intel_bios.c revision 1.6
1/*
2 * Copyright �� 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drm_edid.h>
29#include <drm/display/drm_dp_helper.h>
30#include <drm/display/drm_dsc_helper.h>
31
32#include "display/intel_display.h"
33#include "display/intel_display_types.h"
34#include "display/intel_gmbus.h"
35
36#include "i915_drv.h"
37#include "i915_reg.h"
38
39#define _INTEL_BIOS_PRIVATE
40#include "intel_vbt_defs.h"
41
42/**
43 * DOC: Video BIOS Table (VBT)
44 *
45 * The Video BIOS Table, or VBT, provides platform and board specific
46 * configuration information to the driver that is not discoverable or available
47 * through other means. The configuration is mostly related to display
48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
49 * the PCI ROM.
50 *
51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
53 * contain the actual configuration information. The VBT Header, and thus the
54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
55 * BDB Header. The data blocks are concatenated after the BDB Header. The data
56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
57 * data. (Block 53, the MIPI Sequence Block is an exception.)
58 *
59 * The driver parses the VBT during load. The relevant information is stored in
60 * driver private data for ease of use, and the actual VBT is not read after
61 * that.
62 */
63
64/* Wrapper for VBT child device config */
65struct intel_bios_encoder_data {
66	struct drm_i915_private *i915;
67
68	struct child_device_config child;
69	struct dsc_compression_parameters_entry *dsc;
70	struct list_head node;
71};
72
73#define	SLAVE_ADDR1	0x70
74#define	SLAVE_ADDR2	0x72
75
76/* Get BDB block size given a pointer to Block ID. */
77static u32 _get_blocksize(const u8 *block_base)
78{
79	/* The MIPI Sequence Block v3+ has a separate size field. */
80	if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
81		return *((const u32 *)(block_base + 4));
82	else
83		return *((const u16 *)(block_base + 1));
84}
85
86/* Get BDB block size give a pointer to data after Block ID and Block Size. */
87static u32 get_blocksize(const void *block_data)
88{
89	return _get_blocksize(block_data - 3);
90}
91
92static const void *
93find_raw_section(const void *_bdb, enum bdb_block_id section_id)
94{
95	const struct bdb_header *bdb = _bdb;
96	const u8 *base = _bdb;
97	int index = 0;
98	u32 total, current_size;
99	enum bdb_block_id current_id;
100
101	/* skip to first section */
102	index += bdb->header_size;
103	total = bdb->bdb_size;
104
105	/* walk the sections looking for section_id */
106	while (index + 3 < total) {
107		current_id = *(base + index);
108		current_size = _get_blocksize(base + index);
109		index += 3;
110
111		if (index + current_size > total)
112			return NULL;
113
114		if (current_id == section_id)
115			return base + index;
116
117		index += current_size;
118	}
119
120	return NULL;
121}
122
123/*
124 * Offset from the start of BDB to the start of the
125 * block data (just past the block header).
126 */
127static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
128{
129	const void *block;
130
131	block = find_raw_section(bdb, section_id);
132	if (!block)
133		return 0;
134
135	return block - bdb;
136}
137
138struct bdb_block_entry {
139	struct list_head node;
140	enum bdb_block_id section_id;
141	u8 data[];
142};
143
144static const void *
145find_section(struct drm_i915_private *i915,
146	     enum bdb_block_id section_id)
147{
148	struct bdb_block_entry *entry;
149
150	list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
151		if (entry->section_id == section_id)
152			return entry->data + 3;
153	}
154
155	return NULL;
156}
157
158static const struct {
159	enum bdb_block_id section_id;
160	size_t min_size;
161} bdb_blocks[] = {
162	{ .section_id = BDB_GENERAL_FEATURES,
163	  .min_size = sizeof(struct bdb_general_features), },
164	{ .section_id = BDB_GENERAL_DEFINITIONS,
165	  .min_size = sizeof(struct bdb_general_definitions), },
166	{ .section_id = BDB_PSR,
167	  .min_size = sizeof(struct bdb_psr), },
168	{ .section_id = BDB_DRIVER_FEATURES,
169	  .min_size = sizeof(struct bdb_driver_features), },
170	{ .section_id = BDB_SDVO_LVDS_OPTIONS,
171	  .min_size = sizeof(struct bdb_sdvo_lvds_options), },
172	{ .section_id = BDB_SDVO_PANEL_DTDS,
173	  .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
174	{ .section_id = BDB_EDP,
175	  .min_size = sizeof(struct bdb_edp), },
176	{ .section_id = BDB_LVDS_OPTIONS,
177	  .min_size = sizeof(struct bdb_lvds_options), },
178	/*
179	 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
180	 * so keep the two ordered.
181	 */
182	{ .section_id = BDB_LVDS_LFP_DATA_PTRS,
183	  .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
184	{ .section_id = BDB_LVDS_LFP_DATA,
185	  .min_size = 0, /* special case */ },
186	{ .section_id = BDB_LVDS_BACKLIGHT,
187	  .min_size = sizeof(struct bdb_lfp_backlight_data), },
188	{ .section_id = BDB_LFP_POWER,
189	  .min_size = sizeof(struct bdb_lfp_power), },
190	{ .section_id = BDB_MIPI_CONFIG,
191	  .min_size = sizeof(struct bdb_mipi_config), },
192	{ .section_id = BDB_MIPI_SEQUENCE,
193	  .min_size = sizeof(struct bdb_mipi_sequence) },
194	{ .section_id = BDB_COMPRESSION_PARAMETERS,
195	  .min_size = sizeof(struct bdb_compression_parameters), },
196	{ .section_id = BDB_GENERIC_DTD,
197	  .min_size = sizeof(struct bdb_generic_dtd), },
198};
199
200static size_t lfp_data_min_size(struct drm_i915_private *i915)
201{
202	const struct bdb_lvds_lfp_data_ptrs *ptrs;
203	size_t size;
204
205	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
206	if (!ptrs)
207		return 0;
208
209	size = sizeof(struct bdb_lvds_lfp_data);
210	if (ptrs->panel_name.table_size)
211		size = max(size, ptrs->panel_name.offset +
212			   sizeof(struct bdb_lvds_lfp_data_tail));
213
214	return size;
215}
216
217static bool validate_lfp_data_ptrs(const void *bdb,
218				   const struct bdb_lvds_lfp_data_ptrs *ptrs)
219{
220	int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
221	int data_block_size, lfp_data_size;
222	const void *data_block;
223	int i;
224
225	data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
226	if (!data_block)
227		return false;
228
229	data_block_size = get_blocksize(data_block);
230	if (data_block_size == 0)
231		return false;
232
233	/* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
234	if (ptrs->lvds_entries != 3)
235		return false;
236
237	fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
238	dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
239	panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
240	panel_name_size = ptrs->panel_name.table_size;
241
242	/* fp_timing has variable size */
243	if (fp_timing_size < 32 ||
244	    dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
245	    panel_pnp_id_size != sizeof(struct lvds_pnp_id))
246		return false;
247
248	/* panel_name is not present in old VBTs */
249	if (panel_name_size != 0 &&
250	    panel_name_size != sizeof(struct lvds_lfp_panel_name))
251		return false;
252
253	lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
254	if (16 * lfp_data_size > data_block_size)
255		return false;
256
257	/* make sure the table entries have uniform size */
258	for (i = 1; i < 16; i++) {
259		if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
260		    ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
261		    ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
262			return false;
263
264		if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
265		    ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
266		    ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
267			return false;
268	}
269
270	/*
271	 * Except for vlv/chv machines all real VBTs seem to have 6
272	 * unaccounted bytes in the fp_timing table. And it doesn't
273	 * appear to be a really intentional hole as the fp_timing
274	 * 0xffff terminator is always within those 6 missing bytes.
275	 */
276	if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
277		fp_timing_size += 6;
278
279	if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
280		return false;
281
282	if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
283	    ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
284	    ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
285		return false;
286
287	/* make sure the tables fit inside the data block */
288	for (i = 0; i < 16; i++) {
289		if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
290		    ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
291		    ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
292			return false;
293	}
294
295	if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
296		return false;
297
298	/* make sure fp_timing terminators are present at expected locations */
299	for (i = 0; i < 16; i++) {
300		const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
301			fp_timing_size - 2;
302
303		if (*t != 0xffff)
304			return false;
305	}
306
307	return true;
308}
309
310/* make the data table offsets relative to the data block */
311static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
312{
313	struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
314	u32 offset;
315	int i;
316
317	offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
318
319	for (i = 0; i < 16; i++) {
320		if (ptrs->ptr[i].fp_timing.offset < offset ||
321		    ptrs->ptr[i].dvo_timing.offset < offset ||
322		    ptrs->ptr[i].panel_pnp_id.offset < offset)
323			return false;
324
325		ptrs->ptr[i].fp_timing.offset -= offset;
326		ptrs->ptr[i].dvo_timing.offset -= offset;
327		ptrs->ptr[i].panel_pnp_id.offset -= offset;
328	}
329
330	if (ptrs->panel_name.table_size) {
331		if (ptrs->panel_name.offset < offset)
332			return false;
333
334		ptrs->panel_name.offset -= offset;
335	}
336
337	return validate_lfp_data_ptrs(bdb, ptrs);
338}
339
340static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
341			     int table_size, int total_size)
342{
343	if (total_size < table_size)
344		return total_size;
345
346	table->table_size = table_size;
347	table->offset = total_size - table_size;
348
349	return total_size - table_size;
350}
351
352static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
353			      const struct lvds_lfp_data_ptr_table *prev,
354			      int size)
355{
356	next->table_size = prev->table_size;
357	next->offset = prev->offset + size;
358}
359
360static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
361				    const void *bdb)
362{
363	int i, size, table_size, block_size, offset, fp_timing_size;
364	struct bdb_lvds_lfp_data_ptrs *ptrs;
365	const void *block;
366	void *ptrs_block;
367
368	/*
369	 * The hardcoded fp_timing_size is only valid for
370	 * modernish VBTs. All older VBTs definitely should
371	 * include block 41 and thus we don't need to
372	 * generate one.
373	 */
374	if (i915->display.vbt.version < 155)
375		return NULL;
376
377	fp_timing_size = 38;
378
379	block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
380	if (!block)
381		return NULL;
382
383	drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
384
385	block_size = get_blocksize(block);
386
387	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
388		sizeof(struct lvds_pnp_id);
389	if (size * 16 > block_size)
390		return NULL;
391
392	ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
393	if (!ptrs_block)
394		return NULL;
395
396	*(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
397	*(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
398	ptrs = ptrs_block + 3;
399
400	table_size = sizeof(struct lvds_pnp_id);
401	size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
402
403	table_size = sizeof(struct lvds_dvo_timing);
404	size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
405
406	table_size = fp_timing_size;
407	size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
408
409	if (ptrs->ptr[0].fp_timing.table_size)
410		ptrs->lvds_entries++;
411	if (ptrs->ptr[0].dvo_timing.table_size)
412		ptrs->lvds_entries++;
413	if (ptrs->ptr[0].panel_pnp_id.table_size)
414		ptrs->lvds_entries++;
415
416	if (size != 0 || ptrs->lvds_entries != 3) {
417		kfree(ptrs_block);
418		return NULL;
419	}
420
421	size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
422		sizeof(struct lvds_pnp_id);
423	for (i = 1; i < 16; i++) {
424		next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
425		next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
426		next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
427	}
428
429	table_size = sizeof(struct lvds_lfp_panel_name);
430
431	if (16 * (size + table_size) <= block_size) {
432		ptrs->panel_name.table_size = table_size;
433		ptrs->panel_name.offset = size * 16;
434	}
435
436	offset = block - bdb;
437
438	for (i = 0; i < 16; i++) {
439		ptrs->ptr[i].fp_timing.offset += offset;
440		ptrs->ptr[i].dvo_timing.offset += offset;
441		ptrs->ptr[i].panel_pnp_id.offset += offset;
442	}
443
444	if (ptrs->panel_name.table_size)
445		ptrs->panel_name.offset += offset;
446
447	return ptrs_block;
448}
449
450static void
451init_bdb_block(struct drm_i915_private *i915,
452	       const void *bdb, enum bdb_block_id section_id,
453	       size_t min_size)
454{
455	struct bdb_block_entry *entry;
456	void *temp_block = NULL;
457	const void *block;
458	size_t block_size;
459
460	block = find_raw_section(bdb, section_id);
461
462	/* Modern VBTs lack the LFP data table pointers block, make one up */
463	if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
464		temp_block = generate_lfp_data_ptrs(i915, bdb);
465		if (temp_block)
466			block = temp_block + 3;
467	}
468	if (!block)
469		return;
470
471	drm_WARN(&i915->drm, min_size == 0,
472		 "Block %d min_size is zero\n", section_id);
473
474	block_size = get_blocksize(block);
475
476	/*
477	 * Version number and new block size are considered
478	 * part of the header for MIPI sequenece block v3+.
