	int i;
1214
1215	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
1216					    new_crtc_state, i) {
1217		unsigned int old_data_rate =
1218			intel_bw_crtc_data_rate(old_crtc_state);
1219		unsigned int new_data_rate =
1220			intel_bw_crtc_data_rate(new_crtc_state);
1221		unsigned int old_active_planes =
1222			intel_bw_crtc_num_active_planes(old_crtc_state);
1223		unsigned int new_active_planes =
1224			intel_bw_crtc_num_active_planes(new_crtc_state);
1225		struct intel_bw_state *new_bw_state;
1226
1227		/*
1228		 * Avoid locking the bw state when
1229		 * nothing significant has changed.
1230		 */
1231		if (old_data_rate == new_data_rate &&
1232		    old_active_planes == new_active_planes)
1233			continue;
1234
1235		new_bw_state = intel_atomic_get_bw_state(state);
1236		if (IS_ERR(new_bw_state))
1237			return PTR_ERR(new_bw_state);
1238
1239		new_bw_state->data_rate[crtc->pipe] = new_data_rate;
1240		new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
1241
1242		*changed = true;
1243
1244		drm_dbg_kms(&i915->drm,
1245			    "[CRTC:%d:%s] data rate %u num active planes %u\n",
1246			    crtc->base.base.id, crtc->base.name,
1247			    new_bw_state->data_rate[crtc->pipe],
1248			    new_bw_state->num_active_planes[crtc->pipe]);
1249	}
1250
1251	return 0;
1252}
1253
1254int intel_bw_atomic_check(struct intel_atomic_state *state)
1255{
1256	bool changed = false;
1257	struct drm_i915_private *i915 = to_i915(state->base.dev);
1258	struct intel_bw_state *new_bw_state;
1259	const struct intel_bw_state *old_bw_state;
1260	int ret;
1261
1262	/* FIXME earlier gens need some checks too */
1263	if (DISPLAY_VER(i915) < 11)
1264		return 0;
1265
1266	ret = intel_bw_check_data_rate(state, &changed);
1267	if (ret)
1268		return ret;
1269
1270	old_bw_state = intel_atomic_get_old_bw_state(state);
1271	new_bw_state = intel_atomic_get_new_bw_state(state);
1272
1273	if (new_bw_state &&
1274	    intel_can_enable_sagv(i915, old_bw_state) !=
1275	    intel_can_enable_sagv(i915, new_bw_state))
1276		changed = true;
1277
1278	/*
1279	 * If none of our inputs (data rates, number of active
1280	 * planes, SAGV yes/no) changed then nothing to do here.
1281	 */
1282	if (!changed)
1283		return 0;
1284
1285	ret = intel_bw_check_qgv_points(i915, old_bw_state, new_bw_state);
1286	if (ret)
1287		return ret;
1288
1289	return 0;
1290}
1291
1292static struct intel_global_state *
1293intel_bw_duplicate_state(struct intel_global_obj *obj)
1294{
1295	struct intel_bw_state *state;
1296
1297	state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
1298	if (!state)
1299		return NULL;
1300
1301	return &state->base;
1302}
1303
1304static void intel_bw_destroy_state(struct intel_global_obj *obj,
1305				   struct intel_global_state *state)
1306{
1307	kfree(state);
1308}
1309
1310static const struct intel_global_state_funcs intel_bw_funcs = {
1311	.atomic_duplicate_state = intel_bw_duplicate_state,
1312	.atomic_destroy_state = intel_bw_destroy_state,
1313};
1314
1315int intel_bw_init(struct drm_i915_private *dev_priv)
1316{
1317	struct intel_bw_state *state;
1318
1319	state = kzalloc(sizeof(*state), GFP_KERNEL);
1320	if (!state)
1321		return -ENOMEM;
1322
1323	intel_atomic_global_obj_init(dev_priv, &dev_priv->display.bw.obj,
1324				     &state->base, &intel_bw_funcs);
1325
1326	return 0;
1327}
1328