479	 */
480	if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
481		block_size += 5;
482
483	entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
484			GFP_KERNEL);
485	if (!entry) {
486		kfree(temp_block);
487		return;
488	}
489
490	entry->section_id = section_id;
491	memcpy(entry->data, block - 3, block_size + 3);
492
493	kfree(temp_block);
494
495	drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
496		    section_id, block_size, min_size);
497
498	if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
499	    !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
500		drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
501		kfree(entry);
502		return;
503	}
504
505	list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
506}
507
508static void init_bdb_blocks(struct drm_i915_private *i915,
509			    const void *bdb)
510{
511	int i;
512
513	for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
514		enum bdb_block_id section_id = bdb_blocks[i].section_id;
515		size_t min_size = bdb_blocks[i].min_size;
516
517		if (section_id == BDB_LVDS_LFP_DATA)
518			min_size = lfp_data_min_size(i915);
519
520		init_bdb_block(i915, bdb, section_id, min_size);
521	}
522}
523
524static void
525fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
526			const struct lvds_dvo_timing *dvo_timing)
527{
528	panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529		dvo_timing->hactive_lo;
530	panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531		((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532	panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533		((dvo_timing->hsync_pulse_width_hi << 8) |
534			dvo_timing->hsync_pulse_width_lo);
535	panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536		((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537
538	panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539		dvo_timing->vactive_lo;
540	panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541		((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542	panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543		((dvo_timing->vsync_pulse_width_hi << 4) |
544			dvo_timing->vsync_pulse_width_lo);
545	panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546		((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547	panel_fixed_mode->clock = dvo_timing->clock * 10;
548	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549
550	if (dvo_timing->hsync_positive)
551		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552	else
553		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554
555	if (dvo_timing->vsync_positive)
556		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557	else
558		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559
560	panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561		dvo_timing->himage_lo;
562	panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563		dvo_timing->vimage_lo;
564
565	/* Some VBTs have bogus h/vtotal values */
566	if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
567		panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
568	if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
569		panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
570
571	drm_mode_set_name(panel_fixed_mode);
572}
573
574static const struct lvds_dvo_timing *
575get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
576		    const struct bdb_lvds_lfp_data_ptrs *ptrs,
577		    int index)
578{
579	return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
580}
581
582static const struct lvds_fp_timing *
583get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
584		   const struct bdb_lvds_lfp_data_ptrs *ptrs,
585		   int index)
586{
587	return (const void *)data + ptrs->ptr[index].fp_timing.offset;
588}
589
590static const struct lvds_pnp_id *
591get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
592		const struct bdb_lvds_lfp_data_ptrs *ptrs,
593		int index)
594{
595	return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
596}
597
598static const struct bdb_lvds_lfp_data_tail *
599get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
600		  const struct bdb_lvds_lfp_data_ptrs *ptrs)
601{
602	if (ptrs->panel_name.table_size)
603		return (const void *)data + ptrs->panel_name.offset;
604	else
605		return NULL;
606}
607
608static void dump_pnp_id(struct drm_i915_private *i915,
609			const struct lvds_pnp_id *pnp_id,
610			const char *name)
611{
612	u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
613	char vend[4];
614
615	drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
616		    name, drm_edid_decode_mfg_id(mfg_name, vend),
617		    pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
618		    pnp_id->mfg_week, pnp_id->mfg_year + 1990);
619}
620
621static int opregion_get_panel_type(struct drm_i915_private *i915,
622				   const struct intel_bios_encoder_data *devdata,
623				   const struct edid *edid)
624{
625	return intel_opregion_get_panel_type(i915);
626}
627
628static int vbt_get_panel_type(struct drm_i915_private *i915,
629			      const struct intel_bios_encoder_data *devdata,
630			      const struct edid *edid)
631{
632	const struct bdb_lvds_options *lvds_options;
633
634	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
635	if (!lvds_options)
636		return -1;
637
638	if (lvds_options->panel_type > 0xf &&
639	    lvds_options->panel_type != 0xff) {
640		drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
641			    lvds_options->panel_type);
642		return -1;
643	}
644
645	if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
646		return lvds_options->panel_type2;
647
648	drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
649
650	return lvds_options->panel_type;
651}
652
653static int pnpid_get_panel_type(struct drm_i915_private *i915,
654				const struct intel_bios_encoder_data *devdata,
655				const struct edid *edid)
656{
657	const struct bdb_lvds_lfp_data *data;
658	const struct bdb_lvds_lfp_data_ptrs *ptrs;
659	const struct lvds_pnp_id *edid_id;
660	struct lvds_pnp_id edid_id_nodate;
661	int i, best = -1;
662
663	if (!edid)
664		return -1;
665
666	edid_id = (const void *)&edid->mfg_id[0];
667
668	edid_id_nodate = *edid_id;
669	edid_id_nodate.mfg_week = 0;
670	edid_id_nodate.mfg_year = 0;
671
672	dump_pnp_id(i915, edid_id, "EDID");
673
674	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675	if (!ptrs)
676		return -1;
677
678	data = find_section(i915, BDB_LVDS_LFP_DATA);
679	if (!data)
680		return -1;
681
682	for (i = 0; i < 16; i++) {
683		const struct lvds_pnp_id *vbt_id =
684			get_lvds_pnp_id(data, ptrs, i);
685
686		/* full match? */
687		if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688			return i;
689
690		/*
691		 * Accept a match w/o date if no full match is found,
692		 * and the VBT entry does not specify a date.
693		 */
694		if (best < 0 &&
695		    !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696			best = i;
697	}
698
699	return best;
700}
701
702static int fallback_get_panel_type(struct drm_i915_private *i915,
703				   const struct intel_bios_encoder_data *devdata,
704				   const struct edid *edid)
705{
706	return 0;
707}
708
709enum panel_type {
710	PANEL_TYPE_OPREGION,
711	PANEL_TYPE_VBT,
712	PANEL_TYPE_PNPID,
713	PANEL_TYPE_FALLBACK,
714};
715
716static int get_panel_type(struct drm_i915_private *i915,
717			  const struct intel_bios_encoder_data *devdata,
718			  const struct edid *edid)
719{
720	struct {
721		const char *name;
722		int (*get_panel_type)(struct drm_i915_private *i915,
723				      const struct intel_bios_encoder_data *devdata,
724				      const struct edid *edid);
725		int panel_type;
726	} panel_types[] = {
727		[PANEL_TYPE_OPREGION] = {
728			.name = "OpRegion",
729			.get_panel_type = opregion_get_panel_type,
730		},
731		[PANEL_TYPE_VBT] = {
732			.name = "VBT",
733			.get_panel_type = vbt_get_panel_type,
734		},
735		[PANEL_TYPE_PNPID] = {
736			.name = "PNPID",
737			.get_panel_type = pnpid_get_panel_type,
738		},
739		[PANEL_TYPE_FALLBACK] = {
740			.name = "fallback",
741			.get_panel_type = fallback_get_panel_type,
742		},
743	};
744	int i;
745
746	for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747		panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata, edid);
748
749		drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
750			    panel_types[i].panel_type != 0xff);
751
752		if (panel_types[i].panel_type >= 0)
753			drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
754				    panel_types[i].name, panel_types[i].panel_type);
755	}
756
757	if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
758		i = PANEL_TYPE_OPREGION;
759	else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
760		 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
761		i = PANEL_TYPE_PNPID;
762	else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
763		 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
764		i = PANEL_TYPE_VBT;
765	else
766		i = PANEL_TYPE_FALLBACK;
767
768	drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
769		    panel_types[i].name, panel_types[i].panel_type);
770
771	return panel_types[i].panel_type;
772}
773
774static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
775{
776	return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
777}
778
779static bool panel_bool(unsigned int value, int panel_type)
780{
781	return panel_bits(value, panel_type, 1);
782}
783
784/* Parse general panel options */
785static void
786parse_panel_options(struct drm_i915_private *i915,
787		    struct intel_panel *panel)
788{
789	const struct bdb_lvds_options *lvds_options;
790	int panel_type = panel->vbt.panel_type;
791	int drrs_mode;
792
793	lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
794	if (!lvds_options)
795		return;
796
797	panel->vbt.lvds_dither = lvds_options->pixel_dither;
798
799	/*
800	 * Empirical evidence indicates the block size can be
801	 * either 4,14,16,24+ bytes. For older VBTs no clear
802	 * relationship between the block size vs. BDB version.
803	 */
804	if (get_blocksize(lvds_options) < 16)
805		return;
806
807	drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
808			       panel_type, 2);
809	/*
810	 * VBT has static DRRS = 0 and seamless DRRS = 2.
811	 * The below piece of code is required to adjust vbt.drrs_type
812	 * to match the enum drrs_support_type.
813	 */
814	switch (drrs_mode) {
815	case 0:
816		panel->vbt.drrs_type = DRRS_TYPE_STATIC;
817		drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
818		break;
819	case 2:
820		panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
821		drm_dbg_kms(&i915->drm,
822			    "DRRS supported mode is seamless\n");
823		break;
824	default:
825		panel->vbt.drrs_type = DRRS_TYPE_NONE;
826		drm_dbg_kms(&i915->drm,
827			    "DRRS not supported (VBT input)\n");
828		break;
829	}
830}
831
832static void
833parse_lfp_panel_dtd(struct drm_i915_private *i915,
834		    struct intel_panel *panel,
835		    const struct bdb_lvds_lfp_data *lvds_lfp_data,
836		    const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
837{
838	const struct lvds_dvo_timing *panel_dvo_timing;
839	const struct lvds_fp_timing *fp_timing;
840	struct drm_display_mode *panel_fixed_mode;
841	int panel_type = panel->vbt.panel_type;
842
843	panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
844					       lvds_lfp_data_ptrs,
845					       panel_type);
846
847	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
848	if (!panel_fixed_mode)
849		return;
850
851	fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
852
853	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
854
855	drm_dbg_kms(&i915->drm,
856		    "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
857		    DRM_MODE_ARG(panel_fixed_mode));
858
859	fp_timing = get_lvds_fp_timing(lvds_lfp_data,
860				       lvds_lfp_data_ptrs,
861				       panel_type);
862
863	/* check the resolution, just to be sure */
864	if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
865	    fp_timing->y_res == panel_fixed_mode->vdisplay) {
866		panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
867		drm_dbg_kms(&i915->drm,
868			    "VBT initial LVDS value %x\n",
869			    panel->vbt.bios_lvds_val);
870	}
871}
872
873static void
874parse_lfp_data(struct drm_i915_private *i915,
875	       struct intel_panel *panel)
876{
877	const struct bdb_lvds_lfp_data *data;
878	const struct bdb_lvds_lfp_data_tail *tail;
879	const struct bdb_lvds_lfp_data_ptrs *ptrs;
880	const struct lvds_pnp_id *pnp_id;
881	int panel_type = panel->vbt.panel_type;
882
883	ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
884	if (!ptrs)
885		return;
886
887	data = find_section(i915, BDB_LVDS_LFP_DATA);
888	if (!data)
889		return;
890
891	if (!panel->vbt.lfp_lvds_vbt_mode)
892		parse_lfp_panel_dtd(i915, panel, data, ptrs);
893
894	pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
895	dump_pnp_id(i915, pnp_id, "Panel");
896
897	tail = get_lfp_data_tail(data, ptrs);
898	if (!tail)
899		return;
900
901	drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
902		    (int)sizeof(tail->panel_name[0].name),
903		    tail->panel_name[panel_type].name);
904
905	if (i915->display.vbt.version >= 188) {
906		panel->vbt.seamless_drrs_min_refresh_rate =
907			tail->seamless_drrs_min_refresh_rate[panel_type];
908		drm_dbg_kms(&i915->drm,
909			    "Seamless DRRS min refresh rate: %d Hz\n",
910			    panel->vbt.seamless_drrs_min_refresh_rate);
911	}
912}
913
914static void
915parse_generic_dtd(struct drm_i915_private *i915,
916		  struct intel_panel *panel)
917{
918	const struct bdb_generic_dtd *generic_dtd;
919	const struct generic_dtd_entry *dtd;
920	struct drm_display_mode *panel_fixed_mode;
921	int num_dtd;
922
923	/*
924	 * Older VBTs provided DTD information for internal displays through
925	 * the "LFP panel tables" block (42).  As of VBT revision 229 the
926	 * DTD information should be provided via a newer "generic DTD"
927	 * block (58).  Just to be safe, we'll try the new generic DTD block
928	 * first on VBT >= 229, but still fall back to trying the old LFP
929	 * block if that fails.
930	 */
931	if (i915->display.vbt.version < 229)
932		return;
933
934	generic_dtd = find_section(i915, BDB_GENERIC_DTD);
935	if (!generic_dtd)
936		return;
937
938	if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
939		drm_err(&i915->drm, "GDTD size %u is too small.\n",
940			generic_dtd->gdtd_size);
941		return;
942	} else if (generic_dtd->gdtd_size !=
943		   sizeof(struct generic_dtd_entry)) {
944		drm_err(&i915->drm, "Unexpected GDTD size %u\n",
945			generic_dtd->gdtd_size);
946		/* DTD has unknown fields, but keep going */
947	}
948
949	num_dtd = (get_blocksize(generic_dtd) -
950		   sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
951	if (panel->vbt.panel_type >= num_dtd) {
952		drm_err(&i915->drm,
953			"Panel type %d not found in table of %d DTD's\n",
954			panel->vbt.panel_type, num_dtd);
955		return;
956	}
957
958	dtd = &generic_dtd->dtd[panel->vbt.panel_type];
959
960	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
961	if (!panel_fixed_mode)
962		return;
963
964	panel_fixed_mode->hdisplay = dtd->hactive;
965	panel_fixed_mode->hsync_start =
966		panel_fixed_mode->hdisplay + dtd->hfront_porch;
967	panel_fixed_mode->hsync_end =
968		panel_fixed_mode->hsync_start + dtd->hsync;
969	panel_fixed_mode->htotal =
970		panel_fixed_mode->hdisplay + dtd->hblank;
971
972	panel_fixed_mode->vdisplay = dtd->vactive;
973	panel_fixed_mode->vsync_start =
974		panel_fixed_mode->vdisplay + dtd->vfront_porch;
975	panel_fixed_mode->vsync_end =
976		panel_fixed_mode->vsync_start + dtd->vsync;
977	panel_fixed_mode->vtotal =
978		panel_fixed_mode->vdisplay + dtd->vblank;
979
980	panel_fixed_mode->clock = dtd->pixel_clock;
981	panel_fixed_mode->width_mm = dtd->width_mm;
982	panel_fixed_mode->height_mm = dtd->height_mm;
983
984	panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
985	drm_mode_set_name(panel_fixed_mode);
986
987	if (dtd->hsync_positive_polarity)
988		panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
989	else
990		panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
991
992	if (dtd->vsync_positive_polarity)
993		panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
994	else
995		panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
996
997	drm_dbg_kms(&i915->drm,
998		    "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
999		    DRM_MODE_ARG(panel_fixed_mode));
1000
1001	panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1002}
1003
1004static void
1005parse_lfp_backlight(struct drm_i915_private *i915,
1006		    struct intel_panel *panel)
1007{
1008	const struct bdb_lfp_backlight_data *backlight_data;
1009	const struct lfp_backlight_data_entry *entry;
1010	int panel_type = panel->vbt.panel_type;
1011	u16 level;
1012
1013	backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
1014	if (!backlight_data)
1015		return;
1016
1017	if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1018		drm_dbg_kms(&i915->drm,
1019			    "Unsupported backlight data entry size %u\n",
1020			    backlight_data->entry_size);
1021		return;
1022	}
1023
1024	entry = &backlight_data->data[panel_type];
1025
1026	panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1027	if (!panel->vbt.backlight.present) {
1028		drm_dbg_kms(&i915->drm,
1029			    "PWM backlight not present in VBT (type %u)\n",
1030			    entry->type);
1031		return;
1032	}
1033
1034	panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1035	if (i915->display.vbt.version >= 191) {
1036		size_t exp_size;
1037
1038		if (i915->display.vbt.version >= 236)
1039			exp_size = sizeof(struct bdb_lfp_backlight_data);
1040		else if (i915->display.vbt.version >= 234)
1041			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1042		else
1043			exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1044
1045		if (get_blocksize(backlight_data) >= exp_size) {
1046			const struct lfp_backlight_control_method *method;
1047
1048			method = &backlight_data->backlight_control[panel_type];
1049			panel->vbt.backlight.type = method->type;
1050			panel->vbt.backlight.controller = method->controller;
1051		}
1052	}
1053
1054	panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1055	panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1056
1057	if (i915->display.vbt.version >= 234) {
1058		u16 min_level;
1059		bool scale;
1060
1061		level = backlight_data->brightness_level[panel_type].level;
1062		min_level = backlight_data->brightness_min_level[panel_type].level;
1063
1064		if (i915->display.vbt.version >= 236)
1065			scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1066		else
1067			scale = level > 255;
1068
1069		if (scale)
1070			min_level = min_level / 255;
1071
1072		if (min_level > 255) {
1073			drm_warn(&i915->drm, "Brightness min level > 255\n");
1074			level = 255;
1075		}
1076		panel->vbt.backlight.min_brightness = min_level;
1077
1078		panel->vbt.backlight.brightness_precision_bits =
1079			backlight_data->brightness_precision_bits[panel_type];
1080	} else {
1081		level = backlight_data->level[panel_type];
1082		panel->vbt.backlight.min_brightness = entry->min_brightness;
1083	}
1084
1085	drm_dbg_kms(&i915->drm,
1086		    "VBT backlight PWM modulation frequency %u Hz, "
1087		    "active %s, min brightness %u, level %u, controller %u\n",
1088		    panel->vbt.backlight.pwm_freq_hz,
1089		    panel->vbt.backlight.active_low_pwm ? "low" : "high",
1090		    panel->vbt.backlight.min_brightness,
1091		    level,
1092		    panel->vbt.backlight.controller);
1093}
1094
1095/* Try to find sdvo panel data */
1096static void
1097parse_sdvo_panel_data(struct drm_i915_private *i915,
1098		      struct intel_panel *panel)
1099{
1100	const struct bdb_sdvo_panel_dtds *dtds;
1101	struct drm_display_mode *panel_fixed_mode;
1102	int index;
1103
1104	index = i915->params.vbt_sdvo_panel_type;
1105	if (index == -2) {
1106		drm_dbg_kms(&i915->drm,
1107			    "Ignore SDVO panel mode from BIOS VBT tables.\n");
1108		return;
1109	}
1110
1111	if (index == -1) {
1112		const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1113
1114		sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1115		if (!sdvo_lvds_options)
1116			return;
1117
1118		index = sdvo_lvds_options->panel_type;
1119	}
1120
1121	dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1122	if (!dtds)
1123		return;
1124
1125	panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1126	if (!panel_fixed_mode)
1127		return;
1128
1129	fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1130
1131	panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1132
1133	drm_dbg_kms(&i915->drm,
1134		    "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1135		    DRM_MODE_ARG(panel_fixed_mode));
1136}
1137
1138static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1139				    bool alternate)
1140{
1141	switch (DISPLAY_VER(i915)) {
1142	case 2:
1143		return alternate ? 66667 : 48000;
1144	case 3:
1145	case 4:
1146		return alternate ? 100000 : 96000;
1147	default:
1148		return alternate ? 100000 : 120000;
1149	}
1150}
1151
1152static void
1153parse_general_features(struct drm_i915_private *i915)
1154{
1155	const struct bdb_general_features *general;
1156
1157	general = find_section(i915, BDB_GENERAL_FEATURES);
1158	if (!general)
1159		return;
1160
1161	i915->display.vbt.int_tv_support = general->int_tv_support;
1162	/* int_crt_support can't be trusted on earlier platforms */
1163	if (i915->display.vbt.version >= 155 &&
1164	    (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1165		i915->display.vbt.int_crt_support = general->int_crt_support;
1166	i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1167	i915->display.vbt.lvds_ssc_freq =
1168		intel_bios_ssc_frequency(i915, general->ssc_freq);
1169	i915->display.vbt.display_clock_mode = general->display_clock_mode;
1170	i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1171	if (i915->display.vbt.version >= 181) {
1172		i915->display.vbt.orientation = general->rotate_180 ?
1173			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1174			DRM_MODE_PANEL_ORIENTATION_NORMAL;
1175	} else {
1176		i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1177	}
1178
1179	if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1180		i915->display.vbt.override_afc_startup = true;
1181		i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1182	}
1183
1184	drm_dbg_kms(&i915->drm,
1185		    "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1186		    i915->display.vbt.int_tv_support,
1187		    i915->display.vbt.int_crt_support,
1188		    i915->display.vbt.lvds_use_ssc,
1189		    i915->display.vbt.lvds_ssc_freq,
1190		    i915->display.vbt.display_clock_mode,
1191		    i915->display.vbt.fdi_rx_polarity_inverted);
1192}
1193
1194static const struct child_device_config *
1195child_device_ptr(const struct bdb_general_definitions *defs, int i)
1196{
1197	return (const void *) &defs->devices[i * defs->child_dev_size];
1198}
1199
1200static void
1201parse_sdvo_device_mapping(struct drm_i915_private *i915)
1202{
1203	struct sdvo_device_mapping *mapping;
1204	const struct intel_bios_encoder_data *devdata;
1205	const struct child_device_config *child;
1206	int count = 0;
1207
1208	/*
1209	 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1210	 * accurate and doesn't have to be, as long as it's not too strict.
1211	 */
1212	if (!IS_DISPLAY_VER(i915, 3, 7)) {
1213		drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1214		return;
1215	}
1216
1217	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1218		child = &devdata->child;
1219
1220		if (child->slave_addr != SLAVE_ADDR1 &&
1221		    child->slave_addr != SLAVE_ADDR2) {
1222			/*
1223			 * If the slave address is neither 0x70 nor 0x72,
1224			 * it is not a SDVO device. Skip it.
1225			 */
1226			continue;
1227		}
1228		if (child->dvo_port != DEVICE_PORT_DVOB &&
1229		    child->dvo_port != DEVICE_PORT_DVOC) {
1230			/* skip the incorrect SDVO port */
1231			drm_dbg_kms(&i915->drm,
1232				    "Incorrect SDVO port. Skip it\n");
1233			continue;
1234		}
1235		drm_dbg_kms(&i915->drm,
1236			    "the SDVO device with slave addr %2x is found on"
1237			    " %s port\n",
1238			    child->slave_addr,
1239			    (child->dvo_port == DEVICE_PORT_DVOB) ?
1240			    "SDVOB" : "SDVOC");
1241		mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1242		if (!mapping->initialized) {
1243			mapping->dvo_port = child->dvo_port;
1244			mapping->slave_addr = child->slave_addr;
1245			mapping->dvo_wiring = child->dvo_wiring;
1246			mapping->ddc_pin = child->ddc_pin;
1247			mapping->i2c_pin = child->i2c_pin;
1248			mapping->initialized = 1;
1249			drm_dbg_kms(&i915->drm,
1250				    "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1251				    mapping->dvo_port, mapping->slave_addr,
1252				    mapping->dvo_wiring, mapping->ddc_pin,
1253				    mapping->i2c_pin);
1254		} else {
1255			drm_dbg_kms(&i915->drm,
1256				    "Maybe one SDVO port is shared by "
1257				    "two SDVO device.\n");
1258		}
1259		if (child->slave2_addr) {
1260			/* Maybe this is a SDVO device with multiple inputs */
1261			/* And the mapping info is not added */
1262			drm_dbg_kms(&i915->drm,
1263				    "there exists the slave2_addr. Maybe this"
1264				    " is a SDVO device with multiple inputs.\n");
1265		}
1266		count++;
1267	}
1268
1269	if (!count) {
1270		/* No SDVO device info is found */
1271		drm_dbg_kms(&i915->drm,
1272			    "No SDVO device info is found in VBT\n");
1273	}
1274}
1275
1276static void
1277parse_driver_features(struct drm_i915_private *i915)
1278{
1279	const struct bdb_driver_features *driver;
1280
1281	driver = find_section(i915, BDB_DRIVER_FEATURES);
1282	if (!driver)
1283		return;
1284
1285	if (DISPLAY_VER(i915) >= 5) {
1286		/*
1287		 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1288		 * to mean "eDP". The VBT spec doesn't agree with that
1289		 * interpretation, but real world VBTs seem to.
1290		 */
1291		if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1292			i915->display.vbt.int_lvds_support = 0;
1293	} else {
1294		/*
1295		 * FIXME it's not clear which BDB version has the LVDS config
1296		 * bits defined. Revision history in the VBT spec says:
1297		 * "0.92 | Add two definitions for VBT value of LVDS Active
1298		 *  Config (00b and 11b values defined) | 06/13/2005"
1299		 * but does not the specify the BDB version.
1300		 *
1301		 * So far version 134 (on i945gm) is the oldest VBT observed
1302		 * in the wild with the bits correctly populated. Version
1303		 * 108 (on i85x) does not have the bits correctly populated.
1304		 */
1305		if (i915->display.vbt.version >= 134 &&
1306		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1307		    driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1308			i915->display.vbt.int_lvds_support = 0;
1309	}
1310}
1311
1312static void
1313parse_panel_driver_features(struct drm_i915_private *i915,
1314			    struct intel_panel *panel)
1315{
1316	const struct bdb_driver_features *driver;
1317
1318	driver = find_section(i915, BDB_DRIVER_FEATURES);
1319	if (!driver)
1320		return;
1321
1322	if (i915->display.vbt.version < 228) {
1323		drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1324			    driver->drrs_enabled);
1325		/*
1326		 * If DRRS is not supported, drrs_type has to be set to 0.
1327		 * This is because, VBT is configured in such a way that
1328		 * static DRRS is 0 and DRRS not supported is represented by
1329		 * driver->drrs_enabled=false
1330		 */
1331		if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1332			/*
1333			 * FIXME Should DMRRS perhaps be treated as seamless
1334			 * but without the automatic downclocking?
1335			 */
1336			if (driver->dmrrs_enabled)
1337				panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1338			else
1339				panel->vbt.drrs_type = DRRS_TYPE_NONE;
1340		}
1341
1342		panel->vbt.psr.enable = driver->psr_enabled;
1343	}
1344}
1345
1346static void
1347parse_power_conservation_features(struct drm_i915_private *i915,
1348				  struct intel_panel *panel)
1349{
1350	const struct bdb_lfp_power *power;
1351	u8 panel_type = panel->vbt.panel_type;
1352
1353	panel->vbt.vrr = true; /* matches Windows behaviour */
1354
1355	if (i915->display.vbt.version < 228)
1356		return;
1357
1358	power = find_section(i915, BDB_LFP_POWER);
1359	if (!power)
1360		return;
1361
1362	panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1363
1364	/*
1365	 * If DRRS is not supported, drrs_type has to be set to 0.
1366	 * This is because, VBT is configured in such a way that
1367	 * static DRRS is 0 and DRRS not supported is represented by
1368	 * power->drrs & BIT(panel_type)=false
1369	 */
1370	if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1371		/*
1372		 * FIXME Should DMRRS perhaps be treated as seamless
1373		 * but without the automatic downclocking?
1374		 */
1375		if (panel_bool(power->dmrrs, panel_type))
1376			panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1377		else
1378			panel->vbt.drrs_type = DRRS_TYPE_NONE;
1379	}
1380
1381	if (i915->display.vbt.version >= 232)
1382		panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1383
1384	if (i915->display.vbt.version >= 233)
1385		panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1386					    panel_type);
1387}
1388
1389static void
1390parse_edp(struct drm_i915_private *i915,
1391	  struct intel_panel *panel)
1392{
1393	const struct bdb_edp *edp;
1394	const struct edp_power_seq *edp_pps;
1395	const struct edp_fast_link_params *edp_link_params;
1396	int panel_type = panel->vbt.panel_type;
1397
1398	edp = find_section(i915, BDB_EDP);
1399	if (!edp)
1400		return;
1401
1402	switch (panel_bits(edp->color_depth, panel_type, 2)) {
1403	case EDP_18BPP:
1404		panel->vbt.edp.bpp = 18;
1405		break;
1406	case EDP_24BPP:
1407		panel->vbt.edp.bpp = 24;
1408		break;
1409	case EDP_30BPP:
1410		panel->vbt.edp.bpp = 30;
1411		break;
1412	}
1413
1414	/* Get the eDP sequencing and link info */
1415	edp_pps = &edp->power_seqs[panel_type];
1416	edp_link_params = &edp->fast_link_params[panel_type];
1417
1418	panel->vbt.edp.pps = *edp_pps;
1419
1420	if (i915->display.vbt.version >= 224) {
1421		panel->vbt.edp.rate =
1422			edp->edp_fast_link_training_rate[panel_type] * 20;
1423	} else {
1424		switch (edp_link_params->rate) {
1425		case EDP_RATE_1_62:
1426			panel->vbt.edp.rate = 162000;
1427			break;
1428		case EDP_RATE_2_7:
1429			panel->vbt.edp.rate = 270000;
1430			break;
1431		case EDP_RATE_5_4:
1432			panel->vbt.edp.rate = 540000;
1433			break;
1434		default:
1435			drm_dbg_kms(&i915->drm,
1436				    "VBT has unknown eDP link rate value %u\n",
1437				    edp_link_params->rate);
1438			break;
1439		}
1440	}
1441
1442	switch (edp_link_params->lanes) {
1443	case EDP_LANE_1:
1444		panel->vbt.edp.lanes = 1;
1445		break;
1446	case EDP_LANE_2:
1447		panel->vbt.edp.lanes = 2;
1448		break;
1449	case EDP_LANE_4:
1450		panel->vbt.edp.lanes = 4;
1451		break;
1452	default:
1453		drm_dbg_kms(&i915->drm,
1454			    "VBT has unknown eDP lane count value %u\n",
1455			    edp_link_params->lanes);
1456		break;
1457	}
1458
1459	switch (edp_link_params->preemphasis) {
1460	case EDP_PREEMPHASIS_NONE:
1461		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1462		break;
1463	case EDP_PREEMPHASIS_3_5dB:
1464		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1465		break;
1466	case EDP_PREEMPHASIS_6dB:
1467		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1468		break;
1469	case EDP_PREEMPHASIS_9_5dB:
1470		panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1471		break;
1472	default:
1473		drm_dbg_kms(&i915->drm,
1474			    "VBT has unknown eDP pre-emphasis value %u\n",
1475			    edp_link_params->preemphasis);
1476		break;
1477	}
1478
1479	switch (edp_link_params->vswing) {
1480	case EDP_VSWING_0_4V:
1481		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1482		break;
1483	case EDP_VSWING_0_6V:
1484		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1485		break;
1486	case EDP_VSWING_0_8V:
1487		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1488		break;
1489	case EDP_VSWING_1_2V:
1490		panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1491		break;
1492	default:
1493		drm_dbg_kms(&i915->drm,
1494			    "VBT has unknown eDP voltage swing value %u\n",
1495			    edp_link_params->vswing);
1496		break;
1497	}
1498
1499	if (i915->display.vbt.version >= 173) {
1500		u8 vswing;
1501
1502		/* Don't read from VBT if module parameter has valid value*/
1503		if (i915->params.edp_vswing) {
1504			panel->vbt.edp.low_vswing =
1505				i915->params.edp_vswing == 1;
1506		} else {
1507			vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1508			panel->vbt.edp.low_vswing = vswing == 0;
1509		}
1510	}
1511
1512	panel->vbt.edp.drrs_msa_timing_delay =
1513		panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1514
1515	if (i915->display.vbt.version >= 244)
1516		panel->vbt.edp.max_link_rate =
1517			edp->edp_max_port_link_rate[panel_type] * 20;
1518}
1519
1520static void
1521parse_psr(struct drm_i915_private *i915,
1522	  struct intel_panel *panel)
1523{
1524	const struct bdb_psr *psr;
1525	const struct psr_table *psr_table;
1526	int panel_type = panel->vbt.panel_type;
1527
1528	psr = find_section(i915, BDB_PSR);
1529	if (!psr) {
1530		drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1531		return;
1532	}
1533
1534	psr_table = &psr->psr_table[panel_type];
1535
1536	panel->vbt.psr.full_link = psr_table->full_link;
1537	panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1538
1539	/* Allowed VBT values goes from 0 to 15 */
1540	panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1541		psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1542
1543	/*
1544	 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1545	 * Old decimal value is wake up time in multiples of 100 us.
1546	 */
1547	if (i915->display.vbt.version >= 205 &&
1548	    (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1549		switch (psr_table->tp1_wakeup_time) {
1550		case 0:
1551			panel->vbt.psr.tp1_wakeup_time_us = 500;
1552			break;
1553		case 1:
1554			panel->vbt.psr.tp1_wakeup_time_us = 100;
1555			break;
1556		case 3:
1557			panel->vbt.psr.tp1_wakeup_time_us = 0;
1558			break;
1559		default:
1560			drm_dbg_kms(&i915->drm,
1561				    "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1562				    psr_table->tp1_wakeup_time);
1563			fallthrough;
1564		case 2:
1565			panel->vbt.psr.tp1_wakeup_time_us = 2500;
1566			break;
1567		}
1568
1569		switch (psr_table->tp2_tp3_wakeup_time) {
1570		case 0:
1571			panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1572			break;
1573		case 1:
1574			panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1575			break;
1576		case 3:
1577			panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1578			break;
1579		default:
1580			drm_dbg_kms(&i915->drm,
1581				    "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1582				    psr_table->tp2_tp3_wakeup_time);
1583			fallthrough;
1584		case 2:
1585			panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1586		break;
1587		}
1588	} else {
1589		panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1590		panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1591	}
1592
1593	if (i915->display.vbt.version >= 226) {
1594		u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1595
1596		wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1597		switch (wakeup_time) {
1598		case 0:
1599			wakeup_time = 500;
1600			break;
1601		case 1:
1602			wakeup_time = 100;
1603			break;
1604		case 3:
1605			wakeup_time = 50;
1606			break;
1607		default:
1608		case 2:
1609			wakeup_time = 2500;
1610			break;
1611		}
1612		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1613	} else {
1614		/* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1615		panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1616	}
1617}
1618
1619static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1620				      struct intel_panel *panel,
1621				      enum port port)
1622{
1623	enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1624
1625	if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1626		panel->vbt.dsi.bl_ports = BIT(port);
1627		if (panel->vbt.dsi.config->cabc_supported)
1628			panel->vbt.dsi.cabc_ports = BIT(port);
1629
1630		return;
1631	}
1632
1633	switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1634	case DL_DCS_PORT_A:
1635		panel->vbt.dsi.bl_ports = BIT(PORT_A);
1636		break;
1637	case DL_DCS_PORT_C:
1638		panel->vbt.dsi.bl_ports = BIT(port_bc);
1639		break;
1640	default:
1641	case DL_DCS_PORT_A_AND_C:
1642		panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1643		break;
1644	}
1645
1646	if (!panel->vbt.dsi.config->cabc_supported)
1647		return;
1648
1649	switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1650	case DL_DCS_PORT_A:
1651		panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1652		break;
1653	case DL_DCS_PORT_C:
1654		panel->vbt.dsi.cabc_ports = BIT(port_bc);
1655		break;
1656	default:
1657	case DL_DCS_PORT_A_AND_C:
1658		panel->vbt.dsi.cabc_ports =
1659					BIT(PORT_A) | BIT(port_bc);
1660		break;
1661	}
1662}
1663
1664static void
1665parse_mipi_config(struct drm_i915_private *i915,
1666		  struct intel_panel *panel)
1667{
1668	const struct bdb_mipi_config *start;
1669	const struct mipi_config *config;
1670	const struct mipi_pps_data *pps;
1671	int panel_type = panel->vbt.panel_type;
1672	enum port port;
1673
1674	/* parse MIPI blocks only if LFP type is MIPI */
1675	if (!intel_bios_is_dsi_present(i915, &port))
1676		return;
1677
1678	/* Initialize this to undefined indicating no generic MIPI support */
1679	panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1680
1681	/* Block #40 is already parsed and panel_fixed_mode is
1682	 * stored in i915->lfp_lvds_vbt_mode
1683	 * resuse this when needed
1684	 */
1685
1686	/* Parse #52 for panel index used from panel_type already
1687	 * parsed
1688	 */
1689	start = find_section(i915, BDB_MIPI_CONFIG);
1690	if (!start) {
1691		drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1692		return;
1693	}
1694
1695	drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1696		panel_type);
1697
1698	/*
1699	 * get hold of the correct configuration block and pps data as per
1700	 * the panel_type as index
1701	 */
1702	config = &start->config[panel_type];
1703	pps = &start->pps[panel_type];
1704
1705	/* store as of now full data. Trim when we realise all is not needed */
1706	panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1707	if (!panel->vbt.dsi.config)
1708		return;
1709
1710	panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1711	if (!panel->vbt.dsi.pps) {
1712		kfree(panel->vbt.dsi.config);
1713		return;
1714	}
1715
1716	parse_dsi_backlight_ports(i915, panel, port);
1717
1718	/* FIXME is the 90 vs. 270 correct? */
1719	switch (config->rotation) {
1720	case ENABLE_ROTATION_0:
1721		/*
1722		 * Most (all?) VBTs claim 0 degrees despite having
1723		 * an upside down panel, thus we do not trust this.
1724		 */
1725		panel->vbt.dsi.orientation =
1726			DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1727		break;
1728	case ENABLE_ROTATION_90:
1729		panel->vbt.dsi.orientation =
1730			DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1731		break;
1732	case ENABLE_ROTATION_180:
1733		panel->vbt.dsi.orientation =
1734			DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1735		break;
1736	case ENABLE_ROTATION_270:
1737		panel->vbt.dsi.orientation =
1738			DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1739		break;
1740	}
1741
1742	/* We have mandatory mipi config blocks. Initialize as generic panel */
1743	panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1744}
1745
1746/* Find the sequence block and size for the given panel. */
1747static const u8 *
1748find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1749			  u16 panel_id, u32 *seq_size)
1750{
1751	u32 total = get_blocksize(sequence);
1752	const u8 *data = &sequence->data[0];
1753	u8 current_id;
1754	u32 current_size;
1755	int header_size = sequence->version >= 3 ? 5 : 3;
1756	int index = 0;
1757	int i;
1758
1759	/* skip new block size */
1760	if (sequence->version >= 3)
1761		data += 4;
1762
1763	for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1764		if (index + header_size > total) {
1765			DRM_ERROR("Invalid sequence block (header)\n");
1766			return NULL;
1767		}
1768
1769		current_id = *(data + index);
1770		if (sequence->version >= 3)
1771			current_size = *((const u32 *)(data + index + 1));
1772		else
1773			current_size = *((const u16 *)(data + index + 1));
1774
1775		index += header_size;
1776
1777		if (index + current_size > total) {
1778			DRM_ERROR("Invalid sequence block\n");
1779			return NULL;
1780		}
1781
1782		if (current_id == panel_id) {
1783			*seq_size = current_size;
1784			return data + index;
1785		}
1786
1787		index += current_size;
1788	}
1789
1790	DRM_ERROR("Sequence block detected but no valid configuration\n");
1791
1792	return NULL;
1793}
1794
1795static int goto_next_sequence(const u8 *data, int index, int total)
1796{
1797	u16 len;
1798
1799	/* Skip Sequence Byte. */
1800	for (index = index + 1; index < total; index += len) {
1801		u8 operation_byte = *(data + index);
1802		index++;
1803
1804		switch (operation_byte) {
1805		case MIPI_SEQ_ELEM_END:
1806			return index;
1807		case MIPI_SEQ_ELEM_SEND_PKT:
1808			if (index + 4 > total)
1809				return 0;
1810
1811			len = *((const u16 *)(data + index + 2)) + 4;
1812			break;
1813		case MIPI_SEQ_ELEM_DELAY:
1814			len = 4;
1815			break;
1816		case MIPI_SEQ_ELEM_GPIO:
1817			len = 2;
1818			break;
1819		case MIPI_SEQ_ELEM_I2C:
1820			if (index + 7 > total)
1821				return 0;
1822			len = *(data + index + 6) + 7;
1823			break;
1824		default:
1825			DRM_ERROR("Unknown operation byte\n");
1826			return 0;
1827		}
1828	}
1829
1830	return 0;
1831}
1832
1833static int goto_next_sequence_v3(const u8 *data, int index, int total)
1834{
1835	int seq_end;
1836	u16 len;
1837	u32 size_of_sequence;
1838
1839	/*
1840	 * Could skip sequence based on Size of Sequence alone, but also do some
1841	 * checking on the structure.
1842	 */
1843	if (total < 5) {
1844		DRM_ERROR("Too small sequence size\n");
1845		return 0;
1846	}
1847
1848	/* Skip Sequence Byte. */
1849	index++;
1850
1851	/*
1852	 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1853	 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1854	 * byte.
1855	 */
1856	size_of_sequence = *((const u32 *)(data + index));
1857	index += 4;
1858
1859	seq_end = index + size_of_sequence;
1860	if (seq_end > total) {
1861		DRM_ERROR("Invalid sequence size\n");
1862		return 0;
1863	}
1864
1865	for (; index < total; index += len) {
1866		u8 operation_byte = *(data + index);
1867		index++;
1868
1869		if (operation_byte == MIPI_SEQ_ELEM_END) {
1870			if (index != seq_end) {
1871				DRM_ERROR("Invalid element structure\n");
1872				return 0;
1873			}
1874			return index;
1875		}
1876
1877		len = *(data + index);
1878		index++;
1879
1880		/*
1881		 * FIXME: Would be nice to check elements like for v1/v2 in
1882		 * goto_next_sequence() above.
1883		 */
1884		switch (operation_byte) {
1885		case MIPI_SEQ_ELEM_SEND_PKT:
1886		case MIPI_SEQ_ELEM_DELAY:
1887		case MIPI_SEQ_ELEM_GPIO:
1888		case MIPI_SEQ_ELEM_I2C:
1889		case MIPI_SEQ_ELEM_SPI:
1890		case MIPI_SEQ_ELEM_PMIC:
1891			break;
1892		default:
1893			DRM_ERROR("Unknown operation byte %u\n",
1894				  operation_byte);
1895			break;
1896		}
1897	}
1898
1899	return 0;
1900}
1901
1902/*
1903 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1904 * skip all delay + gpio operands and stop at the first DSI packet op.
1905 */
1906static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1907					      struct intel_panel *panel)
1908{
1909	const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1910	int index, len;
1911
1912	if (drm_WARN_ON(&i915->drm,
1913			!data || panel->vbt.dsi.seq_version != 1))
1914		return 0;
1915
1916	/* index = 1 to skip sequence byte */
1917	for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1918		switch (data[index]) {
1919		case MIPI_SEQ_ELEM_SEND_PKT:
1920			return index == 1 ? 0 : index;
1921		case MIPI_SEQ_ELEM_DELAY:
1922			len = 5; /* 1 byte for operand + uint32 */
1923			break;
1924		case MIPI_SEQ_ELEM_GPIO:
1925			len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1926			break;
1927		default:
1928			return 0;
1929		}
1930	}
1931
1932	return 0;
1933}
1934
1935/*
1936 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1937 * The deassert must be done before calling intel_dsi_device_ready, so for
1938 * these devices we split the init OTP sequence into a deassert sequence and
1939 * the actual init OTP part.
1940 */
1941static void fixup_mipi_sequences(struct drm_i915_private *i915,
1942				 struct intel_panel *panel)
1943{
1944	u8 *init_otp;
1945	int len;
1946
1947	/* Limit this to VLV for now. */
1948	if (!IS_VALLEYVIEW(i915))
1949		return;
1950
1951	/* Limit this to v1 vid-mode sequences */
1952	if (panel->vbt.dsi.config->is_cmd_mode ||
1953	    panel->vbt.dsi.seq_version != 1)
1954		return;
1955
1956	/* Only do this if there are otp and assert seqs and no deassert seq */
1957	if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1958	    !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1959	    panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1960		return;
1961
1962	/* The deassert-sequence ends at the first DSI packet */
1963	len = get_init_otp_deassert_fragment_len(i915, panel);
1964	if (!len)
1965		return;
1966
1967	drm_dbg_kms(&i915->drm,
1968		    "Using init OTP fragment to deassert reset\n");
1969
1970	/* Copy the fragment, update seq byte and terminate it */
1971	init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1972	panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1973	if (!panel->vbt.dsi.deassert_seq)
1974		return;
1975	panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1976	panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1977	/* Use the copy for deassert */
1978	panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1979		panel->vbt.dsi.deassert_seq;
1980	/* Replace the last byte of the fragment with init OTP seq byte */
1981	init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1982	/* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1983	panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1984}
1985
1986static void
1987parse_mipi_sequence(struct drm_i915_private *i915,
1988		    struct intel_panel *panel)
1989{
1990	int panel_type = panel->vbt.panel_type;
1991	const struct bdb_mipi_sequence *sequence;
1992	const u8 *seq_data;
1993	u32 seq_size;
1994	u8 *data;
1995	int index = 0;
1996
1997	/* Only our generic panel driver uses the sequence block. */
1998	if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1999		return;
2000
2001	sequence = find_section(i915, BDB_MIPI_SEQUENCE);
2002	if (!sequence) {
2003		drm_dbg_kms(&i915->drm,
2004			    "No MIPI Sequence found, parsing complete\n");
2005		return;
2006	}
2007
2008	/* Fail gracefully for forward incompatible sequence block. */
2009	if (sequence->version >= 4) {
2010		drm_err(&i915->drm,
2011			"Unable to parse MIPI Sequence Block v%u\n",
2012			sequence->version);
2013		return;
2014	}
2015
2016	drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2017		sequence->version);
2018
2019	seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2020	if (!seq_data)
2021		return;
2022
2023	data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2024	if (!data)
2025		return;
2026
2027	/* Parse the sequences, store pointers to each sequence. */
2028	for (;;) {
2029		u8 seq_id = *(data + index);
2030		if (seq_id == MIPI_SEQ_END)
2031			break;
2032
2033		if (seq_id >= MIPI_SEQ_MAX) {
2034			drm_err(&i915->drm, "Unknown sequence %u\n",
2035				seq_id);
2036			goto err;
2037		}
2038
2039		/* Log about presence of sequences we won't run. */
2040		if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2041			drm_dbg_kms(&i915->drm,
2042				    "Unsupported sequence %u\n", seq_id);
2043
2044		panel->vbt.dsi.sequence[seq_id] = data + index;
2045
2046		if (sequence->version >= 3)
2047			index = goto_next_sequence_v3(data, index, seq_size);
2048		else
2049			index = goto_next_sequence(data, index, seq_size);
2050		if (!index) {
2051			drm_err(&i915->drm, "Invalid sequence %u\n",
2052				seq_id);
2053			goto err;
2054		}
2055	}
2056
2057	panel->vbt.dsi.data = data;
2058	panel->vbt.dsi.size = seq_size;
2059	panel->vbt.dsi.seq_version = sequence->version;
2060
2061	fixup_mipi_sequences(i915, panel);
2062
2063	drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2064	return;
2065
2066err:
2067	kfree(data);
2068	memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2069}
2070
2071static void
2072parse_compression_parameters(struct drm_i915_private *i915)
2073{
2074	const struct bdb_compression_parameters *params;
2075	struct intel_bios_encoder_data *devdata;
2076	const struct child_device_config *child;
2077	u16 block_size;
2078	int index;
2079
2080	if (i915->display.vbt.version < 198)
2081		return;
2082
2083	params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
2084	if (params) {
2085		/* Sanity checks */
2086		if (params->entry_size != sizeof(params->data[0])) {
2087			drm_dbg_kms(&i915->drm,
2088				    "VBT: unsupported compression param entry size\n");
2089			return;
2090		}
2091
2092		block_size = get_blocksize(params);
2093		if (block_size < sizeof(*params)) {
2094			drm_dbg_kms(&i915->drm,
2095				    "VBT: expected 16 compression param entries\n");
2096			return;
2097		}
2098	}
2099
2100	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2101		child = &devdata->child;
2102
2103		if (!child->compression_enable)
2104			continue;
2105
2106		if (!params) {
2107			drm_dbg_kms(&i915->drm,
2108				    "VBT: compression params not available\n");
2109			continue;
2110		}
2111
2112		if (child->compression_method_cps) {
2113			drm_dbg_kms(&i915->drm,
2114				    "VBT: CPS compression not supported\n");
2115			continue;
2116		}
2117
2118		index = child->compression_structure_index;
2119
2120		devdata->dsc = kmemdup(&params->data[index],
2121				       sizeof(*devdata->dsc), GFP_KERNEL);
2122	}
2123}
2124
2125static u8 translate_iboost(u8 val)
2126{
2127	static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2128
2129	if (val >= ARRAY_SIZE(mapping)) {
2130		DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2131		return 0;
2132	}
2133	return mapping[val];
2134}
2135
2136static const u8 cnp_ddc_pin_map[] = {
2137	[0] = 0, /* N/A */
2138	[DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2139	[DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2140	[DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2141	[DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2142};
2143
2144static const u8 icp_ddc_pin_map[] = {
2145	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2146	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2147	[TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2148	[ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2149	[ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2150	[ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2151	[ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2152	[TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2153	[TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2154};
2155
2156static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2157	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2158	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2159	[RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2160	[RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2161};
2162
2163static const u8 adls_ddc_pin_map[] = {
2164	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2165	[ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2166	[ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2167	[ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2168	[ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2169};
2170
2171static const u8 gen9bc_tgp_ddc_pin_map[] = {
2172	[DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2173	[DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2174	[DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2175};
2176
2177static const u8 adlp_ddc_pin_map[] = {
2178	[ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2179	[ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2180	[ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2181	[ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2182	[ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2183	[ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2184};
2185
2186static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2187{
2188	const u8 *ddc_pin_map;
2189	int n_entries;
2190
2191	if (IS_ALDERLAKE_P(i915)) {
2192		ddc_pin_map = adlp_ddc_pin_map;
2193		n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2194	} else if (IS_ALDERLAKE_S(i915)) {
2195		ddc_pin_map = adls_ddc_pin_map;
2196		n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2197	} else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2198		return vbt_pin;
2199	} else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2200		ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2201		n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2202	} else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2203		ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2204		n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2205	} else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2206		ddc_pin_map = icp_ddc_pin_map;
2207		n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2208	} else if (HAS_PCH_CNP(i915)) {
2209		ddc_pin_map = cnp_ddc_pin_map;
2210		n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2211	} else {
2212		/* Assuming direct map */
2213		return vbt_pin;
2214	}
2215
2216	if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2217		return ddc_pin_map[vbt_pin];
2218
2219	drm_dbg_kms(&i915->drm,
2220		    "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2221		    vbt_pin);
2222	return 0;
2223}
2224
2225static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2226{
2227	const struct intel_bios_encoder_data *devdata;
2228	enum port port;
2229
2230	if (!ddc_pin)
2231		return PORT_NONE;
2232
2233	for_each_port(port) {
2234		devdata = i915->display.vbt.ports[port];
2235
2236		if (devdata && ddc_pin == devdata->child.ddc_pin)
2237			return port;
2238	}
2239
2240	return PORT_NONE;
2241}
2242
2243static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2244			     enum port port)
2245{
2246	struct drm_i915_private *i915 = devdata->i915;
2247	struct child_device_config *child;
2248	u8 mapped_ddc_pin;
2249	enum port p;
2250
2251	if (!devdata->child.ddc_pin)
2252		return;
2253
2254	mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2255	if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2256		drm_dbg_kms(&i915->drm,
2257			    "Port %c has invalid DDC pin %d, "
2258			    "sticking to defaults\n",
2259			    port_name(port), mapped_ddc_pin);
2260		devdata->child.ddc_pin = 0;
2261		return;
2262	}
2263
2264	p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2265	if (p == PORT_NONE)
2266		return;
2267
2268	drm_dbg_kms(&i915->drm,
2269		    "port %c trying to use the same DDC pin (0x%x) as port %c, "
2270		    "disabling port %c DVI/HDMI support\n",
2271		    port_name(port), mapped_ddc_pin,
2272		    port_name(p), port_name(p));
2273
2274	/*
2275	 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2276	 * couldn't exist on the shared port. Otherwise they share the same ddc
2277	 * pin and system couldn't communicate with them separately.
2278	 *
2279	 * Give inverse child device order the priority, last one wins. Yes,
2280	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2281	 * port A and port E with the same AUX ch and we must pick port E :(
2282	 */
2283	child = &i915->display.vbt.ports[p]->child;
2284
2285	child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2286	child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2287
2288	child->ddc_pin = 0;
2289}
2290
2291static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2292{
2293	const struct intel_bios_encoder_data *devdata;
2294	enum port port;
2295
2296	if (!aux_ch)
2297		return PORT_NONE;
2298
2299	for_each_port(port) {
2300		devdata = i915->display.vbt.ports[port];
2301
2302		if (devdata && aux_ch == devdata->child.aux_channel)
2303			return port;
2304	}
2305
2306	return PORT_NONE;
2307}
2308
2309static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2310			    enum port port)
2311{
2312	struct drm_i915_private *i915 = devdata->i915;
2313	struct child_device_config *child;
2314	enum port p;
2315
2316	p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2317	if (p == PORT_NONE)
2318		return;
2319
2320	drm_dbg_kms(&i915->drm,
2321		    "port %c trying to use the same AUX CH (0x%x) as port %c, "
2322		    "disabling port %c DP support\n",
2323		    port_name(port), devdata->child.aux_channel,
2324		    port_name(p), port_name(p));
2325
2326	/*
2327	 * If we have multiple ports supposedly sharing the aux channel, then DP
2328	 * couldn't exist on the shared port. Otherwise they share the same aux
2329	 * channel and system couldn't communicate with them separately.
2330	 *
2331	 * Give inverse child device order the priority, last one wins. Yes,
2332	 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2333	 * port A and port E with the same AUX ch and we must pick port E :(
2334	 */
2335	child = &i915->display.vbt.ports[p]->child;
2336
2337	child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2338	child->aux_channel = 0;
2339}
2340
2341static u8 dvo_port_type(u8 dvo_port)
2342{
2343	switch (dvo_port) {
2344	case DVO_PORT_HDMIA:
2345	case DVO_PORT_HDMIB:
2346	case DVO_PORT_HDMIC:
2347	case DVO_PORT_HDMID:
2348	case DVO_PORT_HDMIE:
2349	case DVO_PORT_HDMIF:
2350	case DVO_PORT_HDMIG:
2351	case DVO_PORT_HDMIH:
2352	case DVO_PORT_HDMII:
2353		return DVO_PORT_HDMIA;
2354	case DVO_PORT_DPA:
2355	case DVO_PORT_DPB:
2356	case DVO_PORT_DPC:
2357	case DVO_PORT_DPD:
2358	case DVO_PORT_DPE:
2359	case DVO_PORT_DPF:
2360	case DVO_PORT_DPG:
2361	case DVO_PORT_DPH:
2362	case DVO_PORT_DPI:
2363		return DVO_PORT_DPA;
2364	case DVO_PORT_MIPIA:
2365	case DVO_PORT_MIPIB:
2366	case DVO_PORT_MIPIC:
2367	case DVO_PORT_MIPID:
2368		return DVO_PORT_MIPIA;
2369	default:
2370		return dvo_port;
2371	}
2372}
2373
2374static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2375				    const int port_mapping[][3], u8 dvo_port)
2376{
2377	enum port port;
2378	int i;
2379
2380	for (port = PORT_A; port < n_ports; port++) {
2381		for (i = 0; i < n_dvo; i++) {
2382			if (port_mapping[port][i] == -1)
2383				break;
2384
2385			if (dvo_port == port_mapping[port][i])
2386				return port;
2387		}
2388	}
2389
2390	return PORT_NONE;
2391}
2392
2393static enum port dvo_port_to_port(struct drm_i915_private *i915,
2394				  u8 dvo_port)
2395{
2396	/*
2397	 * Each DDI port can have more than one value on the "DVO Port" field,
2398	 * so look for all the possible values for each port.
2399	 */
2400	static const int port_mapping[][3] = {
2401		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2402		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2403		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2404		[PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2405		[PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2406		[PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2407		[PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2408		[PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2409		[PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2410	};
2411	/*
2412	 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2413	 * map to DDI A,B,TC1,TC2 respectively.
2414	 */
2415	static const int rkl_port_mapping[][3] = {
2416		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2417		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2418		[PORT_C] = { -1 },
2419		[PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2420		[PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2421	};
2422	/*
2423	 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2424	 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2425	 */
2426	static const int adls_port_mapping[][3] = {
2427		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2428		[PORT_B] = { -1 },
2429		[PORT_C] = { -1 },
2430		[PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2431		[PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2432		[PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2433		[PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2434	};
2435	static const int xelpd_port_mapping[][3] = {
2436		[PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2437		[PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2438		[PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2439		[PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2440		[PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2441		[PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2442		[PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2443		[PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2444		[PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2445	};
2446
2447	if (DISPLAY_VER(i915) >= 13)
2448		return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2449					  ARRAY_SIZE(xelpd_port_mapping[0]),
2450					  xelpd_port_mapping,
2451					  dvo_port);
2452	else if (IS_ALDERLAKE_S(i915))
2453		return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2454					  ARRAY_SIZE(adls_port_mapping[0]),
2455					  adls_port_mapping,
2456					  dvo_port);
2457	else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2458		return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2459					  ARRAY_SIZE(rkl_port_mapping[0]),
2460					  rkl_port_mapping,
2461					  dvo_port);
2462	else
2463		return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2464					  ARRAY_SIZE(port_mapping[0]),
2465					  port_mapping,
2466					  dvo_port);
2467}
2468
2469static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2470{
2471	switch (vbt_max_link_rate) {
2472	default:
2473	case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2474		return 0;
2475	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2476		return 2000000;
2477	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2478		return 1350000;
2479	case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2480		return 1000000;
2481	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2482		return 810000;
2483	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2484		return 540000;
2485	case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2486		return 270000;
2487	case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2488		return 162000;
2489	}
2490}
2491
2492static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2493{
2494	switch (vbt_max_link_rate) {
2495	default:
2496	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2497		return 810000;
2498	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2499		return 540000;
2500	case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2501		return 270000;
2502	case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2503		return 162000;
2504	}
2505}
2506
2507static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2508{
2509	if (!devdata || devdata->i915->display.vbt.version < 216)
2510		return 0;
2511
2512	if (devdata->i915->display.vbt.version >= 230)
2513		return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2514	else
2515		return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2516}
2517
2518static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2519{
2520	if (!devdata || devdata->i915->display.vbt.version < 244)
2521		return 0;
2522
2523	return devdata->child.dp_max_lane_count + 1;
2524}
2525
2526static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2527				 enum port port)
2528{
2529	struct drm_i915_private *i915 = devdata->i915;
2530	bool is_hdmi;
2531
2532	if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2533		return;
2534
2535	if (!intel_bios_encoder_supports_dvi(devdata))
2536		return;
2537
2538	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2539
2540	drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2541		    is_hdmi ? "/HDMI" : "");
2542
2543	devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2544	devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2545}
2546
2547static bool
2548intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2549{
2550	return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2551}
2552
2553bool
2554intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2555{
2556	return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2557}
2558
2559bool
2560intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2561{
2562	return intel_bios_encoder_supports_dvi(devdata) &&
2563		(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2564}
2565
2566bool
2567intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2568{
2569	return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2570}
2571
2572static bool
2573intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2574{
2575	return intel_bios_encoder_supports_dp(devdata) &&
2576		devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2577}
2578
2579static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2580{
2581	if (!devdata || devdata->i915->display.vbt.version < 158)
2582		return -1;
2583
2584	return devdata->child.hdmi_level_shifter_value;
2585}
2586
2587static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2588{
2589	if (!devdata || devdata->i915->display.vbt.version < 204)
2590		return 0;
2591
2592	switch (devdata->child.hdmi_max_data_rate) {
2593	default:
2594		MISSING_CASE(devdata->child.hdmi_max_data_rate);
2595		fallthrough;
2596	case HDMI_MAX_DATA_RATE_PLATFORM:
2597		return 0;
2598	case HDMI_MAX_DATA_RATE_594:
2599		return 594000;
2600	case HDMI_MAX_DATA_RATE_340:
2601		return 340000;
2602	case HDMI_MAX_DATA_RATE_300:
2603		return 300000;
2604	case HDMI_MAX_DATA_RATE_297:
2605		return 297000;
2606	case HDMI_MAX_DATA_RATE_165:
2607		return 165000;
2608	}
2609}
2610
2611static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2612{
2613	/*
2614	 * On some ICL SKUs port F is not present, but broken VBTs mark
2615	 * the port as present. Only try to initialize port F for the
2616	 * SKUs that may actually have it.
2617	 */
2618	if (port == PORT_F && IS_ICELAKE(i915))
2619		return IS_ICL_WITH_PORT_F(i915);
2620
2621	return true;
2622}
2623
2624static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2625			   enum port port)
2626{
2627	struct drm_i915_private *i915 = devdata->i915;
2628	const struct child_device_config *child = &devdata->child;
2629	bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
2630	int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2631
2632	is_dvi = intel_bios_encoder_supports_dvi(devdata);
2633	is_dp = intel_bios_encoder_supports_dp(devdata);
2634	is_crt = intel_bios_encoder_supports_crt(devdata);
2635	is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2636	is_edp = intel_bios_encoder_supports_edp(devdata);
2637
2638	supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2639	supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2640
2641	drm_dbg_kms(&i915->drm,
2642		    "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2643		    port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
2644		    HAS_LSPCON(i915) && child->lspcon,
2645		    supports_typec_usb, supports_tbt,
2646		    devdata->dsc != NULL);
2647
2648	hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2649	if (hdmi_level_shift >= 0) {
2650		drm_dbg_kms(&i915->drm,
2651			    "Port %c VBT HDMI level shift: %d\n",
2652			    port_name(port), hdmi_level_shift);
2653	}
2654
2655	max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2656	if (max_tmds_clock)
2657		drm_dbg_kms(&i915->drm,
2658			    "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2659			    port_name(port), max_tmds_clock);
2660
2661	/* I_boost config for SKL and above */
2662	dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2663	if (dp_boost_level)
2664		drm_dbg_kms(&i915->drm,
2665			    "Port %c VBT (e)DP boost level: %d\n",
2666			    port_name(port), dp_boost_level);
2667
2668	hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2669	if (hdmi_boost_level)
2670		drm_dbg_kms(&i915->drm,
2671			    "Port %c VBT HDMI boost level: %d\n",
2672			    port_name(port), hdmi_boost_level);
2673
2674	dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2675	if (dp_max_link_rate)
2676		drm_dbg_kms(&i915->drm,
2677			    "Port %c VBT DP max link rate: %d\n",
2678			    port_name(port), dp_max_link_rate);
2679}
2680
2681static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2682{
2683	struct drm_i915_private *i915 = devdata->i915;
2684	const struct child_device_config *child = &devdata->child;
2685	enum port port;
2686
2687	port = dvo_port_to_port(i915, child->dvo_port);
2688	if (port == PORT_NONE)
2689		return;
2690
2691	if (!is_port_valid(i915, port)) {
2692		drm_dbg_kms(&i915->drm,
2693			    "VBT reports port %c as supported, but that can't be true: skipping\n",
2694			    port_name(port));
2695		return;
2696	}
2697
2698	if (i915->display.vbt.ports[port]) {
2699		drm_dbg_kms(&i915->drm,
2700			    "More than one child device for port %c in VBT, using the first.\n",
2701			    port_name(port));
2702		return;
2703	}
2704
2705	sanitize_device_type(devdata, port);
2706
2707	if (intel_bios_encoder_supports_dvi(devdata))
2708		sanitize_ddc_pin(devdata, port);
2709
2710	if (intel_bios_encoder_supports_dp(devdata))
2711		sanitize_aux_ch(devdata, port);
2712
2713	i915->display.vbt.ports[port] = devdata;
2714}
2715
2716static bool has_ddi_port_info(struct drm_i915_private *i915)
2717{
2718	return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2719}
2720
2721static void parse_ddi_ports(struct drm_i915_private *i915)
2722{
2723	struct intel_bios_encoder_data *devdata;
2724	enum port port;
2725
2726	if (!has_ddi_port_info(i915))
2727		return;
2728
2729	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2730		parse_ddi_port(devdata);
2731
2732	for_each_port(port) {
2733		if (i915->display.vbt.ports[port])
2734			print_ddi_port(i915->display.vbt.ports[port], port);
2735	}
2736}
2737
2738static void
2739parse_general_definitions(struct drm_i915_private *i915)
2740{
2741	const struct bdb_general_definitions *defs;
2742	struct intel_bios_encoder_data *devdata;
2743	const struct child_device_config *child;
2744	int i, child_device_num;
2745	u8 expected_size;
2746	u16 block_size;
2747	int bus_pin;
2748
2749	defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2750	if (!defs) {
2751		drm_dbg_kms(&i915->drm,
2752			    "No general definition block is found, no devices defined.\n");
2753		return;
2754	}
2755
2756	block_size = get_blocksize(defs);
2757	if (block_size < sizeof(*defs)) {
2758		drm_dbg_kms(&i915->drm,
2759			    "General definitions block too small (%u)\n",
2760			    block_size);
2761		return;
2762	}
2763
2764	bus_pin = defs->crt_ddc_gmbus_pin;
2765	drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2766	if (intel_gmbus_is_valid_pin(i915, bus_pin))
2767		i915->display.vbt.crt_ddc_pin = bus_pin;
2768
2769	if (i915->display.vbt.version < 106) {
2770		expected_size = 22;
2771	} else if (i915->display.vbt.version < 111) {
2772		expected_size = 27;
2773	} else if (i915->display.vbt.version < 195) {
2774		expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2775	} else if (i915->display.vbt.version == 195) {
2776		expected_size = 37;
2777	} else if (i915->display.vbt.version <= 215) {
2778		expected_size = 38;
2779	} else if (i915->display.vbt.version <= 237) {
2780		expected_size = 39;
2781	} else {
2782		expected_size = sizeof(*child);
2783		BUILD_BUG_ON(sizeof(*child) < 39);
2784		drm_dbg(&i915->drm,
2785			"Expected child device config size for VBT version %u not known; assuming %u\n",
2786			i915->display.vbt.version, expected_size);
2787	}
2788
2789	/* Flag an error for unexpected size, but continue anyway. */
2790	if (defs->child_dev_size != expected_size)
2791		drm_err(&i915->drm,
2792			"Unexpected child device config size %u (expected %u for VBT version %u)\n",
2793			defs->child_dev_size, expected_size, i915->display.vbt.version);
2794
2795	/* The legacy sized child device config is the minimum we need. */
2796	if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2797		drm_dbg_kms(&i915->drm,
2798			    "Child device config size %u is too small.\n",
2799			    defs->child_dev_size);
2800		return;
2801	}
2802
2803	/* get the number of child device */
2804	child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2805
2806	for (i = 0; i < child_device_num; i++) {
2807		child = child_device_ptr(defs, i);
2808		if (!child->device_type)
2809			continue;
2810
2811		drm_dbg_kms(&i915->drm,
2812			    "Found VBT child device with type 0x%x\n",
2813			    child->device_type);
2814
2815		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2816		if (!devdata)
2817			break;
2818
2819		devdata->i915 = i915;
2820
2821		/*
2822		 * Copy as much as we know (sizeof) and is available
2823		 * (child_dev_size) of the child device config. Accessing the
2824		 * data must depend on VBT version.
2825		 */
2826		memcpy(&devdata->child, child,
2827		       min_t(size_t, defs->child_dev_size, sizeof(*child)));
2828
2829		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2830	}
2831
2832	if (list_empty(&i915->display.vbt.display_devices))
2833		drm_dbg_kms(&i915->drm,
2834			    "no child dev is parsed from VBT\n");
2835}
2836
2837/* Common defaults which may be overridden by VBT. */
2838static void
2839init_vbt_defaults(struct drm_i915_private *i915)
2840{
2841	i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2842
2843	/* general features */
2844	i915->display.vbt.int_tv_support = 1;
2845	i915->display.vbt.int_crt_support = 1;
2846
2847	/* driver features */
2848	i915->display.vbt.int_lvds_support = 1;
2849
2850	/* Default to using SSC */
2851	i915->display.vbt.lvds_use_ssc = 1;
2852	/*
2853	 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2854	 * clock for LVDS.
2855	 */
2856	i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2857								   !HAS_PCH_SPLIT(i915));
2858	drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2859		    i915->display.vbt.lvds_ssc_freq);
2860}
2861
2862/* Common defaults which may be overridden by VBT. */
2863static void
2864init_vbt_panel_defaults(struct intel_panel *panel)
2865{
2866	/* Default to having backlight */
2867	panel->vbt.backlight.present = true;
2868
2869	/* LFP panel data */
2870	panel->vbt.lvds_dither = true;
2871}
2872
2873/* Defaults to initialize only if there is no VBT. */
2874static void
2875init_vbt_missing_defaults(struct drm_i915_private *i915)
2876{
2877	enum port port;
2878	int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2879		    BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2880
2881	if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2882		return;
2883
2884	for_each_port_masked(port, ports) {
2885		struct intel_bios_encoder_data *devdata;
2886		struct child_device_config *child;
2887		enum phy phy = intel_port_to_phy(i915, port);
2888
2889		/*
2890		 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2891		 * to detect it.
2892		 */
2893		if (intel_phy_is_tc(i915, phy))
2894			continue;
2895
2896		/* Create fake child device config */
2897		devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2898		if (!devdata)
2899			break;
2900
2901		devdata->i915 = i915;
2902		child = &devdata->child;
2903
2904		if (port == PORT_F)
2905			child->dvo_port = DVO_PORT_HDMIF;
2906		else if (port == PORT_E)
2907			child->dvo_port = DVO_PORT_HDMIE;
2908		else
2909			child->dvo_port = DVO_PORT_HDMIA + port;
2910
2911		if (port != PORT_A && port != PORT_E)
2912			child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2913
2914		if (port != PORT_E)
2915			child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2916
2917		if (port == PORT_A)
2918			child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2919
2920		list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2921
2922		drm_dbg_kms(&i915->drm,
2923			    "Generating default VBT child device with type 0x04%x on port %c\n",
2924			    child->device_type, port_name(port));
2925	}
2926
2927	/* Bypass some minimum baseline VBT version checks */
2928	i915->display.vbt.version = 155;
2929}
2930
2931static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2932{
2933	const void *_vbt = vbt;
2934
2935	return _vbt + vbt->bdb_offset;
2936}
2937
2938#include <dev/isa/isareg.h>
2939#include <dev/isa/isavar.h>
2940
2941#define VGA_BIOS_ADDR	0xc0000
2942#define VGA_BIOS_LEN	0x10000
2943
2944/**
2945 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2946 * @buf:	pointer to a buffer to validate
2947 * @size:	size of the buffer
2948 *
2949 * Returns true on valid VBT.
2950 */
2951bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2952{
2953	const struct vbt_header *vbt = buf;
2954	const struct bdb_header *bdb;
2955
2956	if (!vbt)
2957		return false;
2958
2959	if (sizeof(struct vbt_header) > size) {
2960		DRM_DEBUG_DRIVER("VBT header incomplete\n");
2961		return false;
2962	}
2963
2964	if (memcmp(vbt->signature, "$VBT", 4)) {
2965		DRM_DEBUG_DRIVER("VBT invalid signature\n");
2966		return false;
2967	}
2968
2969	if (vbt->vbt_size > size) {
2970		DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2971		return false;
2972	}
2973
2974	size = vbt->vbt_size;
2975
2976	if (range_overflows_t(size_t,
2977			      vbt->bdb_offset,
2978			      sizeof(struct bdb_header),
2979			      size)) {
2980		DRM_DEBUG_DRIVER("BDB header incomplete\n");
2981		return false;
2982	}
2983
2984	bdb = get_bdb_header(vbt);
2985	if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2986		DRM_DEBUG_DRIVER("BDB incomplete\n");
2987		return false;
2988	}
2989
2990	return vbt;
2991}
2992
2993static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
2994{
2995	u32 count, data, found, store = 0;
2996	u32 static_region, oprom_offset;
2997	u32 oprom_size = 0x200000;
2998	u16 vbt_size;
2999	u32 *vbt;
3000
3001	static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3002	static_region &= OPTIONROM_SPI_REGIONID_MASK;
3003	intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3004
3005	oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3006	oprom_offset &= OROM_OFFSET_MASK;
3007
3008	for (count = 0; count < oprom_size; count += 4) {
3009		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
3010		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3011
3012		if (data == *((const u32 *)"$VBT")) {
3013			found = oprom_offset + count;
3014			break;
3015		}
3016	}
3017
3018	if (count >= oprom_size)
3019		goto err_not_found;
3020
3021	/* Get VBT size and allocate space for the VBT */
3022	intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
3023		   offsetof(struct vbt_header, vbt_size));
3024	vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3025	vbt_size &= 0xffff;
3026
3027	vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3028	if (!vbt)
3029		goto err_not_found;
3030
3031	for (count = 0; count < vbt_size; count += 4) {
3032		intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
3033		data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3034		*(vbt + store++) = data;
3035	}
3036
3037	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3038		goto err_free_vbt;
3039
3040	drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3041
3042	return (struct vbt_header *)vbt;
3043
3044err_free_vbt:
3045	kfree(vbt);
3046err_not_found:
3047	return NULL;
3048}
3049
3050static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3051{
3052#ifdef __linux__
3053	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3054#endif
3055	void __iomem *p = NULL, *oprom;
3056	struct vbt_header *vbt;
3057	u16 vbt_size;
3058	size_t i, size;
3059
3060#ifdef __linux__
3061	oprom = pci_map_rom(pdev, &size);
3062	if (!oprom)
3063		return NULL;
3064#else
3065	oprom = (u8 *)ISA_HOLE_VADDR(VGA_BIOS_ADDR);
3066	size = VGA_BIOS_LEN;
3067#endif
3068
3069	/* Scour memory looking for the VBT signature. */
3070	for (i = 0; i + 4 < size; i += 4) {
3071		if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3072			continue;
3073
3074		p = oprom + i;
3075		size -= i;
3076		break;
3077	}
3078
3079	if (!p)
3080		goto err_unmap_oprom;
3081
3082	if (sizeof(struct vbt_header) > size) {
3083		drm_dbg(&i915->drm, "VBT header incomplete\n");
3084		goto err_unmap_oprom;
3085	}
3086
3087	vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3088	if (vbt_size > size) {
3089		drm_dbg(&i915->drm,
3090			"VBT incomplete (vbt_size overflows)\n");
3091		goto err_unmap_oprom;
3092	}
3093
3094	/* The rest will be validated by intel_bios_is_valid_vbt() */
3095	vbt = kmalloc(vbt_size, GFP_KERNEL);
3096	if (!vbt)
3097		goto err_unmap_oprom;
3098
3099	memcpy_fromio(vbt, p, vbt_size);
3100
3101	if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3102		goto err_free_vbt;
3103
3104#ifdef __linux__
3105	pci_unmap_rom(pdev, oprom);
3106#endif
3107
3108	drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3109
3110	return vbt;
3111
3112err_free_vbt:
3113	kfree(vbt);
3114err_unmap_oprom:
3115#ifdef __linux__
3116	pci_unmap_rom(pdev, oprom);
3117#endif
3118
3119	return NULL;
3120}
3121
3122/**
3123 * intel_bios_init - find VBT and initialize settings from the BIOS
3124 * @i915: i915 device instance
3125 *
3126 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3127 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3128 * initialize some defaults if the VBT is not present at all.
3129 */
3130void intel_bios_init(struct drm_i915_private *i915)
3131{
3132	const struct vbt_header *vbt = i915->display.opregion.vbt;
3133	struct vbt_header *oprom_vbt = NULL;
3134	const struct bdb_header *bdb;
3135
3136	INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3137	INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3138
3139	if (!HAS_DISPLAY(i915)) {
3140		drm_dbg_kms(&i915->drm,
3141			    "Skipping VBT init due to disabled display.\n");
3142		return;
3143	}
3144
3145	init_vbt_defaults(i915);
3146
3147	/*
3148	 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3149	 * PCI mapping
3150	 */
3151	if (!vbt && IS_DGFX(i915)) {
3152		oprom_vbt = spi_oprom_get_vbt(i915);
3153		vbt = oprom_vbt;
3154	}
3155
3156	if (!vbt) {
3157		oprom_vbt = oprom_get_vbt(i915);
3158		vbt = oprom_vbt;
3159	}
3160
3161	if (!vbt)
3162		goto out;
3163
3164	bdb = get_bdb_header(vbt);
3165	i915->display.vbt.version = bdb->version;
3166
3167	drm_dbg_kms(&i915->drm,
3168		    "VBT signature \"%.*s\", BDB version %d\n",
3169		    (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3170
3171	init_bdb_blocks(i915, bdb);
3172
3173	/* Grab useful general definitions */
3174	parse_general_features(i915);
3175	parse_general_definitions(i915);
3176	parse_driver_features(i915);
3177
3178	/* Depends on child device list */
3179	parse_compression_parameters(i915);
3180
3181out:
3182	if (!vbt) {
3183		drm_info(&i915->drm,
3184			 "Failed to find VBIOS tables (VBT)\n");
3185		init_vbt_missing_defaults(i915);
3186	}
3187
3188	/* Further processing on pre-parsed or generated child device data */
3189	parse_sdvo_device_mapping(i915);
3190	parse_ddi_ports(i915);
3191
3192	kfree(oprom_vbt);
3193}
3194
3195void intel_bios_init_panel(struct drm_i915_private *i915,
3196			   struct intel_panel *panel,
3197			   const struct intel_bios_encoder_data *devdata,
3198			   const struct edid *edid)
3199{
3200	init_vbt_panel_defaults(panel);
3201
3202	panel->vbt.panel_type = get_panel_type(i915, devdata, edid);
3203
3204	parse_panel_options(i915, panel);
3205	parse_generic_dtd(i915, panel);
3206	parse_lfp_data(i915, panel);
3207	parse_lfp_backlight(i915, panel);
3208	parse_sdvo_panel_data(i915, panel);
3209	parse_panel_driver_features(i915, panel);
3210	parse_power_conservation_features(i915, panel);
3211	parse_edp(i915, panel);
3212	parse_psr(i915, panel);
3213	parse_mipi_config(i915, panel);
3214	parse_mipi_sequence(i915, panel);
3215}
3216
3217/**
3218 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3219 * @i915: i915 device instance
3220 */
3221void intel_bios_driver_remove(struct drm_i915_private *i915)
3222{
3223	struct intel_bios_encoder_data *devdata, *nd;
3224	struct bdb_block_entry *entry, *ne;
3225
3226	list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3227		list_del(&devdata->node);
3228		kfree(devdata->dsc);
3229		kfree(devdata);
3230	}
3231
3232	list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3233		list_del(&entry->node);
3234		kfree(entry);
3235	}
3236}
3237
3238void intel_bios_fini_panel(struct intel_panel *panel)
3239{
3240	kfree(panel->vbt.sdvo_lvds_vbt_mode);
3241	panel->vbt.sdvo_lvds_vbt_mode = NULL;
3242	kfree(panel->vbt.lfp_lvds_vbt_mode);
3243	panel->vbt.lfp_lvds_vbt_mode = NULL;
3244	kfree(panel->vbt.dsi.data);
3245	panel->vbt.dsi.data = NULL;
3246	kfree(panel->vbt.dsi.pps);
3247	panel->vbt.dsi.pps = NULL;
3248	kfree(panel->vbt.dsi.config);
3249	panel->vbt.dsi.config = NULL;
3250	kfree(panel->vbt.dsi.deassert_seq);
3251	panel->vbt.dsi.deassert_seq = NULL;
3252}
3253
3254/**
3255 * intel_bios_is_tv_present - is integrated TV present in VBT
3256 * @i915: i915 device instance
3257 *
3258 * Return true if TV is present. If no child devices were parsed from VBT,
3259 * assume TV is present.
3260 */
3261bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3262{
3263	const struct intel_bios_encoder_data *devdata;
3264	const struct child_device_config *child;
3265
3266	if (!i915->display.vbt.int_tv_support)
3267		return false;
3268
3269	if (list_empty(&i915->display.vbt.display_devices))
3270		return true;
3271
3272	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3273		child = &devdata->child;
3274
3275		/*
3276		 * If the device type is not TV, continue.
3277		 */
3278		switch (child->device_type) {
3279		case DEVICE_TYPE_INT_TV:
3280		case DEVICE_TYPE_TV:
3281		case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3282			break;
3283		default:
3284			continue;
3285		}
3286		/* Only when the addin_offset is non-zero, it is regarded
3287		 * as present.
3288		 */
3289		if (child->addin_offset)
3290			return true;
3291	}
3292
3293	return false;
3294}
3295
3296/**
3297 * intel_bios_is_lvds_present - is LVDS present in VBT
3298 * @i915:	i915 device instance
3299 * @i2c_pin:	i2c pin for LVDS if present
3300 *
3301 * Return true if LVDS is present. If no child devices were parsed from VBT,
3302 * assume LVDS is present.
3303 */
3304bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3305{
3306	const struct intel_bios_encoder_data *devdata;
3307	const struct child_device_config *child;
3308
3309	if (list_empty(&i915->display.vbt.display_devices))
3310		return true;
3311
3312	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3313		child = &devdata->child;
3314
3315		/* If the device type is not LFP, continue.
3316		 * We have to check both the new identifiers as well as the
3317		 * old for compatibility with some BIOSes.
3318		 */
3319		if (child->device_type != DEVICE_TYPE_INT_LFP &&
3320		    child->device_type != DEVICE_TYPE_LFP)
3321			continue;
3322
3323		if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3324			*i2c_pin = child->i2c_pin;
3325
3326		/* However, we cannot trust the BIOS writers to populate
3327		 * the VBT correctly.  Since LVDS requires additional
3328		 * information from AIM blocks, a non-zero addin offset is
3329		 * a good indicator that the LVDS is actually present.
3330		 */
3331		if (child->addin_offset)
3332			return true;
3333
3334		/* But even then some BIOS writers perform some black magic
3335		 * and instantiate the device without reference to any
3336		 * additional data.  Trust that if the VBT was written into
3337		 * the OpRegion then they have validated the LVDS's existence.
3338		 */
3339		if (i915->display.opregion.vbt)
3340			return true;
3341	}
3342
3343	return false;
3344}
3345
3346/**
3347 * intel_bios_is_port_present - is the specified digital port present
3348 * @i915:	i915 device instance
3349 * @port:	port to check
3350 *
3351 * Return true if the device in %port is present.
3352 */
3353bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3354{
3355	if (WARN_ON(!has_ddi_port_info(i915)))
3356		return true;
3357
3358	return i915->display.vbt.ports[port];
3359}
3360
3361/**
3362 * intel_bios_is_port_edp - is the device in given port eDP
3363 * @i915:	i915 device instance
3364 * @port:	port to check
3365 *
3366 * Return true if the device in %port is eDP.
3367 */
3368bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3369{
3370	const struct intel_bios_encoder_data *devdata =
3371		intel_bios_encoder_data_lookup(i915, port);
3372
3373	/*
3374	 * XXX on T14 Gen 3 resume
3375	 * [drm] AUX A/DDI A/PHY A: timeout (status 0x7d4003ff)
3376	 * [drm] AUX A/DDI A/PHY A: Too many retries, giving up. First error: -60
3377	 * intel_edp_init_source_oui *ERROR* [drm] *ERROR* Failed to write source OUI
3378	 * intel_dp_link_training_clock_recovery *ERROR* [drm] *ERROR* failed to enable link training
3379	 * https://gitlab.freedesktop.org/drm/intel/-/issues/5531
3380	 */
3381	if (IS_ALDERLAKE_P(i915) && port == PORT_B)
3382		return false;
3383
3384	return devdata && intel_bios_encoder_supports_edp(devdata);
3385}
3386
3387static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3388{
3389	const struct child_device_config *child = &devdata->child;
3390
3391	if (!intel_bios_encoder_supports_dp(devdata) ||
3392	    !intel_bios_encoder_supports_hdmi(devdata))
3393		return false;
3394
3395	if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3396		return true;
3397
3398	/* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3399	if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3400	    child->aux_channel != 0)
3401		return true;
3402
3403	return false;
3404}
3405
3406bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3407				     enum port port)
3408{
3409	const struct intel_bios_encoder_data *devdata =
3410		intel_bios_encoder_data_lookup(i915, port);
3411
3412	return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3413}
3414
3415/**
3416 * intel_bios_is_dsi_present - is DSI present in VBT
3417 * @i915:	i915 device instance
3418 * @port:	port for DSI if present
3419 *
3420 * Return true if DSI is present, and return the port in %port.
3421 */
3422bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3423			       enum port *port)
3424{
3425	const struct intel_bios_encoder_data *devdata;
3426	const struct child_device_config *child;
3427	u8 dvo_port;
3428
3429	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3430		child = &devdata->child;
3431
3432		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3433			continue;
3434
3435		dvo_port = child->dvo_port;
3436
3437		if (dvo_port == DVO_PORT_MIPIA ||
3438		    (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
3439		    (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
3440			if (port)
3441				*port = dvo_port - DVO_PORT_MIPIA;
3442			return true;
3443		} else if (dvo_port == DVO_PORT_MIPIB ||
3444			   dvo_port == DVO_PORT_MIPIC ||
3445			   dvo_port == DVO_PORT_MIPID) {
3446			drm_dbg_kms(&i915->drm,
3447				    "VBT has unsupported DSI port %c\n",
3448				    port_name(dvo_port - DVO_PORT_MIPIA));
3449		}
3450	}
3451
3452	return false;
3453}
3454
3455static void fill_dsc(struct intel_crtc_state *crtc_state,
3456		     struct dsc_compression_parameters_entry *dsc,
3457		     int dsc_max_bpc)
3458{
3459	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3460	int bpc = 8;
3461
3462	vdsc_cfg->dsc_version_major = dsc->version_major;
3463	vdsc_cfg->dsc_version_minor = dsc->version_minor;
3464
3465	if (dsc->support_12bpc && dsc_max_bpc >= 12)
3466		bpc = 12;
3467	else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3468		bpc = 10;
3469	else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3470		bpc = 8;
3471	else
3472		DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3473			      dsc_max_bpc);
3474
3475	crtc_state->pipe_bpp = bpc * 3;
3476
3477	crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3478					     VBT_DSC_MAX_BPP(dsc->max_bpp));
3479
3480	/*
3481	 * FIXME: This is ugly, and slice count should take DSC engine
3482	 * throughput etc. into account.
3483	 *
3484	 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3485	 */
3486	if (dsc->slices_per_line & BIT(2)) {
3487		crtc_state->dsc.slice_count = 4;
3488	} else if (dsc->slices_per_line & BIT(1)) {
3489		crtc_state->dsc.slice_count = 2;
3490	} else {
3491		/* FIXME */
3492		if (!(dsc->slices_per_line & BIT(0)))
3493			DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3494
3495		crtc_state->dsc.slice_count = 1;
3496	}
3497
3498	if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3499	    crtc_state->dsc.slice_count != 0)
3500		DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3501			      crtc_state->hw.adjusted_mode.crtc_hdisplay,
3502			      crtc_state->dsc.slice_count);
3503
3504	/*
3505	 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3506	 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3507	 */
3508	vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3509							    dsc->rc_buffer_size);
3510
3511	/* FIXME: DSI spec says bpc + 1 for this one */
3512	vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3513
3514	vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3515
3516	vdsc_cfg->slice_height = dsc->slice_height;
3517}
3518
3519/* FIXME: initially DSI specific */
3520bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3521			       struct intel_crtc_state *crtc_state,
3522			       int dsc_max_bpc)
3523{
3524	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3525	const struct intel_bios_encoder_data *devdata;
3526	const struct child_device_config *child;
3527
3528	list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3529		child = &devdata->child;
3530
3531		if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3532			continue;
3533
3534		if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
3535			if (!devdata->dsc)
3536				return false;
3537
3538			if (crtc_state)
3539				fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3540
3541			return true;
3542		}
3543	}
3544
3545	return false;
3546}
3547
3548/**
3549 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3550 * @i915:	i915 device instance
3551 * @port:	port to check
3552 *
3553 * Return true if HPD should be inverted for %port.
3554 */
3555bool
3556intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3557				enum port port)
3558{
3559	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3560
3561	if (drm_WARN_ON_ONCE(&i915->drm,
3562			     !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3563		return false;
3564
3565	return devdata && devdata->child.hpd_invert;
3566}
3567
3568/**
3569 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3570 * @i915:	i915 device instance
3571 * @port:	port to check
3572 *
3573 * Return true if LSPCON is present on this port
3574 */
3575bool
3576intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3577			     enum port port)
3578{
3579	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3580
3581	return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3582}
3583
3584/**
3585 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3586 * @i915:       i915 device instance
3587 * @port:       port to check
3588 *
3589 * Return true if port requires lane reversal
3590 */
3591bool
3592intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3593				   enum port port)
3594{
3595	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3596
3597	return devdata && devdata->child.lane_reversal;
3598}
3599
3600enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3601				   enum port port)
3602{
3603	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3604	enum aux_ch aux_ch;
3605
3606	if (!devdata || !devdata->child.aux_channel) {
3607		aux_ch = (enum aux_ch)port;
3608
3609		drm_dbg_kms(&i915->drm,
3610			    "using AUX %c for port %c (platform default)\n",
3611			    aux_ch_name(aux_ch), port_name(port));
3612		return aux_ch;
3613	}
3614
3615	/*
3616	 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3617	 * map to DDI A,B,TC1,TC2 respectively.
3618	 *
3619	 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3620	 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3621	 */
3622	switch (devdata->child.aux_channel) {
3623	case DP_AUX_A:
3624		aux_ch = AUX_CH_A;
3625		break;
3626	case DP_AUX_B:
3627		if (IS_ALDERLAKE_S(i915))
3628			aux_ch = AUX_CH_USBC1;
3629		else
3630			aux_ch = AUX_CH_B;
3631		break;
3632	case DP_AUX_C:
3633		if (IS_ALDERLAKE_S(i915))
3634			aux_ch = AUX_CH_USBC2;
3635		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3636			aux_ch = AUX_CH_USBC1;
3637		else
3638			aux_ch = AUX_CH_C;
3639		break;
3640	case DP_AUX_D:
3641		if (DISPLAY_VER(i915) >= 13)
3642			aux_ch = AUX_CH_D_XELPD;
3643		else if (IS_ALDERLAKE_S(i915))
3644			aux_ch = AUX_CH_USBC3;
3645		else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3646			aux_ch = AUX_CH_USBC2;
3647		else
3648			aux_ch = AUX_CH_D;
3649		break;
3650	case DP_AUX_E:
3651		if (DISPLAY_VER(i915) >= 13)
3652			aux_ch = AUX_CH_E_XELPD;
3653		else if (IS_ALDERLAKE_S(i915))
3654			aux_ch = AUX_CH_USBC4;
3655		else
3656			aux_ch = AUX_CH_E;
3657		break;
3658	case DP_AUX_F:
3659		if (DISPLAY_VER(i915) >= 13)
3660			aux_ch = AUX_CH_USBC1;
3661		else
3662			aux_ch = AUX_CH_F;
3663		break;
3664	case DP_AUX_G:
3665		if (DISPLAY_VER(i915) >= 13)
3666			aux_ch = AUX_CH_USBC2;
3667		else
3668			aux_ch = AUX_CH_G;
3669		break;
3670	case DP_AUX_H:
3671		if (DISPLAY_VER(i915) >= 13)
3672			aux_ch = AUX_CH_USBC3;
3673		else
3674			aux_ch = AUX_CH_H;
3675		break;
3676	case DP_AUX_I:
3677		if (DISPLAY_VER(i915) >= 13)
3678			aux_ch = AUX_CH_USBC4;
3679		else
3680			aux_ch = AUX_CH_I;
3681		break;
3682	default:
3683		MISSING_CASE(devdata->child.aux_channel);
3684		aux_ch = AUX_CH_A;
3685		break;
3686	}
3687
3688	drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3689		    aux_ch_name(aux_ch), port_name(port));
3690
3691	return aux_ch;
3692}
3693
3694int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3695{
3696	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3697	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3698
3699	return _intel_bios_max_tmds_clock(devdata);
3700}
3701
3702/* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
3703int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3704{
3705	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3706	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3707
3708	return _intel_bios_hdmi_level_shift(devdata);
3709}
3710
3711int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3712{
3713	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3714		return 0;
3715
3716	return translate_iboost(devdata->child.dp_iboost_level);
3717}
3718
3719int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3720{
3721	if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3722		return 0;
3723
3724	return translate_iboost(devdata->child.hdmi_iboost_level);
3725}
3726
3727int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3728{
3729	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3730	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3731
3732	return _intel_bios_dp_max_link_rate(devdata);
3733}
3734
3735int intel_bios_dp_max_lane_count(struct intel_encoder *encoder)
3736{
3737	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3738	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3739
3740	return _intel_bios_dp_max_lane_count(devdata);
3741}
3742
3743int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3744{
3745	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3746	const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3747
3748	if (!devdata || !devdata->child.ddc_pin)
3749		return 0;
3750
3751	return map_ddc_pin(i915, devdata->child.ddc_pin);
3752}
3753
3754bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3755{
3756	return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3757}
3758
3759bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3760{
3761	return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3762}
3763
3764const struct intel_bios_encoder_data *
3765intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3766{
3767	return i915->display.vbt.ports[port];
3768}
3769